COMPREHENSIVE
ORGANIC SYNTHESIS

Selectivity, Strategy & Efficiency
in Modern Organic Chemistry

Editor-in-Chief
BARRY M. TROST
Stanford University, CA, USA

Deputy Editor-in-Chief
IAN FLEMING
University of Cambridge, UK

Volume 1
ADDITIONS TO C—X π-BONDS, PART 1

Volume Editor
STUART L. SCHREIBER
Harvard University, Cambridge, MA, USA

PERGAMON PRESS
OXFORD • NEW YORK • SEOUL • TOKYO
Contents

Preface vii
Contributors to Volume 1 ix
Abbreviations xi
Contents of All Volumes xv

Nonstabilized Carbanion Equivalents

1.1 Carbanions of Alkali and Alkaline Earth Cations: (i) Synthesis and Structural Characterization
P. G. WILLIARD, Brown University, Providence, RI, USA 1

1.2 Carbanions of Alkali and Alkaline Earth Cations: (ii) Selectivity of Carbonyl Addition Reactions
D. M. HURYN, Hoffmann-La Roche, Nutley, NJ, USA 49

1.3 Organoaluminum Reagents
J. R. HAUSKE, Pfizer Central Research, Groton, CT, USA 77

1.4 Organocopper Reagents
B. H. LIPSHUTZ, University of California, Santa Barbara, CA, USA 107

1.5 Organotitanium and Organozirconium Reagents
C. FERRERI, G. PALUMBO & R. CAPUTO, Università di Napoli, Italy 139

1.6 Organochromium Reagents
N. A. SACCAMANO, Pfizer Central Research, Groton, CT, USA 173

1.7 Organozinc, Organocadmium and Organomercury Reagents
P. KNOCHEL, University of Michigan, Ann Arbor, MI, USA 211

1.8 Organocerium Reagents
T. IMAMOTO, Chiba University, Japan 231

1.9 Samarium and Ytterbium Reagents
G. A. MOLANDER, University of Colorado, Boulder, CO, USA 251

1.10 Lewis Acid Carbonyl Complexation
S. SHAMBAVATI & S. L. SCHREIBER, Harvard University, Cambridge, MA, USA 283

1.11 Lewis Acid Promoted Addition Reactions of Organometallic Compounds
M. YAMAGUCHI, Tohoku University, Sendai, Japan 325

1.12 Nucleophilic Addition to Imines and Imine Derivatives
R. A. VOLKMANN, Pfizer Central Research, Groton, CT, USA 355

1.13 Nucleophilic Addition to Carboxylic Acid Derivatives
B. T. O’NEILL, Pfizer Central Research, Groton, CT, USA 397

Heteroatom-stabilized Carbanion Equivalents

2.1 Nitrogen Stabilization
R. E. GAWLEY & K. REIN, University of Miami, Coral Gables, FL, USA 459

2.2 Boron Stabilization
A. PELTER & K. SMITH, University College Swansea, UK 487

2.3 Sulfur Stabilization
K. OGURA, Chiba University, Japan 505

2.4 The Benzoin and Related Acyl Anion Equivalent Reactions
A. HASSNER, Bar-Ilan University, Ramat-Gan, Israel & K. M. L. Rai, University of Mysore, India 541
2.5 Silicon Stabilization
J. S. PANB, Boston University, MA, USA

2.6 Selenium Stabilization
A. KRIEF, Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium

3.1 Alkene Synthesis
S. E. KELLY, Pfizer Central Research, Groton, CT, USA

3.2 Epoxidation and Related Processes
J. AUBÉ, University of Kansas, Lawrence, KS, USA

3.3 Skeletal Reorganizations: Chain Extension and Ring Expansion
P. M. WOVKULICH, Hoffmann-La Roche, Nutley, NJ, USA

Author Index

Subject Index
Preface

The emergence of organic chemistry as a scientific discipline heralded a new era in human development. Applications of organic chemistry contributed significantly to satisfying the basic needs for food, clothing and shelter. While expanding our ability to cope with our basic needs remained an important goal, we could, for the first time, worry about the quality of life. Indeed, there appears to be an excellent correlation between investment in research and applications of organic chemistry and the standard of living. Such advances arise from the creation of compounds and materials. Continuation of these contributions requires a vigorous effort in research and development, for which information such as that provided by the Comprehensive series of Pergamon Press is a valuable resource.

Since the publication in 1979 of Comprehensive Organic Chemistry, it has become an important first source of information. However, considering the pace of advancements and the ever-shrinking timeframe in which initial discoveries are rapidly assimilated into the basic fabric of the science, it is clear that a new treatment is needed. It was tempting simply to update a series that had been so successful. However, this new series took a totally different approach. In deciding to embark upon Comprehensive Organic Synthesis, the Editors and Publisher recognized that synthesis stands at the heart of organic chemistry.

The construction of molecules and molecular systems transcends many fields of science. Needs in electronics, agriculture, medicine and textiles, to name but a few, provide a powerful driving force for more effective ways to make known materials and for routes to new materials. Physical and theoretical studies, extrapolations from current knowledge, and serendipity all help to identify the direction in which research should be moving. All of these forces help the synthetic chemist in translating vague notions to specific structures, in executing complex multistep sequences, and in seeking new knowledge to develop new reactions and reagents. The increasing degree of sophistication of the types of problems that need to be addressed require increasingly complex molecular architecture to target better the function of the resulting substances. The ability to make such substances available depends upon the sharpening of our sculptors' tools: the reactions and reagents of synthesis.

The Volume Editors have spent great time and effort in considering the format of the work. The intention is to focus on transformations in the way that synthetic chemists think about their problems. In terms of organic molecules, the work divides into the formation of carbon-carbon bonds, the introduction of heteroatoms, and heteroatom interconversions. Thus, Volumes 1–5 focus mainly on carbon-carbon bond formation, but also include many aspects of the introduction of heteroatoms. Volumes 6–8 focus on interconversion of heteroatoms, but also deal with exchange of carbon-carbon bonds for carbon-heteroatom bonds.

The Editors recognize that the assignment of subjects to any particular volume may be arbitrary in part. For example, reactions of enolates can be considered to be additions to C—C π-bonds. However, the vastness of the field leads it to be subdivided into components based upon the nature of the bond-forming process. Some subjects will undoubtedly appear in more than one place.

In attacking a synthetic target, the critical question about the suitability of any method involves selectivity: chemo-, regio-, diastereo- and enantio-selectivity. Both from an educational point-of-view for the reader who wants to learn about a new field, and an experimental viewpoint for the practitioner who seeks a reference source for practical information, an organization of the chapters along the theme of selectivity becomes most informative.

The Editors believe this organization will help emphasize the common threads that underlie many seemingly disparate areas of organic chemistry. The relationships among various transformations becomes clearer and the applicability of transformations across a large number of compound classes becomes apparent. Thus, it is intended that an integration of many specialized areas such as terpenoid, heterocyclic, carbohydrate, nucleic acid chemistry, etc. within the more general transformation class will provide an impetus to the consideration of methods to solve problems outside the traditional ones for any specialist.

In general, presentation of topics concentrates on work of the last decade. Reference to earlier work, as necessary and relevant, is made by citing key reviews. All topics in organic synthesis cannot be treated with equal depth within the constraints of any single series. Decisions as to which aspects of a
Preface

topic require greater depth are guided by the topics covered in other recent Comprehensive series. This new treatise focuses on being comprehensive in the context of synthetically useful concepts.

The Editors and Publisher believe that Comprehensive Organic Synthesis will serve all those who must face the problem of preparing organic compounds. We intend it to be an essential reference work for the experienced practitioner who seeks information to solve a particular problem. At the same time, we must also serve the chemist whose major interest lies outside organic synthesis and therefore is only an occasional practitioner. In addition, the series has an educational role. We hope to instruct experienced investigators who want to learn the essential facts and concepts of an area new to them. We also hope to teach the novice student by providing an authoritative account of an area and by conveying the excitement of the field.

The need for this series was evident from the enthusiastic response from the scientific community in the most meaningful way — their willingness to devote their time to the task. I am deeply indebted to an exceptional board of editors, beginning with my deputy editor-in-chief Ian Fleming, and extending to the entire board — Clayton H. Heathcock, Ryoji Noyori, Steven V. Ley, Leo A. Paquette, Gerald Pattenden, Martin F. Semmelhack, Stuart L. Schreiber and Ekkehard Winterfeldt.

The substance of the work was created by over 250 authors from 15 countries, illustrating the truly international nature of the effort. I thank each and every one for the magnificent effort put forth. Finally, such a work is impossible without a publisher. The continuing commitment of Pergamon Press to serve the scientific community by providing this Comprehensive series is commendable. Specific credit goes to Colin Drayton for the critical role he played in allowing us to realize this work and also to Helen McPherson for guiding it through the publishing maze.

A work of this kind, which obviously summarizes accomplishments, may engender in some the feeling that there is little more to achieve. Quite the opposite is the case. In looking back and seeing how far we have come, it becomes only more obvious how very much more we have yet to achieve. The vastness of the problems and opportunities ensures that research in organic synthesis will be vibrant for a very long time to come.

BARRY M. TROST
Palo Alto, California
Contributors to Volume 1

Professor J. Aubé
Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045-2506, USA

Dr R. Caputo
Dipartimento di Chimica Organica e Biologica, Università di Napoli, Via Mezzocannone 16, I-80134 Napoli, Italy

Dr C. Ferreri
Dipartimento di Chimica Organica e Biologica, Università di Napoli, Via Mezzocannone 16, I-80134 Napoli, Italy

Professor R. E. Gawley
Department of Chemistry, University of Miami, PO Box 249118, Coral Gables, FL 33124, USA

Professor A. Hassner
Department of Chemistry, Bar-Ilan University, Ramat-Gan 59100, Israel

Dr J. R. Hauske
Pfizer Central Research, Eastern Point Road, Groton, CT 06340, USA

Dr D. M. Huryn
Building 76, Hoffmann-La Roche Inc, 340 Kingsland Street, Nutley, NJ 07110-1199, USA

Professor T. Imamoto
Department of Chemistry, Faculty of Science, Chiba University, Yayoi-cho, Chiba 260, Japan

Dr S. E. Kelly
Pfizer Central Research, Eastern Point Road, Groton, CT 06340, USA

Professor P. Knochel
Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA

Professor A. Krief
Departement de Chemie, Facultés Universitaires Notre-Dame de la Paix, Rue de Bruxelles 61, B-5000 Namur, Belgium

Professor B. H. Lipshutz
Department of Chemistry, University of California, Santa Barbara, CA 93106, USA

Professor G. A. Molander
Department of Chemistry & Biochemistry, University of Colorado, Campus Box 215, Boulder, CO 80309-0215, USA

Professor K. Ogura
Department of Synthetic Chemistry, Chiba University, 1-33 Yayoi-cho, Chiba 260, Japan

Dr B. T. O’Neill
Pfizer Central Research, Eastern Point Road, Groton, CT 06340, USA

Dr G. Palumbo
Dipartimento di Chimica Organica e Biologica, Università di Napoli, Via Mezzocannone 16, I-80134 Napoli, Italy

Professor J. S. Panek
Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA

Professor A. Pelter
Department of Chemistry, University College Swansea, Singleton Park, Swansea SA2 8PP, UK

Dr K. M. L. Rai
Department of Chemistry, University of Mysore, Manasa Gangotri, Mysore 570006, India

Mrs K. Rein
Department of Chemistry, University of Miami, PO Box 249118, Coral Gables, FL 33124, USA

Dr N. A. Saccomano
Pfizer Central Research, Eastern Point Road, Groton, CT 06340, USA
Contributors to Volume 1

Professor S. L. Schreiber
Department of Chemistry, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA

Mr S. Shambayati
Department of Chemistry, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA

Professor K. Smith
Department of Chemistry, University College Swansea, Singleton Park, Swansea SA2 8PP, UK

Dr R. A. Volkmann
Pfizer Central Research, Eastern Point Road, Groton, CT 06340, USA

Professor P. G. Williard
Department of Chemistry, Brown University, Providence, RI 02912, USA

Dr P. M. Wovkulich
Building 76, Hoffmann-La Roche Inc, 340 Kingsland Street, Nutley, NJ 07110-1199, USA

Professor M. Yamaguchi
Department of Chemistry, Faculty of Science, Tohoku University, Aoba, Sendai 980, Japan
Abbreviations

The following abbreviations have been used where relevant. All other abbreviations have been defined the first time they occur in a chapter.

Techniques

CD circular dichroism
CIDNP chemically induced dynamic nuclear polarization
CNDO complete neglect of differential overlap
CT charge transfer
GLC gas–liquid chromatography
HOMO highest occupied molecular orbital
HPLC high-performance liquid chromatography
ICR ion cyclotron resonance
INDO incomplete neglect of differential overlap
IR infrared
LCAO linear combination of atomic orbitals
LUMO lowest unoccupied molecular orbital
MS mass spectrometry
NMR nuclear magnetic resonance
ORD optical rotatory dispersion
PE photoelectron
SCF self-consistent field
TLC thin layer chromatography
UV ultraviolet

Reagents, solvents, etc.

Ac acetyl
acac acetylacetonate
AIBN 2,2’-azobisisobutyronitrile
Ar aryl
ATP adenosine triphosphate
9-BBN 9-borabicyclo[3.3.1]nonyl
9-BBN-H 9-borabicyclo[3.3.1]nonane
BHT 2,6-di-t-butyl-4-methylphenol (butylated hydroxytoluene)
bipy 2,2’-bipyridyl
Bn benzyl
t-BOC t-butoxycarbonyl
BSA N,N-bis(trimethylsilyl)acetamide
BSTFA N,N-bis(trimethylsilyl)trifluoroacetamide
BTAF benzyltrimethylammonium fluoride
Bz benzoyl
CAN ceric ammonium nitrate
COD 1,5-cyclooctadiene
COT cyclooctatetraene
Cp cyclopentadienyl
Cp* pentamethycyclopentadienyl
18-crown-6 1,4,7,10,13,16-hexaoxyoctadecane
CSA camphorsulfonic acid
CSI chlorosulfonyl isocyanate
DABCO 1,4-diazabicyclo[2.2.2]octane
DBA dibenzylideneacetone
DBN 1,5-diazabicyclo[4.3.0]non-5-ene
DBU 1,8-diazabicyclo[5.4.0]undec-7-ene
<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCC</td>
<td>Dicyclohexylcarbodiimide</td>
</tr>
<tr>
<td>DDQ</td>
<td>2,3-dichloro-5,6-dicyano-1,4-benzoquinone</td>
</tr>
<tr>
<td>DEAC</td>
<td>Diethylaluminum chloride</td>
</tr>
<tr>
<td>DEAD</td>
<td>Diethyl azodicarboxylate</td>
</tr>
<tr>
<td>DET</td>
<td>Diethyl tartrate (+ or -)</td>
</tr>
<tr>
<td>DHP</td>
<td>Dihydropropyran</td>
</tr>
<tr>
<td>DIBAL-H</td>
<td>Diisobutylaluminum hydride</td>
</tr>
<tr>
<td>diglyme</td>
<td>Diethylene glycol dimethyl ether</td>
</tr>
<tr>
<td>dimyl Na</td>
<td>Sodium methylsulfinylmethide</td>
</tr>
<tr>
<td>DIOP</td>
<td>2,3-O-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane</td>
</tr>
<tr>
<td>DIPT</td>
<td>Diisopropyl tartrate (+ or -)</td>
</tr>
<tr>
<td>DMA</td>
<td>Dimethylacetamide</td>
</tr>
<tr>
<td>DMAC</td>
<td>Dimethylaluminum chloride</td>
</tr>
<tr>
<td>DMAD</td>
<td>Dimethyl acetylenedicarboxylate</td>
</tr>
<tr>
<td>DMAP</td>
<td>4-Dimethylaminopyridine</td>
</tr>
<tr>
<td>DME</td>
<td>Dimethoxyethane</td>
</tr>
<tr>
<td>DMF</td>
<td>Dimethylformamide</td>
</tr>
<tr>
<td>DMI</td>
<td>N,N'-Dimethylimidazolone</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>DMTSF</td>
<td>Dimethyl(methylthio)sulfonium fluoroborate</td>
</tr>
<tr>
<td>DPPB</td>
<td>1,4-Bis(diphenylphosphino)butane</td>
</tr>
<tr>
<td>DPPE</td>
<td>1,2-Bis(diphenylphosphino)ethane</td>
</tr>
<tr>
<td>DPPF</td>
<td>1,1'-Bis(diphenylphosphino)ferrocene</td>
</tr>
<tr>
<td>DPPP</td>
<td>1,3-Bis(diphenylphosphino)propane</td>
</tr>
<tr>
<td>E+</td>
<td>Electrophile</td>
</tr>
<tr>
<td>EADC</td>
<td>Ethylaluminum dichloride</td>
</tr>
<tr>
<td>EDG</td>
<td>Electron-donating group</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EEDQ</td>
<td>N-Ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline</td>
</tr>
<tr>
<td>EWG</td>
<td>Electron-withdrawing group</td>
</tr>
<tr>
<td>HMPA</td>
<td>Hexamethylphosphoric triamide</td>
</tr>
<tr>
<td>HOBT</td>
<td>Hydroxybenzotriazole</td>
</tr>
<tr>
<td>Ipsexual H</td>
<td>Isopinocampheylborane</td>
</tr>
<tr>
<td>Ipsexual 2BH</td>
<td>Diisopinocampheylborane</td>
</tr>
<tr>
<td>KAPA</td>
<td>Potassium 3-aminopropylamide</td>
</tr>
<tr>
<td>K-selectride</td>
<td>Potassium tri-s-butylborohydride</td>
</tr>
<tr>
<td>LAH</td>
<td>Lithium aluminum hydride</td>
</tr>
<tr>
<td>LDA</td>
<td>Lithium disopropylamide</td>
</tr>
<tr>
<td>LICA</td>
<td>Lithium isopropylcyclohexylamide</td>
</tr>
<tr>
<td>LITMP</td>
<td>Lithium tetramethylpiperidide</td>
</tr>
<tr>
<td>L-selectride</td>
<td>Lithium tri-s-butylborohydride</td>
</tr>
<tr>
<td>LTA</td>
<td>Lead tetraacetate</td>
</tr>
<tr>
<td>MCPBA</td>
<td>M-Chloroperbenzoic acid</td>
</tr>
<tr>
<td>MEM</td>
<td>Methoxymethoxymethyl</td>
</tr>
<tr>
<td>MEM-Cl</td>
<td>B-Methoxymethoxymethyl chloride</td>
</tr>
<tr>
<td>MMA</td>
<td>Methyl methacrylate</td>
</tr>
<tr>
<td>MMC</td>
<td>Methylmagnesium carbonate</td>
</tr>
<tr>
<td>MOM</td>
<td>Methoxymethyl</td>
</tr>
<tr>
<td>Ms</td>
<td>Methanesulfonyl</td>
</tr>
<tr>
<td>MSA</td>
<td>Methanesulfonic acid</td>
</tr>
<tr>
<td>MsCl</td>
<td>Methanesulfonic chloride</td>
</tr>
<tr>
<td>MVK</td>
<td>Methyl vinyl ketone</td>
</tr>
<tr>
<td>NBS</td>
<td>N-Bromosuccinimide</td>
</tr>
<tr>
<td>NCS</td>
<td>N-Chlorosuccinimide</td>
</tr>
</tbody>
</table>
Abbreviations

NMO \(N\)-methylmorpholine \(N\)-oxide
NMP \(N\)-methyl-2-pyrrolidone
Nu\(^+\) nucleophile
PPA polyphosphoric acid
PCC pyridinium chlorochromate
PDC pyridinium dichromate
phen 1,10-phenanthroline
Phth phthaloyl
PPE polyphosphate ester
PPTS pyridinium \(p\)-toluenesulfonate
Red-Al sodium bis(methoxyethoxy)aluminum dihydride
SEM \(\beta\)-trimethylsilylethoxymethyl
Si\(_2\)BH disiamylborane
TAS tris(diethylamino)sulfonium
TBAF tetra-\(n\)-butylammonium fluoride
TBDMS \(t\)-butyldimethylsilyl
TBDMS-Cl \(t\)-butyldimethylsilyl chloride
TBHP \(t\)-butyl hydroperoxide
TCE 2,2,2-trichloroethanol
TCNE tetracyanoethylene
TES triethylsilyl
Tf triflyl (trifluoromethanesulfonyl)
TFA trifluoroacetic acid
TFAA trifluoroacetic anhydride
TBF tetrahydrofuran
THP tetrahydroprpyranyl
TIPBS-Cl 2,4,6-triisopropylbenzenesulfonyl chloride
TIPS-Cl 1,3-dichloro-1,1,3,3-tetraisopropylsioxane
TMEDA tetramethylenediamine [1,2-bis(dimethylamino)ethane]
TMS trimethylsilyl
TMS-Cl trimethylsilyl chloride
TMS-CN trimethylsilyl cyanide
Tol tolyl
TosMIC tosylmethyl isocyanide
TPP \(meso\)-tetraphenylporphyrin
Tr trityl (triphenylmethyl)
Ts tosyl (\(p\)-toluenesulfonyl)
TTFA thallium trifluoroacetate
TTN thallium(III) nitrate
1.1
Carbanions of Alkali and Alkaline Earth Cations: (i) Synthesis and Structural Characterization

PAUL G. WILLIARD
Brown University, Providence, RI, USA

1.1.1 INTRODUCTION
In this chapter the focus is primarily on the recent structural work concerning carbanions of alkali and alkaline earth cations that are widely utilized in synthetic organic chemistry. In this context the year 1981 is significant because the first detailed X-ray diffraction analyses of two lithium enolates of simple ketones, i.e. 3,3-dimethyl-2-butane and cyclopentanone, were published. Since 1981 a number of detailed X-ray diffraction analyses of synthetically useful enolate anions of alkali and alkaline earth cations...
Nonstabilized Carbanion Equivalents

have been described. Within this chapter, many recent structural characterizations will be examined with the overall goal of collating this new information especially as it pertains to increasing our knowledge and control over the reactivity of these most useful and important synthetic reagents. The chapter is organized by functional group because this classification is quite natural to synthetic chemists. The examples chosen have come to my attention while thinking about the role of these species in synthetic reactions. It is neither practical nor feasible to include in this chapter an exhaustive review of all structural characterizations of carbanions of alkali and alkaline earth cations. Should the complete list of all such structures be required, a comprehensive search of the Cambridge Structural Database (CSD) is recommended. Throughout this chapter structural references are given to six letter CSD reference codes as follows, (XXXXXX). These refcodes will assist in obtaining crystallographic coordinates directly from the CSD.

At the outset it is especially useful to tabulate previous review articles containing a significant body of structural information about carbanions of alkali and alkaline earth cations, since these articles supplement the work reviewed herein. The first of these articles is an excellent review entitled ‘Structure and Reactivity of Alkali Metal Enolates’ by Jackman and Lange published in 1977. It is significant that the fundamental details of the structure and the aggregation state of alkali metal ketone enolate anions in solution were outlined by Jackman mainly from NMR experiments and that this work predates the X-ray diffraction analyses. An earlier book by Schlosser entitled ‘Struktur und Reaktivität polarer Organometalle’ describes alkali and alkaline earth aggregates and their reactivities. Some additional relevant structural information is reviewed in previous titles in this series, i.e., by Wakefield in Vol. 3 of ‘Comprehensive Organic Chemistry’ and by the same author in Vol. 7 of ‘Comprehensive Organometallic Chemistry’ and by O’Neill, Wade, Wardell, Bell and Lindsell in Vol. 1 of ‘Comprehensive Organometallic Chemistry’. A short review by Fraenkel et al. summarizes the solution structure and dynamic behavior of some aliphatic and alkylic lithium compounds by 13C, 6Li and 7Li NMR studies. Additional comprehensive reviews regarding NMR spectroscopy of organoaluminum compounds contain information related to this topic. A thorough listing and classification of the X-ray structural analyses of organo lithium, sodium, potassium, rubidium and cesium compounds sifted from the Cambridge Structural Database has been prepared by Schleyer and coworkers and covers published work until the latter 1980s. Finally there are a few recent specialized reviews by Seebach, entitled ‘Structure and Reactivity of Lithium Enolates. From Pinacolone to Selective C-Alkylations of Peptides. Difficulties and Opportunities Afforded by Complex Structures’, by Power, entitled ‘Free Inorganic, Organic, and Organometallic Ions by Treatment of Their Lithium Salts with 12-Crown-4’, and by Boche, entitled ‘Structure of Lithium Compounds of Sulfones, Sulfoximides, Sulfoxides, Thio Ethers and 1,3-Dithianes, Nitriles, Nitro Compounds and Hydrazones’, that mainly summarize the author’s own recent contributions to the area. The reviews by Seebach and Boche are especially relevant to synthetic organic chemists and are highly recommended. Several additional articles may justifiably be included in this list; however, the reader is referred to the aforementioned publications, especially the Seebach, Boche and Schleyer reviews, for an exhaustive bibliography, since it will be unnecessary to repeat their bibliographic compilations.

Alkali and alkaline earth metal cations are associated with numerous carbanions in reactions found in nearly every contemporary total synthesis. The basis for our current mechanistic interpretation of the role of these metal cations in synthetic reactions has been derived largely from correlating the stereochemistry of reaction products with the starting materials. These stereochemical correlations utilize as a foundation the conformational analysis of carbocyclic rings. One simply notes how often chair-like or boat-like intermediates/transition states are employed to rationalize the stereochemical outcome of synthetic reactions incorporating alkali metal cations to verify the veracity of the previous statement. In almost all mechanistic pictures, one also notes that the metal cation occupies a prominent role in the purported intermediate and/or transition state. However, it has become increasingly clear that we still possess only an incomplete understanding of the aggregation state and of the structural features of many of the alkali or alkaline earth metal coordinated carbanions in solution. Presently the following conclusions about organic reactions in which carbanions of alkali and alkaline earth cations are involved will be made: (i) these carbanions are utilized almost routinely in nearly every organic synthetic endeavor; (ii) there exists a poignant lack of detailed structural information about the reactive species themselves; (iii) the development of new reactive intermediates especially those designed to enhance and to control stereoselectivity continues to grow; and (iv) the basic ideas for the design of new reagents emanates almost exclusively from detailed, but as yet largely speculative, structural postulates about these reactive organometallic species based nearly exclusively upon carbocyclic conformational analysis.

Perhaps the increasing number of intermediates and/or transition states that have been proposed to explain the stereochemical outcome of enolate reactions can serve as a barometer of our attempts to analyze the situation. Currently we have set an all time high for the number of new mechanistic interpreta-
tions of enolate reactions. It is my feeling that this will not turn out to be as simple as an open and closed case that the present models suggest. On the contrary, there exists increasing evidence\(^\text{18}\) for the role of highly organized, oligomeric species which play crucial roles in enolate reactions; especially in those reactions that are fast and reversible (i.e. thermodynamically controlled), such as the aldol reaction.

A precocious explanation of the complex role of alkali metal enolates was presented in a manuscript published in 1971.\(^\text{19}\) A paragraph from this paper is reproduced below. It represents the manuscript’s authors’ explanation for the counterintuitive observation that more highly substituted (i.e. more sterically hindered) enolate anions undergo alkylation reactions faster than less highly substituted (i.e. less sterically hindered) enolates.

‘The fact that less highly substituted alkali metal enolates may sometimes react more slowly with alkyl halides than their analogs having additional \(\alpha\)-substituents has been noted in several studies.\(^\text{20}\) These observations initially seem curious since adding \(\alpha\)-substituents would be expected to increase the steric interference to forming a new bond at the \(\alpha\)-carbon atom. However, there is considerable evidence that many of the metal enolates (and related metal alkoxides) exist in ethereal solvents either as tightly associated ion pairs or as aggregates (dimers, trimers, tetramers) of these ion pairs;\(^\text{21}\) structures such as (1)–(4) (\(\text{M} = \text{metal}; \text{n} = 1, 2, \text{or} \text{3}; \text{R} = \text{alkyl or the substituted vinyl portion of an enolate}) have been suggested for such material with the smaller aggregates being favored as the steric bulk of the group \(\text{R}\) increases. Thus, the bromomagnesium enolate of isopropyl mesityl ketone is suggested to have structure (1) (\(\text{M} = \text{MgBr}\)), whereas the enolate of the analogous methyl ketone is believed to have structure (2) (\(\text{M} = \text{MgBr}\)).\(^\text{22}\) The sodium enolates of several ketones are suggested to have the trimeric structures (3) in various ethereal solvents. Since the reactivities of metal enolates toward alkyl halides are very dependent on the degree of association and/or aggregation,\(^\text{23}\) we suggest that the decreased reactivity observed for less highly substituted metal enolates both in this study and elsewhere may be attributable to a greater degree of aggregation of these enolates.’ (Reproduced by permission of the American Chemical Society from \textit{J. Org. Chem.}, 1971, 36, 2361.)

\[
\text{ROM(solvent)}_n \quad \text{(solvent)}_n \quad \text{M(solvent)}_n \quad \text{R} \\
(1) \\
(2) \\
(3) \\
(4)
\]

The above quotation aptly rationalizes a number of experimental observations having to do with alkylation reactions of enolate anions. It suggests that reactivity and, by logical extension, the stereochemical selectivity, of enolate reactions are related to the aggregation of the enolates. To me, this statement represents a general but very daring explanation. This quotation is now over 20 years old; however, the significance of the conclusions reflected here is only now becoming more widely acknowledged.\(^\text{24}\)

Exactly 10 years after the previous statement appeared, the first lithium enolate crystal structures were published as (5) and (6).\(^\text{1}\) Thus, structural information derived from X-ray diffraction analysis proved the tetrameric, cubic geometry for the THF-solvated, lithium enolates derived from \(t\)-butyl methyl ketone (pinacolone) and from cyclopentanone.\(^\text{25}\) Hence, the tetrameric aggregate characterized previously by NMR\(^\text{26}\) as (7) was now defined unambiguously. Moreover, the general tetrameric aggregate (7) now became embellished in (5) and (6) by the inclusion of coordinating solvent molecules, \(i.e.\) THF. A representative quotation from this 1981 crystal structure analysis is given below.

‘There is increasing evidence that lithium enolates, the most widely used class of \(d^2\)-reagents in organic synthesis, form solvated, cubic, tetrameric aggregates of type (8). For the solid state this type of
structure was definitely established for two crystalline lithium enolates and is strongly indicated for several others by their stoichiometry. In aprotic solvents only aggregated species are detected by NMR spectroscopy; even during reactions with electrophiles these aggregates are preserved and appear to be the actual reacting species, as indicated by reaction rates, which are first-order and not broken-order in enolate concentration. (Reproduced by permission of the Swiss Chemical Society from Helv. Chim. Acta, 1981, 64, 2617.)

The authors of this quotation proceed to postulate the highly speculative but not unreasonable mechanism for the aldol reaction shown in Scheme 1. Justification for this mechanism appears to be based mainly upon characterization by X-ray diffraction analysis of the tetrameric cubic aggregates (5) and (6). Hence, X-ray diffraction analysis unambiguously provided the intimate structural details unobtainable by other methods.

Currently, the significance of the structural work in this area is aptly summarized by pointing out that it has been possible to obtain and to characterize the structure of aggregates corresponding to the intermediates (8) and (9) (M = Na), and (11) in the aldol reaction mechanism shown in Scheme 1. At present we assume that ample evidence points to the existence of aggregated intermediates in several alkylation and aldol-like reactions. Thus, the following sections of this chapter are classified roughly by functional group, and they contain structural results obtained by X-ray diffraction analysis. The examples were chosen with the thought of providing structural details about the reactive intermediates utilized in synthetic organic reactions, but it must be repeated that they do not represent a complete and comprehensive list of all such structures. As additional structural information is obtained, perhaps it will be
Carbanions of Alkali and Alkaline Earth Cations

It is possible to expand and to refine carbanion reaction mechanisms to include aggregated intermediates rather than simple monomers.

The results reviewed in the following pages of this chapter may provide fundamental information for the conduct, planning and strategy of organic synthesis. The origin of stereoselectivity in many organic reactions can be put on a more rational basis as more intimate structural details about the intermediates involved in these reactions are discovered. Of course, the long range goal and ultimate significance of this structural information is to provide a more thorough basis for accurate prediction and control of stereochemistry in organic reactions. Since enolate anions are universally utilized in all synthetic schemes, the successful obtention of additional structural results will have a great impact on the ability and the ease by which organic compounds will be prepared. I begin with a survey of known structural types.

1.1.2 STRUCTURAL FEATURES

1.1.2.1 Aggregation State

It is vital to recognize that metal cations impart a degree of order to the anions with which they are associated. Typically the first characteristic feature described is the stoichiometry. A simple chemical formula such as \(M^+A^- \) requires additional clarification to denote a higher degree of association such as \((M^+A^-)_x \) where the subscript \(x \) denotes the aggregation state of the species. The common descriptors of the aggregation state are monomer, dimer, trimer, tetramer, etc.

Knowledge of the aggregation state is crucial since the reactivity of the anion is related to the aggregation state as well as to its structure. Knowledge of the aggregation state is crucial since the reactivity of the anion is related to the aggregation state as well as to its structure. The structures of the aggregates also depend critically upon the solvation of the cations. Fortunately, the majority of known structures can be built from a few simple structural patterns.

A motif found in the majority of alkali metal stabilized carbanion crystal structures is a nearly planar four-membered ring (13) with two metal atoms (\(M^+ \)) and two anions (\(A^- \)), *i.e.* dimer. This simple pattern is rarely observed unadorned as in (13), yet almost every alkali metal and alkaline earth carbanion aggregate can be built up from this basic unit. The simplest possible embellishment to (13) is addition of two substituents (\(S \)) which produces a planar aggregate (14). Typically the substituents (\(S \)) in (14) are solvent molecules with heteroatoms that serve to donate a lone pair of electrons to the metal (\(M \)). Only slightly more complex than (14) is the four coordinate metal dimer (15). Often the substituents (\(S \)) in (15) are joined by a linear chain. The most common of these chains are tetramethylethylenediamine (TMEDA) or dimethoxyethane (DME) so that the spirocyclic structure (16) ensues. Alternatively the donors (\(S \)) in (16) have been observed as halide anions (\(X^- \)) when the metal (\(M^2+ \)) is a divalent cation, *e.g.* (17) or (18). Obviously, the chelate rings found in (16) are entropically favorable relative to monodentate donors (\(S \)) in (14), (15), (17) or (18) (Scheme 2).

\[
\begin{align*}
\text{(13)} & \quad M^+M^- \quad \Rightarrow \quad S-M^+A^- \quad \Rightarrow \quad S-M^+A^-M^-A^-S^- \\
\text{(14)} & \quad S-M^+A^-M^-A^-S^- \\
\text{(15)} & \quad S-M^+A^-M^-A^-S^- \\
\text{(16)} & \quad S-M^+A^-M^-A^-S^- \\
\text{(17)} & \quad S-M^+A^-M^-A^-S^- \\
\text{(18)} & \quad S-M^+A^-M^-A^-S^- \\
\end{align*}
\]

Scheme 2
Several structural types are based on the combination of two units of (13). The edge-to-edge combination of (13) yields a ‘ladder’-type structure (19). Of course there are various combinations of solvent donor ligands and/or chelate donors possible in (20) and (21). The face-to-face combination of (13) can produce a relatively cubic infrastructure (22) as previously seen in the enolates (5) and (6). Distorted variations of the cube (22) are observed, such as (23), or alternatively as another variation (24), with opposite square faces offset from one another (by nearly 90° in 24). Such variations may be described as a ‘tetrahedron within a tetrahedron’. It is noteworthy that the cube (22) can be derived from the ladder (21) simply by decreasing the appropriate internal bond angles to about 90° as indicated by the sequence of formulae (13) → (19) → (21) → (22). An advantage of the closed cubic structure (22) over the ladder (19) is the additional coordination of the terminal metal cations (M) to a third anion. The cube (22) is most frequently observed with four-coordinate metal cations, as in (25) and not in its unsolvated form (22) (Scheme 3).

Edge-to-edge combination of additional units of (13) leads to the longer ladders (26) or (27). We have already obtained one unusual lithium enolate crystal structure corresponding to (26) but with additional external chelate rings. Closure of (27), analogous to the closure of (21) to (22), produces a hexagonal prism (28). Examples of structural type (28) are observed in addition to the solvent-coordinated hexamer (29). Distortion of (29), shown as (30), will lead to a somewhat less sterically hindered structure allowing for solvation of the metal cations by solvent (Scheme 4).

An alternative dissection of the hexagonal prism (28) is given as (31) (Scheme 4). Hence the hexamer (28) could be built up from two units of a planar trimer (31). This is plausible, because an example of a planar trimeric structure corresponding to (31) is known, i.e. the trimeric, unsolvated lithium hexamethyldisilazide structure.12

Additional structural types are known for alkali carbanions in the solid state. Examples of these are the monocyclic tetramer (32) or the pentacyclic tetramer (33), the hexamer (34), the dodecamer (35) and the infinite polymer (36). Undoubtedly several new structural types will be observed as mixed aggregates containing different metal cations (M⁺ and M²⁺) and/or different anions (A⁻ and A'⁻) are characterized. Relatively long ladders, i.e. (37), corresponding to oligomeric chains of the dimer (14) combined edge-to-edge, are also likely to be characterized in the future. It is to be anticipated that the carbanions of limited solubility correspond to these extended ladders and that solubilization occurs by breaking these oligomers. A recent discussion of the propensity of lithiated amides to form either ladder structures or closed ring structures along with some *ab initio* calculations of these structural models has been presented by Snaith et al.33
The directional preferences for coordination to the alkali metal and alkaline earth cations is obviously related to the number of substituents coordinated to the cation. As yet there is little predictability of the coordination number among these cations. For example, the first member of this series, the Li⁺ cation, is the best characterized with well over 500 X-ray crystal structures containing this ion. Coordination numbers to Li⁺ ranging from two through seven and all values in between can be found. The Li⁺ cation is also found symmetrically π-complexed to the faces of aryl anions and to conjugated linear anions (see
At present enough evidence exists to deduce only that the coordination number to the alkali metal and alkaline earth cations, and consequently the coordination geometry about these cations, is governed primarily by steric factors. Unfortunately the predictability of any individual unknown structure is relatively low.

In general the metal cation to substituent distances are found spanning a range of values. A working criterion for coordination to the metal cations is that the M—A distance not be greater than the sum of the van der Waals radii of M and A as listed by Pauling. This criterion is particularly convenient when the anion is a typical heteroatom, such as O or N, or a halide, X. In such cases it is usually possible to derive accurate estimates of these distances from compiled sources. However, the values of the M—A distance for cases where A is carbon and M is a Group Ia or Ila metal are not particularly well defined. Hence, Table 1 represents a recent search of the CSD for these values.36

<table>
<thead>
<tr>
<th>Bond</th>
<th>Mean (Å)</th>
<th>S.D.</th>
<th>Minimum (Å)</th>
<th>Maximum (Å)</th>
<th>Nobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>C—Li</td>
<td>2.259</td>
<td>0.087</td>
<td>2.041</td>
<td>2.557</td>
<td>354</td>
</tr>
<tr>
<td>C—Na</td>
<td>2.646</td>
<td>0.060</td>
<td>2.566</td>
<td>2.756</td>
<td>12</td>
</tr>
<tr>
<td>C—K</td>
<td>No examples found</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C—Rb, C—Cs, C—Fr</td>
<td>No examples found</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C—Be</td>
<td>1.874</td>
<td>0.081</td>
<td>1.707</td>
<td>2.043</td>
<td>38</td>
</tr>
<tr>
<td>C—Mg</td>
<td>2.256</td>
<td>0.015</td>
<td>2.095</td>
<td>2.602</td>
<td>100</td>
</tr>
<tr>
<td>C—Ca, C—Sr, C—Ba, C—Ra</td>
<td>No examples found</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This table includes all examples listed in the CSD (version 4.20, 1990) located by a fragment search (i.e. CONNSEN) for C—M bonds where M = group Ia or Ila metals irrespective of the hybridization of carbon.

Related structural aspects of metal ion coordination geometry are covered in some recent publications and are worthy of note. The directional preferences of ether oxygen atoms towards alkali and alkaline earth cations are reported by Chakrabarti and Dunitz. The conclusion of this work is that the larger cations show an apparent preference to approach the ether oxygen along a tetrahedral lone pair direction, whereas Li⁺ cations tend to be found along the C—O—C bisector, i.e. along the trigonal lone pair direction. Metal cation coordination to the syn and anti lone pair of electrons of the oxygen atoms in a carboxylate group have been reviewed by Glusker et al. Scatter plots of M—O distances versus C—O—M angles for a wide variety of cation types led to the conclusion that both the coordination geometry and the distances of coordination to carboxylate lone pairs are largely governed by steric influences. Recently, the geometry of carboxyl oxygen complexation to several Lewis acids has been summarized by Schreiber et al. Although only a few alkali metal Lewis acid–carbonyl structures are known, the general conclusion is that alkali metal cations do not show a strong directional preference for binding to carbonyls and that coordination numbers and coordination geometries vary greatly in these complexes.

1.1.3 CARBANION CRYSTAL STRUCTURES

With the general background of structural types described as above, it is now appropriate to review a number of examples of X-ray crystal structures of alkali metal and alkaline earth cations. The choice of examples is biased in favor of those species that are relevant to synthetic organic chemists. Hence, I begin with a comparison of structures of aliphatic carbanions. This group of aliphatic carbanion structures is the most widely varied and surely the least predictable. Of particular significance will be the aggregation state, the coordination number and the relative geometry about the metal cation. The figures drawn in the following sections are not computer generated plots of the actual X-ray crystal structures but are approximations of the actual structures. It is not practical to enumerate all of the specific details such as all bond lengths, bond angles and torsion angles in these structures and the reader is referred to the original publications for this specific information.
1.13.1 Aliphatic Carbanions

1.13.1.1 Unsubstituted aliphatic carbanions

Among the earliest aliphatic carbanions to be structurally characterized by X-ray diffraction analysis are the simple unsubstituted alkyllithium reagents, i.e. methyl-, ethyl, and cyclohexyl. Methyl- and ethyl-lithium have also been examined in detail by quantum mechanical calculations and by electrostatic calculations. The structures of methyl- and ethyl-lithium are similar. Both of these compounds crystallize as tetrameric aggregates from hydrocarbon solvents. These tetramers are generally depicted as (38). The aggregate (38) is described as a tetrahedral arrangement of lithium atoms with a single alkyl group located on each of the four faces of the Li tetrahedron. The carbanionic carbons are not necessarily equidistant from the three closest lithium atoms. However, it is clear that the three covalently bound substituents on the carbon atoms (H or alkyl) are found at the locations expected for an sp3-hybridized atom. The carbon–lithium interactions have been referred to as two-electron four-center bonds in these structures. A low temperature crystal structure of ethyl-lithium reveals some small changes relative to the room temperature structure, but the basic tetramer remains intact.

Cyclohexyllithium was prepared in hexane from cyclohexyl chloride and lithium sand and subsequently extracted and recrystallized from benzene solution to produce the hexameric aggregate (39). The lithium atoms in this aggregate are nearly in an octahedral configuration, although the triangular faces of this octahedron have two short (2.40 Å) and one long (2.97 Å) Li–Li distance. A carbanionic carbon is found on six of the triangular faces and is most closely associated with the two lithium atoms which possess the longest Li–Li atom distance. The orientation of the cyclohexyl group is apparently determined by the interaction of α- and β-protons with the lithium atoms. The Li–C interactions in this hexamer are described as localized four-center bonds, as in the methyl- and ethyl-lithium tetramer (38). Two benzene molecules are occluded in the solid cyclohexyllithium hexamer, but these solvent molecules do not appear to interact with the hexamer.

Solvent-free (tetramethylcyclopropyl)methylolithium (40) also forms the hexameric aggregate (39), similar to hexameric cyclohexyllithium. Both hexamers are characterized as a trigonal antiprism with triangular Li$^+$ faces. The (tetramethylcyclopropyl)methylolithium hexamer (40) was prepared in diethyl ether solution from both the Cl and the Hg compounds (41) as well as from the open chain compound (42). In contrast to the cyclohexyllithium hexamer, the hexamer (40) is obtained solvent free (Scheme 5).
An interesting cubic geometry is maintained in the mixed aggregate obtained from the reaction of cyclopropyl bromide (43) with lithium metal in diethyl ether solution. The composition of the crystalline material is \((c\text{-C}_3\text{H}_5\text{Li})_2\cdot(LiBr)_2\cdot 4\text{Et}_2\text{O}\). The aggregate was characterized as structure (44). Note the similarity of (44) with the cubic tetramers (38), except for the substitution of two carbanion residues by two bromides in (44). Note also that each of the lithium atoms in (44) is coordinated to an oxygen of a diethyl ether molecule. This solvation serves to increase the coordination number of the lithiums, but does not break up the overall tetrameric nature of the aggregate. This solid loses ether at room temperature and is transformed into an ether-insoluble, tetrahydrofuran-soluble, amorphous product. The mass spectrum of the ether-free substance shows only halide-free aggregates. It is likely that differing reactivity of the salt-containing and salt-free lithium alkyls is related to the direct incorporation of lithium halide into the carbanion aggregates.

Another mixed aggregate complex consisting of Bu\(^+\text{Li}\) and \(t\)-butoxide was reported in 1990 as the tetramer (45). This complex was first isolated by Lochmann and has been shown to be tetrameric and dimeric in benzene and THF, respectively, by cryoscopic measurements and it has also been studied by rapid injection NMR techniques. This species has received much attention because it is related to the synthetically useful ‘superbasic’ or ‘LiKOR’ reagents prepared by mixing alkali metal alkoxides with lithium alkyls or lithium amides.

Another example of a solvated, cubic tetramer is methyllithium-TMEDA (46). In this example an aggregate of composition \([\{(\text{MeLi})_4\cdot2\text{TMEDA}\}]_n\) with almost ideal \(T_d\) symmetry crystallized from an ethereal solution of methyllithium and TMEDA at room temperature. This material consists of infinitely long chains of cubic tetramer linked by TMEDA molecules. Since TMEDA usually has a strong preference for formation of a chelate ring with a single lithium atom, it is somewhat unusual that such an intramolecular chelate is not observed here.

Deprotonation of bicyclobutane (47) by \(n\)-butyllithium in hexane containing a slight excess of TMEDA, followed by solvent evaporation, filtration and recrystallization from benzene yields the dimeric, bis-chelated aggregate (48). This aggregate corresponds exactly to structural type (16). It is perhaps surprising that many more examples of aliphatic carbanions have not yet been characterized with this general bis-chelated dimeric structure.

Intramolecular solvated tetramers are observed for 3-lithio-1-methoxybutane (49) and from 1-dimethylamino-3-lithiopropane (50) in the solid state. These tetramers are shown in generalized form as (51) and (52), respectively. Note the significant difference between the aggregates (51) and (52). Variable temperature \(^7\text{Li}\) NMR as well as \(^1\text{H}\) NMR suggest that although the major form of 1-dimethylamino-3-lithiopropane (50) is the diastereomer (51), this structure is presumed to be in equilibrium with (52).
Carbanions of Alkali and Alkaline Earth Cations

[Diagram of carbanions]

\[\text{Bu}^\text{Li, hexane} \xrightarrow{\text{TMEDA}} \]

in toluene (or cyclopentane) with activation parameters \(\Delta H^\ddagger = 17 \pm 2 \text{ kcal mol}^{-1}, \Delta S^\ddagger = 13 \pm 3 \text{ cal (mol deg)}^{-1} (1 \text{ cal} = 4.184 \text{ J}) \).55b

Benzyllithium crystallizes from hexane/toluene solution in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) in infinite polymeric chains.56 Inspection of the individual monomeric units of this structure reveals a unique interaction of the lithium atoms in an \(\eta^3 \)-manner with the benzylic carbanion. This bonding is based upon the three relatively short \(\text{Li}-\text{C} \) contacts as indicated in structure (53). The two protons on the benzylic carbon center were located crystallographically; one of these lies in the plane of the aromatic ring and the other is significantly out of this plane. A similar \(\eta^3-\text{Li}--\text{CCC} \) interaction is observed in the diethyl ether solvate of triphenylmethyl lithium (54).57 This latter structure is depicted as (55).

When the lithium cation is unable to associate with the carbanion, as is the case for the \(\text{Li}^+ (12\text{-crown}-4) \) complexed lithium diphenylmethane carbanion (56) or \(\text{Li}^+ (12\text{-crown}-4) \) triphenylmethyl carbanion (57), the entire aromatic carbanions are relatively planar.58 The planarity of (56) and (57) is indicative of
Nonstabilized Carbanion Equivalents

extensive delocalization in these structures. The triphenylmethyl carbanion in (57) can also be compared with this same species as it appears associated with Li⁺-TMEDA59 and Na⁺-TMEDA60 cations.

A dimer (58) of α-lithiated 2,6-dimethylpyridine crystallizes with TMEDA solvation.61 This dimer is completely unlike the polymeric benzyl lithium (53) in that no π--intramolecular bonding is observed. The central core of the dimer (58) consists of an eight-membered ring formed from two intermolecular chelated Li⁺ atoms and nearly ideal perpendicular conformations of the α-CH₂Li⁺ groups. Dimer (58) is a relatively rare example of a lithiated π-system where Li⁺ exhibits only one carbon contact.

This discussion of aliphatic carbanion structures has included mainly organolithium compounds simply because the structures of most aliphatic carbanions incorporate lithium as the counterion and also because this alkali metal cation is the most widely used by synthetic organic chemists. For comparison the entire series of Group 1a methyl carbanion structures, i.e. MeNa, MeK, MeRb and MeCs, have been determined. Methylsodium was prepared by reaction of methyl lithium with sodium tert-butoxide.62 Depending upon the reaction conditions, the products obtained by this procedure contain variable amounts of methyl lithium and methylsodium (Na:Li atom ratios from 36:1 to 3:1). The crystal structure of these methylsodium preparations resembles the cubic tetramer (38) obtained for methyl lithium with the Na—Na distances of 3.12 and 3.19 Å and Na—C distances of 2.58 and 2.64 Å.

Methylpotassium, prepared from MeHg and K/Na alloy or from methyl lithium and potassium tert-butoxide, has a hexagonal structure corresponding to the NiAs type (59).63 Each methyl group is considered to be coordinated to six K⁺ ions in a trigonal prismatic array. Methylrubidium and methylcesium, prepared from rubidium tert-butoxide and cesium 2-methylpentanoate respectively, also possess hexagonal structures of the same type as methylpotassium.64
An extremely unusual pentacoordinate carbon with trigonal bipyramidal symmetry is observed in the crystalline, TMEDA solvate of benzylsodium. This benzylsodium complex is best described as a tetramer with approximate \(D_{2d} \) symmetry. The four sodium atoms define a square with a benzyl carbanion bisecting each edge. The resulting eight-membered ring is slightly puckered to alleviate crowding. This structure is depicted as (60).

Other aliphatic carbanion structures associated with Group IIa cations are known. Some examples of these are dimethylberyllium and lithium tri-\(t \)-butyl beryllate. Since the beryllium alkyl carbanions have not yet been utilized as common synthetic reagents, these structures will not be discussed further.

Magnesium stands out among Group IIa metal cations that are commonly utilized in synthetic organic chemistry. Indeed there have been several structural investigations of aliphatic Grignard reagents and dialkylmagnesium reagents. The simplest Grignard reagents, \(R \text{MgX} \), whose structures have been determined are \(\text{MeMgBr}_3\text{THF} \) (61), \(\text{EtMgBr}_2\text{OPr}^t \) (62), \(\text{EtMgBr}_2\text{Et}_3\text{N} \) (63), \(\text{EtMgBr}_2\text{Et}_2\text{O} \) (64) and the complex (EtMgCl-MgCl\(_2\)-3THF\(_2\)) (65). The crystal structures of these reagents exhibit a remarkable diversity for such seemingly similar species. As indicated in the aggregate molecular formulæ above, both ethylmagnesium bromide diethyl ether solvate (64) and methylmagnesium bromide THF solvate (61) are monomeric. However, the magnesium in complex (64) is approximately tetrahedral and the magnesium in (61) is approximately trigonal bipyramidally coordinated. The general features of these latter two structures are depicted as (66) and (67). In the complex (67), the methyl groups and the bromine atom are disordered and the tetrahydrofuran rings are significantly distorted. The two dimeric complexes, (EtMgBr-OPr\(^t\))\(_2\) and (EtMgBr-Et\(_3\)N)\(_2\) are similar. They both incorporate bridging bromine atoms and four-coordinate, tetrahedral Mg\(^{2+}\) ions. The general structural type of both of these compounds is given as (68).

The ethylmagnesium chloride complex (65), depicted as (69), is extremely complex, but can be simplified if it is seen as a dimer of EtMgCl-MgCl\(_2\) containing five four-membered bridging units of magnesium and chlorine atoms. Two different types of magnesium atoms are seen in this structure. These two types of metals exhibit five and six coordination. Additionally there are two three-coordinate bridging chlorine atoms and four two-coordinate chlorine atoms in this structure.

Treatment of hexamethyldisilazane (70) in hexane with a slight excess of a solution of the dialkylmagnesium reagent, Bu\(^t\)Bu\(^t\)Mg, initially yields the dimeric complex [Bu\(^t\)Mg-N(TMS)\(_2\)]\(_2\). This material is characterized as an unsolvated dimer (71).

Optically active diamines (-)-sparteine (72) and (-)-isosparteine (73) form complexes with ethylmagnesium bromide which crystallize in a form suitable for diffraction analysis. In both of these structures,
depicted as (74) and (75), the Mg\(^{2+}\) is tetrahedrally coordinated by the carbon atom of the ethyl group, the bromine atom and two nitrogens of the (iso)sparteine residue, respectively. The complex (74) of ethylmagnesium bromide with the chiral bidentate ligand (-)-sparteine is catalytically active in the asymmetric, selective polymerization of racemic methacrylates.\(^{74}\) Similar structures are found for the complexes of t-butylmagnesium chloride with (-)-sparteine\(^ {75}\) and for ethylmagnesium bromide with (+)-6-benzylsparteine.\(^ {76}\)

Reaction of MgH\(_2\), prepared by homogeneous catalysis, with 4-methoxy-1-butene in the presence of catalytic amounts of ZrCl\(_4\) yielded the monomeric magnesium inner ion complex Mg(C\(_4\)H\(_8\)O\(_\text{Me}\)\(_2\)).\(^ {77}\) This complex crystallizes with the tetrahedrally four-coordinate magnesium as shown in (76). In a similar reaction, treatment of bis(dialkylamino)propylmagnesium inner complexes (77) or (78) with MgEt\(_2\) yielded the crystalline dimer of ethyl-3-\((N,N\text{-dimethylamino})\text{propylmagnesium} (79) and ethyl-3-\((N\text{-cyclohexyl}-N\text{-methylamino})\text{propylmagnesium} (80).\(^ {78}\)
A triple ion was crystallized by Richey et al. from a solution made up by adding 2,1,1-cryptand to diethylmagnesium. Diffraction analysis reveals that this triple ion consists of [EtMg+(2,1,1-cryptand)]₂ cations and an (Et₆Mg₂)²⁻ anion. The magnesium of the cation is bound to five heteroatoms of the cryptand and to an ethyl group. The two magnesiums in the dianion exhibit identical four coordination and they form a symmetrical dimer with two bridging ethyl groups and four terminal ethyl groups. The anion is depicted as (81). A different structure was found for the product of the reaction of dineopentylmagnesium (Np₃Mg) with 2,1,1-cryptand. In this latter reaction, crystalline NpMg⁺(2,1,1-cryptand) cations and Np₃Mg⁻ anions are formed. The coordination geometry of magnesium in the Np cation is essentially that of a trigonal bipyramid with bonds to all six heteroatoms of the cryptand and a bond to the neopentyl group. Only the three-coordinate anion (82) is illustrated here. The ¹H NMR spectrum of a benzene solution of NpMg⁺(2,1,1-cryptand)-Np₃Mg⁻ is consistent with the presence of the same ions in solution. Diethylmagnesium cryptand complex reacts faster with pyridine than the diakylmagnesium reagent alone, and it also modifies the regioselectivity of this reaction.

Diethylmagnesium and 18-crown-6 react to form a complex with six oxygens surrounding the magnesium in a quasiequatorial plane and with the ethyl groups occupying trans apical positions. This structure is illustrated as (83). It has been described as a rotaxane or ‘threaded’ structure. A related, but slightly different, structure is found for the MeMg⁺(15-crown-5)-Me₃Mg⁻ complex.
Nonstabilized Carbanion Equivalents

The structures of a few dialkylmagnesium reagents have been characterized. These include (Me₂Mg)₆, (Et₂Mg)₆, Me₂Mg-TMEDA, [(CH₂)₆Mg]₄THF, Me₂Mg-(quinuclidine)₂ and catena-poly-dineopentylmagnesium-µ-dioxane = [Mg(CsH₁₁)₂·2THF]₄. While the dialkylmagnesium reagents also exhibit several different structural types, all of these complexes are related by the fact that they incorporate magnesium atoms that are four coordinate with distorted tetrahedral geometry. Unsolvated dimethylmagnesium and diethylmagnesium both form linear, polymeric chains with adjoining Mg atoms linked by two bridging alkyl groups. The solvated dimethylmagnesium complex, i.e. Me₂Mg-TMEDA, is illustrated as (84) with the bond angle as shown. The pentamethylenemagnesium complex, [(CH₂)₅Mg]₂·4THF, crystallizes as the dimer (85) with two magnesium atoms in a 12-membered ring. This tendency to form a 12-membered ring is ascribed to the large C-Mg-C valence angle of 141° which would cause severe ring strain in a monomeric magnesiumcyclohexane. The polymeric dineopentylmagnesium exhibits a structure which consists of dineopentyl units linked through dioxanes forming parallel linear chains as shown in (86).

One final diakylmagnesium structure is illustrated as (87). This material was obtained from the room temperature crystallization of the magnesium reagent formed from o-bis(chloromethyl)benzene in THF. As in all previous dialkylmagnesium reagents, the highly symmetrical trimer (87) includes four-coordinate magnesium atoms with distorted tetrahedral geometry.

1.1.3.1.2 α-Silyl-substituted aliphatic carbanions

There are several crystal structures of aliphatic, α-silyl-substituted carbanions. A listing of many of these structures is given in Table 2, along with some references to the original literature where these structures are described. Only a few of these compounds can be considered as generally useful synthetic reagents. The aggregates formed by α-silyl-substituted carbanions are in many cases similar to those described previously for one of the unsubstituted aliphatic alkali metal or magnesium carbanions. A few of the α-silyl-substituted carbanions display unique aggregate structures and these are described as follows.

Tris(trimethylsilyl)methyllithium (88), prepared from methyllithium and tris(trimethylsilyl)methane in THF, can be recrystallized from toluene to give colorless, transparent needles of the unique ate complex [Li(THF)₄⁺Li(C(TMS)₃)]₂⁻. The structure of one of the anions in this complex is shown as (89). This
Table 2 α-Silyl-substituted carbanions

<table>
<thead>
<tr>
<th>Compound</th>
<th>Aggregation state</th>
<th>CSD refcode</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMS-methyllithium</td>
<td>Me3SiCH2Li</td>
<td>Hexamer</td>
<td>JAFMUY</td>
</tr>
<tr>
<td>Bis(TMS)methyllithium (Me3Si)2CHLi</td>
<td></td>
<td>Polymer</td>
<td>CIMVUP</td>
</tr>
<tr>
<td>Bis(TMS)methyl lithium-PMDETA (Me3Si)2CHLi-PMDETA</td>
<td></td>
<td>Monomer</td>
<td>BITYXOW</td>
</tr>
<tr>
<td>Tris(Me3PhSi)methylTHF</td>
<td></td>
<td>Monomer</td>
<td>CATZAY</td>
</tr>
<tr>
<td>Bis(TMS)-2-methylpyridinelithium</td>
<td></td>
<td>Dimer</td>
<td>CAWMUI</td>
</tr>
<tr>
<td>Bis(TMS)-2-methylpyridinelithium2Et2O</td>
<td></td>
<td>Dimer</td>
<td>COXTOY</td>
</tr>
<tr>
<td>Bis(TMS methyl)pyridinelithium2TMEDA</td>
<td></td>
<td>Dimer</td>
<td>FERKOC</td>
</tr>
<tr>
<td>TMS(cyclopentadiene)TMEDA</td>
<td></td>
<td>Monomer</td>
<td>CEZTIK</td>
</tr>
<tr>
<td>Bis(TMS)methyl diphenylphosphinolithium-TMEDA</td>
<td></td>
<td>Dimer</td>
<td>FIKPUK</td>
</tr>
<tr>
<td>TMS-methyl[(PMe2)Li-TMEDA</td>
<td></td>
<td>Dimer</td>
<td>GIGGOS</td>
</tr>
<tr>
<td>TMS-methyl(PMe2)Li-ThF</td>
<td></td>
<td>Dimer</td>
<td>GIKWS</td>
</tr>
<tr>
<td>Bis(TMS)methyl-MgCl-Et2MgClEt</td>
<td></td>
<td>Monomer</td>
<td>MSIMMG</td>
</tr>
<tr>
<td>9,10-Bis(TMS)anthracene-9-diylmagnesium</td>
<td></td>
<td>Polymer</td>
<td>FOXBID</td>
</tr>
<tr>
<td>Bis(TMS)-2-methylpyridinemagnesium</td>
<td></td>
<td>Dimer</td>
<td>DMOVUX</td>
</tr>
<tr>
<td>(TMS)methyl(o-diphenylphosphinophenyl)lithium</td>
<td></td>
<td>Dimer</td>
<td>VAGHUG</td>
</tr>
</tbody>
</table>

Anion is linear, with the C(TMS)3 groups staggered about the C—Li—C direction. The cation consists of a lithium tetrahedrally coordinated by four oxygen atoms. Treatment of this ate complex, [Li(THF)4][Li{C(TMS)3}2]−, in toluene with pentamethyldiethylenetriamine (PMDETA) containing lithium chloride yields a complex whose formula is given as [(PMDETA)Li-(µ-Cl)-Li-(PMDETA)]+[Li{C(TMS)3}2]−. The anion is the same as in the Li(THF)4 complex, but the new cation contains a PMDETA-complexed, linear Li—Cl—Li geometry depicted as (90) (Scheme 6).

\[
\text{(Me}_3\text{Si)}_3\text{C}^- + \text{Li}^+ \xrightarrow{\text{THF}} [\text{Li(THF)}_4]^+ + \left[\begin{array}{c} \text{Me}_3\text{Si} \\ \text{SiMe}_3 \\ \text{Me}_3\text{Si} \\ \text{SiMe}_3 \end{array} \right]^- \xrightarrow{\text{toluene}} \text{PMDETA, LiCl}
\]

\[
\text{(88)} \quad \text{(89)}
\]

\[
\text{Scheme 6}
\]
1.1.3.2 Allylic Carbanions

Several examples of crystal structures are reported for the allyl carbanion. The first to be considered is allyllithium complexed with TMEDA (91). In this complex, the terminal carbon atoms of the allyl group are linked to different lithium atoms forming polymeric chains. Each lithium atom is also coordinated to a chelating TMEDA. There is no evidence of \(\eta^2 \)-bonding in this allyllithium-TMEDA structure. The structure of monomeric allyllithium solvated by PMDETA subsequently revealed a structure with a single lithium atom having relatively close but unsymmetrical contacts with the terminal carbon atoms and that the \(\text{C}_3\text{H}_5 \) anion is not planar. A rough outline of this structure is given in formula (92).

The first example of an \(\eta^3 \)-allyllithium was reported for the polymeric 1,3-diphenylallyllithium-diethyl ether complex (93). In this polymer, the lithium atoms lie almost symmetrically above and below the allyl group. The \(\text{C}(1)-\text{C}(2)-\text{C}(3) \) angle is quite large, i.e. 131°, similar to that in structures (91) and (92), but the \(\text{C}(2)-\text{Li} \) distance in (93) is shorter than either the \(\text{C}(1)-\text{Li} \) or \(\text{C}(3)-\text{Li} \) distances. The structural features of (93) correspond to those found in many allyl transition metal complexes which display \(\eta^3 \)-bonding of the transition metal to the allyl group.

Allylmagnesium chloride crystallizes upon treatment of allylmagnesium chloride in THF with TMEDA. This complex is characterized as the dimer (94). A four-membered \(\text{Mg}-\text{Cl}-\text{Mg}-\text{Cl} \) ring with bridging chlorine atoms forms the core of this dimer. The allyl group is clearly associated with the magnesium at \(\text{C}(1) \), i.e. \(\text{C}(1)-\text{Mg} = 2.18 \text{ Å} \), and the other structural features, i.e. the \(\text{C}(1)-\text{C}(2) \) and \(\text{C}(2)-\text{C}(3) \) bonds and the tetrahedral geometry at \(\text{C}(1) \), are commensurate with an \(\eta^1 \)-structure. The \(\eta^1 \)-structure of allylmagnesium compounds in solution was confirmed by NMR techniques, as well as by calculations.

Bis(2,4-dimethyl-2,4-pentadienyl)magnesium (95), prepared by the reaction of the potassium dienide with anhydrous magnesium halide in THF and TMEDA, also exhibits a terminally bonded \(\eta^1 \)-structure (96), with two dienides attached to a tetrahedral, four-coordinate Mg that is chelated by a single TMEDA.
This structure is consistent with the hydrolysis product of this complex which is obtained as a 1,3-diene, although either a 1,3-diene or a 1,4-diene is obtained upon addition of (96) and similar homologous dienylmagnesium complexes to ketones.

The crystal structures of indenyllithium-TMEDA, indenylsodium-TMEDA and bis(indenyl)magnesium are also known. These three structures are all different. The lithium compound is monomeric with \(\eta^5 \)-coordination; the sodium compound is infinitely aggregated with both \(\eta^1 \)- and \(\eta^2 \)-bonding; and the magnesium compound appears to include all three types of interactions, i.e. \(\eta^1 \)-, \(\eta^2 \)- and \(\eta^5 \)-bonding, of magnesium to the indenyl anion.

1.1.3.3 Vinlylic Carbanions

Relatively few vinyl carbanions have been characterized by X-ray diffraction analysis. The majority of these structures were determined by Schleyer and coworkers. Representative examples of some of these compounds are given as (97) and (98).

Compound (97) crystallized as a dimeric, bis-THF-solvated adduct with two different types of lithium atoms, illustrated as (99). Compound (98) is a doubly lithium bridged dimer chelated with one TMEDA per lithium atom and roughly depicted as (100). In the solid state, the sodium anion of (101) is monomeric with some of the relevant structural parameters shown in formula (102). The functional equivalent of an enolate dianion (103) was prepared by Stork et al. by treatment of enamine (104) with \(t \)-butyllithium. This anion crystallized as the symmetrical dimer (105) with the carbanionic carbon nearly symmetrically bridging two lithium atoms as shown in (105). Doubly bridging carbons represent a characteristic feature of these lithiated vinylic anions and this structural feature is normally expected in these compounds as well as in aryl anions (see ref. 11).
1.1.3.4 Alkynic Carbanions

A systematic investigation of alkynic carbanion structures has been reported by Weiss and coworkers. These structures all incorporate either t-butyllactyle or phynylacetylide anion. They differ by the ligand that is incorporated. Perhaps this sequence of structures most aptly demonstrates the rich variety of aggregate structural types that an acetylide anion can choose.

From the reaction of phenylacetylene with n-butyllithium and \(N,N,N',N'-\text{tetramethylpropanediamine} (\text{TMPDA})\) the dimeric complex (106) is obtained.\(^{106}\) Note that the carbanionic acetylene carbon bridges only two lithium atoms in this structure. Dimeric phenylethynyllithium is also detected in THF by low temperature \(^{13}\text{C}\) NMR investigations and by cryoscopic measurements.\(^{107}\) However, t-butyllactenyl lithium crystallizes from THF-containing solutions as either the tetramer (107) of composition \((\text{BuC}==\text{CLi} \cdot \text{THF})_4\) or as the dodecamer (108) of composition \([(\text{BuC}==\text{CLi})_4 \cdot \text{THF}]_4\).\(^{108}\) The dodecamer represents a linear combination of three tetramers of (107) minus the coordinating THFs. It is not unexpected that under the proper conditions of crystallization an octamer such as (109), representing an intermediate between (107) and (108), can be obtained. Perhaps crystallization of the octamer (109) can provide an interesting challenge of the experimental skills of those chemists who are fascinated by crystals and crystallizations of organic compounds.

When crystallized in the presence of \(N,N,N',N'-\text{tetramethylhexanediamine} (\text{TMHDA})\) the cubic tetramer (110) of phenylethynyllithium was obtained.\(^{109}\) Adjacent \((\text{PhC}==\text{CLi})_4\) units in (110) are each bound by pairs of TMHDA ligands giving rise to polymer strands with a helix-like structure.
One final structure in this series is the bis-TMEDA-solvated bis(phenylethynyl)magnesium species characterized as a monomer (111).110 Note the octahedral geometry of the central magnesium with two axial ethynyl ligands. This series of alkynic structures, (106)–(111), serves to underscore the unpredictability of carbanion crystal structures. The alkynic carbanions have coordination numbers of one, two or three in these complexes.

A few simple beryllium acetylide structures are known.111 In one of these structures, illustrated as (112), the metal cation is symmetrically coordinated side-on to a triple bond.

1.1.3.5 Aryl Carbanions

As was the case for the alkynic carbanions, the crystalline aryl carbanions also offer the opportunity for observation and comparison of several different structural types for the same or closely related carb-
Nonstabilized Carbanion Equivalents

anion substrates. In many of the examples of aryl carbanion structures, the aryl carbanionic carbon is found bridging several different metal atoms. It is important to note that a large number of X-ray crystal structures of aryl carbanions have been determined, and that these have been comprehensively reviewed elsewhere. Hence this discussion is necessarily limited to a subset of these structures which are representative of the whole class and which are also deemed most closely related to synthetic reagents in common usage. It is appropriate to begin this section with the structures of the simplest member of this series, i.e. the unsubstituted phenyl carbanion.

Phenyllithium dissolves in hexane by addition of TMEDA. The phenyllithium-TMEDA adduct subsequently crystallizes out of solution as the dimer (113) corresponding to general structural type (16). With diethyl ether solvation, phenyllithium exists as a solid tetramer (114). In ether solution PhLi is known to be either dimeric or tetrameric. Monomeric phenyllithium was successfully crystallized with PMDETA as the ligand. This monomer is depicted as (115). Note the difference in the coordination number of the carbanionic center in the monomer (115), the dimer (113), and the tetramer (114), i.e. one, two and three, respectively.

An interesting mixed tetrameric complex containing three equivalents of phenyllithium and one equivalent of lithium bromide, i.e. [(PhLi)_3·LiBr·3Et_2O], depicted as (116), has been characterized. In this mixed aggregate the lithium atom diagonally opposite the bromide in the tetramer remains unsolvated by an ether molecule. Recall that the cyclopropyllithium-lithium bromide-diethyl ether complex (44) with
Carbanions of Alkali and Alkaline Earth Cations

stoichiometry [(RLi)₂(LiBr)₂.4Et₂O] is structurally related to (116), yet in the complex (116) all of the lithium atoms are coordinated to a solvent molecule and this is not found in (44).

\[
\text{Et₂O} \quad \text{Li} \quad \text{Li} \quad \text{Br} \quad \text{Li} \quad \text{Et₂O}
\]

(116)

Alkyl substitution at the ortho positions of the aromatic ring influences the aggregation state and the structure by providing steric constraints. Whereas unsubstituted phenyllithium-diethyl etherate crystallized as the tetramer (114), mesityllithium-diethyl etherate is observed as the dimer (117) with stoichiometry \([\text{mesitylLi.} \text{Et₂O}]_2\).118 Mesityllithium gains an additional solvent molecule and crystallizes as the bis-solvated dimer (118) with stoichiometry \([\text{mesitylLi.}2\text{THF}]_2\) from THF-containing solutions.119 Note that the coordination number of the lithium atoms changes from three to four in these two complexes but that the coordination and the coordination geometry remain the same at the carbon center. The change in solvation of the lithium atoms in the two complexes is also reflected in the interatomic distances. Hence, the three-coordinate lithium is 1.93 Å and 2.25 Å away from the ether oxygen and the aryl carbon respectively in (117), whereas the corresponding distances average 2.04 Å and 2.28 Å in (118).

\[
\text{EtO} \quad \text{Et} \quad \text{Li} \quad \text{Li} \quad \text{EtO}
\]

(117)

\[
\text{O} \quad \text{O}
\]

(118)

Ortho heteroatom substitution provides the opportunity for internal chelation in aryl anions. This effect is successfully utilized in synthetic endeavors, is commonly referred to as ‘ortho metallation’, and is reviewed elsewhere.120 Two different but related structures of o-methoxyphenyllithium are known. The most symmetrical of these is the tetramer (119) which crystallizes from pentane solution.121 The solution structure of this compound has been investigated by NMR spectroscopy and by cryoscopic measurements and the influence of various Lewis bases on the solution structure are discussed in the same paper as the X-ray structure. A most intriguing variation of the tetramer (119) crystallizes from hexane solution in the presence of TMEDA (but in the absence of LiBr). The structure of o-methoxyphenyllithium in the presence of TMEDA consists of a pair of unsymmetrical tetramers with the general features of (119) but which are linked to each other by a single TMEDA unit.122 This latter aggregate is represented by the formula (120). Obviously the lithium atoms in (119) are four coordinate, but participation of the TMEDA in (120) forces one of the lithium atoms to be five coordinate. This five-coordinate lithium is in contact with two oxygens of different methoxybenzene residues rather than with an oxygen and a nitrogen of the TMEDA. Hence the symmetry of a tetramer is not maintained in (120).

Crystal structures have been reported for 2,6-dimethoxyphenyllithium,123 for 2,6-dimethylaminophenyllithium124 and for o-t-butyliophenyllithium.125 The crystal structure of the latter compound is characterized diagrammatically as the infinite polymer (121) with relatively planar tetracoordination at the ipso carbon. In THF solution this polymer dissociates into monomers. Planar four-coordinate carbons are also observed in the 2,6-dimethoxyphenyl anion (122) as a dimeric unit (123) which forms the basic building block of the solid of this anion. In this solid two of these simple dimers (123) combine to form
loose tetramers which are characterized as structure (124) in both the solid and in solution. In contrast to (122), recrystallization of 2,6-dimethylaminophenyllithium from hexane/ether solution yields the trimeric aggregate (125).
When a methylene group spacer is inserted between the ortho heteroatom and the carbanionic center, the coordination geometry of the anionic center is no longer restricted to be planar for intramolecular chelation to occur. Hence, o-(dimethylaminomethyl)phenyllithium (126) crystallizes from an ether/hexane solution as the internal-chelated tetramer (127). This structure is analogous to tetrameric phenyllithium (119). When an additional dimethylaminomethyl group is substituted at the ortho’ position as in 2,3,5,6-tetrakis(dimethylaminomethyl)phenyllithium, the aggregate crystallizes as the dimer (128). The lithium atoms in both (127) and (128) are coordinated to four other nonlithium atoms; this coordination can only be achieved by dimerization and tetramerization respectively.

Two additional aryl crystal structures are noteworthy because they represent examples of alternative structural types of aryllithium anions. The first of these is the 2,2’-dianion of biphenyl (129). This material is characterized as the bis-TMEDA solvate (130) with two lithium atoms doubly bridging the two carbanionic centers. The lithium atoms are located above and below the two aromatic rings. A completely different structure, depicted roughly as (131), is obtained for the air- and moisture-sensitive, violet crystals of dilithiobenzophenone.

A few arylmagnesium compounds have been characterized crystallographically. As early as 1964, Stucky and Rundle determined that phenylmagnesium bromide-diethyl etherate consists of a magnesium atom tetrahedrally coordinated to two diethyl ether molecules, the phenyl group and a bromide. This Grignard reagent is depicted as (132). Diphenylmagnesium-TMEDA also crystallizes as a monomer (133) with a tetrahedrally, four-coordinate magnesium atom.
Bickelhaupt and coworkers have determined the crystal structures of a series of crown ether solvated magnesium compounds. A sequence of these compounds is illustrated as the internally coordinated 15-crown-4-xylylmagnesium chloride (134) and bromide (135) as well as the organometallic, rotaxane (136). Note the similarity between these structures and the corresponding aliphatic dialkylmagnesium rotaxane (83).

\[(134) \quad X = \text{Cl} \\
(135) \quad X = \text{Br} \]

1.1.3.6 Enolates and Enamines and Related Species

1.1.3.6.1 Ketone enolates

One of the most relevant and fruitful areas of structural investigation for synthetic organic chemistry during the past decade has been the crystal structure determinations of a variety of enolate and closely related carbanions. Although these species have been considered only as transient reactive intermediates, a number of these enolates can be crystallized out of solution at subambient temperature and stabilized under a stream of cold, dry nitrogen gas during the 24–48 h necessary for X-ray diffraction data collection. A systematic review of these structures known to date begins with the ketone enolates.

Seebach, Dunitz and coworkers first described the THF-solvated tetrameric aggregates obtained from THF solutions of 3,3-dimethyl-2-butanone (pinacolone) and cyclopentanone lithium enolates. These are represented as (137). The pinacolone enolate also crystallizes as the unsolvated hexamer (138) from hydrocarbon solution, but this hexamer rearranges instantaneously to the tetramer (137) in the presence of THF. Williard and Carpenter completed the characterization of both the Na⁺ and the K⁺ pinacolone enolates. Quite unexpectedly the Na⁺ pinacolone enolate is obtained from hydrocarbon/THF solutions as the tetramer (139) with solvation of the Na⁺ atoms by unenolized ketone instead of by THF. The potassium pinacolone enolate is a hexameric THF solvate depicted as (140) and described as a hexagonal prism. A molecular model of (140) reveals slight chair-like distortions of the hexagonal faces in (140) so that the solvating THF molecules nicely fit into the holes between the pinacolone residues.

The pinacolone enolate residue crystallizes as a dimer with solvation by \(N,N',N''\)-trimethylethylene-diamine (TriMEDA) as indicated in formula (141). In this structure the NH hydrogen on the secondary amine is relatively close to the terminal carbon of the enolate residue, i.e. \(\text{NH} - \text{C} = \text{C} \) is 2.60 Å. This
structure can prove useful in a structure-reactivity correlation, since it includes the hydrogen which is transferred in the enolization process. It is also valuable in explaining the fact that incomplete deuterium incorporation is often observed upon 'kinetic' protonation of certain enolates with deuterated acids since the NH proton can be returned directly to the enolate residue rather than a deuterium.

In an attempt to influence the aggregation state of a simple ketone enolate by intramolecular chelation, the homolog of pinacolone (142) was prepared. The lithium enolate of this material cocrystallizes with lithium diisopropylamide (LDA) to produce the mixed, dimeric aggregate (143). A sequence of mixed enolate/amide base aggregates with five-, six- and eight-membered chelate rings similar to the aggregate (143) and depicted as (144) have been characterized. It is noteworthy that the bulky silyloxy group serves as a ligand for the terminal, three-coordinate lithium atoms in (143).
Dimethylaminomethylacetophenone (145) reacts with LDA in diethyl ether to produce the tetrameric enolate aggregate (146). This aggregate is an internally chelated variation of the tetramer (137). The origin of this enolate was not well defined in the original paper describing its characterization.

The pinacolone lithium enolate condensation product with pivaldehyde (147) has been characterized as the tetrameric aggregate (148). However, an attempted condensation reaction of pinacolone with itself as shown in Scheme 8 led to crystallization of a product derived from subsequent dehydration and reenolization, i.e. (149). This dienolate (149) was characterized as the dimer (150) solvated by dimethylpropyleneurea (DMPU).

The azaallyl enolates, i.e. enolates derived from ketone imines or hydrazones are synthetic equivalents of the ketone enolates and thus two examples of azaallyl enolates are included in this section. Lithiated cyclohexanonephenylimine (151) crystallizes out of hydrocarbon solution as the dimeric diisopropylamine solvate (152). Significant disorder between the cyclohexyl and the phenyl moieties is observed in this crystal structure; however, it is clear that there are no π2-azaallyl carbon contacts in this structure. This lithiated imine structure can be compared with the lithiated dimethylhydrazone of cyclohexanone.
In this latter structure, roughly depicted as (154), there are two different lithium atoms as well as two different anion residues. In one of the residues a lithium is η^5-coordinated and in the other residue the lithium is η^1-coordinated. The possible origins of the selectivity of the alkylations of the metallated hyrazones are discussed relative to this structure. The lithiated hydrazone enolate (155) prepared from (S)-(−)-1-amino-2-(methoxymethyl)pyrrolidine (SAMP) hydrazone of 2-acetylnaphthalene (156) yields the monomeric bis-THF-solvated species (157) as ruby red crystals. This is one of the few examples of the crystallization of a resolved enolate substrate.

An uncharacteristic enolate coordination is observed for the α,α'-ketodianion derived from dibenzyl ketone (158). The dianion crystallizes as a bis-TMEDA solvate with the general structure shown as (159). The two lithium atoms are on opposite sides of the relatively planar carbon skeleton. Each is solvated by TMEDA. Besides coordination to the oxygen, the lithium atoms are in close contact with four additional carbon atoms.

An early prediction about the structure of a magnesium ketone enolate was subsequently modified when the diethyl ether solvated, magnesium bromide enolate derived from t-butyl ethyl ketone was characterized as the dimer (160) with bridging enolate residues.

Recently the isolation and structure determination of the aldol product of the chiral iron enolate (161) with benzaldehyde was obtained as (162). This structure is presumed to mimic closely the structure of the cyclic transition state for the aldol reaction.
Few ester enolate crystal structures have been described. The lack of structural information is no doubt due to the fact that the ester enolates undergo \(\alpha \)-elimination reactions at or below room temperature. A good discussion of the temperatures at which lithium ester enolates undergo this elimination is presented in the same paper with the crystal structures of the lithium enolates derived from \(t \)-butyl propionate (163), \(t \)-butyl isobutyrate (164) and methyl 3,3-dimethylbutanoate (165).\(^{151} \) It is significant that two of the lithium ester enolates derived from (163) and (165) are both obtained with alkene geometry such that the alkyl group is trans to the enolate oxygen. It is also noteworthy that the two TMEDA-solvated enolates from (163) and (164) are dimeric, while the THF-solvated enolate from (165) exists as a tetramer.

Three additional ester enolates have been characterized and these can be compared to the lithium enolates (163)–(165). Recently we have obtained the mixed sodium ester/sodium hexamethyldisilazide aggregate derived from \(t \)-butyl isobutyrate and sodium hexamethyldisilazide as the TMEDA-solvated aggregate (166).\(^{152} \) The second structure of interest is the zinc ester enolate, \(i.e. \) Reformatsky reagent, derived from \(t \)-butyl bromoacetate.\(^{153} \) This zinc enolate (167) forms an eight-membered ring with the zinc atoms bonded directly to both enolate oxygens and to the \(\alpha \)-carbon of the enolate. The observation of direct metal interaction with the enolate \(\alpha \)-carbon of simple substrates is rare for alkali and alkaline earth metal cations. The third lithium ester enolate is derived from ethyl \(N,N \)-diethylglycine (168). It crystallizes as the internally chelated hexamer (169) which resembles the hexagonal prisms (138) and (140).\(^{154} \)

Few amide or amide-like enolates have been characterized. This is somewhat surprising since amide enolates are expected to be less susceptible to ketene formation than the corresponding ester enolates.

1.3.6.2 Amide and ester enolates

Few amide or amide-like enolates have been characterized. This is somewhat surprising since amide enolates are expected to be less susceptible to ketene formation than the corresponding ester enolates.
The least highly substituted amide enolate whose structure is known is the lithium enolate of \(N,N\text{-dimethylpropionamide} (170) \). This enolate is obtained as a dimer solvated by TriMEDA, i.e. (171). The alkene geometry in (171) is opposite that found in the ester enolates from (163) and (165). Thus in the
Nonstabilized Carbanion Equivalents

dimer (171), the terminal methyl group is *cis* to the enolate oxygen and the alkenic residues are on opposite sides of the Li—O—Li—O core. It was noted that the hydrogen atom of the secondary amino group in (171) points in the direction of the virtual lone pair of electrons on the amide nitrogen.

\[
\begin{align*}
\text{O} & \quad \text{NMe}_2 \\ (170) \quad \rightarrow \quad \overset{\text{Me}}{\text{Me}} \quad \overset{\text{Me}}{\text{Me}} \quad \overset{\text{NMe}_2}{\text{Me}} \quad \overset{\text{Me}}{\text{Me}} \\
\text{Li} & \quad \text{Li} \\
\text{O} & \quad \text{NMe}_2 \\
\end{align*}
\]

(171)

The lithium enolate derived from *N*,*N*-dimethylcycloheptatrienecarboxamide (172) crystallizes as the bis-THF-solvated dimer (173).\(^{156}\) Neither the amide nitrogens nor the extended \(\pi\)-system participates in complexation to the lithium atoms in this complex.

\[
\begin{align*}
\text{O} & \quad \text{NMe}_2 \\ (172) \quad \rightarrow \quad \overset{\text{Me}}{\text{Me}} \quad \overset{\text{Me}}{\text{Me}} \quad \overset{\text{NMe}_2}{\text{Me}} \quad \overset{\text{Me}}{\text{Me}} \\
\text{Li} & \quad \text{Li} \\
\text{O} & \quad \text{NMe}_2 \\
\end{align*}
\]

(173)

Two lithium enolates (174) and (175) derived from the vinylogous urethanes (176) and (177) have been crystallized and subjected to X-ray diffraction analysis.\(^{157}\) Although the individual enolate units combine to form different aggregates, they are very nearly identical in conformation, *i.e.* *s*-trans around the 2,3-bond; however, both the aggregation state and the diastereoselectivity of the enolates differ.\(^{158}\) The enolate (175) is obtained from benzene solution as a tetramer and (174) is obtained from THF solution as a dimer. The origin of the diastereoselectivity shown by these enolates is subtle.

\[
\begin{align*}
\overset{\text{OMe}}{\text{N}} \quad \text{R} \\
(176) \ R = \text{H} \\
(177) \ R = \text{Me} \\
\end{align*}
\]

\[
\begin{align*}
\overset{\text{OMe}}{\text{N}} \quad \text{R} \\
(174) \ R = \text{H} \\
(175) \ R = \text{Me} \\
\end{align*}
\]

1.1.3.6.3 *Nitrile and related enolates*

Three examples of nitrile-stabilized enolates have been described by Boche *et al.* Two of these structures incorporate the anion of phenylacetonitrile. The TMEDA-solvated dimer (178) crystallizes out of benzene solution;\(^{159}\) however, the mixed nitrile anion-LDA-(TMEDA)\(_2\) complex (179) is obtained when excess LDA is present.\(^{160}\) This latter complex has often been mistaken as a geminal dianion since it frequently gives products that appear to arise from a dianion. The crystal structure of the anion 1-cyano-2,2-dimethylcyclopropyllithium (180) consists of an infinite polymer (181) that is solvated by THF.\(^{161}\) Interestingly, there are C—Li contacts in this structure and the carbanionic carbon remains tetrahedral.
The tetrahedral carbanion agrees well with the experimental results that optically active cyclopropyl-nitrile carbanions can undergo reprotonation with retention of configuration under certain conditions.

A true dianion (182) is obtained in the reaction of (183) with base and this dianion crystallizes from ether/hexane solution with the stoichiometry \([\{(\text{Me}_3\text{SiCCN})_2\text{Li}_2\text{O}(\text{Et}_3\text{O})_6(\text{C}_6\text{H}_{14})\}]^{162}\). The crystal structure exhibits both N--Li and C--Li contacts and is best described in the original manuscript because there is no simple way to redraw this exceedingly complex aggregate structure.

The crystal structures of both Na\(^+\)C(CN)\(_3\)\(^-\)\(^{163}\) and K\(^+\)C(CN)\(_3\)\(^-\)\(^{164}\) are known for comparison. In all examples of the nitrile-stabilized carbanions except the dianion (182), the metal coordination to the organic anion is through the nitrogen. No evidence of interaction between the metal and the nucleophilic carbon atom is seen. Lithiated imine (184) is somewhat analogous to dimer (150), although this species is not derived from an enolizable substrate.\(^{165}\)
1.13.6.4 Other stabilized enolates

The crystal structure of a single stabilized nitronate carbanion derived from phenylnitromethane is reported as the polymeric ethanol solvate (185).166 The same geometry found in the nitronate anion (185) was also found for the t-butyldimethylsilyl ester derived from quenching this nitronate.167 References to other structures containing carbanions stabilized by a nitro group are given in Table 3; however, it is to be noted that these are derived from highly acidic carbon acids.

![Diagram of a carbanion](image)

Table 3 Stabilized Carbanions

<table>
<thead>
<tr>
<th>Compound name</th>
<th>CSD refcode</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca(acac)$_2$·2H$_2$O·H$_2$O</td>
<td>BOLTIF</td>
<td>220</td>
</tr>
<tr>
<td>Na(acac)·H$_2$O</td>
<td>CAFNEC</td>
<td>221</td>
</tr>
<tr>
<td>Ca(acac)·(CH$_3$CO$_2$)$_2$·2H$_2$O</td>
<td>CUHGER</td>
<td>222</td>
</tr>
<tr>
<td>Li[PhC(O)CHC(O)Ph]·2H$_2$O·Et$_3$N</td>
<td>DEKJUY</td>
<td>223</td>
</tr>
<tr>
<td>Mg$_3$(acac)$_4$</td>
<td>DENGAE</td>
<td>224</td>
</tr>
<tr>
<td>K-nitromalonamide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na(eaa)-15-crown-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K(eaa)-18-crown-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CsC(NO$_2$)$_3$</td>
<td>CREALK, CRKEAC01, CRKEAC10</td>
<td>227</td>
</tr>
<tr>
<td>K-1,1-dicyano-3-thiabut-1-en-2-olate</td>
<td>CSTNME</td>
<td>228</td>
</tr>
<tr>
<td>Na-2-propenal-3-olate</td>
<td>FAZBAJ</td>
<td>229</td>
</tr>
<tr>
<td>K-4,4-dinitro-2-butenamide</td>
<td>FUSPEO</td>
<td>230</td>
</tr>
<tr>
<td>K-2,2-dinitroethylacetamide</td>
<td>KDNBUT</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td>NEYACM</td>
<td>232</td>
</tr>
</tbody>
</table>

The sodium salt of the stabilized enolate derived from the heteroaryl-substituted 2-oxoglutaric acid ester (186) is reported to have the alkene geometry as shown in formula (187).168 Finally, Collum \textit{et al.} have reported the structure of the lithiated anion derived from the \textit{N,N}'-dimethylhydrazone of 2-methoxycarbonylcyclohexanone (188).169 This enolate crystallizes as the dimeric, bis-THF-solvated aggregate (189).

![Diagram of a carbanion](image)

1.13.7 Heteroatom- substituted Carbanions (α-N, α-P or α-S)

To date there are only a few synthetically relevant crystal structures with a nitrogen directly attached to the carbanionic center. X-Ray crystal structure determination of the lithium salt of bis-lactim ether (190), derived from alanine, has been characterized and is depicted as (191).170 This structure illustrates
that the lithium atoms share very different environments, i.e. one five coordinate and one four coordinate. The bromomagnesium derivative of \(N\)-pivaloyltetrahydroisoquinoline (192) crystallizes from THF as a monomer with octahedrally coordinated Mg atoms.\(^{171}\) This Mg atom coordinates to the carbanion, the amide carbonyl oxygen, a bromine and three THF molecules. A mechanistic proposal is derived from the crystal structure (193) to explain the selectivity for addition of this anion to ketones.

\(N\)-Phenylpyrrole (194) is monolithiated at the 2-position of the heterocyclic ring. This monolithium compound crystallizes as the TMEDA-solvated dimer (195).\(^{172}\) This structure agrees well with the \(^{6}\text{Li}^{1}\text{H} \text{2D heteronuclear Overhauser NMR spectroscopy (2D-HOESY). The structure serves to predict correctly that the second lithiation to a dianion occurs at the ortho position of the phenyl ring located closest to the lithium in the monoanion.}

Finally, the crystal structure of a lithiated amino nitrile (196) has been described in Boche's recent review article as a dimer (197) similar to the other nitrile anions (179), (180) and (182).\(^{14}\) However, there
is extended network throughout the solid (197) due to coordination of the lithium atoms with the oxygens at the para position of the aryl rings of adjacent molecules.

Excluding the α-P-, α-Si-substituted carbanions which are listed in Table 2, there exist relatively few simple α-P-substituted carbanions whose structures are known. References to the crystal structures of some tri (alkyl or aryl) substituted phosphines are listed in Table 4. Few if any of these compounds have been utilized as synthetic reagents. Only two synthetically useful phosphorus-stabilized carbanions of Group 1a or IIa metal cations have been examined by X-ray diffraction analysis. The lithium carbanion of 2-benzyl-2-oxo-1,3,2-diazaphosphorinane (198) crystallizes as a monomeric bis-THF solvate (199) with a tricoordinate lithium atom.173 The magnesium salt of diethoxyphosphinyl acetone (200) is characterized as an intramolecularly chelated trimer174 similar in structure to [Mg(acac)]3. The Cu salt of this β-keto phosphorus-stabilized anion exists only as a monomer.175

There has been much synthetic interest in sulfur-stabilized carbanions. These anions include sulfides, 1,3-dithianes, sulfoxides, sulfones and sulfoximides. Since the structural results in this area have been recently compiled and discussed in excellent detail by Boche,14 it will suffice to present only the list of compounds in Table 5 whose structures have been reported. Most of these anions have varied and unique

Table 4 α-Phosphorus-stabilized Carbanions

<table>
<thead>
<tr>
<th>Compound</th>
<th>CSD refcode</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiCH₂PMe₂-TMEDA</td>
<td>CEDSIN, CEDSIN10</td>
<td>233, 234</td>
</tr>
<tr>
<td>LiCH₂(P(Me)Ph)(-)-sparteine</td>
<td>VAGHOA</td>
<td>234</td>
</tr>
<tr>
<td>LiCH₂(P(Me)Ph)₃-TMEDA</td>
<td>VAGHIU</td>
<td>234</td>
</tr>
<tr>
<td>[(LiCH₂PPh₂)(dioxane)]₂-dioxane</td>
<td>DJIDIV</td>
<td>235</td>
</tr>
<tr>
<td>[LiC(PMe₂)₂·2THF]₂</td>
<td>CESCEI, CESCE10</td>
<td>236</td>
</tr>
<tr>
<td>Li(CH(PPh₂)₂·THF</td>
<td>GIKXAZ</td>
<td>237</td>
</tr>
</tbody>
</table>
Carbanions of Alkali and Alkaline Earth Cations

structures. These structures have proven extremely valuable for structure reactivity correlations and this is discussed in the aforementioned review.

Table 5 α-Sulfur-stabilized Carbanions

<table>
<thead>
<tr>
<th>Compound type</th>
<th>Compound</th>
<th>CSD refcode</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfides</td>
<td>(MeSCH₂Li₂)₂·(TMEDA)₂</td>
<td>CEPLAO</td>
<td>238</td>
</tr>
<tr>
<td></td>
<td>(PhSCH₂Li₂)₂·(TMEDA)₂</td>
<td>CEPLAK</td>
<td>238</td>
</tr>
<tr>
<td></td>
<td>[(E)-2-Butenyl-1-SBu']·TMEDA</td>
<td>GAJDAW</td>
<td>239</td>
</tr>
<tr>
<td>1,3-Dithianes</td>
<td>[Li(2-methyl-1,3-dithiane)₂·(TMEDA)]₂</td>
<td>LIMDTE</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>[Li(2-phenyl-1,3-dithiane)₂·(TMEDA)₂·THF</td>
<td>LIPTHF</td>
<td>241</td>
</tr>
<tr>
<td>Sulfoxides</td>
<td>(α-Methylbenzyl phenyl sulfoxide·Li)₂·(TMEDA)₂</td>
<td>FIGHEI</td>
<td>242</td>
</tr>
<tr>
<td>Sulfoximes</td>
<td>(α-(Phenylsulfonyl)benzyl lithium)₂·(TMEDA)₂</td>
<td>DIBXIX</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>(Phenylsulfonyl)benzyl lithium·(TMEDA)₂</td>
<td>DOMSED</td>
<td>244</td>
</tr>
<tr>
<td></td>
<td>2,2-Diethyl-1-(phenylsulfonyl)cyclopropiyllithium·(DME)₂·(DME)</td>
<td>VADKIU</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>2.0-Lithium diion of bis(TMS)methyl phenyl sulfone</td>
<td>GEHZOI</td>
<td>246</td>
</tr>
<tr>
<td></td>
<td>[α,α-lithiumtrimethyl(phenylsulfonylmethyl)trimethylsilane]·LiO₂·(THF)₁₀</td>
<td>GAFXIU</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>α-(Phenylsulfonyl)allyl)lithium·DME</td>
<td>FACPOI</td>
<td>248</td>
</tr>
<tr>
<td></td>
<td>α-(Methylbenzyl)phenylsulfonyl)lithium·DME</td>
<td>GAVYUX</td>
<td>249</td>
</tr>
<tr>
<td></td>
<td>Isopropylphenylsulfonyl)dilithium·diglyme</td>
<td>GAVZAE</td>
<td>249</td>
</tr>
<tr>
<td></td>
<td>Bis(TMS)methyl phenyl sulfone potassium·(Et₂O)₁₈-c-6</td>
<td>SAKXOR</td>
<td>250</td>
</tr>
<tr>
<td>Sulfoximes</td>
<td>[((5)-(N-methyl-S-phenylsulphonimidoyl)methyl lithium)₂·(TMEDA)₂</td>
<td>FISNOW</td>
<td>251</td>
</tr>
<tr>
<td></td>
<td>(TMS)[(5)-(TMS)-S-phenylsulphonimidoyl]·methyl lithium)₂</td>
<td>FECRAG</td>
<td>252</td>
</tr>
</tbody>
</table>

1.1.3.8 Related Alkali Metal and Alkaline Earth Anions

1.1.3.8.1 Amides and Alkoxides

Since most of the synthetically useful enolate anions described in the previous section are prepared by the reactions of enolizable substrates with alkali metal amide bases, it is appropriate to note a few structures of these amide bases. The common bases in synthetic organic chemistry include LDA and LHMDS. The structures of both of these bases are known as the THF solvates.¹⁷⁶,¹⁷⁷ Both of these compounds form bis-solvated dimers corresponding to structure (201). The diethyl ether solvate of LHMDS also forms a bis-solvated dimer (202).¹⁷⁸ Sodium hexamethyldisilazide crystallizes as an unaggregated monomer from benzene solution.¹⁷⁹ Two different crystalline forms of KHMDS are known as the polymeric dioxane solvate (203),¹⁸⁰ and the unsolvated dimer (204).¹⁸¹

The nonalkali metal bis(trimethylsilyl)amide crystal structures are too numerous to elaborate in detail here, but a partial listing of these includes the bis(trimethylsilyl)amide anion bound to Ti, Sn, Mg, Al, etc. Individual references to the structures of these compounds are best found in the CSD.³ A recent review of the various cage structures available for the main group metal amide bases and alkoxides is
given. Recall that a few previously described carbanion crystal structures, i.e. (143), (166) and (179), form mixed aggregates containing the lithium disopropylamide moiety or the NHMDS moiety and a carbanion.

Recent structural investigations on lithium organo(fluorosilyl)amides have revealed that the lithium cation can form aggregates with internal lithium coordination to fluorine, and mixed aggregates of the amide and LiF. Structural types such as (205), (206), (207) and (208) have been found for these compounds.

Many of the enolate crystal structures described in Section 1.1.3.6 are coordinated to metal cations only through the enolate oxygen atom. From a structural point of view, these aggregates might be thought of as simple alkoxide anions rather than as carbanions. Because of this structural analogy between the simple enolates and alkoxides, Table 6 is presented. References are given in this table as representative examples of aggregates of alkali metal and alkaline earth salts of relatively simple alkoxides. It is possible to compare the enolate and alkoxide anion structures and perhaps to anticipate new structural types for both groups. Recall also the interesting mixed aggregate that forms between BuLi and lithium t-butoxide (45). The complex structure of a mixed metal, enolate/alkoxide aggregate has recently been described by our group as (209).

1.13.8.2 Halides

The effect of added halide salts on organic reactions is recently undergoing intensive scrutiny. To date only a few mixed aggregate structures containing both carbanion residues and halide anions (excluding the many MgX₂ aggregates) have been described. Two of these are previously listed in this chapter as (44) and (116) plus the few mixed cuprates in the next section. References to the crystal structures of a few simple halide salts are also given in Table 6, with the expectation that these structures may provide some guidance with predicting and preparing mixed carbanion/halide aggregates whose structures remain to be determined.

<table>
<thead>
<tr>
<th>Compound</th>
<th>CSD refcode</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaOBu'</td>
<td>NABUX, NABUXO10</td>
<td>253</td>
</tr>
<tr>
<td>CsOH-MeOH</td>
<td>GAYCAK</td>
<td>254</td>
</tr>
<tr>
<td>CsOPr'</td>
<td>IPRXCS</td>
<td>255</td>
</tr>
<tr>
<td>Ba(OMe)₂</td>
<td>MEOXBA</td>
<td>256</td>
</tr>
<tr>
<td>Ca(OMe)₂</td>
<td>MEOXCA</td>
<td>256</td>
</tr>
<tr>
<td>Sr(OMe)₂</td>
<td>MEOXSR</td>
<td>256</td>
</tr>
<tr>
<td>(CuOBU')₄</td>
<td>CUTBUX</td>
<td>257</td>
</tr>
<tr>
<td>(LiCl)(HMPA)</td>
<td>CAWSIC</td>
<td>258</td>
</tr>
<tr>
<td>(NaBr)₂(acetamide)₂</td>
<td>DIACNB, NABRAA</td>
<td>259</td>
</tr>
<tr>
<td>(LiCl)(N-methylacetamide)</td>
<td>LICMAC, LICMAC10</td>
<td>260</td>
</tr>
<tr>
<td>(LiBr)₂(acetone)</td>
<td>DECXEO</td>
<td>261</td>
</tr>
<tr>
<td>(MgCl₂)(N-methylacetamide)</td>
<td>NMALIE</td>
<td>262</td>
</tr>
<tr>
<td>(LiI)(Ph₃PO)</td>
<td>LIPPHO</td>
<td>263</td>
</tr>
</tbody>
</table>
1.1.3.9 Mixed Metal Cation Structures

1.1.3.9.1 Without transition metals

There are a few carbanion aggregates formed with different metal cations in the aggregate. Three of these structures contain both Li⁺ and Na⁺ cations. Weiss characterized a (MeNa)₂:(MeLi)₄ preparation by powder diffraction of this material. These results suggested a geometry analogous to that of the (MeLi)₄ tetramer (38). A unique diphenyl lithium/sodium-TMEDA complex was characterized also by Weiss with stoichiometry [Na-TMEDA]₃[Li-phenyl]. The single lithium atom, located in the center of the ate complex, forms a pseudo-tetrahedron with four phenyl groups. The lithium atom also lies almost at the center of a triangle formed by TMEDA-coordinated Na atoms. A view from the open face of this structure is approximately as seen in (210). A recent characterization of a mixed Li⁺/Na⁺ metal amide aggregate shows a central core as drawn in (211). In this aggregate the anion is derived from the imine of t-butyl phenyl ketone (212).

A mixed Li⁺/Mg⁺ aggregate corresponding to (213) is formed with either phenyl or methyl carbanions. An unusual lithium/magnesium acetylide is formed with stoichiometry Li₂[(PhC≡C)₃Mg(TMEDA)]₂ and is depicted as (214). The same authors also report the ion pair characterized as the mixed benzyl lithium/magnesium-TMEDA complex (215). A different mixed lithium/magnesium aggregate depicted as (216) is found for the THF-solvated anion of tris(trimethylsilyl)methyl carbanion.
With transition metals (cuprates)

A dimeric complex of the type Li₂Cu₂R₄ where R is phenyl has recently been characterized as the diethyl ether solvate (217). This structure is the most recent of an extremely interesting series of diorganocuprate structure determinations. These reagents find many applications in organic synthesis, and there now exist structural models for the sequence of the species as tabulated in Table 7. Almost all of these compounds incorporate aryl groups rather than alkyl groups due to the instability of the simple lithium dialkylcuprates. Many of these structures are complex and the structures are best discussed in the original manuscripts. It is noteworthy that the complexes listed in this table now provide a structural framework for the series of organocopper reagents with a number of different stoichiometries.

CRYSTAL GROWTH AND MANIPULATION

Most of the examples of X-ray crystal structure determinations cited in this review have been carried out at subambient temperature. This is necessary since many, but not all, of the carbanions are only stable as solids at low temperatures. Several special techniques exist for handling temperature- and moisture-sensitive solids. General reviews of these techniques exist. On the average these diffraction analyses require a data collection time spanning the range from 12 to 50 h. The carbanions are most commonly sealed in a thin glass capillary and maintained in a stream of cold, dry nitrogen gas during the
period of data collection. All commercial vendors of X-ray diffraction equipment offer as an optional accessory the specialized attachment to their equipment that allows for low temperature data collection. However, the most tedious step in the entire process remains that of obtaining a single crystal suitable for diffraction analysis. Once a suitable crystal is obtained, a specialized piece of glassware for examining, selecting and manipulating the crystal has been described by Seebach et al.151

A few comments concerning the crystallization of carbanions are in order. These comments are based upon the personal experience developed in our own laboratory and also upon observations noted in the literature in the course of crystallizing enolate anions. Although alkali metal enolate anions are relatively unstable compounds, they have been prepared in the solid state, isolated, and characterized by IR and UV spectroscopy in the 1970s.194 Thus the α-lithiated esters of a number of simple esters of isobutyric acid are prepared by metallation of the esters with lithium diisopropylamide in benzene or toluene solvent. The soluble lithiated esters are quite stable at room temperature in aliphatic or aromatic hydrocarbon solvents and are crystallized out of solution at low temperature (e.g. −70 °C). Alternatively the less soluble enolates tend to precipitate out of solution and are isolated by centrifugation and subsequent removal of the solvent. Recrystallization from a suitable solvent can then be attempted. The thermal stability of the lithiated ester enolates is dramatically decreased in the presence of a solvent with a donor atom such as tetrahydrofuran.

The guidelines we use for obtaining enolate anion crystals are to find a suitable solvent, concentration and temperature combination such that the crystals grow in a matter of 24 h or so. Typically this involved concentrations of 0.5 to 1.0 M in a solvent combination (hydrocarbon plus donor) that allows for complete dissolution of the anion and slow crystallization. It is preferable to crystallize the enolate anions in the range of −20 to −50 °C since the crystals obtained at this temperature can often be transferred directly to the diffractometer with a minimum effort. Exact conditions for the crystallizations of many of the compounds described in this chapter are described in the original literature.

It is noteworthy that Etter has described a recent technique of cocrystallizing stable organic compounds with triphenylphosphine oxide.195 It is possible that additional enolate anions can be crystallized by addition of this addend to assist with the solid phase formation; however, many of the carbanions already include donors such as TMEDA, THF, etc. In summary the crystallization of enolate anions differs little from the crystallization of neutral organic molecules, except that it is often carried out at somewhat lower temperatures. The patience, skill and experience of the chemist often determine whether the crystallization procedure is successful.

1.1.5 THEORY, NMR AND OTHER TECHNIQUES

In concluding this review it must be noted that there are many other techniques that are being utilized to increase our understanding about the structure of synthetically important carbanions. A partial listing of these techniques would include the theoretical approaches taken by Schleyer,196 Streitweiser,197 Houk198 and others199 and classical spectroscopic techniques.200 There exist also a number of useful NMR techniques in addition to the 2D-HOESY method previously mentioned. These NMR techniques include analysis of 13C chemical shifts, 6Li–15N spin–spin splitting, 2Li quadrupolar coupling201 and rapid injection NMR which has proven useful as a technique for structural investigations of aliphatic carbanions.202 Last, but certainly not least, the excellent thermochemical measurements recently reported by Amett and coworkers serve to correlate the solid state structural studies with solution species.203 A
1.1.6 REFERENCES

2. As of January 1990 there exist nearly 1500 structural characterizations of alkali metal cation balanced organic anions.

17. While it is extremely unlikely that transition states can be easily characterized by physical measurements such as X-ray diffraction analyses, the Dunitz structure correlation principle allows a reasonable estimate to be made of the structural changes which occur along a reaction coordinate. Thus, structural characterizations of reaction intermediates can sometimes give rise to transition state pictures.

22. See ref. 21c.

Carbanions of Alkali and Alkaline Earth Cations

25. see ref. 1.

27. (a) L. M. Jackman and B. C. Lange, *J. Am. Chem. Soc.*, 1981, 103, 4494; (b) see also refs. 4 and 26.

29. For intermediate (8) see ref. 1; for intermediate (9) see ref. 136; and for an intermediate analogous to (11) see ref. 141.

30. See refs. 12 and 14.

31. See ref. 9.

35. It is to be noted that the examples in Table 1 are only those chosen by the algorithm CONNSER to have a C—M bond. It is possible that additional structures in the CSD may be considered to have an alkali metal or an alkaline earth metal to carbon contact.

Some enolate crystals derived from achiral substrates undergo spontaneous resolution upon crystallization. These include the aggregates (139) and (150) and perhaps others. Presumably this occurs to yield the conglomerate. Some enolate crystals derived from achiral substrates undergo spontaneous resolution upon crystallization. These include the aggregates (139) and (150) and perhaps others. Presumably this occurs to yield the conglomerate.

Some enolate crystals derived from achiral substrates undergo spontaneous resolution upon crystallization. These include the aggregates (139) and (150) and perhaps others. Presumably this occurs to yield the conglomerate. Some enolate crystals derived from achiral substrates undergo spontaneous resolution upon crystallization. These include the aggregates (139) and (150) and perhaps others. Presumably this occurs to yield the conglomerate.

Some enolate crystals derived from achiral substrates undergo spontaneous resolution upon crystallization. These include the aggregates (139) and (150) and perhaps others. Presumably this occurs to yield the conglomerate. Some enolate crystals derived from achiral substrates undergo spontaneous resolution upon crystallization. These include the aggregates (139) and (150) and perhaps others. Presumably this occurs to yield the conglomerate.

1.2 Carbanions of Alkali and Alkaline Earth Cations: (ii) Selectivity of Carbonyl Addition Reactions

DONNA M. HURYN
Hoffmann-La Roche, Nutley, NJ, USA

1.2.1 ADDITIONS OF ACHIRAL REAGENTS TO CHIRAL SUBSTRATES

1.2.1.1 Additions to Acyclic Systems

1.2.1.1.1 Introduction

The selective nucleophilic addition of Grignard and organolithium reagents to carbonyl compounds has been the subject of extensive study since the early 1900s when McKenzie described the asymmetric synthesis of α-hydroxy acids from the corresponding chiral α-keto esters. This report is the foundation of the seminal work of Prelog, Cram, Cornforth, Karabatsos and Felkin, carried out in the 1950s and 1960s, which provides consistent models of the stereochemical outcome of nucleophilic additions to carbonyl groups. At present, successful application of these models, as well as their theoretical treatment, continues to occupy a significant body of the chemical literature. This chapter focuses on the selective addition of carbon nucleophiles generated from organolithium and organomagnesium reagents to carbonyl compounds. The reduction of carbonyl compounds (additions of hydrogen-based reagents) is the subject of Volume 8.

While thorough reviews of this area are available in a number of sources, a brief description of the relevant aspects of these models is described below. Cram's 'open-chain model' concerns the addition of...
Nonstabilized Carbanion Equivalents

a nucleophile to a simple \(\alpha \)-alkyl-substituted carbonyl compound.\(^3\) Disposition of the carbonyl oxygen and the largest \(\alpha \)-substituent (relative sizes of the substituents are designated \(L \), \(M \), and \(S \)) in an \textit{anti} relationship is expected to be the conformation from which nucleophilic addition occurs (Figure 1). In the case of \(\alpha \)-halocarbonyls, Comforth proposes that the carbonyl and carbon–halogen dipoles prefer an \textit{anti} orientation; nucleophilic reaction then takes place from the less-encumbered face (Figure 2).\(^4\) When an \(\alpha \)-substituent capable of coordination is present, the ‘cyclic chelate model’ is invoked. The favored conformation results from formation of a chelate between the cationic reagent, the carbonyl oxygen and the coordinating substituent. Addition then occurs from the least-hindered face (Figure 3).\(^3\)

The design of reactions based on these models, in particular the cyclic chelation controlled model, often leads to high stereoselectivities. However, discrepancies between theoretical and experimental results have led to the development of alternative theories. Among these, the work of Felkin and coworkers\(^6\) has gained the most acceptance. In an open-chain model, orientation of the largest \(\alpha \)-substituent in a conformation perpendicular to the carbonyl group is considered most relevant (Figure 4). Because the carbonyl oxygen is deemed less sterically demanding than the substituent bonded directly to the carbonyl carbon (\(R \)), conformation A is favored over B. Calculations by Anh and Eisenstein\(^7\) support the results derived from the Felkin model; however, they propose a different mode of nucleophilic attack. These workers suggest that with the carbonyl substrate in a conformation like that proposed by Felkin, the reacting nucleophile approaches not perpendicularly to the carbonyl bond, but tilted away from it. Preferential attack occurs on a trajectory closest to the smallest substituent (Figure 5). For the purpose of this discussion, the term ‘cyclic chelation control’ will be used to describe those reactions which adhere to the model depicted in Figure 3. ‘Felkin–Anh’ or ‘nonchelation control’ will refer to selective additions which can be described by models such as those shown in Figure 5.

While these models are often useful in predicting the outcome of a reaction in a qualitative sense, the degree of stereoselection can be affected by simple changes in reaction conditions. It has been observed that solvent, temperature and organometallic reagent, as well as other factors, play a vital role in determining which of the reaction modes described predominates. Conditions which enhance, diminish, or even reverse observed stereoselectivities have been reported.\(^11\)
The addition of Grignard reagents to chiral α-alkoxy acyclic ketones is one of the most thoroughly studied examples of a chelation-controlled reaction. Under certain conditions, these reactions proceed with very high (50–200:1) stereoselectivities, which can be explained by the cyclic chelate model illustrated in equation (1). The nature of the solvent and organometallic reagent has a profound effect on the degree of selectivity observed (equation 2). As shown in Table 1, additions of Grignard reagents in THF are most effective, generating selectivities greater than 99:1. Organolithium nucleophiles, on the other hand, provide no useful selectivity.

The effects of changes in the nature of the alkoxy group (equation 3) are evident in Table 2. High levels of asymmetric induction are achieved by the use of α-substituents such as methoxymethyl ether, benzyl ether, and methylthiomethyl (MTM) ether. The sterically demanding tetrahydropyranyl ether substituent, however, interferes with chelate formation, and its use generates poor selectivities.

Table 1 Effects of Solvent and Organometallic Reagent on the Selectivity of the Reaction of (1a) with BuM

<table>
<thead>
<tr>
<th>Solvent</th>
<th>$M = Li$</th>
<th>Product ratio (2a):(3a)</th>
<th>$M = MgBr$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_2H_{12}</td>
<td>67:33</td>
<td>90:10</td>
<td></td>
</tr>
<tr>
<td>CH_2Cl_2</td>
<td>75:25</td>
<td>93:7</td>
<td></td>
</tr>
<tr>
<td>Et_2O</td>
<td>50:50</td>
<td>90:10</td>
<td></td>
</tr>
<tr>
<td>THF</td>
<td>41:59</td>
<td>>99:1</td>
<td></td>
</tr>
</tbody>
</table>

The effects of changes in the nature of the alkoxy group (equation 3) are evident in Table 2. High levels of asymmetric induction are achieved by the use of α-substituents such as methoxymethyl ether, benzyl ether, and methylthiomethyl (MTM) ether. The sterically demanding tetrahydropyranyl ether substituent, however, interferes with chelate formation, and its use generates poor selectivities.
Nonstabilized Carbanion Equivalents

\[
\begin{align*}
\text{C}_7\text{H}_5\text{O} & \quad \text{BuMgBr} \\
\text{H} \quad \text{OR} & \quad \text{THF, } -78 \ ^\circ\text{C} \\
(1b) & \quad \text{Bu} \quad \text{OH} \\
\text{C}_7\text{H}_5\text{O} & \quad + \\
\text{H} \quad \text{OR} & \quad \text{Bu} \\
(2b) & \quad \text{C}_7\text{H}_5\text{O} \\
\text{H} \quad \text{OH} & \quad \text{Bu} \\
(3b)
\end{align*}
\]

(3)

Table 2 Effects of Alkoxy Group on the Selectivity of the Reaction of (1b) with BuMgBr

<table>
<thead>
<tr>
<th>R</th>
<th>Product ratio (2b):(3b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEM, MOM, MTM,</td>
<td>>99:1</td>
</tr>
<tr>
<td>CH₂(2-furyl)</td>
<td>99.5:0.5</td>
</tr>
<tr>
<td>CH₂Ph</td>
<td>99:1</td>
</tr>
<tr>
<td>CH₂OCH₂Ph</td>
<td>75:25</td>
</tr>
<tr>
<td>THF</td>
<td></td>
</tr>
</tbody>
</table>

The high degrees of selectivity (>98:2) found in these reactions are possible not only in acyclic substrates, but also in cyclic α-alkoxy ketones and in more complex systems. The scope of this selective reaction, however, is limited to α-hydroxy ketones, as reaction with β-alkoxy aldehydes proceeds with no selectivity.13-14

Similar selectivities (>99:1) are observed in the cyclic chelation controlled reaction of α-benzyloxy carbonyls such as (4a; equation 4) with Grignard reagents.15 However when the α-hydroxy group is protected as a silyl ether (4b), the selectivities observed in the addition reaction diminish (60:40), or reverse (10:90; Table 3). The nonchelating nature of a silyl group, as well as its steric bulk, are responsible for this change in selectivity. In the case of (4b), nucleophilic addition via the Felkin–Anh model effectively competes with the cyclic–chelation control mode of addition.

Table 3 Diastereoselective Additions to Ketones (4a) and (4b)

<table>
<thead>
<tr>
<th>Ketone</th>
<th>Reagent</th>
<th>Temperature (°C)</th>
<th>Time (h)</th>
<th>Solvent</th>
<th>Yield (%)</th>
<th>Ratio (5):(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4a)</td>
<td>MeMgCl</td>
<td>-78</td>
<td>2</td>
<td>Et₂O</td>
<td>85</td>
<td>>99:<1</td>
</tr>
<tr>
<td>(4a)</td>
<td>MeLi</td>
<td>-78</td>
<td>2</td>
<td>THF</td>
<td>90</td>
<td>60:40</td>
</tr>
<tr>
<td>(4b)</td>
<td>MeMgCl</td>
<td>-78</td>
<td>2</td>
<td>Et₂O</td>
<td>78</td>
<td>60:40</td>
</tr>
<tr>
<td>(4b)</td>
<td>(Allyl)MgCl</td>
<td>-78</td>
<td>2</td>
<td>THF</td>
<td>90</td>
<td>10:90</td>
</tr>
</tbody>
</table>

The limited conformations of an α-oxygen substituent within a ring can effectively restrict the possible modes of nucleophilic attack, and lead to highly selective nucleophilic additions. A number of studies using acrolein dimer (7; equation 5) illustrate how these ring-constrained systems can be manipulated by taking advantage of either the chelating ability of the α-hydroxy moiety, or the sterically demanding cyclic system.

\[
\begin{align*}
\text{O} & \quad \text{H} \\
\text{R} & \quad \text{RM} \\
\text{O} & \quad \text{OH} \\
\text{O} & \quad \text{HO} \\
(7) & \quad + \\
& \quad \text{R}
\end{align*}
\]

(5)

Simple addition of n-decy lmagnesium bromide to (7) yields an approximately equal ratio of products (8) and (9).16 The use of conditions which promote chelation (excess Grignard reagent) produces a shift in the product ratio (63:37). Addition of ZnBr₂ to the reaction mixture further increases the amount of chelation-controlled product formed (85:15; Table 4).
Carbanions of Alkali and Alkaline Earth Cations

Table 4 Addition of Organometallic Reagents to Acrolein Dimer (7)

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Conditions</th>
<th>Yield (%)</th>
<th>Ratio (8):(9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n-Decyl)MgBr (1.1 equiv.)</td>
<td>THF, -50 °C</td>
<td>56</td>
<td>48:52</td>
</tr>
<tr>
<td>(n-Decyl)MgBr (3.0 equiv.)</td>
<td>THF, 15 °C</td>
<td>90</td>
<td>63:37</td>
</tr>
<tr>
<td>(n-Decyl)MgBr (6.0 equiv.)</td>
<td>THF, HMPA (3.5 equiv.), -45 °C</td>
<td>71</td>
<td>21:79</td>
</tr>
<tr>
<td>(n-Decyl)MgBr (1.5 equiv.)</td>
<td>THF, HMPA (6.0 equiv.), -20 °C</td>
<td>84</td>
<td>15:85</td>
</tr>
<tr>
<td>EtLi</td>
<td>Et2O, -78 °C</td>
<td>87</td>
<td>70:30</td>
</tr>
<tr>
<td>EtMgBr</td>
<td>Et2O, 0 °C → r.t.</td>
<td>87</td>
<td>70:30</td>
</tr>
</tbody>
</table>

Addition of HMPA to the reaction mixture to suppress chelation causes a reversal in the stereoselectivity, yielding (9) as the dominant product. Similar trends in the addition of ethyl metallics to (7) are reported. Use of conditions expected to enhance chelation produces (8) as the major product; (9) is formed predominantly when chelation is inhibited (Table 4). The proposed modes of addition according to chelation control, yielding (8), and Felkin–Anh models, yielding (9), are shown in Figures 6 and 7.

![Figure 6](image)

Figure 6

![Figure 7](image)

Figure 7

Nucleophilic additions to tetrahydrofurfural (10; equation 6) proceed under similar constraints. Grignard additions in the presence of HMPT favor formation of product (11), arising from Felkin–Anh addition (Table 5). In the absence of HMPT, nucleophilic addition yields the cyclic chelation control product (12) as the major isomer.

![Equation 6](image)

Table 5 Stereoselective Additions to (10)

<table>
<thead>
<tr>
<th>RMgX</th>
<th>Ratio (11):(12)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EtMgBr</td>
<td>48:52</td>
<td>71</td>
</tr>
<tr>
<td>EtMgBr, 2 equiv. HMPT</td>
<td>87:13</td>
<td>86</td>
</tr>
<tr>
<td>Bu°MgBr</td>
<td>43:57</td>
<td>71</td>
</tr>
<tr>
<td>Bu°MgBr, 2 equiv. HMPT</td>
<td>90:10</td>
<td>81</td>
</tr>
<tr>
<td>Pr°MgBr</td>
<td>29:71</td>
<td>48</td>
</tr>
<tr>
<td>Pr°MgBr, 2 equiv. HMPT</td>
<td>100:0</td>
<td>57</td>
</tr>
<tr>
<td>PhMgBr</td>
<td>30:70</td>
<td>73</td>
</tr>
<tr>
<td>PhMgBr, 2 equiv. HMPT</td>
<td>68:32</td>
<td>64</td>
</tr>
</tbody>
</table>

Considerable work has been carried out on nucleophilic additions to more complex carbonyl substrates containing both α- and β-alkoxy substituents. Optically active 2,3-isopropylidene glyceraldehyde (13;
equation 7) represents an ideal substrate for systematic study due to the ready availability of either enantiomer, as well as the versatile functionality present in the molecule. Factors to be considered in a stereocontrolled nucleophilic addition to (13) include the presence of a rigid dioxolane system adjacent to the carbonyl and the possibility of chelation to three different oxygen atoms (the carbonyl moiety and two ether oxygens).19

\[
\begin{align*}
\text{O} & \quad \text{H} \\
\text{CHO} \\
\text{(13)} & \quad \text{RM} \\
\end{align*}
\]

(7)

In general, organometallic additions to (13), yielding alcohols (14) and (15), result in only moderate selectivities when organolithium and Grignard reagents are used.20 The stereochemistry of the major isomer, and the degree of selectivity, depend on the nature of the organometallic reagent, as well as on the conditions under which the reaction is run. Table 6 illustrates some of these findings. Use of other organometallic reagents (Cr-, Ti- and Zn-based) yields improved selectivities.

<table>
<thead>
<tr>
<th>RM</th>
<th>Solvent</th>
<th>Temperature (°C)</th>
<th>(14):(15)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhLi</td>
<td>Et\textsubscript{2}O</td>
<td>-78</td>
<td>48:52</td>
<td>88</td>
</tr>
<tr>
<td>PhMgBr</td>
<td>Et\textsubscript{2}O</td>
<td>-78</td>
<td>48:52</td>
<td>85</td>
</tr>
<tr>
<td>MeLi</td>
<td>Et\textsubscript{2}O</td>
<td>-70</td>
<td>60:40</td>
<td>60</td>
</tr>
<tr>
<td>MeMgBr</td>
<td>Et\textsubscript{2}O</td>
<td>-70</td>
<td>60:40</td>
<td>60</td>
</tr>
<tr>
<td>ButLi</td>
<td>Et\textsubscript{2}O</td>
<td>-78</td>
<td>69:31</td>
<td>83</td>
</tr>
<tr>
<td>ButMgBr</td>
<td>Et\textsubscript{2}O</td>
<td>-78</td>
<td>75:25</td>
<td>86</td>
</tr>
<tr>
<td>(Allyl)MgBr</td>
<td>Et\textsubscript{2}O</td>
<td>-78</td>
<td>60:40</td>
<td>89</td>
</tr>
</tbody>
</table>

The presence of additives in the reaction mixture, however, can significantly enhance the selectivity of nucleophilic addition to (13; equation 8).21 Very high ratios (>95:5) are observed when the addition of furyllithium to (13) is carried out in the presence of Zn or Sn salts (Table 7). The stereochemistry of the product is explained by a conformation in which the zinc or tin atom coordinates with the carbonyl oxygen and the 3-oxygen of the dioxolane ring (Figure 8). Nucleophilic attack from the less-hindered face selectively produces (16). At present, the applicability of this reaction to other substrates is not known.

\[
\begin{align*}
\text{O} & \quad \text{H} \\
\text{CHO} \\
\text{(13)} & \quad \text{Li} \\
\text{additive} & \quad \text{THF} \\
\text{additive} & \quad \text{THF} \\
\text{additive} & \quad \text{THF} \\
\text{(16)} & \quad \text{(17)} \\
\end{align*}
\]

(8)

<table>
<thead>
<tr>
<th>Additive</th>
<th>Temperature (°C)</th>
<th>Yield (%)</th>
<th>(16):(17)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>-78</td>
<td>68</td>
<td>40:60</td>
</tr>
<tr>
<td>MgBr\textsubscript{2}</td>
<td>0</td>
<td>49</td>
<td>50:50</td>
</tr>
<tr>
<td>SnCl\textsubscript{4}</td>
<td>0</td>
<td>58</td>
<td>95:5</td>
</tr>
<tr>
<td>ZnCl\textsubscript{2}</td>
<td>-78</td>
<td>10</td>
<td>>95:<5</td>
</tr>
<tr>
<td>ZnCl\textsubscript{2}</td>
<td>0</td>
<td>60</td>
<td>90:10</td>
</tr>
<tr>
<td>ZnBr\textsubscript{2}</td>
<td>0</td>
<td>75</td>
<td>95:5</td>
</tr>
<tr>
<td>ZnI\textsubscript{2}</td>
<td>0</td>
<td>57</td>
<td>>95:<3</td>
</tr>
</tbody>
</table>
Carbanions of Alkali and Alkaline Earth Cations

Figure 8

Variation of the diol-protecting group or of other substituents on these α,β-dihydroxycarbonyl derivatives does not lead to significant improvements in stereoselection. Moderate selectivities are reported for the Grignard and organolithium additions to the 2,3-O,O-dibenzylglyceraldehyde (18) (ranging from 45:55 to 27:73)\(^2\) and to the homologated cyclohexylideneglyceraldehyde (19) (80:20 to 60:40).\(^2\) Synthetic useful ratios can, however, be realized by the use of other organometallic reagents (Ti, Cu). The depressed selectivities seen in the cases of magnesium and lithium reagents may be due to their relatively high reactivity.

Several reports on selective additions to more complex carbohydrate derivatives suggest that synthetically useful selectivities are indeed obtainable. Grignard addition to aldehyde (20) proceeds with a moderate preference for α-chelation-controlled addition. The alcohols (21) and (22) are isolated in a ratio of about 75:25 (equation 9).\(^2\)

\[
\begin{align*}
(20) & \xrightarrow{RMgBr} \frac{OMOM}{OMOM} \xrightarrow{(21)} \frac{OMOM}{OMOM} \xrightarrow{(22)} \\
(20) & \xrightarrow{RMeBr} \frac{OMOM}{OMOM} \xrightarrow{(21)} \frac{OMOM}{OMOM} \xrightarrow{(22)}
\end{align*}
\]

In some polyhydroxylated substrates, a specific site of chelation can be favored or disfavored by the appropriate choice of protecting group. Grignard addition to ketone (23; equation 10) occurs via α-coordination to yield the alcohol (24) exclusively.\(^2\) Competitive β-chelation is prevented by the use of a trialkysilyl protecting group. Alternatively, when the free hydroxy group is present (25), addition of the Grignard reagent forms the magnesium alkoxide, and β-chelation control predominates. In this case nucleophilic addition affords (26) as the sole product.

\[
\begin{align*}
(23) R = SiMe_2Bu^+ & \rightarrow \frac{OMOM}{OMOM} \xrightarrow{PPhMgBr} \frac{OMOM}{OMOM} \\
(25) R = H & \rightarrow \frac{OMOM}{OMOM} \xrightarrow{PPhMgBr} \frac{OMOM}{OMOM}
\end{align*}
\]

A number of other examples have been reported which involve highly selective Grignard or organolithium additions to carbohydrates.\(^2\) Unfortunately, no general trends for these complex systems have been observed. The selectivities reported are often specific for one substrate under a particular set of reaction conditions. Reetz has reviewed the chelation and nonchelation control addition reactions (not confined to organolithium or organomagnesium reagents) of α- and β-alkoxycarbonyl compounds.\(^2\)
In simple carbonyl compounds containing an \(\alpha \)-amino substituent, nucleophilic additions generally occur via the cyclic chelate model.\(^9,12\) However, just as in the \(\alpha \)-hydroxycarbonyl series, selectivities can be greatly influenced by substitution of the amino group. Examples of moderate to high stereoselection in both cyclic chelation and nonchelation controlled additions have been reported.

Grignard addition to the BOC-protected phenylalaninal (27; equation 11) occurs mainly through a cyclic chelation controlled mechanism to yield (28) and (29) in a ratio of 70:30.\(^28\) Conditions which favor coordination of the nitrogen and magnesium atoms (high temperature) are essential for the selectivity observed.

\[
\begin{align*}
\text{Bu'O} \ & \text{N} \ & \text{CHO} & \xrightarrow{\text{THF, 25 °C}} & \text{Bu'O} \ & \text{N} \ & \text{CH} \ & \text{OH} \\
\text{(27)} & & \text{Bu'O} \ & \text{N} \ & \text{H} & + & \text{Bu'O} \ & \text{N} \ & \text{OH} \\
\text{(28)} & & \text{(29)}
\end{align*}
\]

(11)

In contrast, the use of dibenzyl-protected groups in similar systems shows opposite stereoselectivity.\(^29\) Grignard and alkyllithium additions to dibenzyl-protected \(\alpha \)-amino aldehydes such as (30; equation 12) proceed with excellent selectivities (usually >95:5) to yield the nonchelate control alcohols (32). The high ratios observed (Table 8) regardless of substrate or reagent suggest that the dibenzyl groups act by preventing chelation; Cornforth or Felkin-Anh modes of addition then predominate. Access to the chelation control products is not possible using Grignard or organolithium reagents. The use of titanium or tin reagents, however, provides (31) as the major product (Chapter 1.5, this volume).

\[
\begin{align*}
\text{Bn}_2\text{N} \ & \text{O} & \text{H} & \xrightarrow{\text{RM}} & \text{Bn}_2\text{N} \ & \text{O} & \text{H} \\
\text{(30)} & & \text{Bn}_2\text{N} \ & \text{O} & \text{H} & + & \text{Bn}_2\text{N} \ & \text{O} & \text{H} \\
\text{(31)} & & \text{(32)}
\end{align*}
\]

Table 8: Stereoselectivities in the Reaction of (30) with RM

<table>
<thead>
<tr>
<th>(R^1)</th>
<th>(RM)</th>
<th>Temperature (°C)</th>
<th>Yield (%)</th>
<th>Ratio (31):32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>MeMgI</td>
<td>0</td>
<td>87</td>
<td>5:95</td>
</tr>
<tr>
<td>Me</td>
<td>MeLi</td>
<td>-10</td>
<td>91</td>
<td>9:91</td>
</tr>
<tr>
<td>Me</td>
<td>PhMgBr</td>
<td>0</td>
<td>85</td>
<td>5:97</td>
</tr>
<tr>
<td>Me</td>
<td>EtMgBr</td>
<td>0</td>
<td>85</td>
<td>5:95</td>
</tr>
<tr>
<td>Me</td>
<td>Pr'MgBr</td>
<td>0</td>
<td>75</td>
<td><3:97</td>
</tr>
<tr>
<td>Me</td>
<td>Bu'MgBr</td>
<td>0</td>
<td>72</td>
<td>5:95</td>
</tr>
<tr>
<td>Me</td>
<td>BuLi</td>
<td>-60</td>
<td>88</td>
<td><3:97</td>
</tr>
<tr>
<td>CH(_2)Ph</td>
<td>MeMgI</td>
<td>0</td>
<td>85</td>
<td>8:92</td>
</tr>
<tr>
<td>CH(_2)Ph</td>
<td>PhMgBr</td>
<td>0</td>
<td>84</td>
<td>3:97</td>
</tr>
<tr>
<td>CH(_2)Ph</td>
<td>PhCH(_2)CH(_2)MgBr</td>
<td>-78</td>
<td>72</td>
<td><4:96</td>
</tr>
<tr>
<td>CH(_2)Ph</td>
<td>PhCH(_2)Cl</td>
<td>-78</td>
<td>84</td>
<td><4:96</td>
</tr>
<tr>
<td>CH(_2)Ph</td>
<td>(Allyl)MgCl</td>
<td>-78</td>
<td>82</td>
<td>28:72</td>
</tr>
<tr>
<td>Bu(_i)</td>
<td>MeMgI</td>
<td>-10</td>
<td>89</td>
<td>20:80</td>
</tr>
<tr>
<td>Bu(_i)</td>
<td>MeLi</td>
<td>0</td>
<td>84</td>
<td>3:97</td>
</tr>
<tr>
<td>Bu(_i)</td>
<td>PhMgBr</td>
<td>0</td>
<td>87</td>
<td>5:95</td>
</tr>
<tr>
<td>Pr(_i)</td>
<td>MeMgI</td>
<td>0</td>
<td>81</td>
<td>14:86</td>
</tr>
<tr>
<td>Pr(_i)</td>
<td>MeLi</td>
<td>-10</td>
<td>69</td>
<td>9:91</td>
</tr>
</tbody>
</table>

Earlier work further illustrates the influence of both size and basicity of the amine-protecting group on the direction and degree of stereoselectivity of nucleophilic additions.\(^30\) While some excellent selectivities are observed in the Grignard reaction to amino aldehydes such as (33; equation 13), no general model adequately explains all of the results shown in Table 9.

Except for the \(\alpha \)-dibenzylamino substrate cited, Grignard and organolithium additions to protected \(\alpha \)-aminocarbonyls are not particularly well understood. Only modest stereoselectivities usually result, and
Carbanions of Alkali and Alkaline Earth Cations

Table 9 Stereoselectivity in the Reaction of RMgX with (33)

<table>
<thead>
<tr>
<th>R</th>
<th>R¹</th>
<th>R²</th>
<th>Yield (%)</th>
<th>Ratio (34):(35)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph</td>
<td>Ph</td>
<td>Ph</td>
<td>20</td>
<td>0:100</td>
</tr>
<tr>
<td>Ph</td>
<td>CH₂CH₂CH₂CH₂</td>
<td>61</td>
<td>16:84</td>
<td></td>
</tr>
<tr>
<td>Ph</td>
<td>CH₂CH₂CH₂CH₂</td>
<td>72</td>
<td>45:55</td>
<td></td>
</tr>
<tr>
<td>Ph</td>
<td>Me</td>
<td>Me</td>
<td>46</td>
<td>0:100</td>
</tr>
<tr>
<td>Ph</td>
<td>Et</td>
<td>Et</td>
<td>15</td>
<td>12:88</td>
</tr>
<tr>
<td>Et</td>
<td>CH₂CH₂CH₂CH₂</td>
<td>45</td>
<td>0:100</td>
<td></td>
</tr>
<tr>
<td>Et</td>
<td>Et</td>
<td>Et</td>
<td>57</td>
<td>34:66</td>
</tr>
<tr>
<td>Et</td>
<td>Pr²</td>
<td>Pr²</td>
<td>55</td>
<td>52:48</td>
</tr>
<tr>
<td>Et</td>
<td>Pr²</td>
<td>Pr²</td>
<td>72</td>
<td>100:0</td>
</tr>
</tbody>
</table>

As described above, the reactions of Grignard or organolithium reagents to α-hydroxy- or α-amino-carbonyls can proceed with extremely high stereoselectivities (>99:1) when cyclic chelation control is in effect. However, attempts to generate products arising from the Cram–Felkin–Anh mode of addition exclusively have been much less successful. These products are available by the use of conditions which favor non-chelation-controlled processes; however, until recently, the selectivities of these reactions (up to 80–90%) never reached those observed in cyclic chelation control additions.

This discrepancy can at least be partially explained by taking into account that in chelation-controlled reactions the acyclic substrate is essentially locked into one rigid cyclic conformation. The reactants taking part in non-chelation-controlled additions have many more degrees of freedom, and exclusive reaction with one conformer is less likely. These reactions rely on reagents which are incapable of chelation and/or substrates containing sterically or electronically differentiated substituents. Trialkylsilane substituents have been used very effectively to promote non-chelation-controlled nucleophilic reactions. Addition of Grignard and organolithium reagents to chiral acylsilane (36) produces the Cram–Felkin–Anh product (37) almost exclusively (>92:8 selective in most cases). The silyl group in (37) can be stereospecifically replaced with hydrogen to afford the product (40) of formal nucleophilic addition to the parent aldehyde (Scheme 1). This sequence of reactions is one of the first examples of a general procedure for highly efficient non-chelation-controlled additions to aldehyde equivalents. Direct Grignard and organolithium additions to aldehyde (39) are less selective, as shown in Table 10.

Stereoselectivities observed in the reactions of the α-chiral acylsilanes are explained by consideration of the the Felkin–Anh model. The conformers depicted in Figures 9 and 10 are predicted to be those through which nucleophilic addition occurs. The sterically demanding TMS group apparently differentiates between the α-hydrogen (S) and the α-methyl (M) substituents. This preference for the conformation in Figure 9 results in a highly stereoselective reaction.
Table 10 Selectivities in the Reaction of Nucleophiles with α-Chiral Acylsilanes (36) and Aldehydes (39)

<table>
<thead>
<tr>
<th>Substrate</th>
<th>R^1</th>
<th>R^2</th>
<th>Yield (%)</th>
<th>Ratio $(37):(38)$ or $(40):(41)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(36)</td>
<td>Ph</td>
<td>BunLi</td>
<td>92</td>
<td>>99:1</td>
</tr>
<tr>
<td>(36)</td>
<td>Ph</td>
<td>MeLi</td>
<td>96</td>
<td>>97.5:2.5</td>
</tr>
<tr>
<td>(36)</td>
<td>Ph</td>
<td>(Allyl)MgBr</td>
<td>96</td>
<td>92:8</td>
</tr>
<tr>
<td>(36)</td>
<td>1-Cyclohexenyl</td>
<td>BunLi</td>
<td>56</td>
<td>>97:3</td>
</tr>
<tr>
<td>(36)</td>
<td>1-Cyclohexenyl</td>
<td>MeLi</td>
<td>69</td>
<td>>99:1</td>
</tr>
<tr>
<td>(36)</td>
<td>1-Cyclohexenyl</td>
<td>(Allyl)MgBr</td>
<td>69</td>
<td>92:8</td>
</tr>
<tr>
<td>(36)</td>
<td>Cyclohexyl</td>
<td>BunLi</td>
<td>98</td>
<td>94:6</td>
</tr>
<tr>
<td>(36)</td>
<td>Cyclohexyl</td>
<td>MeLi</td>
<td>77</td>
<td>96:4</td>
</tr>
<tr>
<td>(36)</td>
<td>Cyclohexyl</td>
<td>(Allyl)MgBr</td>
<td>93</td>
<td>78:22</td>
</tr>
<tr>
<td>(39)</td>
<td>Ph</td>
<td>BunLi</td>
<td>91</td>
<td>83:17</td>
</tr>
<tr>
<td>(39)</td>
<td>Ph</td>
<td>MeLi</td>
<td>91</td>
<td>80:20</td>
</tr>
<tr>
<td>(39)</td>
<td>1-Cyclohexenyl</td>
<td>BunLi</td>
<td>40</td>
<td>94:6</td>
</tr>
<tr>
<td>(39)</td>
<td>1-Cyclohexenyl</td>
<td>MeLi</td>
<td>49</td>
<td>66:34</td>
</tr>
<tr>
<td>(39)</td>
<td>1-Cyclohexenyl</td>
<td>(Allyl)MgBr</td>
<td>54</td>
<td>71:29</td>
</tr>
<tr>
<td>(39)</td>
<td>Cyclohexyl</td>
<td>BunLi</td>
<td>96</td>
<td>78:22</td>
</tr>
<tr>
<td>(39)</td>
<td>Cyclohexyl</td>
<td>MeLi</td>
<td>75</td>
<td>67:33</td>
</tr>
<tr>
<td>(39)</td>
<td>Cyclohexyl</td>
<td>(Allyl)MgBr</td>
<td>59</td>
<td>67:33</td>
</tr>
</tbody>
</table>

Trialkylsilyl groups in other positions on the carbonyl substrate can also influence the direction of nucleophilic addition. Grignard additions to 2-alkyl- and 2-alkoxy-3-trimethylsilylalkenylcarbonyl compounds such as (42a), (42b) and (42c) proceed with high diastereofacial selectivity based on the Cram–Felkin–Anh model. Table 11 lists results of the additions to all three derivatives. Excellent stereoselectivities (>99:1 in most cases) favoring the nonchelation-controlled product (43) are evident in all examples except one. Replacement of the trialkylsilyl group in the products with hydrogen, or manipulation to generate other functional groups illustrates the synthetic potential of this procedure. The key role played by the silyl group in obtaining high stereoselectivities is demonstrated by a comparison of reported nucleophilic additions to analogous substrates. In these examples, substrates which do not contain a trialkylsilyl moiety in the carbonyl substrate react with much lower (67:33) selectivities.

1.2.1.3 Remote asymmetric induction

In general, nucleophilic addition reactions using Grignard or organolithium reagents to β-chiral or other remotely chiral ketones usually yield mixtures of stereoisomers which are not synthetically useful. However, some specific examples of stereoselective organolithium and Grignard additions to these remotely chiral carbonyl compounds have been reported.
Table 11 Stereoselectivities in the Reaction of (42) with RM

<table>
<thead>
<tr>
<th>Substrate</th>
<th>RM</th>
<th>Solvent</th>
<th>Yield (%)</th>
<th>Ratio (43):(44)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(42a)</td>
<td>MeMgI</td>
<td>THF</td>
<td>84</td>
<td>91:9</td>
</tr>
<tr>
<td>(42a)</td>
<td>EtMgBr</td>
<td>THF</td>
<td>92</td>
<td>>99:<1</td>
</tr>
<tr>
<td>(42a)</td>
<td>PrMgBr</td>
<td>THF</td>
<td>91</td>
<td>>99:<1</td>
</tr>
<tr>
<td>(42a)</td>
<td>PhMgBr</td>
<td>THF</td>
<td>94</td>
<td>>99:<1</td>
</tr>
<tr>
<td>(42a)</td>
<td>CH2=CH(TMS)MgBr</td>
<td>THF</td>
<td>93</td>
<td>>99:<1</td>
</tr>
<tr>
<td>(42b)</td>
<td>EtMgBr</td>
<td>THF</td>
<td>63</td>
<td>50:50</td>
</tr>
<tr>
<td>(42b)</td>
<td>EtMgBr</td>
<td>Et2O</td>
<td>87</td>
<td>93:7</td>
</tr>
<tr>
<td>(42c)</td>
<td>EtMgBr</td>
<td>THF</td>
<td>68</td>
<td>90:10</td>
</tr>
<tr>
<td>(42c)</td>
<td>EtMgBr</td>
<td>Et2O</td>
<td>92</td>
<td>>99:<1</td>
</tr>
</tbody>
</table>

Diastereoselective additions of nucleophiles to the β-alkoxy-γ-hydroxy aldehyde (45; equation 15) are reported to generate either chelation- or nonchelation-controlled products, depending on the reaction conditions used. Chelation-controlled additions of organolithium or Grignard reagents in THF take place with reasonable selectivities to produce (46) as the major product.34 These selectivities can be improved with a change of solvent (diethyl ether) and with the addition of Zn salts (Table 12). Figure 11 represents the probable mode of addition in this chelation-controlled reaction. Alternatively, the diol (47) results as the major product when the reaction is carried out in ether using alkylmagnesium bromides as nucleophiles. The mode of addition to generate (47) under these conditions is not completely understood.

Table 12 Diastereoselective Additions of Organometallics to (45)

<table>
<thead>
<tr>
<th>RM</th>
<th>Solvent</th>
<th>Yield (%)</th>
<th>Ratio (46):(47)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeMgI</td>
<td>THF</td>
<td>65</td>
<td>70:30</td>
</tr>
<tr>
<td>MeMgI</td>
<td>Ether</td>
<td>82</td>
<td>82:18</td>
</tr>
<tr>
<td>MeLi</td>
<td>THF/ether</td>
<td>80</td>
<td>78:22</td>
</tr>
<tr>
<td>MeLi</td>
<td>Ether</td>
<td>90</td>
<td>83:17</td>
</tr>
<tr>
<td>MeMgBr</td>
<td>THF</td>
<td>60</td>
<td>74:26</td>
</tr>
<tr>
<td>MeMgBr</td>
<td>Ether</td>
<td>77</td>
<td>15:85</td>
</tr>
<tr>
<td>BuMgBr</td>
<td>THF</td>
<td>65</td>
<td>88:12</td>
</tr>
<tr>
<td>BuMgBr</td>
<td>Ether</td>
<td>70</td>
<td>15:85</td>
</tr>
<tr>
<td>PrMgBr</td>
<td>THF</td>
<td>73</td>
<td>91:9</td>
</tr>
<tr>
<td>PrMgBr</td>
<td>Ether</td>
<td>65</td>
<td>15:85</td>
</tr>
<tr>
<td>BuMgBr + ZnI2</td>
<td>THF</td>
<td>56</td>
<td>94:6</td>
</tr>
</tbody>
</table>

Systematic studies on additions to β-asymmetric amino ketones of general structure (48; equation 16) result in the following conclusions.35

(i) In reactions of (48) with organolithiums, isomer (49) predominates regardless of the nature of the reagent and the substrate. Selectivities as high as 87:13 are reported. This general trend in stereoselectivity cannot be adequately explained by one model.
(ii) Selectivities in the Grignard additions to (48) are highly dependent on the nature of the substrate, as well as the reagents. Neither isomer (49) nor (50) predominates, and no specific model is consistent with the experimental results. Again, the highest selectivities observed are in the 80:20 range.

\[
\begin{align*}
\text{O} & \quad \text{H} & \quad \text{R}^1 \\
\text{R}^2 & \quad \text{NR}^3_2
\end{align*}
(48)
\rightarrow
\begin{align*}
\text{R}^1 & \quad \text{H} & \quad \text{R}^2 \\
\text{H} & \quad \text{NR}^3_2
\end{align*}
+ \begin{align*}
\text{H} & \quad \text{R}^1 & \quad \text{H} & \quad \text{R}^2 \\
\text{HO} & \quad \text{NR}^3_2
\end{align*}
(49) \\
(50)
\end{align} \tag{16}

In an example of remote asymmetric induction, chiral oxazoline (51) undergoes Grignard additions with moderate to good selectivity. The major product formed (52) results from coordination of the reagent to the oxazoline moiety, followed by nucleophilic attack from the bottom, as shown in Figure 12. The phenyl substituent of the oxazoline effectively prevents addition from the top face of the molecule. Systems such as (51) have been used to synthesize optically active phthalides (54), as shown in Scheme 2. Typical optical purities of the isolated aromatic products range from 46–80%. Table 13 lists some of these results.

![Figure 12](image_url)

Scheme 2

Table 13 Diastereoselectivity of Grignard Additions to (51)

<table>
<thead>
<tr>
<th>(R)</th>
<th>(R^1\text{MgX})</th>
<th>Yield (%)</th>
<th>((53)) Diastereomer ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>EtMgBr</td>
<td>96</td>
<td>73:27</td>
</tr>
<tr>
<td>Me</td>
<td>Bu^tMgBr</td>
<td>92</td>
<td>73:27</td>
</tr>
<tr>
<td>Me</td>
<td>Bu^tMgBr</td>
<td>90</td>
<td>83:17</td>
</tr>
<tr>
<td>Me</td>
<td>PhMgBr</td>
<td>97</td>
<td>90:10</td>
</tr>
<tr>
<td>Ph</td>
<td>MeMgBr</td>
<td>99</td>
<td>88:12</td>
</tr>
<tr>
<td>Ph</td>
<td>EtMgBr</td>
<td>99</td>
<td>83:17</td>
</tr>
<tr>
<td>Et</td>
<td>MeMgCl</td>
<td>93</td>
<td>82:18</td>
</tr>
<tr>
<td>Et</td>
<td>MeMgCl</td>
<td>66</td>
<td>52:48</td>
</tr>
<tr>
<td>Bu^t</td>
<td>MeMgCl</td>
<td>95</td>
<td>87:13</td>
</tr>
<tr>
<td>Bu^t</td>
<td>MeMgCl</td>
<td>89</td>
<td>84:16</td>
</tr>
<tr>
<td>(p-\text{BrC}_6\text{H}_4)</td>
<td>MeMgCl</td>
<td>95</td>
<td>87:13</td>
</tr>
<tr>
<td>(Bu^t)</td>
<td>MeMgCl</td>
<td>89</td>
<td>84:16</td>
</tr>
</tbody>
</table>
While examples of moderate to good stereoselectivities in remotely chiral molecules, such as those described above, are known, they are usually specific cases, and cannot be generalized to all systems. In general, stereoselective Grignard or organolithium additions which rely on remote or β-chelation are not efficient.

1.2.1.4 Chiral auxiliaries

A special class of acyclic diastereoselective reactions involves the use of chiral auxiliaries to control the absolute stereochemistry of nucleophilic additions at carbonyl centers. This process takes advantage of steric and/or electronic factors within the chiral adjuvant to promote nucleophilic addition from one face of the molecule, and thereby generate one predictable diastereomer. Removal of the auxiliary, in the best cases, generates enantiomerically pure products, as well as the recyclable chiral adjuvant. The end result of this process is the synthesis of enantiomerically pure products via diastereoselective reactions.

Eliel has extensively studied the 1,3-oxathiane systems (55) as a chiral auxiliary to control the addition of organometallics to ketones (Scheme 3). Following nucleophilic addition, cleavage of the oxathiane group generates chiral α-hydroxycarbonyl compounds (58). The wide variety of carbonyl substituents, as well as Grignard reagents, amenable to this process is illustrated in Table 14. The enantiomeric auxiliary is available, and affords alcohols of opposite chirality in equivalent yields.

![Scheme 3](image-url)

Table 14 Stereoselective Reactions of (55) with Organometallics

<table>
<thead>
<tr>
<th>R</th>
<th>R'M</th>
<th>Temperature (°C)</th>
<th>Solvent</th>
<th>Ratio (56):(57)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph</td>
<td>MeMgl</td>
<td>Reflux</td>
<td>Et₂O</td>
<td>96:4</td>
</tr>
<tr>
<td>Ph</td>
<td>MeL</td>
<td>Reflux</td>
<td>Et₂O</td>
<td>86:14</td>
</tr>
<tr>
<td>Ph</td>
<td>EtMgl</td>
<td>Reflux</td>
<td>Et₂O</td>
<td>99:1</td>
</tr>
<tr>
<td>Ph</td>
<td>PrMgl</td>
<td>Reflux</td>
<td>Et₂O</td>
<td>89:11</td>
</tr>
<tr>
<td>Me</td>
<td>PhMgBr</td>
<td>Reflux</td>
<td>Et₂O</td>
<td>78:22</td>
</tr>
<tr>
<td>Me</td>
<td>Ph₂Mg</td>
<td>Reflux</td>
<td>Et₂O</td>
<td>87:13</td>
</tr>
<tr>
<td>Me</td>
<td>PhMg</td>
<td>Reflux</td>
<td>Et₂O</td>
<td>90:10</td>
</tr>
<tr>
<td>Me</td>
<td>PrMg</td>
<td>Reflux</td>
<td>Et₂O</td>
<td>90:10</td>
</tr>
<tr>
<td>Me</td>
<td>Pr²MgBr</td>
<td>Reflux</td>
<td>Et₂O</td>
<td>83:17</td>
</tr>
<tr>
<td>Me</td>
<td>Pr²MgCl</td>
<td>Reflux</td>
<td>Et₂O</td>
<td>79:21</td>
</tr>
<tr>
<td>Me</td>
<td>Bu²Mg</td>
<td>Reflux</td>
<td>Et₂O</td>
<td>87:13</td>
</tr>
<tr>
<td>Me</td>
<td>Pr²Mg</td>
<td>Reflux</td>
<td>Et₂O</td>
<td>67:33</td>
</tr>
<tr>
<td>Me</td>
<td>(Viny1)MgBr</td>
<td>Reflux</td>
<td>THF</td>
<td>91:9</td>
</tr>
<tr>
<td>Me</td>
<td>HC=CMgBr</td>
<td>Reflux</td>
<td>THF</td>
<td>94:6</td>
</tr>
<tr>
<td>Et</td>
<td>PhMgBr</td>
<td>Reflux</td>
<td>Et₂O</td>
<td>83:17</td>
</tr>
<tr>
<td>Et</td>
<td>PhMgBr</td>
<td>−78</td>
<td>Et₂O</td>
<td>97:3</td>
</tr>
<tr>
<td>Et</td>
<td>MeMgl</td>
<td>Reflux</td>
<td>Et₂O</td>
<td>80:20</td>
</tr>
<tr>
<td>Et</td>
<td>MeMgl</td>
<td>−78</td>
<td>Et₂O</td>
<td>95:5</td>
</tr>
<tr>
<td>Vinyl</td>
<td>MeMg</td>
<td>Reflux</td>
<td>Et₂O</td>
<td>87:13</td>
</tr>
<tr>
<td>Pr</td>
<td>MeMg</td>
<td>Reflux</td>
<td>Et₂O</td>
<td>68:32</td>
</tr>
<tr>
<td>Pr</td>
<td>MeMg</td>
<td>−78</td>
<td>Et₂O</td>
<td>77:23</td>
</tr>
<tr>
<td>Pr</td>
<td>PhMgBr</td>
<td>Reflux</td>
<td>Et₂O</td>
<td>85:15</td>
</tr>
<tr>
<td>Pr</td>
<td>PhMgBr</td>
<td>−78</td>
<td>Et₂O</td>
<td>99:<1</td>
</tr>
<tr>
<td>Bu</td>
<td>MeMgI</td>
<td>Reflux</td>
<td>Et₂O</td>
<td>93:7</td>
</tr>
<tr>
<td>Bu</td>
<td>MeMgI</td>
<td>−78</td>
<td>Et₂O</td>
<td>96:4</td>
</tr>
</tbody>
</table>
Further work towards developing this process into a viable route to enantiomerically pure compounds has led to the use of the 1,3-dioxathiane (59; Scheme 4) as a second generation chiral auxiliary. Excellent stereoselectivities (usually >90%) are found in the reaction of (59) with a variety of Grignard reagents. The carbinol products (60) are readily cleaved to the α-hydroxy aldehydes (61) and the sultine (62), which is used to regenerate (59). Either enantiomer of the desired product is available, by using the diastereomeric oxathiane, or by reversing the order of R-group addition. The nitrogen analog (63) has recently been reported to impart excellent stereoselection. Scheme 5 illustrates its utility for the synthesis of a number of α-hydroxy acids in high optical purity (see Table 15).

![Scheme 4](image)

![Scheme 5](image)

<table>
<thead>
<tr>
<th>R^1</th>
<th>$R^1'M$</th>
<th>Temperature (°C)</th>
<th>Yield (%)</th>
<th>Configuration</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>MeMgBr</td>
<td>20</td>
<td>44</td>
<td>(S)</td>
<td>98</td>
</tr>
<tr>
<td>Me</td>
<td>MeMgBr</td>
<td>-70</td>
<td>—</td>
<td>(S)</td>
<td>98</td>
</tr>
<tr>
<td>Me</td>
<td>MeLi</td>
<td>-70</td>
<td>47</td>
<td>(S)</td>
<td>95</td>
</tr>
<tr>
<td>Et</td>
<td>EtMgBr</td>
<td>5</td>
<td>77</td>
<td>(S)</td>
<td>100</td>
</tr>
<tr>
<td>HCC=C</td>
<td>HC=C</td>
<td>20</td>
<td>63</td>
<td>(S)</td>
<td>97 ± 1</td>
</tr>
<tr>
<td>α-Naphthyl</td>
<td>Cl=H</td>
<td>20</td>
<td>23</td>
<td>(R)</td>
<td>82 ± 1</td>
</tr>
</tbody>
</table>

The mode of Grignard addition is through the cyclic-chelate conformation shown in Figure 13. The hard magnesium ion coordinates with the carbonyl oxygen and the hard oxygen atom of the oxathiane ring (in preference to the soft sulfur atom). Addition then occurs from the less-hindered side of the auxiliary. All reactions investigated using these ligands have led to the configuration predicted according to this model.

![Figure 13](image)

In a study of the factors influencing this nucleophilic addition, it was found that incorporation of an exocyclic oxygen atom into the carbonyl substituent (such as in 66; equation 17) has a profound effect on the selectivity of the reaction. Alkoxy groups capable of chelation (e.g. CH$_2$Ph) can competitively inhibit coordination of the metal to the ring oxygen, thus severely lowering, and in some cases reversing, the stereoselectivities observed. In these cases, the chelating ability of the organometallic reagent, as well as the length of the methylene linker, influence the course of the reaction. The use of a triisopropylsilyl
protecting group, however, effectively prevents chelation of the exocyclic alkoxy substituent with the Grignard reagent, and yields high, predictable selectivities (see Table 16).

![Chemical structure](image)

Table 16 Stereoselective Nucleophilic Additions to Oxathianyl Alkoxy Ketones (66)

<table>
<thead>
<tr>
<th>R</th>
<th>n</th>
<th>R^1</th>
<th>Reagent</th>
<th>(67):(68)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_2$Ph</td>
<td>1</td>
<td>Me</td>
<td>MeMgBr</td>
<td>33:67</td>
</tr>
<tr>
<td>SiPr$_3$</td>
<td>1</td>
<td>Me</td>
<td>MeMgBr</td>
<td>97:3</td>
</tr>
<tr>
<td>CH$_2$Ph</td>
<td>2</td>
<td>Me</td>
<td>MeMgBr</td>
<td>42:58</td>
</tr>
<tr>
<td>SiPr$_3$</td>
<td>2</td>
<td>Me</td>
<td>MeMgBr</td>
<td>97:3</td>
</tr>
<tr>
<td>CPh$_3$</td>
<td>2</td>
<td>Me</td>
<td>MeMgBr</td>
<td>86:14</td>
</tr>
<tr>
<td>CH$_2$Ph</td>
<td>3</td>
<td>Me</td>
<td>MeMgBr</td>
<td>81:19</td>
</tr>
<tr>
<td>SiPr$_3$</td>
<td>2</td>
<td>Me</td>
<td>(Me)$_2$Mg</td>
<td>98:2</td>
</tr>
<tr>
<td>TMS</td>
<td>2</td>
<td>Me</td>
<td>(Me)$_2$Mg</td>
<td>73:27</td>
</tr>
</tbody>
</table>

The chiral oxathianes have been broadly used for the synthesis of a number of natural products. Through these applications, these chiral auxiliaries have been shown to provide a viable procedure for the synthesis of optically pure compounds.

Chiral acetals can be used as auxiliaries in the diastereoselective reactions of Grignard reagents with acyclic as well as cyclic α-keto acetals. Nucleophilic addition to the monoprotected diketone (69; equation 18) occurs with excellent stereoselectivity to generate the corresponding tertiary alcohol (70) as the major product, usually with greater than 95:5 selectivity. Removal of the ketal yields α-hydroxy ketones of high optical purity. In most examples, enantiomeric excesses of 95% and higher are observed in the resultant keto alcohols. Table 17 represents the results of additions to cyclic and acyclic substrates.

![Chemical structure](image)

Table 17 Diastereoselective Additions to α-Keto Ketals (69)

<table>
<thead>
<tr>
<th>R^1</th>
<th>R^2</th>
<th>RMgX</th>
<th>Yield (%)</th>
<th>Ratio (70):(71)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_2$CH$_2$CH$_2$CH$_2$</td>
<td>Me</td>
<td>MeMgBr</td>
<td>93</td>
<td>100:0</td>
</tr>
<tr>
<td>CH$_2$CH$_2$C$_3$H$_7$</td>
<td>Me</td>
<td>MeMgBr</td>
<td>93</td>
<td>98:2</td>
</tr>
<tr>
<td>CH$_2$CH$_2$CH$_2$C$_3$H$_7$</td>
<td>Et</td>
<td>EtMgCl</td>
<td>93</td>
<td>100:0</td>
</tr>
<tr>
<td>CH$_2$CH$_2$CH$_2$C$_3$H$_7$</td>
<td>(Vinyl)MgBr</td>
<td>(Vinyl)MgBr</td>
<td>93</td>
<td>97:3</td>
</tr>
<tr>
<td>CH$_2$CH$_2$CH$_2$C$_3$H$_7$</td>
<td>Ph</td>
<td>PhMgBr</td>
<td>93</td>
<td>100:0</td>
</tr>
<tr>
<td>Me</td>
<td>Ph</td>
<td>EtMgCl</td>
<td>93</td>
<td>>99:1</td>
</tr>
<tr>
<td>Me</td>
<td>Ph</td>
<td>(Vinyl)MgBr</td>
<td>90</td>
<td>98:2</td>
</tr>
<tr>
<td>Me</td>
<td>Ph</td>
<td>PhMgBr</td>
<td>84</td>
<td>97:3</td>
</tr>
<tr>
<td>Me</td>
<td>Et</td>
<td>EtMgCl</td>
<td>92</td>
<td>>99:1</td>
</tr>
<tr>
<td>Me</td>
<td>Et</td>
<td>(Vinyl)MgBr</td>
<td>93</td>
<td>>99:1</td>
</tr>
<tr>
<td>Me</td>
<td>Et</td>
<td>PhMgBr</td>
<td>81</td>
<td>98:2</td>
</tr>
</tbody>
</table>

The stereoselectivity of these reactions can be explained by chelation of the magnesium metal with the carbonyl oxygen, the proximal methoxy oxygen atom, and one of the acetal oxygens. Migration of the alkyl group from the organometallic reagent then occurs from the least-hindered face (Figure 14). Evidence for this mechanism follows from experiments carried out using a related chiral auxiliary in which
the methoxy groups were replaced with hydrogen atoms. Stereoselectivities are considerably lower (10–20% ee) in these cases.

Extension of this methodology to the use of chiral acetals such as (72; equation 19) to produce optically active secondary alcohols is found to be less efficient than the ketal series. Alkyl Grignard reagents in ether (Table 18) provide the best selectivities (up to 90:10), while aryl and alkynyl organometallics show very little diastereofacial differentiation.45

![Figure 14](image)

Table 18 Diastereoselective Additions to Chiral Acetal (72)

<table>
<thead>
<tr>
<th>RM</th>
<th>Solvent</th>
<th>Yield (%)</th>
<th>Ratio (73):(74)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeMgCl</td>
<td>Et2O</td>
<td>70</td>
<td>90:10</td>
</tr>
<tr>
<td>Bu3MgBr</td>
<td>Et2O</td>
<td>65</td>
<td>87:13</td>
</tr>
<tr>
<td>Bu3Li</td>
<td>Et2O</td>
<td>60</td>
<td>52:48</td>
</tr>
<tr>
<td>PrMgBr</td>
<td>Et2O</td>
<td>60</td>
<td>80:20</td>
</tr>
<tr>
<td>PhMgBr</td>
<td>Et2O</td>
<td>70</td>
<td>34:76</td>
</tr>
<tr>
<td>PhMgBr</td>
<td>THF</td>
<td>70</td>
<td>42:58</td>
</tr>
<tr>
<td>PhLi</td>
<td>Et2O</td>
<td>60</td>
<td>49:51</td>
</tr>
<tr>
<td>PhC=CLi</td>
<td>Et2O</td>
<td>65</td>
<td>48:52</td>
</tr>
<tr>
<td>PhC=CMgBr</td>
<td>THF</td>
<td>65</td>
<td>37:63</td>
</tr>
</tbody>
</table>

Advantages of this chiral auxiliary include the ready availability of either enantiomer and its ease of removal, as well as the dual utility of the chiral acetal as both chiral auxiliary, and carbonyl-protecting group. A published synthesis of optically pure (→)-7-deoxydaunomycinone exemplifies the utility of this chiral adjuvant.46

The use of ketoaminals based on pyrrolidine as chiral auxiliaries has been demonstrated as another entry to optically active α-hydroxycarbonyls.47 The aminals (76; Scheme 6) are readily obtained from a chiral diamine (75) and glyoxal. Addition of Grignard reagents to (76), followed by hydrolysis, provides a chiral α-hydroxy aldehyde (78) with the (S)-configuration. Optical purities are measured in the 94–95% range. The chiral diamine can be recovered unchanged from the reaction mixture.

The source of the asymmetry is thought to occur through two stereoselective steps. First, the preferential formation of one diastereomeric aminal with the structure shown in Figure 15 is expected due to steric arguments. Second, attack of the Grignard reagent from one face of the molecule occurs through the cyclic–chelate mode. The magnesium ion coordinates with the carbonyl oxygen, as well as with the nitrogen (N-1) of the pyrrolidine ring. Complexation with the phenyl-substituted nitrogen (N-2) is dismissed due to its electron deficiency with respect to N-1. This rigid structure leads to alkyl group attack on the carbonyl oxygen from the less-hindered side (see Figure 16).

Extension of this work to the synthesis of α-hydroxy aldehydes with substituents other than phenyl can be carried out by using the methyl ester (79; Scheme 7) as precursor.48 Grignard additions afford a variety of ketoaminals (80) in good yield; aldehydes (R1 = H) are available via diisobutylaluminum hydride reaction.49 A second Grignard addition, followed by hydrolysis, generates α-hydroxy aldehydes (82) in
Carbanions of Alkali and Alkaline Earth Cations

Scheme 6

Figure 15

Figure 16

moderate to high optical yields (Table 19). Configurations of the products can be predicted from a model similar to that shown in Figure 16. The corresponding aldehydes (80; \(R^1 = H \)) react with equivalent selectivity to afford secondary alcohols.

This consecutive Grignard methodology allows the synthesis of either enantiomer of the \(\alpha \)-hydroxy aldehyde product, since its stereochemistry is determined only by the order of Grignard reactions. The preparation of natural products such as (+)- and (-)-frontalin\(^{50}\) and malyngolide\(^{51}\) in high optical yield has been carried out, and demonstrates the synthetic utility of this chiral auxiliary. The use of pyrrolidine-based chiral auxiliaries is reviewed by Eliel\(^{11}\) and Mukaiyama.\(^{52}\)

Glyoxalate esters of phenylmenthols (83; equation 20) have been extensively used as chiral auxiliaries for a number of different reactions. Selective Grignard addition from the front face of the molecule

Table 19 Preparation of \(\alpha \)-Hydroxy Aldehydes (82)

<table>
<thead>
<tr>
<th>(R^1)</th>
<th>(R^2)MgX</th>
<th>Yield (%)</th>
<th>((82)) (ee) (%)</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>PhMgBr</td>
<td>76</td>
<td>99</td>
<td>(R)</td>
</tr>
<tr>
<td>Me</td>
<td>EtMgBr</td>
<td>43</td>
<td>78</td>
<td>(R)</td>
</tr>
<tr>
<td>Me</td>
<td>(Vinyl)MgBr</td>
<td>44</td>
<td>93</td>
<td>(R)</td>
</tr>
<tr>
<td>Et</td>
<td>PhMgBr</td>
<td>80</td>
<td>100</td>
<td>(S)</td>
</tr>
<tr>
<td>Et</td>
<td>MeMgI</td>
<td>41</td>
<td>78</td>
<td>(S)</td>
</tr>
<tr>
<td>Pr(^1)</td>
<td>PhMgBr</td>
<td>75</td>
<td>94</td>
<td>(R)</td>
</tr>
</tbody>
</table>
affords the α-hydroxy ester (84) as the major product (Table 20). Subsequent reduction generates the corresponding diol in optical purities ranging from 88 to 92%. (This methodology is equally applicable to the synthesis of tertiary alcohols using the keto ester as starting material.) The auxiliary suffers from difficulties in its preparation in optically pure form, and from the unavailability of the enantiomeric phenylmenthol. This latter limitation can be overcome by reversal of the order of nucleophilic addition.

![Chemical structures](image)

Table 20 Selectivities in the Addition of RM to (83)

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Temperature (°C)</th>
<th>Yield (%)</th>
<th>Ratio (84):(85)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeMgBr</td>
<td>0</td>
<td>62</td>
<td>95:5</td>
</tr>
<tr>
<td>MeMgBr</td>
<td>-78</td>
<td>86</td>
<td>>99:1</td>
</tr>
<tr>
<td>CsH13MgBr</td>
<td>-78</td>
<td>90</td>
<td>>99:1</td>
</tr>
<tr>
<td>CsH17MgBr</td>
<td>-78</td>
<td>80</td>
<td>99:1</td>
</tr>
<tr>
<td>PhMgBr</td>
<td>-78</td>
<td>90</td>
<td>>99:1</td>
</tr>
<tr>
<td>CsH11MgBr</td>
<td>-78</td>
<td>80</td>
<td>99:1</td>
</tr>
<tr>
<td>MeLi</td>
<td>-78</td>
<td>74</td>
<td>50:50</td>
</tr>
<tr>
<td>MeLi + LiClO4</td>
<td>-78</td>
<td>80</td>
<td>80:20</td>
</tr>
</tbody>
</table>

Meyers and coworkers report the synthesis of enantiomerically enriched α-hydroxy acids (enantioergic excesses of the products generally range from 30 to 87%) from chiral ketoazolines such as (86; Scheme 8). In most cases, only moderate selectivities are observed. The highest ratios (62–87% ee) result when aryllithiums are employed as the nucleophile (Table 21). Since the course of the reaction seems to depend on a number of subtle conformational and coordinating effects, predictions of the stereochemical outcome of these processes are difficult.

![Chemical structures](image)

Table 21 Synthesis of α-Hydroxy Acids (88)

<table>
<thead>
<tr>
<th>Reagent</th>
<th>(87) Yield (%)</th>
<th>(88) Yield (%)</th>
<th>(88) ee (%)</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeMgBr/THF</td>
<td>95</td>
<td>70</td>
<td>9</td>
<td>(S)</td>
</tr>
<tr>
<td>MeMgBr/TMEDA/THF</td>
<td>99</td>
<td>72</td>
<td>32</td>
<td>(R)</td>
</tr>
<tr>
<td>MeMgBr/EtSN/toluene</td>
<td>94</td>
<td>76</td>
<td>22</td>
<td>(S)</td>
</tr>
<tr>
<td>MeLi/THF</td>
<td>93</td>
<td>70</td>
<td>0</td>
<td>(S)</td>
</tr>
<tr>
<td>MeLi/LiClO4/THF</td>
<td>99</td>
<td>73</td>
<td>48</td>
<td>(S)</td>
</tr>
<tr>
<td>EtMgBr/EtSN/toluene</td>
<td>>99</td>
<td>65</td>
<td>32</td>
<td>(S)</td>
</tr>
<tr>
<td>PrMgBr/EtSN/toluene</td>
<td>>99</td>
<td>62</td>
<td>39</td>
<td>(S)</td>
</tr>
<tr>
<td>PrMgBr/EtSN/toluene</td>
<td>95</td>
<td>57</td>
<td>41</td>
<td>(S)</td>
</tr>
<tr>
<td>BuMgBr/EtSN/toluene</td>
<td>>99</td>
<td>55</td>
<td>50</td>
<td>(S)</td>
</tr>
<tr>
<td>p-Tol-Li</td>
<td>93</td>
<td>60</td>
<td>76</td>
<td>(S)</td>
</tr>
<tr>
<td>p-Anisyl-Li</td>
<td>92</td>
<td>55</td>
<td>62</td>
<td>(S)</td>
</tr>
<tr>
<td>1-Naphthyl-Li</td>
<td>>99</td>
<td>62</td>
<td>65</td>
<td>(S)</td>
</tr>
<tr>
<td>2-Thienyl-Li</td>
<td>90</td>
<td>73</td>
<td>87</td>
<td>(S)</td>
</tr>
</tbody>
</table>
1.2.1.2 Additions to Cyclic Systems

Nucleophilic additions to cyclic carbonyl compounds differ greatly from those of acyclic systems. In acyclic systems, only the configuration at an adjacent (1,2-asymmetric induction) or nearby center (remote asymmetric induction) is usually considered in predicting the outcome of nucleophilic attack. In cyclic systems, the conformation of the entire molecule (which is in part determined by the individual substituents) must be considered when predicting the mode of nucleophilic attack. Furthermore, a number of other factors such as torsional and electronic effects also play a role in the stereochemical course of additions to cyclic substrates. The relative importance of all of these effects (as well as others) has been the subject of considerable debate in the literature, and has not as yet been adequately resolved.9,12,58

Models for the nucleophilic addition of organolithium and Grignard reagents to cyclic ketones assume that the incoming group approaches the carbonyl carbon perpendicularly to the plane of the sp^2 center (Figure 17).58 This line of approach effects maximum overlap of the orbitals in the transition state of the reaction. Whether this perpendicular nucleophilic attack then occurs from an equatorial or an axial trajectory depends on the effects mentioned above. In the case of simple cyclohexanones, if 'steric approach control' influences the reaction, the nucleophile will enter from the less-hindered equatorial position to yield the axial alcohol. Axial addition is disfavored due to steric hindrance from the axial hydrogen atoms at C-3 and C-5. When 'product development control' is in effect, formation of the more stable equatorial alcohol (from axial attack) is favored. The relative importance of all of these effects is highly dependent on the particular nature of the cyclic substrate, and has been the subject of considerable theoretical interest.59 An excellent review of this field has been written by Ashby and Laemmle.58

![Figure 17](image)

The mode of addition to substituted cyclohexanones (equation 21) depends greatly on the nature and position of the substituents, as well as on the structure of the organometallic reagent. Table 2258 lists results of nucleophilic additions to a variety of cyclohexanones. Some broad generalizations can be made.12

(i) With organolithiums (except acetylides) and Grignard reagents, equatorial attack is usually favored. The substitution pattern of the ketone influences the course of the reaction to a lesser extent. With acetylides, axial attack predominates due to torsional effects.

(ii) The degree of selectivity often increases with the size of the incoming nucleophile.

Predictions of the stereochemical outcome of nucleophilic additions to substituted cyclopentanones is less straightforward. The conformation of a 2-substituted five-membered ring (92) is such that attack from the least-hindered face (steric approach control) results in the formation of a cis-substituted alcohol (93; equation 22). Torsional strain controlled additions lead to trans-substituted alcohols (94).58 As in the examples of cyclohexanones, steric approach control usually dominates the reaction pathway with the use of organolithiums and Grignard reagents; torsional strain control with ethynyl reagents (Table 23).12,58 A single substituent at the 3-position of the cyclopentanone has less of an effect on the stereochemical outcome of nucleophilic addition, and product ratios in these systems are generally poor.58

![equation 21](image)
Table 22 Addition of Organometallic Reagents to Substituted Cyclohexanones (99)

<table>
<thead>
<tr>
<th>Reagent (RM)</th>
<th>Substituent (R')</th>
<th>Ratio (90):(91)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeLi/Et2O</td>
<td>4-Bu¹</td>
<td>65:35</td>
</tr>
<tr>
<td>MeLi/Et2O</td>
<td>2-Me</td>
<td>84:16</td>
</tr>
<tr>
<td>MeLi/Et2O</td>
<td>3,3,5-Me3</td>
<td>100:0</td>
</tr>
<tr>
<td>PhLi</td>
<td>4-Bu¹</td>
<td>58:42</td>
</tr>
<tr>
<td>PhLi</td>
<td>4-Me</td>
<td>53:47</td>
</tr>
<tr>
<td>PhLi</td>
<td>3-Me</td>
<td>44:56</td>
</tr>
<tr>
<td>PhLi</td>
<td>2-Me</td>
<td>88:12</td>
</tr>
<tr>
<td>HC=CNa/Et2O+NH3</td>
<td>4-Bu¹</td>
<td>12:88</td>
</tr>
<tr>
<td>HC=CLi/THF+NH3</td>
<td>2-Me</td>
<td>53:47</td>
</tr>
<tr>
<td>HC=CLi/THF+NH3</td>
<td>3-Me</td>
<td>18:82</td>
</tr>
<tr>
<td>MeMgI/Et2O</td>
<td>2-Me</td>
<td>53:47</td>
</tr>
<tr>
<td>MeMgI/Et2O</td>
<td>3,3,5-Me3</td>
<td>100:0</td>
</tr>
<tr>
<td>EtMgBr/Et2O</td>
<td>4-Bu¹</td>
<td>71:29</td>
</tr>
<tr>
<td>EtMgBr/Et2O</td>
<td>3-Me</td>
<td>68:32</td>
</tr>
<tr>
<td>EtMgBr/Et2O</td>
<td>2-Me</td>
<td>95:5</td>
</tr>
<tr>
<td>EtMgBr/Et2O</td>
<td>3,3,5-Me3</td>
<td>100:0</td>
</tr>
<tr>
<td>PhMgBr/Et2O</td>
<td>4-Bu¹</td>
<td>49:51</td>
</tr>
<tr>
<td>PhMgBr/Et2O</td>
<td>3-Me</td>
<td>54:46</td>
</tr>
<tr>
<td>PhMgBr/Et2O</td>
<td>2-Me</td>
<td>59:41</td>
</tr>
<tr>
<td>PhMgBr/Et2O</td>
<td>3,3,5-Me3</td>
<td>100:0</td>
</tr>
<tr>
<td>HC≡CMgBr</td>
<td>2-Me</td>
<td>45:55</td>
</tr>
<tr>
<td>HC≡CMgBr</td>
<td>3,3,5-Me3</td>
<td>100:0</td>
</tr>
</tbody>
</table>

(22)

Table 23 Addition of Organometallic Reagents to Substituted Cyclopentanones

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Substituent</th>
<th>Ratio of alcohols cis:trans</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeMgBr/Et2O</td>
<td>2-Me</td>
<td>60:40</td>
</tr>
<tr>
<td>PhMgBr/THF</td>
<td>2-Me</td>
<td>99:1</td>
</tr>
<tr>
<td>HC≡CMgBr/THF</td>
<td>2-Me</td>
<td>50:50</td>
</tr>
<tr>
<td>(Allyl)MgCl/Et2O</td>
<td>2-Me</td>
<td>77:23</td>
</tr>
<tr>
<td>(Vinyl)MgCl/THF</td>
<td>2-Me</td>
<td>92:8</td>
</tr>
<tr>
<td>MeLi/Et2O</td>
<td>2-Me</td>
<td>70:30</td>
</tr>
<tr>
<td>Bu²Li/Hexane</td>
<td>2-Me</td>
<td>86:14</td>
</tr>
<tr>
<td>PhLi/Et2O</td>
<td>2-Me</td>
<td>95:5</td>
</tr>
<tr>
<td>HC≡CLi/THF-NH3</td>
<td>2-Me</td>
<td>21:79</td>
</tr>
<tr>
<td>EtMgBr/Et2O</td>
<td>2-Me</td>
<td>75:25</td>
</tr>
<tr>
<td>Pr²MgBr</td>
<td>2-Me</td>
<td>87:13</td>
</tr>
<tr>
<td>HC≡CMgBr/THF</td>
<td>2-Me</td>
<td>42:58</td>
</tr>
<tr>
<td>(Allyl)MgX/Et2O</td>
<td>2-Me</td>
<td>82:18</td>
</tr>
<tr>
<td>MeMgI/Et2O</td>
<td>3-Me</td>
<td>60:40</td>
</tr>
<tr>
<td>Pr²MgBr/Et2O</td>
<td>3-Me</td>
<td>61:39</td>
</tr>
<tr>
<td>PhMgBr/Et2O</td>
<td>3-Me</td>
<td>58:42</td>
</tr>
<tr>
<td>(Allyl)MgCl/Et2O</td>
<td>3-Me</td>
<td>65:35</td>
</tr>
<tr>
<td>MeMgBr/Et2O</td>
<td>3-Bu¹</td>
<td>54:46</td>
</tr>
<tr>
<td>Pr²MgBr/Et2O</td>
<td>3-Bu¹</td>
<td>61:39</td>
</tr>
<tr>
<td>HC≡CMgBr/THF</td>
<td>3-Bu¹</td>
<td>65:35</td>
</tr>
<tr>
<td>MeMgBr/Et2O</td>
<td>3,4-cis-Me2</td>
<td>92:8</td>
</tr>
<tr>
<td>PhMgBr/Et2O</td>
<td>3,4-cis-Me2</td>
<td>92:8</td>
</tr>
</tbody>
</table>

1.2.2 ADDITIONS OF CHIRAL REAGENTS TO ACHIRAL SUBSTRATES

1.2.2.1 Introduction

A number of reports involving the addition of chiral nucleophiles to prochiral carbonyl compounds have appeared in the literature. While many of these examples involve the use of stabilized carbanions
derived from chiral sulfoxides (Chapter 2.4, this volume) or chiral ester enolates (Volume 2), several examples rely on asymmetric derivatives of organolithium and Grignard reagents. Among this class, two subsets of reactions are described. The use of organometallic nucleophiles which are chiral by virtue of covalent bonds has had limited use. A more developed field involves the use of achiral nucleophiles in a chiral environment. In these examples, close association between the nucleophile and the additive generates asymmetric reagents without virtue of a formal chemical bond.

1.2.2.2 Covalent Chiral Reagents

The aryllithium reagent (96; Scheme 9) can be used as a chiral organometallic reagent in nucleophilic additions to prochiral carbonyl substrates. Addition to a variety of aldehydes affords, after hydrolysis of the aminal, optically active hydroxy aldehydes (98) in moderate to high enantiomeric excesses (Table 24). The course of the addition is proposed to occur through intramolecular coordination of the aminal auxiliary to the lithium atom, as shown in Figure 18. The rigid tricyclic structure easily differentiates the faces of the reacting aldehydes. Approach of the aldehydes from the less-hindered face affords asymmetric carbinol centers with the (S)-configuration according to this model.

Aromatic oxazolines such as (99; Scheme 10) have also been used as chiral nucleophiles. Additions to carbonyl compounds occur with only modest stereoselectivities. The highest ratio of diastereomers (64:36) occurs when acetophenone is used as substrate. A sterically undemanding transition state probably accounts for these disappointing results.

![Scheme 9](image)

Table 24 Preparation of Chiral Lactols (98)

<table>
<thead>
<tr>
<th>R</th>
<th>Solvent</th>
<th>Temperature (°C)</th>
<th>Yield (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bu"Li</td>
<td>Toluene</td>
<td>-78</td>
<td>73</td>
<td>65</td>
</tr>
<tr>
<td>Bu"Li</td>
<td>Ether</td>
<td>-78</td>
<td>63</td>
<td>78</td>
</tr>
<tr>
<td>Bu"Li</td>
<td>Ether</td>
<td>-100</td>
<td>62</td>
<td>87</td>
</tr>
<tr>
<td>Et</td>
<td>Ether</td>
<td>-100</td>
<td>51</td>
<td>88</td>
</tr>
<tr>
<td>Pr</td>
<td>Ether</td>
<td>-100</td>
<td>52</td>
<td>>90</td>
</tr>
<tr>
<td>n-C₆H₁₇</td>
<td>Ether</td>
<td>-100</td>
<td>58</td>
<td>>90</td>
</tr>
<tr>
<td>Allyl</td>
<td>Toluene</td>
<td>-78</td>
<td>70</td>
<td>20</td>
</tr>
</tbody>
</table>

![Figure 18](image)
1.2.2.3 Noncovalent Chiral Reagents

The stereoselective addition of achiral nucleophiles to prochiral carbonyl compounds in the presence of chiral additives is a conceptually elegant method for the synthesis of enantiomerically pure compounds from achiral starting materials. Advantages of this strategy include the ability to recover the chirality 'inducer', and the elimination of steps involving chemically introducing and removing these 'noncovalent chiral auxiliaries'. This latter point represents a significant advantage of this protocol over the use of standard chiral auxiliaries.

Several systems have been developed which exploit the well-known coordination of organolithium reagents to tertiary amines, and of Grignard reagents to ethers. This strong association generates asymmetric nucleophilic reagents; transfer of an alkyl group from this chiral organometallic results in an enantioselective process. Early work in this area led to only low asymmetric inductions. However, a number of groups have recently improved the enantioselectivity to modest, and even high levels in some cases. This area has been reviewed by Solladié.62

Seebach has carried out an extensive study on the use of chiral additives based on tartaric acid to induce asymmetry in the addition of n-butyllithium to aldehydes.62,63 After systematically investigating a number of ligands, the tetraamine (102) was found to be the most effective, providing alcohols (103; equation 23) with optical purities in the range of 15 to 56% (Table 25).

This additive reliably causes nucleophilic attack to occur from the si face of the aldehyde to generate the (S)-alcohol. The direction of addition is irrespective of the organolithium reagent used. The authors suggest Figure 19 as the conformation responsible for the selectivities observed.

The pyrrolidine derivative (104; equation 24) developed by Mukaiyama and coworkers for the enantioselective addition of organolithiums to aldehydes has been one of the most studied.52,64 Although opti-
Table 25 Enantioselective Additions of R²Li to Aldehydes (R¹CHO) in the Presence of (102)

<table>
<thead>
<tr>
<th>R¹</th>
<th>R²</th>
<th>(103) ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>Buⁿ</td>
<td>46</td>
</tr>
<tr>
<td>Et</td>
<td>Buⁿ</td>
<td>35</td>
</tr>
<tr>
<td>Buⁿ</td>
<td>Me</td>
<td>34</td>
</tr>
<tr>
<td>Ph</td>
<td>Buⁿ</td>
<td>52</td>
</tr>
<tr>
<td>Buⁿ</td>
<td>Ph</td>
<td>15</td>
</tr>
<tr>
<td>o-MePh</td>
<td>Buⁿ</td>
<td>56</td>
</tr>
<tr>
<td>p-MePh</td>
<td>Buⁿ</td>
<td>49</td>
</tr>
<tr>
<td>Et₂CH</td>
<td>Buⁿ</td>
<td>46</td>
</tr>
<tr>
<td>Pr¹</td>
<td>Buⁿ</td>
<td>53</td>
</tr>
<tr>
<td>Bu¹</td>
<td>Buⁿ</td>
<td>18</td>
</tr>
<tr>
<td>C₆H₁₁</td>
<td>Buⁿ</td>
<td>48</td>
</tr>
<tr>
<td>Vinyl</td>
<td>Buⁿ</td>
<td>24</td>
</tr>
</tbody>
</table>

Figure 19

cal purities were generally moderate (11–72% ee; Table 26), reactions using alkynyllithium reagents show very good selectivities (54–92% ee).

Extensive study of (104) indicates that both pyrrolidine moieties, as well as the lithiated hydroxymethyl group are crucial for high asymmetric induction. Figures 20 and 21 represent possible modes of the course of the reaction. A rigid structure containing four fused five-membered rings can be formed by coordination of the two nitrogen atoms and the oxygen atom to the lithium of the organometallic reagent.

H H
Ph Ph
R O
<table>
<thead>
<tr>
<th>R¹Li + R²CHO</th>
<th>OH</th>
</tr>
</thead>
<tbody>
<tr>
<td>R¹</td>
<td>R²</td>
</tr>
</tbody>
</table>

(24)

Table 26 Enantioselective Additions of R¹Li to Aldehydes (R²CHO) in the Presence of (104)

<table>
<thead>
<tr>
<th>R¹</th>
<th>R²</th>
<th>Temperature (°C)</th>
<th>Yield (%)</th>
<th>Alcohol (105) Optical purity (%)</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>Ph</td>
<td>-78</td>
<td>82</td>
<td>21</td>
<td>(R)</td>
</tr>
<tr>
<td>Et</td>
<td>Ph</td>
<td>-123</td>
<td>32</td>
<td>39</td>
<td>(R)</td>
</tr>
<tr>
<td>Prⁱ</td>
<td>Ph</td>
<td>-123</td>
<td>55</td>
<td>39</td>
<td>(S)</td>
</tr>
<tr>
<td>Buⁿ</td>
<td>Ph</td>
<td>-123</td>
<td>60</td>
<td>72</td>
<td>(S)</td>
</tr>
<tr>
<td>Bu¹</td>
<td>Ph</td>
<td>-123</td>
<td>59</td>
<td>16</td>
<td>(S)</td>
</tr>
<tr>
<td>Buⁿ</td>
<td>Pr¹</td>
<td>-123</td>
<td>47</td>
<td>56</td>
<td>(S)</td>
</tr>
<tr>
<td>Ph</td>
<td>Buⁿ</td>
<td>-123</td>
<td>46</td>
<td>11</td>
<td>(R)</td>
</tr>
<tr>
<td>HCC</td>
<td>Ph</td>
<td>-78</td>
<td>76</td>
<td>54</td>
<td>(S)</td>
</tr>
<tr>
<td>TMS— C=C</td>
<td>Ph</td>
<td>-78</td>
<td>99</td>
<td>78</td>
<td>(S)</td>
</tr>
<tr>
<td>TMS— C=C</td>
<td>Ph</td>
<td>-123</td>
<td>87</td>
<td>92</td>
<td>(S)</td>
</tr>
<tr>
<td>Ph₂MeSi— C=C</td>
<td>Ph</td>
<td>-123</td>
<td>88</td>
<td>80</td>
<td>(S)</td>
</tr>
</tbody>
</table>
The size of the alkyl lithium apparently determines the diastereofacial approach of the aldehyde, and thus determines the stereochemistry of the alcohol product.

Conditions for optimal asymmetric induction include low temperature (−123 °C) and the use of a 1:1 mixture of dimethoxymethane and dimethyl ether as solvent. Investigation of a number of different organometallic species indicated that dialkylmagnesium reagents yield the highest optical purities (equation 25). Table 27 lists representative examples of this enantioselective reaction under these optimal conditions. Interestingly, all of the alcohols produced under these conditions have the (R)-configuration.

\[
R^1\text{CHO} + R^2\text{Mg} \rightarrow \text{OH} \quad (105)
\]

Table 27 Synthesis of Optically Active Alcohols (105) Using Dialkylmagnesium Reagents in the Presence of (104)

<table>
<thead>
<tr>
<th>(R^1)</th>
<th>(R^2)</th>
<th>Yield (%)</th>
<th>Optical purity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph</td>
<td>Me</td>
<td>56</td>
<td>34</td>
</tr>
<tr>
<td>Ph</td>
<td>Et</td>
<td>74</td>
<td>92</td>
</tr>
<tr>
<td>Ph</td>
<td>Pr(^a)</td>
<td>90</td>
<td>70</td>
</tr>
<tr>
<td>Ph</td>
<td>Pr(^b)</td>
<td>59</td>
<td>40</td>
</tr>
<tr>
<td>Ph</td>
<td>Bu(^a)</td>
<td>94</td>
<td>88</td>
</tr>
<tr>
<td>Ph</td>
<td>Bu(^b)</td>
<td>81</td>
<td>42</td>
</tr>
<tr>
<td>Ph</td>
<td>Bu(^c)</td>
<td>70</td>
<td>22</td>
</tr>
</tbody>
</table>

This chiral ligand can also be used as an additive in the enantioselective reaction of stabilized anions to carbonyl compounds. Optical purities of these processes are moderate (up to 76% ee), and depend on the conditions of the reaction, as well as on the particular reactants involved.

A number of other chiral ligands are available, but have been studied much less extensively. The chiral diamines (106) and (107) are reported to mediate the reactions between aryl Grignards and aldehydes (Figure 22; equation 26). The alcohols range in optical purity from 40 to 75% ee; selectivities increase with the bulkiness of the aldehyde substituent (see Table 28). The use of an arylxy metal halide to complex the aldehyde moiety enhances the observed enantioselectivities.

Mazaleyrat and Cram have used diamines (108) and (109) as chiral catalysts in the enantioselective addition of alkylolithiums to aldehydes (equation 27; Table 29). Optical yields of 23–95% are obtained. Highest values are associated with the use of larger alkylithium reagents, as well as with the more sterically encumbered catalyst (108).

A number of other chiral catalysts have been reported, among them the proline (111), lithium amides (112) and the tetrahydrofurylamine (113). The optical yields of the products isolated, however, are only moderate at best. The use of optically active 2-methyltetrahydrofuran in Grignard reactions has also been reported; however, minimal induction is observed.

The use of chiral ligands to enantiofacially bias a nucleophilic reaction of achiral starting materials holds great promise for asymmetric syntheses. Further development of ligands which consistently
provide high enantiomeric excess, as well as generate predictable geometries at the chiral center, is necessary.

\[\text{Ar} \]
\[\text{N} \]
\[\text{Ar} \]
\[\text{N} \]
\[\text{Ar} \]
\[\text{N} \]
\[\text{Ar} \]

\(\text{Ar} = \text{Ph} \)
\(\text{Ar} = 3,5\text{-xylyl} \)

Figure 22

\[\text{R}^1 \text{CHO} + \text{ArMgBr} \xrightarrow{\text{(106) or (107)}} \text{R}^1\text{Ar} \text{OH} \]

(26)

Table 28 Enantioselective Additions of Aryl Grignards with Aldehydes Mediated by (106) or (107)

<table>
<thead>
<tr>
<th>(R^1)</th>
<th>(\text{Ar})</th>
<th>(\text{Ligand})</th>
<th>(\text{Temperature (°C)})</th>
<th>(ee(%))</th>
<th>(\text{Configuration})</th>
<th>(\text{Yield (%)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph</td>
<td>(\alpha\text{-Naphthyl}) (106)</td>
<td>-100</td>
<td>71</td>
<td>(S)</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>Ph</td>
<td>(\alpha\text{-Naphthyl}) (106)</td>
<td>-78</td>
<td>64</td>
<td>(S)</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Ph</td>
<td>(\alpha\text{-Naphthyl}) (106)</td>
<td>-45</td>
<td>55</td>
<td>(S)</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>Ph</td>
<td>(\alpha\text{-Naphthyl}) (107)</td>
<td>-100</td>
<td>75</td>
<td>(S)</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>Bu'</td>
<td>Ph</td>
<td>(106)</td>
<td>-100</td>
<td>60</td>
<td>(S)</td>
<td>82</td>
</tr>
<tr>
<td>CsH(_11)</td>
<td>Ph</td>
<td>(107)</td>
<td>-100</td>
<td>55</td>
<td>(S)</td>
<td>68</td>
</tr>
<tr>
<td>Pr'</td>
<td>Ph</td>
<td>(106)</td>
<td>-100</td>
<td>47</td>
<td>(S)</td>
<td>68</td>
</tr>
<tr>
<td>Bu''</td>
<td>Ph</td>
<td>(106)</td>
<td>-100</td>
<td>40</td>
<td>(S)</td>
<td>73</td>
</tr>
</tbody>
</table>

\[\text{RLi} + \text{PhCHO} \xrightarrow{\text{(108) or (109)}} \text{OH} \]

(27)
Table 29 Enantioselective Additions of Organolithium Reagents (RLi) to Benzaldehyde in the Presence of (108) or (109)

<table>
<thead>
<tr>
<th>R</th>
<th>Ligand</th>
<th>Yield (%)</th>
<th>(110) ee (%)</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bu^n</td>
<td>108</td>
<td>73</td>
<td>95</td>
<td>(R)</td>
</tr>
<tr>
<td>Bu^n</td>
<td>108</td>
<td>63</td>
<td>59</td>
<td>(R)</td>
</tr>
<tr>
<td>Et</td>
<td>108</td>
<td>75</td>
<td>66</td>
<td>(R)</td>
</tr>
<tr>
<td>Me</td>
<td>108</td>
<td>35</td>
<td>36</td>
<td>(R)</td>
</tr>
<tr>
<td>Bu^n</td>
<td>109</td>
<td>71</td>
<td>58</td>
<td>(R)</td>
</tr>
<tr>
<td>Et</td>
<td>109</td>
<td>75</td>
<td>53</td>
<td>(R)</td>
</tr>
<tr>
<td>Me</td>
<td>109</td>
<td>73</td>
<td>30</td>
<td>(R)</td>
</tr>
</tbody>
</table>

\[
\text{(111)} \quad \text{(112)} \quad \text{(113)}
\]

\[a: \text{Ar} = \text{phenyl}, R = H\]
\[b: \text{Ar} = 2\text{-pyridyl}, R = H\]
\[c: \text{Ar} = o\text{-methoxyphenyl}, R = H\]
\[d: \text{Ar} = \text{phenyl}, R = \text{OMe}\]

1.2.3 REFERENCES

Carbanions of Alkali and Alkaline Earth Cations

1.3

Organoaluminum Reagents

JAMES R. HAUSKE
Pfizer Central Research, Groton, CT, USA

1.3.1 INTRODUCTION

Organoaluminums have been reviewed extensively. The first thorough treatise was published in 1972 by Mole, describing the preparation of organoaluminums and their reactions with various functional groups. Negishi and Yamamoto have also reviewed the general properties and reactions of organoaluminums. However, Negishi focused on the 1,2-nucleophilic additions of α,β-unsaturated organoaluminums, which specifically included the reactions of alkenylalanes and alkenylalanoates with carbon...
electrophiles, whereas the Yamamoto review was of a more general nature. The preparation of alkenyl- and alkynyl organoaluminums has also been reviewed by Normant and Zweifel. The portion of the Normant review that focused on organoaluminum reagents described the syn specific carbometallation of alkenes by organoaluminums, which provides stereospecific access to alkynylaluminums. In contrast, Zweifel prepared a very detailed review dealing with the preparation and reactions of alkenyl- and alkynyl-aluminums.

The stabilized anions of organoaluminums have also been discussed, inasmuch as there have been extensive reviews of allyl- and crotyl-aluminum reagents. Yamamoto has reviewed the preparation and reactions of both allyl and crotyl-aluminum reagents, while Hoffmann has prepared a more general review of organocrotyl reagents, which includes some discussion of the corresponding aluminum reagents. These reviews also consider in some detail the stereochemical consequences of these processes and include some discussion of the transition state geometries. Not surprisingly, the more recent reviews focus on the stereoselectivity and site selectivity of the organoaluminum-mediated reactions, as well as their potential applications to organic synthesis. Most notable in this regard is the review of Yamamoto, which attempts to outline all of the major reactions of organoaluminum reagents not only according to the nature of the reacting substrate, but also in terms of the regioselectivity and stereoselectivity of each reaction.

Since so much has been written about the properties and the preparation of organoaluminums, this review will detail only selected reactions, with a heavy emphasis on site selectivity and stereoselectivity; moreover, the nature of the reactions that are detailed will be limited to 1,2-nucleophilic additions of nonstabilized anions to unsaturated carbon-heteroatom substrates. Obviously, this will limit the scope of the review and the very interesting regioselective and stereoselective challenges presented by stabilized anions, namely, aldol-like processes, will be omitted. Nevertheless, the scope of this review will intensify the focus on the problems of regioselectivity and stereoselectivity furnished by the 1,2-additions of organoaluminum reagents to either carbonyl systems or masked carbonyl systems. Finally, the application of organoaluminum reagents to the synthesis of natural products will be presented, again in the context of regioselective and stereoselective processes.

13.2 SITE SELECTIVE AND STEREOSELECTIVE ADDITIONS OF NUCLEOPHILES MEDIATED BY ORGANOALUMINUM REAGENTS

13.2.1 Aluminum-based Additives

In 1975 Ashby extensively reviewed the stereochemical results of the 1,2-additions of a variety of organometallic reagents to prochiral carbonyl substrates. The specific section describing the addition of organoaluminum reagents is extensive, but the most interesting aspect of the review with regard to alkyl-aluminum-mediated additions is the observation that the axial selectivity of alkyl addition to cyclic ketones is greatly enhanced by increasing the ratio of aluminum reagent to substrate. Thus, at ratios of 2:1 or greater, the addition results in 90% axial attack, whereas at a 1:1 ratio equatorial attack predominates. The observation was rationalized by invoking a 'compression effect', which derives from the increased steric bulk about the carbonyl as a result of complexation with the organoaluminum.

This seminal observation has recently been utilized by Yamamoto to develop an approach for the stereoselective and site selective addition of organometallics to carbonyl substrates. The approach makes use of the very bulky aluminum reagent (1), which is readily prepared in situ by exposure of trimethylaluminum to a toluene solution of 2,6-di-t-butyl-4-alkylphenols (molar ratio 1:2) at room temperature. Although no solid state structure of the complex of reagent (1) with carbonyl substrates is available, a reasonable representation is formulated in Scheme 2.
Organoaluminum Reagents

(1) \(R = \text{Me (MAD)}; R = \text{Bu' (MAT)} \)

Scheme 2

The equilibrium concentration of the reactive species would greatly favor substituted cyclohexanone (2; Scheme 2), since it has been demonstrated\(^{14-16}\) that the steric interaction of the 3,5-axial substituents with a bulky group chelating the carbonyl moiety dominates the torsional strain that develops between the chelating group and the 2,6-diaxial positions. Thus, preexposure of cyclic ketones to reagent (1) and subsequent addition of another organometallic would be expected to favor the formation of equatorial carbinols resulting from axial addition of the organometallic \((R^1 M)\) in Scheme 2. Table \(^{18,21}\) summarizes the results of 1,2-additions of alkylolithium and alkyl Grignard reagents to substituted cyclohexanones in the presence or absence of reagent (1). Comparison of entries 4 and 5 as well as entries 6 and 7 illustrates the remarkable effect that the organoaluminum additive (1) has on the overall stereoselectivity of the 1,2-additions. For example, exposure of 4-t-butylcyclohexanone to methyllithium in the absence of (1) results in the preferential formation (ca. 4:1) of the corresponding axial alcohol, whereas in the presence of (1; \(R = \text{t-butyl; MAT} \)) the 1,2-addition proceeds with almost exclusive formation (99%) of the equatorial alcohol. Although the results outlined in Table 1 support the mechanism outlined in Scheme 2, an additional experiment was conducted attempting to further define the nature of the reacting species. When the ketone substrate is exposed to a mixture of methyllithium and reagent (1; \(R = \text{Me; MAD} \)) at -78 °C, the resulting ratio of axial/equatorial carbinols is similar (ax:equ = 84:16)\(^{21}\) to that observed for the addition of methyllithium alone. Thus, the possibility of ate complex formation resulting from reaction of methyllithium with the aluminum additive (1) appears unlikely. It appears, therefore, that Scheme 2 adequately accommodates the experimental observations.

Unfortunately, this approach has limitations with regard to the nature of the ketone substrate as well as the nature of the organometallic nucleophile. For example, alkylation and reduction occurred when secondary and tertiary alkyl Grignards were utilized as nucleophiles, while attempted reactions with either vinyl or phenyl nucleophiles occurred slowly with no equatorial selectivity. Furthermore, as the steric environment about the carbonyl carbon becomes more congested, the observed stereoselectivity decreases (Table 1, entries 11-14).

The detrimental effect of the steric environment about the carbonyl moiety on the course of the reaction is very well illustrated for cyclopentanones (Table 2). Comparison of the entries in Table 2 reveals that cyclopentanone substrates are very sensitive not only to the steric bulk of the incoming nucleophile (entries 2-4), but also to the substitution pattern on the carbocycle (entries 1, 2 and 5).
Nonstabilized Carbanion Equivalents

Table 1 Facial Selectivities for the Addition of Organometallics to Substituted Cyclohexanones in the Presence of (1)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Reagent (1)</th>
<th>Organometallic</th>
<th>Yield (%)</th>
<th>Axial alcohol: equatorial alcohol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4-t-Butylcyclohexanone</td>
<td>None</td>
<td>MeLi</td>
<td>84</td>
<td>79:21</td>
</tr>
<tr>
<td>2</td>
<td>4-t-Butylcyclohexanone</td>
<td>MAD</td>
<td>MeLi</td>
<td>92</td>
<td>1:99</td>
</tr>
<tr>
<td>3</td>
<td>4-t-Butylcyclohexanone</td>
<td>MAD</td>
<td>MeLi</td>
<td>95</td>
<td>0:59:95</td>
</tr>
<tr>
<td>4</td>
<td>4-t-Butylcyclohexanone</td>
<td>None</td>
<td>EtMgBr</td>
<td>91</td>
<td>0:100</td>
</tr>
<tr>
<td>5</td>
<td>4-t-Butylcyclohexanone</td>
<td>None</td>
<td>BuMgBr</td>
<td>58</td>
<td>56:44</td>
</tr>
<tr>
<td>6</td>
<td>4-t-Butylcyclohexanone</td>
<td>MAD</td>
<td>BuMgBr</td>
<td>67</td>
<td>0:100</td>
</tr>
<tr>
<td>7</td>
<td>4-t-Butylcyclohexanone</td>
<td>None</td>
<td>AllylMgBr</td>
<td>86</td>
<td>48:52</td>
</tr>
<tr>
<td>8</td>
<td>4-t-Butylcyclohexanone</td>
<td>MAD</td>
<td>AllylMgBr</td>
<td>90</td>
<td>9:91</td>
</tr>
<tr>
<td>9</td>
<td>2-Methylcyclohexanone</td>
<td>None</td>
<td>MeLi</td>
<td>84</td>
<td>72:28</td>
</tr>
<tr>
<td>10</td>
<td>2-Methylcyclohexanone</td>
<td>MAD</td>
<td>MeLi</td>
<td>80</td>
<td>10:90</td>
</tr>
<tr>
<td>11</td>
<td>2-Methylcyclohexanone</td>
<td>MAD</td>
<td>MeLi</td>
<td>80</td>
<td>10:90</td>
</tr>
<tr>
<td>12</td>
<td>2-Methylcyclohexanone</td>
<td>MAD</td>
<td>EtMgBr</td>
<td>90</td>
<td>0:100</td>
</tr>
<tr>
<td>13</td>
<td>2-Methylcyclohexanone</td>
<td>MAD</td>
<td>BuMgBr</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>14</td>
<td>3-Methylcyclohexanone</td>
<td>None</td>
<td>MeLi</td>
<td>80</td>
<td>83:17</td>
</tr>
<tr>
<td>15</td>
<td>3-Methylcyclohexanone</td>
<td>MAD</td>
<td>MeLi</td>
<td>69</td>
<td>9:91</td>
</tr>
<tr>
<td>16</td>
<td>3-Methylcyclohexanone</td>
<td>MAD</td>
<td>MeLi</td>
<td>95</td>
<td>3:97</td>
</tr>
<tr>
<td>17</td>
<td>3-Methylcyclohexanone</td>
<td>MAD</td>
<td>BuMgBr</td>
<td>86</td>
<td>79:21</td>
</tr>
<tr>
<td>18</td>
<td>3-Methylcyclohexanone</td>
<td>MAD</td>
<td>BuMgBr</td>
<td>75</td>
<td>1:99</td>
</tr>
<tr>
<td>19</td>
<td>3-Methylcyclohexanone</td>
<td>MAD</td>
<td>AllylMgBr</td>
<td>95</td>
<td>56:44</td>
</tr>
<tr>
<td>20</td>
<td>3-Methylcyclohexanone</td>
<td>MAD</td>
<td>AllylMgBr</td>
<td>72</td>
<td>24:76</td>
</tr>
</tbody>
</table>

Table 2 Facial Selectivities for the Addition of Organometallics to Substituted Cyclopentanones in the Presence of (1)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Reagent (1)</th>
<th>Organometallic</th>
<th>Yield (%)</th>
<th>Axial alcohol: equatorial alcohol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2-Butylcyclopentanone</td>
<td>None</td>
<td>MeLi</td>
<td>82</td>
<td>75:25</td>
</tr>
<tr>
<td>2</td>
<td>2-Butylcyclopentanone</td>
<td>MAD</td>
<td>MeLi</td>
<td>54</td>
<td>1:99</td>
</tr>
<tr>
<td>3</td>
<td>3-Methylcyclopentanone</td>
<td>None</td>
<td>PrMgBr</td>
<td>79</td>
<td>55:45</td>
</tr>
<tr>
<td>4</td>
<td>3-Methylcyclopentanone</td>
<td>MAD</td>
<td>PrMgBr</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>2-Phenylcyclopentanone</td>
<td>MAD</td>
<td>MeMgBr</td>
<td>0</td>
<td>—</td>
</tr>
</tbody>
</table>

1.3.2.1 Cram versus anti-Cram selectivities

The addition of organometallics to aldehyde substrates incapable of populating intramolecularly chelated conformations preferentially results in a Cram selective process. This result is most easily rationalized by considering an aldehyde conformation that maintains the incoming organometallic reagent and the largest substituent of the aldehyde in an antiperiplanar disposition, as represented by (5).

![Cram product (5)](image)

Entries 1–4 in Table 3 illustrate the tendency for a Cram selective process in additions to aldehydes of type (4; equation 1). In contrast, when (4) is treated with the aluminum additive (1) prior to exposure to organometallics, the nucleophilic addition results in an anti-Cram product. The resulting facial selectivity may be more easily rationalized by considering transition state structure (6), which defines the anti-Cram face of the aldehyde to be less hindered by virtue of precoordination of the aluminum reagent (1) to the less sterically demanding Cram face. For example, comparison of entries 2, 6 and 9 to the corresponding entries 5, 8 and 10 in Table 3 illustrates the dramatic effect that the aluminum additive (1) has on the facial selectivity of the reaction. This approach to anti-Cram selectivity, however, does suffer
some limitations. For example, the organometallic reagents in Table 3 are all Grignard reagents, since organolithium based nucleophiles do not work well.21 Furthermore, additions of sp2-hybridized nucleophiles (e.g. vinyl, enolate and phenyl) resulted in no stereoselectivity; also, although the sp-hybridized case listed in Table 3 (entry 12) proceeds in good yield, the anti-Cram facial selectivity is unimpressive (41:59; Cram:anti-Cram). Finally, the overall anti-Cram selectivity is adversely affected by increasing steric bulk of the incoming nucleophile (see entries 14, 16, 19, 24 and 28 in Table 3). Presumably, the basis of this result may be rationalized by the enhanced steric crowding of the transition state as represented in (6).

\[
\begin{align*}
\text{RCHO} & \xrightarrow{i, \text{additive}} \text{R}^1\text{CHO} + \text{R}^1\text{OH} \\
& \xrightarrow{\text{ii, R}^1\text{MgX}} \text{Cram} + \text{anti-Cram}
\end{align*}
\]

\[\text{(6) Anti-Cram product}\]

Table 3 Cram versus Anti-Cram Selectivity for the Addition of Organometallics to Aldehyde (4) in the Presence of (1; equation 1).

<table>
<thead>
<tr>
<th>Entry</th>
<th>R in (4)</th>
<th>Organometallic</th>
<th>Additive</th>
<th>Yield (%)</th>
<th>Cram:anti-Cram</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph</td>
<td>MeLi</td>
<td>None</td>
<td>—</td>
<td>-2:1</td>
</tr>
<tr>
<td>2</td>
<td>Ph</td>
<td>MeMgl</td>
<td>None</td>
<td>64</td>
<td>72:28</td>
</tr>
<tr>
<td>3</td>
<td>Ph</td>
<td>MeT(OrPh)3</td>
<td>None</td>
<td>88:12</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Ph</td>
<td>MeT(OrPh)3</td>
<td>None</td>
<td>93:7</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ph</td>
<td>MeMgl</td>
<td>MAT</td>
<td>96</td>
<td>7:93</td>
</tr>
<tr>
<td>6</td>
<td>Ph</td>
<td>EtMgBr</td>
<td>None</td>
<td>78</td>
<td>84:16</td>
</tr>
<tr>
<td>7</td>
<td>Ph</td>
<td>EtMgBr</td>
<td>MAD</td>
<td>90</td>
<td>25:75</td>
</tr>
<tr>
<td>8</td>
<td>Ph</td>
<td>EtMgBr</td>
<td>MAT</td>
<td>98</td>
<td>20:80</td>
</tr>
<tr>
<td>9</td>
<td>Ph</td>
<td>BuMgBr</td>
<td>None</td>
<td>89</td>
<td>87:13</td>
</tr>
<tr>
<td>10</td>
<td>Ph</td>
<td>BuMgBr</td>
<td>MAT</td>
<td>96</td>
<td>33:67</td>
</tr>
<tr>
<td>11</td>
<td>Ph</td>
<td>BuC=CMgBr</td>
<td>None</td>
<td>79</td>
<td>78:22</td>
</tr>
<tr>
<td>12</td>
<td>Ph</td>
<td>BuC=CMgBr</td>
<td>MAT</td>
<td>96</td>
<td>41:59</td>
</tr>
<tr>
<td>13</td>
<td>Ph</td>
<td>MeMgl</td>
<td>None</td>
<td>64</td>
<td>79:21</td>
</tr>
<tr>
<td>14</td>
<td>Ph</td>
<td>MeMgl</td>
<td>MAT</td>
<td>84</td>
<td>2:98</td>
</tr>
<tr>
<td>15</td>
<td>1-Cyclohexenyl</td>
<td>MeMgl</td>
<td>None</td>
<td>87</td>
<td>49:6</td>
</tr>
<tr>
<td>16</td>
<td>1-Cyclohexenyl</td>
<td>EtMgBr</td>
<td>None</td>
<td>94:6</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1-Cyclohexenyl</td>
<td>EtMgBr</td>
<td>MAD</td>
<td>76</td>
<td>34:66</td>
</tr>
<tr>
<td>18</td>
<td>1-Cyclohexenyl</td>
<td>EtMgBr</td>
<td>MAT</td>
<td>98</td>
<td>17:83</td>
</tr>
<tr>
<td>19</td>
<td>1-Cyclohexenyl</td>
<td>BuMgBr</td>
<td>None</td>
<td>88</td>
<td>94:6</td>
</tr>
<tr>
<td>20</td>
<td>1-Cyclohexenyl</td>
<td>BuMgBr</td>
<td>MAT</td>
<td>97</td>
<td>26:74</td>
</tr>
<tr>
<td>21</td>
<td>Cyclohexyl</td>
<td>MeMgl</td>
<td>None</td>
<td>81</td>
<td>82:18</td>
</tr>
<tr>
<td>22</td>
<td>Cyclohexyl</td>
<td>MeMgl</td>
<td>MAD</td>
<td>88</td>
<td>22:78</td>
</tr>
<tr>
<td>23</td>
<td>Cyclohexyl</td>
<td>MeMgl</td>
<td>MAT</td>
<td>75</td>
<td>23:77</td>
</tr>
<tr>
<td>24</td>
<td>Cyclohexyl</td>
<td>BuMgBr</td>
<td>None</td>
<td>81</td>
<td>89:11</td>
</tr>
<tr>
<td>25</td>
<td>Cyclohexyl</td>
<td>BuMgBr</td>
<td>MAT</td>
<td>89</td>
<td>77:23</td>
</tr>
<tr>
<td>26</td>
<td>PhCH\textsubscript{2}</td>
<td>MeMgl</td>
<td>None</td>
<td>32</td>
<td>53:47</td>
</tr>
<tr>
<td>27</td>
<td>PhCH\textsubscript{2}</td>
<td>BuMgBr</td>
<td>None</td>
<td>68</td>
<td>50:50</td>
</tr>
<tr>
<td>28</td>
<td>PhCH\textsubscript{2}</td>
<td>BuMgBr</td>
<td>MAT</td>
<td>94</td>
<td>39:61</td>
</tr>
</tbody>
</table>

1.3.2.1.2 Site selectivity

(1) 1,2 versus 1,4 site selectivity

Equation (2) outlines the effect that organoaluminum additives have on the course of nucleophilic additions to α,β-unsaturated carbonyl substrates. Although organolithiums normally undergo 1,2-addition...
Nonstabilized Carbanion Equivalents

processes to α,β-unsaturated substrates (entry 8 in Table 4), exposure of cyclohexenone substrates to the organoaluminum additive (1) prior to exposure to the nucleophile results in a total 1,4-site selective process (compare, for example, entries 1 and 8 in Table 4).

\[\text{R}_1 \text{R}^3 \text{R}^2 \text{OH} \xrightarrow{\text{RLi}} \xrightarrow{1,2\text{-addition}} \text{R}_1 \text{R}^3 \text{R}^2 \text{O} \xrightarrow{\text{i, reagent (1)}} \text{R}_1 \text{R}^3 \text{R}^2 \text{OH} \]

Exposure of cyclohexenone substrates to the organoaluminum additive (1) prior to exposure to the nucleophile results in a total 1,4-site selective process (compare, for example, entries 1 and 8 in Table 4).

\[\text{R}_1 > \text{R}_3 \]

\[\text{RLi} \]

\[\text{Zaddition} \approx 2 \]

\[\text{R}_2 \text{R}_2 \text{OH} \]

\[\text{Yield} (\%) \]

\[\text{1,4-Adduct (cis/trans)} \]

\[\text{1,2-Adduct} \]

Table 4 1,2- versus 1,4-Regioselectivity for the Addition of Organometallics to Cyclic Enones in the Presence of (1; equation 2)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Organometallic</th>
<th>Additive</th>
<th>1,4-Adduct (cis/trans)</th>
<th>1,2-Adduct</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>MeLi</td>
<td>MAD</td>
<td>68(29:71)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>Bu\text{\textsubscript{3}}Li</td>
<td>MAD</td>
<td>59(17:83)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>a</td>
<td>Bu\text{\textsubscript{3}}Li</td>
<td>MAD</td>
<td>73(18:82)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>PhLi</td>
<td>MAD</td>
<td>71(33:67)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>a</td>
<td>CH\text{\textsubscript{2}}\text{=C(\text{OBut})}\text{OLi}</td>
<td>MAD</td>
<td>87(10:90)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>a</td>
<td>Et\text{MgBr}</td>
<td>MAT</td>
<td>35(15:85)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>a</td>
<td>Bu\text{=C(\text{Cl})Li}</td>
<td>MAD</td>
<td>Recovered SM</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>a</td>
<td>MeLi</td>
<td>None</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>b</td>
<td>MeLi</td>
<td>MAD</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>b</td>
<td>PhLi</td>
<td>MAD</td>
<td>Recovered SM</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>b</td>
<td>Me\text{\textsubscript{3}SiCI}Li</td>
<td>MAD</td>
<td>Recovered SM</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>c</td>
<td>MeLi</td>
<td>MAD</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>d</td>
<td>MeLi</td>
<td>MAD</td>
<td>26</td>
<td>11</td>
</tr>
<tr>
<td>14</td>
<td>e</td>
<td>MeLi</td>
<td>MAD</td>
<td>65(>95% trans)</td>
<td>16</td>
</tr>
<tr>
<td>15</td>
<td>e</td>
<td>Me\text{Li}</td>
<td>MAT</td>
<td>630(>95% trans)</td>
<td>31</td>
</tr>
<tr>
<td>16</td>
<td>e</td>
<td>Bu\text{Li}</td>
<td>MAD</td>
<td>65(>95% trans)</td>
<td>12</td>
</tr>
<tr>
<td>17</td>
<td>e</td>
<td>CH\text{2-C(Me)\text{Li}}</td>
<td>MAD</td>
<td>75(>95% trans)</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>f</td>
<td>MeLi</td>
<td>MAD</td>
<td>Recovered SM</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>g</td>
<td>MeLi</td>
<td>MAD</td>
<td>Recovered SM</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>h</td>
<td>MeLi</td>
<td>MAD</td>
<td>74(37:63)</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>h</td>
<td>Bu\text{Li}</td>
<td>MAD</td>
<td>83(24:76)</td>
<td></td>
</tr>
</tbody>
</table>

The conjugate addition processes proceed well only when the organometallic is an organolithium reagent. This is in marked contrast to the 1,2-nucleophilic additions to aldehydes detailed in the previous section, which proceeded well when the organometallic was a Grignard reagent. Furthermore, the reaction seems very sensitive to the substitution pattern of the carbonyl substrate. For example, substitution of alkyl substituents at the C-3, C-4 or C-5 position of the cyclohexenone all markedly affect the specificity (see entries 12–19, Table 4). Interestingly, the addition always proceeds with a preference for the trans stereoisomer for both five- and six-membered enone substrates, which complements the cis preference of cuprate additions (see entries 1–6 and 14–17 in Table 4 for six-membered cases and entries 20 and 21 for five-membered cases). Table 5 summarizes the site selective additions of nucleophiles to acyclic α,β-unsaturated carbonyl substrates. Entries 1–4 in Table 5 demonstrate that there is a preference for the 1,2-addition products even in the presence of organoaluminum additive (1).
Table 5 1,2- versus 1,4-Regioselectivity for the Addition of Organometallics to Acyclic Enones in the Presence of (1; equation 2)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Organometallic</th>
<th>Additive</th>
<th>1,4-Adduct</th>
<th>1,2-Adduct</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(E)-PhCH=CHC(O)Me</td>
<td>MeLi</td>
<td>MAD</td>
<td>-</td>
<td>-</td>
<td>78</td>
</tr>
<tr>
<td>2</td>
<td>PhC==CC(O)Me</td>
<td>MeLi</td>
<td>MAD</td>
<td>-</td>
<td>-</td>
<td>85</td>
</tr>
<tr>
<td>3</td>
<td>(E)-PhCH=CHC(O)Ph</td>
<td>MeLi</td>
<td>MAD</td>
<td>-</td>
<td>-</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>(E)-PhCH=CHC(O)Ph</td>
<td>MeLi</td>
<td>MAT</td>
<td>-</td>
<td>-</td>
<td>28</td>
</tr>
<tr>
<td>5</td>
<td>(E)-PhCH=CHC(O)Ph</td>
<td>BuLi</td>
<td>MAD</td>
<td>-</td>
<td>-</td>
<td>77</td>
</tr>
<tr>
<td>6</td>
<td>(E)-PhCH=CHC(O)Bu'</td>
<td>MeLi</td>
<td>MAD</td>
<td>-</td>
<td>-</td>
<td>Recovered SM</td>
</tr>
<tr>
<td>7</td>
<td>(E)-MeC=CHCHCHO</td>
<td>(Me3Si)3Al</td>
<td>None</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>(Me)2C==CHC(O)Me</td>
<td>(Me3Si)3Al</td>
<td>None</td>
<td>-</td>
<td>-</td>
<td>85</td>
</tr>
<tr>
<td>9</td>
<td>(Me)2C==CHC(O)Me</td>
<td>(Me3Si)3Al</td>
<td>None</td>
<td>-</td>
<td>-</td>
<td>85</td>
</tr>
<tr>
<td>10</td>
<td>(Z)-PhCH=CHCHO</td>
<td>(Me3Si)3Al</td>
<td>None</td>
<td>-</td>
<td>-</td>
<td>83</td>
</tr>
<tr>
<td>11</td>
<td>(E)-MeC[Si(Me3)]==CHCHO</td>
<td>(Me3Si)3Al</td>
<td>None</td>
<td>72 (>95% trans)</td>
<td>-</td>
<td>91</td>
</tr>
<tr>
<td>12</td>
<td>HC==CC(O)Me</td>
<td>(Me3Si)3Al</td>
<td>None</td>
<td>72 (>95% trans)</td>
<td>-</td>
<td>91</td>
</tr>
</tbody>
</table>

*Conducted at -78 °C. †Conducted at room temperature.

The 1,4-addition product is only preferred when the sterically bulk of the nucleophile is increased and the environment about the carbonyl moiety is also sterically encumbered (entry 5 in Table 5). Equation (3) outlines an approach to site selectivity that is not dependent upon additive (1), but does require the addition of an organoaluminum.

\[
\begin{align*}
\text{R} & \text{SiMe}_3 \\
\text{R'} & \text{R''} \\
\text{R'CHO} & \overset{i,\text{Al(SiMe)}_3, -78 ^\circ C}{\underset{i, \text{MeOH}, 1,4-\text{addition}}{\text{R'CHO}}} \\
\text{R'} & \text{R''} \\
\text{R'} & \text{R''} \\
\overset{i, \text{MeOH}, 1,2-\text{addition}}{\text{R'CHO}} \\
\text{R'} & \text{R''} & \text{SiMe}_3
\end{align*}
\]

For example, when acyclic enones are exposed to tris(trimethylsilyl)aluminum (7) at room temperature, only the 1,2-addition product is observed, whereas the addition proceeds via a 1,4-addition process when the reaction is conducted at -78 °C (compare entries 8 and 9 in Table 5). In contrast, α,β-unsaturated aldehyde substrates only undergo 1,2-additions with reagent (7).

(ii) Site selective 1,2-additions—discrimination between ketones and aldehydes

Not surprisingly, there are many examples of site selective processes showing a preference for 1,2-addition to aldehydes in the presence of ketones; however, in contrast, the complementary process is not readily accomplished. Thus, any site selective approach showing a preference for a ketone carbonyl must overcome the inherent reactivity difference favoring aldehydes. Equation (4) outlines an approach to site selective 1,2-nucleophilic additions that takes advantage of the more reactive nature of the aldehyde moiety.

\[
\begin{align*}
\text{R'} & \text{R''} \\
\text{OH} & \overset{i, \text{reagent (1)}}{\text{R'CHO}} + \overset{i, \text{Me}_2\text{AlNMePh (8)}}{\text{R''COR}^3} \\
\text{OH} & \overset{\text{ii, R'}^4\text{M}}{\text{R'CHO}} + \overset{\text{ii, R''^4M}}{\text{R''COR}^3}
\end{align*}
\]

For example, when a 1:1 mixture of an aldehyde and a ketone is exposed to either an equivalent of an organolithium reagent or an equivalent of a Grignard reagent, the corresponding secondary carbinol (9), resulting from preferential addition to the aldehyde component, is usually formed in excess (entries 2, 5, 7, 9 and 12 in Table 5). However, this preference is greatly magnified when the aluminum reagent (1) is exposed to the carbonyl substrates prior to the addition of the organometallic (compare entries 1 and 2, 4 and 5, as well as entries 8 and 9 in Table 6).

In contrast, when the experiment is conducted with preexposure of the substrates to aluminum additive (8), the corresponding tertiary carbinol (10) resulting from preferential addition to the ketone component is produced in excess (compare entries 8 and 10, 11 and 14 in Table 6). Comparison of entries 16 and 17 demonstrates the most dramatic example of total control of this type of site selective process, since in the
Table 6 Chemospecificity for the Addition of Organometallics to Aldehydes and Ketones in the Presence of (1; equation 4)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrates</th>
<th>Additive</th>
<th>Organometallic</th>
<th>Ratio (9):(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C₆H₁₃CHO</td>
<td>None</td>
<td>EtMgBr</td>
<td>36:1</td>
</tr>
<tr>
<td>2</td>
<td>MeLi</td>
<td>None</td>
<td>EtMgBr</td>
<td>8:1</td>
</tr>
<tr>
<td>3</td>
<td>MeLi</td>
<td>(1)</td>
<td>PhMgBr</td>
<td>14:1</td>
</tr>
<tr>
<td>4</td>
<td>MeLi</td>
<td>(1)</td>
<td>PhLi</td>
<td>21:1</td>
</tr>
<tr>
<td>5</td>
<td>None</td>
<td>(1)</td>
<td>PhLi</td>
<td>1:1</td>
</tr>
<tr>
<td>6</td>
<td>O</td>
<td>(1)</td>
<td>MeLi</td>
<td>6:1</td>
</tr>
<tr>
<td>7</td>
<td>H</td>
<td>(1)</td>
<td>MeLi</td>
<td>4:1</td>
</tr>
<tr>
<td>8</td>
<td>O</td>
<td>(1)</td>
<td>MeMgI</td>
<td>100:0</td>
</tr>
<tr>
<td>9</td>
<td>H</td>
<td>None</td>
<td>MeMgI</td>
<td>22:1</td>
</tr>
<tr>
<td>10</td>
<td>None</td>
<td>(8)</td>
<td>MeLi</td>
<td>1:7</td>
</tr>
<tr>
<td>11</td>
<td>O</td>
<td>None</td>
<td>MeMgI</td>
<td>9:1</td>
</tr>
<tr>
<td>12</td>
<td>H</td>
<td>None</td>
<td>MeMgI</td>
<td>5:1</td>
</tr>
<tr>
<td>13</td>
<td>O</td>
<td>(1)</td>
<td>Bu₂MgCl</td>
<td>100:1</td>
</tr>
<tr>
<td>14</td>
<td>H</td>
<td>(8)</td>
<td>MeLi</td>
<td>1:6</td>
</tr>
<tr>
<td>15</td>
<td>None</td>
<td>(8)</td>
<td>PhLi</td>
<td>1:14</td>
</tr>
<tr>
<td>16</td>
<td>O</td>
<td>(1)</td>
<td>MeLi</td>
<td>100:0</td>
</tr>
<tr>
<td>17</td>
<td>O</td>
<td>(8)</td>
<td>MeLi</td>
<td>1:62</td>
</tr>
</tbody>
</table>

presence of additive (1) site selectivity is total for the aldehyde (100:0), whereas additive (8) gives essentially complete reversal (1:62). The example is most interesting in that the substrate maintains both reactive centers in the same molecule and a competitive experiment of this type (an intramolecular example) is a closer analogy to the problems presented by more complicated, polyfunctional molecules.

Presumably, the selectivity of each process is a result of the generally high oxygenophilicity of aluminum reagents. Thus, aldehydes, which are inherently more reactive than ketones, are being activated by both aluminum additives. In the case of additive (1) this activation leads to an enhancement of the inherent reactivity difference, whereas in the case of additive (8) this reactivity difference results in the formation of a blocked, aminal-like intermediate of the aldehyde moiety (11, equation 5) preventing addition of nucleophiles to the aldehyde. Thus, the preferential addition of nucleophiles to the ketone is observed.

\[
\begin{align*}
\text{R} & + \text{R}^1 & \xrightarrow{(8)} & \text{H} & \xrightarrow{(11)} \\
\text{O} & \xrightarrow{(10)} & \text{NR}_2 & \text{OAlL}_2 & \text{O} & \xrightarrow{(10)} \\
\end{align*}
\]

1.3.2.2 Preparation of 1,3-Hydroxy Esters and 1,3-Hydroxy Sulfoxides via Organoaluminum Reagents

Although the preparation of 1,3-hydroxycarbonyl species via stabilized anions is beyond the scope of this review, the addition of substituted organoaluminum of type (12) to aldehyde or ketone substrates represents an interesting alternative to the typical aldol process.

\[
\begin{align*}
\text{CO}_2\text{Me} & \\
\text{AlBu}^1_2 & (12)
\end{align*}
\]
Organometallic Reagents

Reagent (12) is readily prepared by the addition of disobutylaluminum hydride in the presence of hexamethylphosphoric triamide to α,β-acetylenic esters.28 When the organoaluminum (12) is exposed to either aldehydes or ketones, the resulting hydroxy ester (14) is formed in good yields (equation 6).

\[
\text{CO}_2\text{Me} + \text{AlBu}_2^+ + \text{R}^1\text{R} \rightarrow \text{R}_1\text{OH} + \text{O}_2\text{Me}
\]

(6)

Table 7 lists the aldehyde (entries 1–5) and ketone (entries 6 and 7) substrates that were converted to the corresponding hydroxy ester (14). The yields are uniformly good and there appears to be fair generality with regard to the aldehydic substrates; unfortunately, the number of ketone substrates is really not enough to assess the generality of this reaction. The reason for the paucity of ketone substrates may stem from the need to activate the ketone carbonyl with a Lewis acid (BF₃–Et₂O) in order for the reaction to proceed. The site selectivity of organoaluminum reagent (12) was investigated briefly. For example, the addition of (12) to (E)-2-hexenal (entry 5, Table 7), results in only the 1,2-addition product. In contrast, the addition of (12) to cyclohexenone results in no reaction. Since successful additions of (12) to the ketone substrates require Lewis acid activation, it would be interesting to expose ketones to chiral Lewis acid complexes prior to their exposure to organoaluminum (12). Unfortunately, the stereoselectivity of this reaction was not investigated.

Table 7 Preparation of Hydroxy Esters from the Addition of Organometallic (12) to (13; equation 6)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate (13)</th>
<th>Yield (%)</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H Pr⁺</td>
<td>87</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>H Pr⁺</td>
<td>87</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>H Ph</td>
<td>83</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>H Furanyl</td>
<td>80</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>H (E)-Pr⁺CH⁻CH</td>
<td>90</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>Pr⁺</td>
<td>68</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>—(CH₂)₅ —</td>
<td>72</td>
<td>—</td>
</tr>
</tbody>
</table>

A substrate related to the 1,3-hydroxy ester (14), which does permit a stereoselective investigation of the organoaluminum addition, is represented by chiral keto sulfoxide (15) in equation (7). Upon exposure to organometallics, the chiral keto sulfoxides afforded the corresponding diastereomeric β-hydroxy sulfoxides (16) and (17). Inspection of Table 8 reveals that the aluminum reagent provides diastereomer (17) in excess (48–92%) and in moderate yield (48–66%), whereas the titanium-based reagent provides diastereomer (16) in excess (60–94%) in higher overall yields (60–96%). The keto substituent (R) does have an effect on the overall facial selectivity of the reaction, since oxygen substituents in the ortho position of the aromatic ring do improve the relative selectivities for both aluminum- and titanium-mediated processes. The opposite selectivities generated by aluminum and titanium were rationalized on the basis of the transition state structures (18) and (19).

The titanium-chelated structure (18) forces the nucleophilic addition to occur from the less hindered si-face (i.e. syn to the lone pair of electrons); in contrast, the aluminum-based process proceeds via nonchelated transition state (19). In this case, the less hindered re-face is syn to the electron pair. Unfortunately, a test of this transition state hypothesis would require an organoaluminum addition under chelation con-
Table 8 Comparison of Organoauminum versus Organotitaniuens on the Facial Selectivity of Additions to (15; equation 7)

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>MeM</th>
<th>Solvent</th>
<th>Yield (%)</th>
<th>Diastereomer ratio (16):(17)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph</td>
<td>MeTiCl₃</td>
<td>Et₂O</td>
<td>79</td>
<td>82:18</td>
</tr>
<tr>
<td>2</td>
<td>Ph</td>
<td>Me₂Al</td>
<td>Toluene</td>
<td>66</td>
<td>26:74</td>
</tr>
<tr>
<td>3</td>
<td>p-MeC₆H₄</td>
<td>MeTiCl₃</td>
<td>Et₂O</td>
<td>60</td>
<td>80:20</td>
</tr>
<tr>
<td>4</td>
<td>p-MeC₆H₄</td>
<td>Me₂Al</td>
<td>Toluene</td>
<td>50</td>
<td>16:84</td>
</tr>
<tr>
<td>5</td>
<td>a</td>
<td>Me₂Al</td>
<td>Toluene</td>
<td>71</td>
<td>13:87</td>
</tr>
<tr>
<td>6</td>
<td>a</td>
<td>MeTiCl₃</td>
<td>Et₂O</td>
<td>96</td>
<td>97:3</td>
</tr>
<tr>
<td>7</td>
<td>b</td>
<td>MeTiCl₃</td>
<td>Et₂O</td>
<td>77</td>
<td>94:6</td>
</tr>
<tr>
<td>8</td>
<td>b</td>
<td>Me₂Al</td>
<td>Toluene</td>
<td>48</td>
<td>4:96</td>
</tr>
</tbody>
</table>

Control conditions. When the addition of triethylaluminum was performed in the presence of a zinc salt, which is known to provide a chelation control element, there was no reaction.

1.3.2.3 Facialy Selective 1,2-Additions of Organoauminum–Ate Complexes to Keto Ester Substrates

The 1,2-addition of chiral aluminum ate complexes to various aldehydes and ketones has been reviewed and, generally, this protocol produces very disappointing results with respect to the overall stereospecificity of the process as compared to other organometallics; however, the recent extension of this methodology to the preparation of chiral α-hydroxy esters and acids, via 1,2-additions to the prochiral ketone moieties of α-keto esters, has renewed interest in this area. The transformation outlined in equation (8) proceeds in excellent overall yield with exclusive selectivity for the keto functionality; unfortunately, the stereospecificity is not as impressive.

\[
\text{MAI(R')₃O} + \text{R'COCO}_2\text{R}^3 \rightarrow \text{R'COCO}_2\text{R}^3 + \text{OH}
\]

(8)

Table 9 lists the results of the additions of both chiral and achiral alkoxytrialkylaluminates (20) to chiral α-keto esters (21). Some trends are readily apparent: (i) sodium is a superior cation as compared to lithium and potassium (entries 11–14); (ii) the configuration of the chiral moiety of the ester substrate dictates the facial preference (entries 1–7) and the preference follows the dictates of Prelog’s rule; (iii) there is an observable solvent effect with a preference for hexane/ether mixtures; (iv) either (+)- or (−)-(2S,3R)-4-dimethylamino-1,2-diphenyl-3-methyl-2-butanol (Darvon alcohol or Chiralal) is the best of the
Table 9 Results of the Addition of Chiral and Achiral Alkoxy Trialkylaluminates to Keto Esters (equation 8)

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>R^1</th>
<th>R^2</th>
<th>R^3</th>
<th>M</th>
<th>Solvent</th>
<th>ee (%)</th>
<th>Config.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(--)-N-Methylephedrine</td>
<td>Et</td>
<td>Me</td>
<td>(--)-Menthol</td>
<td>Li</td>
<td>Ether/hexane (1:1)</td>
<td>62</td>
<td>(S)</td>
</tr>
<tr>
<td>2</td>
<td>(+)-N-Methylephedrine</td>
<td>Et</td>
<td>Me</td>
<td>(--)-Menthol</td>
<td>Li</td>
<td>Hexane</td>
<td>15</td>
<td>(S)</td>
</tr>
<tr>
<td>3</td>
<td>(+)-N-Methylephedrine</td>
<td>Et</td>
<td>Me</td>
<td>(+)-Menthol</td>
<td>Li</td>
<td>Ether/hexane (1:1)</td>
<td>58</td>
<td>(R)</td>
</tr>
<tr>
<td>4</td>
<td>(--)-Menthol</td>
<td>Et</td>
<td>Me</td>
<td>(--)-Menthol</td>
<td>Li</td>
<td>Ether/hexane (1:1)</td>
<td>48</td>
<td>(S)</td>
</tr>
<tr>
<td>5</td>
<td>(+)-Menthol</td>
<td>Et</td>
<td>Me</td>
<td>(--)-Menthol</td>
<td>Li</td>
<td>Ether/hexane (1:1)</td>
<td>54</td>
<td>(S)</td>
</tr>
<tr>
<td>6</td>
<td>(--)-Menthol</td>
<td>Et</td>
<td>Me</td>
<td>(+)-Menthol</td>
<td>Li</td>
<td>Ether/hexane (1:1)</td>
<td>50</td>
<td>(R)</td>
</tr>
<tr>
<td>7</td>
<td>(+)-Menthol</td>
<td>Et</td>
<td>Me</td>
<td>(+)-Menthol</td>
<td>Li</td>
<td>Ether/hexane (1:1)</td>
<td>46</td>
<td>(R)</td>
</tr>
<tr>
<td>8</td>
<td>(--)-N-Methylephedrine</td>
<td>Et</td>
<td>Me</td>
<td>(--)-Menthol</td>
<td>Li</td>
<td>Hexane</td>
<td>49</td>
<td>(R)</td>
</tr>
<tr>
<td>9</td>
<td>(+)-N-Methylephedrine</td>
<td>Et</td>
<td>Ph</td>
<td>(+)-Menthol</td>
<td>Li</td>
<td>Hexane</td>
<td>0.2</td>
<td>(R)</td>
</tr>
<tr>
<td>10</td>
<td>(+)-N-Methylephedrine</td>
<td>Me</td>
<td>Ph</td>
<td>(+)-Menthol</td>
<td>Li</td>
<td>Hexane</td>
<td>38</td>
<td>(R)</td>
</tr>
<tr>
<td>11</td>
<td>(--)-N-Methylephedrine</td>
<td>Et</td>
<td>Ph</td>
<td>(--)-Menthol</td>
<td>Na</td>
<td>Toluene/hexane</td>
<td>52.5</td>
<td>(R)</td>
</tr>
<tr>
<td>12</td>
<td>(--)-N-Methylephedrine</td>
<td>Et</td>
<td>Ph</td>
<td>(--)-Menthol</td>
<td>K</td>
<td>Benzene/hexane</td>
<td>43</td>
<td>(R)</td>
</tr>
<tr>
<td>13</td>
<td>(+)-N-Methylephedrine</td>
<td>Et</td>
<td>Ph</td>
<td>(--)-Menthol</td>
<td>Na</td>
<td>Benzene/hexane</td>
<td>53</td>
<td>(R)</td>
</tr>
<tr>
<td>14</td>
<td>(+)-N-Methylephedrine</td>
<td>Et</td>
<td>Ph</td>
<td>(+)-Menthol</td>
<td>Li</td>
<td>Benzene/hexane</td>
<td>23</td>
<td>(R)</td>
</tr>
<tr>
<td>15</td>
<td>(+)-Darvon alcohola</td>
<td>Et</td>
<td>Ph</td>
<td>(+)-Menthol</td>
<td>Li</td>
<td>Hexane/ether (75:100)</td>
<td>77</td>
<td>(R)</td>
</tr>
<tr>
<td>16</td>
<td>(+)-Darvon alcohola</td>
<td>Et</td>
<td>Ph</td>
<td>(+)-Menthol</td>
<td>Li</td>
<td>Hexane/ether (30:100)</td>
<td>82</td>
<td>(R)</td>
</tr>
<tr>
<td>17</td>
<td>(+)-Darvon alcohola</td>
<td>Et</td>
<td>Ph</td>
<td>(+)-Menthol</td>
<td>Li</td>
<td>Hexane/ether (75:100)</td>
<td>73</td>
<td>(S)</td>
</tr>
<tr>
<td>18</td>
<td>(+)-Darvon alcohola</td>
<td>Et</td>
<td>Ph</td>
<td>(+)-Menthol</td>
<td>Li</td>
<td>Hexane/ether (30:100)</td>
<td>79</td>
<td>(R)</td>
</tr>
<tr>
<td>19</td>
<td>(+)-Darvon alcohola</td>
<td>Et</td>
<td>Ph</td>
<td>(--)-Menthol</td>
<td>Li</td>
<td>Ether</td>
<td>84</td>
<td>(R)</td>
</tr>
<tr>
<td>20</td>
<td>(+)-Butyl alcohol</td>
<td>Et</td>
<td>Ph</td>
<td>(+)-Menthol</td>
<td>Li</td>
<td>Hexane</td>
<td>25</td>
<td>(R)</td>
</tr>
<tr>
<td>21</td>
<td>(+)-Butyl alcohol</td>
<td>Et</td>
<td>Ph</td>
<td>(+)-Menthol</td>
<td>Li</td>
<td>Hexane</td>
<td>27</td>
<td>(R)</td>
</tr>
<tr>
<td>22</td>
<td>2-Methyl-2-butanol</td>
<td>Et</td>
<td>Ph</td>
<td>(--)-Menthol</td>
<td>Li</td>
<td>Hexane</td>
<td>47</td>
<td>(R)</td>
</tr>
<tr>
<td>23</td>
<td>3-O-Butyl-3-pentanol</td>
<td>Et</td>
<td>Ph</td>
<td>(--)-Menthol</td>
<td>Li</td>
<td>Hexane</td>
<td>60</td>
<td>(R)</td>
</tr>
<tr>
<td>24</td>
<td>2,4-Dimethyl-3-o-buty1-3-pentanol</td>
<td>Et</td>
<td>Ph</td>
<td>(--)-Menthol</td>
<td>Li</td>
<td>Hexane/ether (75:100)</td>
<td>71</td>
<td>(R)</td>
</tr>
</tbody>
</table>

a Darvon alcohol = (+)- or (±)-(25,3S)-4-dimethylamino-1,2-diphenyl-3-methyl-2-butanol.

chiral ligands (compare entries 15–19 versus entries 1–14); and (v) although there appears to be some double stereodifferentiation (entries 4–6 and entries 8, 9), the steric bulk of the alkoxy moiety of the organoaluminum seems to determine the overall enantioselectivity (compare entries 15–17 and 18, 19 as well as entries 20–24).

Since the facial selectivity of the process is controlled by the chiral keto ester and the observed absolute diastereomeric excess of each addition reaction is determined by steric factors within the organoaluminate, there is no apparent need to prepare chiral alkoxytrialkylaluminates. Thus, there should be very good stereodiscrimination for the additions of tetraalkylaluminates to chiral keto ester substrates (equation 9). It is advantageous to utilize tetraalkylaluminates since they are readily prepared by the titanium-catalyzed hydroalumination of alkenes (equation 10).46,47

\[
\text{LiAl(R^1){_4} + R^2CO_2R^3} \xrightarrow{\text{(23)}} \text{R^2CO_2R^3} \\
\]

Table 10 summarizes the data for the addition of various achiral tetraalkylaluminates (23) to chiral keto esters as outlined in equation (9). Presumably, the observed diastereoselectivities will reflect the inherent facial bias of the controlling chiral element, namely menthol (R^3 in Table 10). In this case the diastereoselectivities are moderate (67 to 75%), but, since Corey,48 Oppolzer49 and Whitesell50 have observed superior inherent facial selectivity for the 8-substituted menthol chiral auxiliary, it would be interesting to attempt the alkyl aluminate additions on substrates incorporating this auxiliary.
Table 10 Additions of Tetraalkylaluminates to Chiral Keto Esters (equation 9)

<table>
<thead>
<tr>
<th>Entry</th>
<th>(R^1)</th>
<th>(R^2)</th>
<th>(R^3)</th>
<th>Solvent</th>
<th>de (%)</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me(CH₂)₃-</td>
<td>Ph</td>
<td>(-)-Menthol</td>
<td>THF</td>
<td>69</td>
<td>(R)</td>
</tr>
<tr>
<td>2</td>
<td>Me₂CH(CH₂)₂-</td>
<td>Ph</td>
<td>(-)-Menthol</td>
<td>THF</td>
<td>73</td>
<td>(R)</td>
</tr>
<tr>
<td>3</td>
<td>EtMeCH(CH₂)₂-</td>
<td>Ph</td>
<td>(-)-Menthol</td>
<td>THF</td>
<td>74</td>
<td>(R)</td>
</tr>
<tr>
<td>4</td>
<td>(CH₂)₂-</td>
<td>Ph</td>
<td>(-)-Menthol</td>
<td>THF</td>
<td>72</td>
<td>(R)</td>
</tr>
<tr>
<td>5</td>
<td>(CH₂)₄-</td>
<td>Ph</td>
<td>(-)-Menthol</td>
<td>THF</td>
<td>67</td>
<td>(R)</td>
</tr>
<tr>
<td>6</td>
<td>Me(CH₂)₃-</td>
<td>Me</td>
<td>(-)-Menthol</td>
<td>THF</td>
<td>67</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>Me(CH₂)₅-</td>
<td>H</td>
<td>(-)-Menthol</td>
<td>THF</td>
<td>75</td>
<td>—</td>
</tr>
</tbody>
</table>

1.3.2.4 Additions of Alkylaluminums to Masked Carbonyl Substrates

1.3.2.4.1 Regioselectivity and stereoselectivity of additions to \(\alpha,\beta \)-unsaturated acetals and ketals

It is well known that a variety of aluminum hydride reagents cleave acetal substrates with excellent stereoselectivities. It is not surprising, therefore, that similar experiments have been attempted with trialkylaluminum reagents. Equation (11) outlines the generalized transformation.

\[
R\begin{array}{c}
\text{O} \\
\text{O} \\
\text{R}^1 \\
\text{R}^2 \\
\text{R}^3 \\
\end{array} \xrightarrow{R^3\text{Al}} R\begin{array}{c}
\text{O} \\
\text{OH} \\
\text{R}^1 \\
\text{R}^2 \\
\text{R}^3 \\
\end{array}
\]

\[n = 0, 1; \ R = \text{alkyl, amide}; \ R^1 = \text{alkyl, alkenyl, H}; \ R^2 = \text{alkyl, alkenyl, H}; \ R^3 = \text{alkyl, alkenyl, alkynyl}

In the specific case of \(n = 1, \ R = \text{Me}, \ R^1 = \text{cyclohexyl} \) and \(R^2 = H \) (equation 12) exposure to trimethylaluminum resulted in poor stereoselectivity and moderate yield (64%). Interestingly, although the diastereomeric ratio was defined by GC methods (2:3), the stereochemistry of the preferred diastereomer was undefined. In contrast to this result, the addition of alkylaluminums to \(\alpha,\beta \)-unsaturated acetals (Scheme 3) proceeds with spectacular regioselectivity and stereoselectivity.

Allylic acetal substrates include both aspects of the selectivity problem, namely, regiochemical control and stereochemical control. Table 11 lists the results of alkylaluminum additions to chiral, allylic acetals. The most striking aspect of this work is the total dependence of regiochemical control on the solvent. For example, comparison of entries 1 and 3 in Table 11 shows a complete reversal of regiochemical control in going from dichloroethane to chloroform solvent. Furthermore, the stereoselectivity of the process is dependent upon the configuration of the starting acetal. Thus, when one starts with the acetal derived from \((R,R)-(4)-N,N',N''-\text{tetramethyltartaric acid diamide}\), the 1,2-addition product with the \((R)\)-configuration (88% ee) is produced (entry 3, Table 11), whereas the corresponding \((S,S)\)-isomer produced the 1,2-addition product with the \((S)\)-configuration (entry 5, Table 11). It is noteworthy that, although the regioselectivity for the 1,4-process is very good, the 1,2-process is exclusively con-

\[
\begin{array}{c}
\text{Me₃Al} \\
\rightarrow \\
\text{CH₂Cl₂}
\end{array}
\]

\[
\begin{array}{c}
\text{O} \\
\text{OH}
\end{array}
\]

(24)
trolled in chloroform solvent. On the other hand, if one wished to produce only the 1,4-addition product via the addition of organoaluminums to acetals, the best method appears to be that of Negishi,⁵⁶ which proceeds via palladium catalysis (equation 13) to produce exclusively the 1,4-addition products.

Table 11 Regioselectivity and Stereoselectivity for the Addition of Me₃Al to Chiral Allylic Acetals (Scheme 3)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Solvent</th>
<th>Product ratio 1,2 versus 1,4</th>
<th>1,2-Product (% ee)</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(30)</td>
<td>ClCH₂Cl₂</td>
<td>1:6.5</td>
<td>88</td>
<td>(S)</td>
</tr>
<tr>
<td>2</td>
<td>(30)</td>
<td>Toluene</td>
<td>1:1.7</td>
<td>96</td>
<td>(S)</td>
</tr>
<tr>
<td>3</td>
<td>(30)</td>
<td>CHCCl₃</td>
<td>1:0</td>
<td>88</td>
<td>(R)</td>
</tr>
<tr>
<td>4</td>
<td>(31)</td>
<td>Toluene</td>
<td>1:2.8</td>
<td>96</td>
<td>(R)</td>
</tr>
<tr>
<td>5</td>
<td>(31)</td>
<td>CHCCl₃</td>
<td>1:0</td>
<td>86</td>
<td>(S)</td>
</tr>
</tbody>
</table>

1.3.2.4.2 Chiral α-hydroxy acetals and ketals

The 1,2-addition reaction of organoaluminums may be extended to α-hydroxy ketals. An interesting example of this ketal variant appears in equation (14).

![Scheme 3]

The reaction presumably takes place via attack of the nucleophile at the ketal carbon center with concomitant migration of the R¹ moiety to the adjacent center.⁵⁸ Organoaluminum reagents are ideally suited
for such a transformation since, by virtue of their amphophilic nature, they act as nucleophiles and electrophiles. Thus, organoaluminums will not only donate the nucleophile but also activate the leaving group, which in this case is mesyl. Table 12 lists the results of alkylaluminum additions to the generalized substrate (32).

<table>
<thead>
<tr>
<th>Entry</th>
<th>R¹</th>
<th>RAi</th>
<th>Yield (%)</th>
<th>Configuration</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>p-MeOC₆H₄</td>
<td>Me₂Al</td>
<td>39</td>
<td>(S)</td>
<td>>95</td>
</tr>
<tr>
<td>2</td>
<td>p-MeOC₆H₄</td>
<td>Me₃Al, BuⁿLi</td>
<td>89</td>
<td>(S)</td>
<td>>95</td>
</tr>
<tr>
<td>3</td>
<td>p-MeOC₆H₄</td>
<td>Et₃Al, BuⁿLi</td>
<td>90</td>
<td>(S)</td>
<td>>95</td>
</tr>
<tr>
<td>4</td>
<td>Ph(CH₂)₃ (cis)</td>
<td>Me₃Al, BuⁿLi</td>
<td>80 (cis)</td>
<td>(S)</td>
<td>>95</td>
</tr>
<tr>
<td>5</td>
<td>Ph(CH₂)₃ (trans)</td>
<td>Me₃Al, BuⁿLi</td>
<td>94 (trans)</td>
<td>(S)</td>
<td>>95</td>
</tr>
<tr>
<td>6</td>
<td>p-MeOC₆H₄</td>
<td>Et₂AlC≡CBuⁿ, BuⁿLi</td>
<td>4</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>p-MeOC₆H₄</td>
<td>EtAl(C≡CBuⁿ)₂</td>
<td>81</td>
<td>(S)</td>
<td>>95</td>
</tr>
<tr>
<td>8</td>
<td>Ph(CH₂)₃ (cis)</td>
<td>Et₂AlC≡CBuⁿ</td>
<td>40 (cis)</td>
<td>(S)</td>
<td>>95</td>
</tr>
<tr>
<td>9</td>
<td>Ph(CH₂)₃ (cis)</td>
<td>EtAl(C≡CBuⁿ)₂</td>
<td>84 (cis)</td>
<td>(S)</td>
<td>>95</td>
</tr>
</tbody>
</table>

The enantiomeric excess was determined by NMR methods.

The following generalizations may be drawn from the data in Table 12: (i) the 1,2-addition of alkyl groups is greatly facilitated by preparation of the ate complex (compare entries 1 and 2); (ii) the transfer of alkynyl moieties is retarded by ate complex formation (compare entries 6 and 7); (iii) the integrity of the double bond geometry of the migrating group is maintained (entries 4, 5, 8 and 9); and (iv) the stereospecificity of the process is very high (>95% ee). Presumably, the relative differences in nucleophilicity account for the observed reactivities, since it is known that the ate complex of alkylaluminum reagents is more nucleophilic than the corresponding alkylaluminum (as well as a weaker Lewis acid). In contrast, the electron demand of the alkynyl group bestows a reduced Lewis acid character to alkynylaluminum reagents as compared to the corresponding alkylaluminum.

The final example of 1,2-additions of organoaluminums to masked ketone substrates is outlined in equation (15). The addition of a large excess (10 equiv.) of trimethylaluminum to a variety of triol acetals and ketals proceeds in relatively high overall yield. Although ketal substrates where R¹ did not equal R² were not attempted, a number of acetals were prepared and upon exposure to Me₃Al they afforded the corresponding diastereomeric ethers with poor diastereoselectivity (33–17% de).

The proposed mechanism is outlined in equation (16). A metal alkoxide (36) is initially formed, which undergoes a bond reorganization to betaine (37). The intermediate (37) is presumably the reacting species. Support for this process is derived from the following: (i) essentially no reaction takes place in the absence of an α-hydroxy group (see entries 1–3 in Table 13); (ii) the reaction is extremely sluggish if the environment about the α-hydroxy moiety is highly congested (see entry 4 in Table 13); and (iii) the diastereoselectivity is quite poor (see entries 5 and 6 in Table 13) for the related acetal substrates.
Organoaluminum Reagents

\[
\begin{align*}
&\text{R} \quad \text{O} \\
&\text{OAlMe}_2 \\
&(36) \\
&\text{R} \quad \text{O} \\
&\text{O} \quad \text{AlMe}_2 \\
&(37)
\end{align*}
\]

(16)

Table 13 The Diastereoselective Addition of Trimethylaluminum Hydroxy Acetals and Ketals (equation 15)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Yield (%)</th>
<th>Diastereomeric ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>73</td>
<td>12:1</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>77</td>
<td>7.2:1</td>
</tr>
</tbody>
</table>

1.3.2.4.3 Application of a masked aluminum enolate in a facially selective sigmatropic protocol

3,3-Sigmatropic rearrangements (e.g. ene and Claisen reactions) are beyond the scope of this review; however, there are specific examples of this transformation, promoted by organoaluminum reagents,
which define a 3,3-sigmatropic rearrangement protocol terminating in the 1,2-addition of an organoaluminum to an aldehyde or a ketone. Since it has been demonstrated that sterically hindered organoaluminum reagents related to reagent (38) permit excellent stereochemical control of the resulting double bond geometry, it is useful to discuss a protocol that, in principle, permits not only control of the double bond geometry, but may also impart considerable bias with regard to facial selectivity.

Equation (17) outlines the organoaluminum-mediated transformation. Although there is no unequivocal definition for the proposed transition state structure, a chair-like version of (40) appears reasonable in light of the resulting double bond stereochemistry. Table 14 lists the various substrates and organoaluminum reagents that have been utilized. Although entries 1-3 (Table 14) are simple alkyl and aryl examples, it is interesting to note that the \(R^2 \) substituent may be something other than a proton (entry 3). Entries 4-8 are examples of the conversion of substituted dihydropyrans to chain-extended, unsaturated six-membered carbocycles. Obviously, in these cases the regiochemistry of the double bond is fixed by the nature of the sigmatropic process; however, an investigation of the possible facial selectivity of the 1,2-addition of the nucleophile to either the intermediate aldehyde (entries 4-7, Table 14) or the intermediate ketone (entry 8) has not been published. The protocol may also be used to prepare seven-membered unsaturated carbocycles (e.g. entries 9 and 10, Table 14). The reaction seems general with regard to the organoaluminum, since alkyl, aryl (entries 14, 7, 8 and 10), alkenyl (entry 6) and alkynyl (entries 5 and 9) substituents are readily introduced. Interestingly, if an organoaluminum containing a sulfur substituent \((R=\text{SPh}, X=\text{Et}) \) is utilized to facilitate the transformation, the corresponding aldehyde or ketone is isolated. Presumably, a thioaryl hemiacetal or ketal is formed, which affords the corresponding aldehyde or ketone upon workup. If the organosulfur substituent is something other than \(S\)-phenyl \((R=\text{SEt or SBu'}) \), there is no rearrangement.

1.2-Addition to enol phosphates

Although enol phosphates are known to undergo a coupling reaction with nickel-catalyzed Grignard reagents to afford substituted alkenes, the corresponding reaction with organoaluminums does not work; however, it has been demonstrated that the coupling reaction of organoaluminums and enol phosphates does proceed in the presence of palladium (see equation 18 and Table 15).

This reaction sequence produces alkenes in a stereospecific manner, since the double bond geometry of the enol phosphate is retained in the alkene product. Furthermore, the newly formed alkene may be introduced in a regioselective fashion via trapping of the regioselectively formed enolate.

The success of the reaction is dependent upon the presence of Pd(Ph\(_3\))\(_4\), since the addition fails in the absence of Pd or in the presence of either nickel or Pd(acac)\(_2\).

1.3 REACTIONS OF ORGANOALUMINUM REAGENTS WITH ACID DERIVATIVES

1.3.1 Reactions with Ester Substrates

The conversion of esters to either amides or hydrazides may be accomplished under relatively mild conditions by the procedure outlined in equation (19).

Reagent (42) is readily prepared by the treatment of primary and secondary amines and hydrazines (substituted or unsubstituted) or the corresponding hydrochlorides with trimethylaluminum. The aluminum amide reagents (42) readily react with a variety of ester substrates, such as conjugated esters (entries 2, 5 and 11, Table 16), \(N \)-blocked amino acid esters (entry 10, Table 16), as well as alkyl esters (en-
Table 14 The Addition of Organoaluminums to (40) (equation 17)

<table>
<thead>
<tr>
<th>Entry</th>
<th>R^1</th>
<th>R^2</th>
<th>R</th>
<th>X</th>
<th>Yield (%)</th>
<th>Temperature ($^\circ$C)</th>
<th>Time (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bun</td>
<td>H</td>
<td>Me</td>
<td>Me</td>
<td>91</td>
<td>25</td>
<td>0.25</td>
</tr>
<tr>
<td>2</td>
<td>Ph</td>
<td>H</td>
<td>Me</td>
<td>Me</td>
<td>78</td>
<td>25</td>
<td>0.25</td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>Ph</td>
<td>Me</td>
<td>Me</td>
<td>71</td>
<td>25</td>
<td>0.25</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>Me</td>
<td>Me</td>
<td>81</td>
<td>25</td>
<td>0.5</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>PhC≡C</td>
<td>Et</td>
<td>88</td>
<td>25</td>
<td>0.25</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>Bui</td>
<td></td>
<td>40</td>
<td>25</td>
<td>1.5</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>Me</td>
<td>Me</td>
<td>86</td>
<td>60</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>Me</td>
<td>Me</td>
<td>87</td>
<td>60</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>PhC≡C</td>
<td>Et</td>
<td>83</td>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>Me</td>
<td>Me</td>
<td>48</td>
<td>25</td>
<td>1</td>
</tr>
</tbody>
</table>

![Chemical structure](attachment:image.png)

(18)

tries 3, 6–8, Table 16) and aryl esters (entries 1, 4, 9 and 12, Table 16). Dimethylaluminum hydrazides react with esters to afford the corresponding carboxylic acid hydrazides (entries 13–18, Table 16). The reaction is fairly general with regard to the nature of substituted hydrazines, since alkyl and aryl groups are tolerated on the terminal amine of the hydrazine.

Aluminum amides may also be used for the conversion of lactones to the corresponding open chain hydroxy amides (equation 20). For example, exposure of lactone (45) to dimethylaluminum amide (47; $R = H$ or $R = CH_2Ph$) at 41 °C for about 24 h affords the corresponding hydroxy amide (46) in high yield (80%, $R = CH_2Ph$; 83%, $R = H$); in contrast, exposure of (45) to either benzylamine or sodium amide resulted in essentially none of the desired amide (46). In general the 1,2-addition of heteroatom-substituted organoaluminum reagents to carboxyl-containing substrates may be rationalized in terms of the
Nonstabilized Carbanion Equivalents

Table 15 The Addition of Organoaluminums to Enol Phosphates (equation 18)

<table>
<thead>
<tr>
<th>Entry</th>
<th>R2</th>
<th>R</th>
<th>X</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me(CH2)3C=CH2</td>
<td>Me</td>
<td>Me</td>
<td>91</td>
</tr>
<tr>
<td>2</td>
<td>Me(CH2)3C=CH2</td>
<td>Et</td>
<td>Me</td>
<td>71</td>
</tr>
<tr>
<td>3</td>
<td>PhC=CH2</td>
<td>Et</td>
<td>Et</td>
<td>82</td>
</tr>
<tr>
<td>4</td>
<td>Me(CH2)3C=CH2</td>
<td>Et</td>
<td>Et</td>
<td>59</td>
</tr>
<tr>
<td>5</td>
<td>Bu1</td>
<td>Bu1</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>PhC=CH2</td>
<td>Me</td>
<td>Me</td>
<td>94</td>
</tr>
<tr>
<td>7</td>
<td>PhC=CH2</td>
<td>Et</td>
<td>Et</td>
<td>80</td>
</tr>
<tr>
<td>8</td>
<td>PhC=CH2</td>
<td>Et</td>
<td>Et</td>
<td>67</td>
</tr>
<tr>
<td>9</td>
<td>Bu1</td>
<td>Bu1</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Bu1</td>
<td>Bu1</td>
<td>72</td>
<td></td>
</tr>
</tbody>
</table>

\[
\text{RCO}_2 R^1 \xrightarrow{\text{(42)}} R^4 N^+ Al \xrightarrow{\text{(43)}} R^5 \xrightarrow{\text{(44)}} R^3 \xrightarrow{25-41 \, ^\circ \mathrm{C}} R^2
\]

Table 16 The Addition of Aluminum Amide Reagents (42) to Esters (equation 19)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>R</th>
<th>R'</th>
<th>R4</th>
<th>R5</th>
<th>Reagent (42) equivalents (42)</th>
<th>No. of equivalents (42)</th>
<th>Yield (%)</th>
<th>Reaction conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph</td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>Me</td>
<td>Me</td>
<td>2.2</td>
<td>77</td>
<td>17/41</td>
</tr>
<tr>
<td>2</td>
<td>PhCH==CH</td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>Me</td>
<td>Me</td>
<td>2.0</td>
<td>86</td>
<td>12/38</td>
</tr>
<tr>
<td>3</td>
<td>Cyclohexyl</td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>Me</td>
<td>Me</td>
<td>2.2</td>
<td>78</td>
<td>17/35</td>
</tr>
<tr>
<td>4</td>
<td>Ph</td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>Me</td>
<td>Cl</td>
<td>3.0</td>
<td>83</td>
<td>12/50</td>
</tr>
<tr>
<td>5</td>
<td>PhCH==CH</td>
<td>Et</td>
<td>H</td>
<td>H</td>
<td>Me</td>
<td>Cl</td>
<td>3.0</td>
<td>82</td>
<td>12/50</td>
</tr>
<tr>
<td>6</td>
<td>Cyclohexyl</td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>Me</td>
<td>Cl</td>
<td>3.0</td>
<td>93</td>
<td>12/50</td>
</tr>
<tr>
<td>7</td>
<td>Cyclohexyl</td>
<td>Me</td>
<td>H</td>
<td>CH2Ph</td>
<td>Me</td>
<td>Me</td>
<td>2.0</td>
<td>78</td>
<td>17/35</td>
</tr>
<tr>
<td>8</td>
<td>Cyclohexyl</td>
<td>Me</td>
<td>Me</td>
<td>Me</td>
<td>Me</td>
<td>Cl</td>
<td>2.0</td>
<td>76</td>
<td>12/50</td>
</tr>
<tr>
<td>9</td>
<td>Ph</td>
<td>Me</td>
<td>(CH2)4</td>
<td>Me</td>
<td>Me</td>
<td>Me</td>
<td>1.1</td>
<td>94</td>
<td>5/40</td>
</tr>
<tr>
<td>10</td>
<td>PhCH2CHNCO</td>
<td>Me</td>
<td>Et</td>
<td>(CH2)4</td>
<td>Me</td>
<td>Me</td>
<td>1.1</td>
<td>77</td>
<td>40/40</td>
</tr>
<tr>
<td>11</td>
<td>Me</td>
<td>(CH2)4</td>
<td>Me</td>
<td>Me</td>
<td>2.0</td>
<td>74</td>
<td>45/40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Me(CH2)4</td>
<td>Me</td>
<td>(CH2)5</td>
<td>Me</td>
<td>Me</td>
<td>1.1</td>
<td>74</td>
<td>34/40</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Me(CH2)4</td>
<td>Et</td>
<td>H</td>
<td>NHMe</td>
<td>Me</td>
<td>Me</td>
<td>2.2</td>
<td>82</td>
<td>16/40</td>
</tr>
<tr>
<td>14</td>
<td>Me(CH2)4</td>
<td>Et</td>
<td>H</td>
<td>PhNH</td>
<td>Me</td>
<td>Me</td>
<td>2.2</td>
<td>91</td>
<td>12/25</td>
</tr>
<tr>
<td>15</td>
<td>Me(CH2)4</td>
<td>Et</td>
<td>Me</td>
<td>NHMe</td>
<td>Me</td>
<td>Me</td>
<td>2.2</td>
<td>72</td>
<td>16/40</td>
</tr>
<tr>
<td>16</td>
<td>4-MeC6H4</td>
<td>Et</td>
<td>H</td>
<td>NMe2</td>
<td>Me</td>
<td>Me</td>
<td>2.2</td>
<td>80</td>
<td>16/40</td>
</tr>
<tr>
<td>17</td>
<td>4-MeC6H4</td>
<td>Et</td>
<td>H</td>
<td>NHPh</td>
<td>Me</td>
<td>Me</td>
<td>2.2</td>
<td>87</td>
<td>12/25</td>
</tr>
<tr>
<td>18</td>
<td>4-MeC6H4</td>
<td>Et</td>
<td>Me</td>
<td>NHMe</td>
<td>Me</td>
<td>Me</td>
<td>2.2</td>
<td>72</td>
<td>12/45</td>
</tr>
</tbody>
</table>

hard/soft acid and base theory, first defined by Pearson. The aluminum amide reagents discussed in this section all contain a weak bond between aluminum and a relatively soft substituent, when compared to the stronger (and harder) aluminum–oxygen bond which is formed upon reaction.
1.3.3.1 Selenol ester formation

Selenol esters are useful as active acyl equivalents, particularly with regard to macrocycle formation.\(^72\)\(^73\) Equation (21) outlines the conversion of esters to selenol esters via aluminum reagent (48).\(^6\)\(^7\)

\[
\begin{align*}
\text{OR}^1 \quad \text{Me}_2\text{AlSeR}^2 (48) &\rightarrow \text{OR} \quad \text{Me}_2\text{AlNR} (47) \\
\text{R} = \text{CH}_2\text{Ph}, \text{H} &\rightarrow \text{CONHR} \quad \text{R} = \text{CH}_2\text{Ph}, \text{H}
\end{align*}
\]

The reaction is fairly general with regard to the acyl substituent of ester (49), since aromatic and alkyl substituents are compatible (entries 1–8, Table 17).\(^73\)\(^72\) In contrast, there are restrictions with regard to lactone substrates. For example, the five-membered lactone (entry 11, Table 17) does not undergo reaction, whereas the related six-membered lactone (entry 9, Table 17) is converted to its corresponding selenol ester in good yield (78%). Although the unsubstituted five-membered lactone did not react, the five-membered fused lactone (entry 10, Table 17) did afford the related selenol ester in good yield (80%).\(^73\)

The reaction also discriminates between axial and equatorial esters. For example, entry 14 (Table 17) presents a substrate containing an axial, as well as an equatorial, ester, which upon exposure to dimethylaluminum methaneselenolate (48; \(R_2^2 = \text{Me}\)) affords only the equatorial monoselenol ester.\(^75\) The selectivity of this reaction is highly dependent upon the reaction solvent. When axial and equatorial methyl-4-t-butylcyclohexanecarboxylates (entries 12 and 13, Table 17) are exposed to organoaluminum (48; \(R_2^2 = \text{Me}\)) in diethyl ether at room temperature, the equatorial selenol ester is formed in 0.5 h, whereas the formation of the axial selenol ester requires 10 h. Equation (22) outlines the results of a site selective process.\(^73\)\(^76\)

When cyclohexenone is exposed to either aluminum reagent (48) or (51), only the 1,4-addition product is observed in high yield (87% and 72% respectively). Thus, there appears to be excellent site selectivity, although the reasons for the selectivity are undefined.

1.3.3.2 Reactions with Acyl Chlorides

The reaction of organoalumiums with acyl chlorides typically fails to produce ketones, since the organoaluminum reacts with the desired ketone to produce carbinols.\(^77\) However, organoaluminum reagents, in the presence of transition metal catalysts,\(^78\)\(^80\) may be utilized to accomplish this transformation. Equation (23) outlines the overall transformation.

The copper and palladium transition metal catalysts noted in Table 18 proved to be superior to nickel, ruthenium and rhodium catalysts. The nature of the reacting species has not been unequivocally defined, but the following experimental observations may provide some insight: (i) tetrahydrofuran solvent is essential for the palladium-mediated reactions, since complex reaction mixtures (presumably containing carbinols) were observed when the reactions were performed in either benzene or methylene chloride; (ii) the reaction is truly catalytic with respect to palladium (2 mmol alkylaluminum, 0.05 mmol of Pd(PPh$_3$_)$_4$), whereas the copper catalyst is stoichiometric; and (iii) in the case where a direct comparison may be made (entries 1–8, Table 18), the copper-based system is superior to palladium catalysis with regard to overall yield.

The palladium-catalyzed systems seem quite flexible with regard to the nature of the organoaluminum, since alkyl-, alkenyl- and alkynyl-aluminum reagents were used successfully (entries 8–14, Table 18). Furthermore, the acyl chloride substrates include alkyl, aryl and alkenyl substituents.
Table 17 The Addition of Selenoaluminum (48) to Esters (equation 21)

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>R'</th>
<th>Yield (SO) (%)</th>
<th>Solvent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph</td>
<td>Me</td>
<td>99</td>
<td>CH₂Cl₂</td>
</tr>
<tr>
<td>2</td>
<td>Ph(CH₂)₃</td>
<td>Et</td>
<td>70</td>
<td>CH₂Cl₂</td>
</tr>
<tr>
<td>3</td>
<td>Et</td>
<td>80</td>
<td>CH₂Cl₂</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Me</td>
<td>93</td>
<td>CH₂Cl₂</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Me(CH₂)₅</td>
<td>Me</td>
<td>95</td>
<td>CH₂Cl₂</td>
</tr>
<tr>
<td>6</td>
<td>H₂C=CH(CH₂)₂</td>
<td>Me</td>
<td>84</td>
<td>CH₂Cl₂</td>
</tr>
<tr>
<td>7</td>
<td>Et₂O</td>
<td>94</td>
<td>CH₂Cl₂</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Me</td>
<td>78</td>
<td>CH₂Cl₂</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Me</td>
<td>80</td>
<td>CH₂Cl₂</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Et₂O</td>
<td>92</td>
<td>CH₂Cl₂</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Me</td>
<td>96</td>
<td>CH₂Cl₂</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Et₂O</td>
<td>67 (equatorial monoselenol ester)</td>
<td>(equatorial monoselenol ester)</td>
<td></td>
</tr>
</tbody>
</table>
Organoaluminum Reagents

\[R^1\text{COCl} + R_3\text{Al} \xrightarrow{\text{metal catalyst}} R^1\text{COR} \]

\[\text{THF} \]

\[\text{metal} = \text{Pd, Cu} \]

Table 18 The Palladium-catalyzed Addition of Organoaluminums to Acyl Chlorides (equation 23)

<table>
<thead>
<tr>
<th>Entry</th>
<th>(R^1)</th>
<th>(R)</th>
<th>Catalyst</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph</td>
<td>Et</td>
<td>Pd(\text{PPh}_3)_4</td>
<td>70</td>
</tr>
<tr>
<td>2</td>
<td>Ph</td>
<td>Et</td>
<td>Cu(\text{acac})_2PPh_3</td>
<td>88</td>
</tr>
<tr>
<td>3</td>
<td>Ph</td>
<td>Me</td>
<td>Cu(\text{acac})_2PPh_3</td>
<td>95</td>
</tr>
<tr>
<td>4</td>
<td>Ph</td>
<td>Me</td>
<td>Pd(\text{PPh}_3)_4</td>
<td>74</td>
</tr>
<tr>
<td>5</td>
<td>C_H=CH(CH_2)_8</td>
<td>Me</td>
<td>Pd(\text{PPh}_3)_4</td>
<td>59</td>
</tr>
<tr>
<td>6</td>
<td>C_H=CH(CH_2)_8</td>
<td>Me</td>
<td>Cu(\text{acac})_2PPh_3</td>
<td>90</td>
</tr>
<tr>
<td>7</td>
<td>C_H=CH(CH_2)_8</td>
<td>Et</td>
<td>Cu(\text{acac})_2PPh_3</td>
<td>91</td>
</tr>
<tr>
<td>8</td>
<td>C_H=CH(CH_2)_8</td>
<td>Et</td>
<td>Pd(\text{PPh}_3)_4</td>
<td>71</td>
</tr>
<tr>
<td>9</td>
<td>Ph</td>
<td>Bu-C≡C</td>
<td>Pd(\text{PPh}_3)_4</td>
<td>67</td>
</tr>
<tr>
<td>10</td>
<td>PhCH=CH</td>
<td>Bu-C≡C</td>
<td>Pd(\text{PPh}_3)_4</td>
<td>74</td>
</tr>
<tr>
<td>11</td>
<td>C_{H_15}</td>
<td>Ph≡C</td>
<td>Pd(\text{PPh}_3)_4</td>
<td>61</td>
</tr>
<tr>
<td>12</td>
<td>CH=CH(CH_2)_8</td>
<td>Me_3Si≡C</td>
<td>Pd(\text{PPh}_3)_4</td>
<td>51</td>
</tr>
<tr>
<td>13</td>
<td>CH=CH(CH_2)_8</td>
<td>C_{H_13}</td>
<td>Pd(\text{PPh}_3)_4</td>
<td>51</td>
</tr>
<tr>
<td>14</td>
<td>Ph</td>
<td></td>
<td>Pd(\text{PPh}_3)_4</td>
<td>51</td>
</tr>
</tbody>
</table>

1.3.3.2.1 Preparation of acylsilanes via silyl-substituted organoaluminum–ate complexes

Acylsilanes may be prepared directly from either acyl chlorides or anhydrides by treatment with tris(trimethylsilyl)aluminum–ate complexes (equation 24).81

\[\text{RCOCI} + \text{LiAl(SiMe}_3)_3 \xrightarrow{\text{CuCN}} \text{RCOSiMe}_3 \]

The silyl organoaluminum reagent (52) was prepared either by the addition of ‘activated’ aluminum to a tetrahydrofuran solution of chlorotrimethylsilane, or by the treatment of sodium tetrakis(trimethylsilyl)aluminate with aluminum chloride. Alternatively, ate complex (53) may be prepared by the addition of methylthium to tris(trimethylsilyl)aluminum.82

Table 1981 lists a variety of alkyl and aryl acyl chlorides that readily undergo the transformation to the corresponding acylsilanes. The ate complex is necessary for the reaction, since tris(trimethylsilyl)aluminum afforded minute quantities of the desired acylsilane; furthermore, catalytic amounts of copper cyanide (10 mol %) are also required, although the role of the copper catalyst has not been defined. Although an excess of either reagent (52) or reagent (53) (ca. 2.5:1 organoaluminum to aryl substrate) is required to obtain an optimum yield of acylsilane, the ate complexes demonstrate remarkable chemoselectivity, in that they do not react with nitriles, esters, ketones, acylsilanes and carbamoyl chlorides.82 The application of this transformation to a more highly functionalized molecule is outlined in equation (25).
Table 19 The Copper-catalyzed Addition of Silyl Organoalumins (52) to Acyl Chlorides (equation 24)

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>Yield (%)</th>
<th>Reaction time (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C₅H₁₁</td>
<td>95</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Ph</td>
<td>93</td>
<td>1.5</td>
</tr>
<tr>
<td>3</td>
<td>PhCH₂</td>
<td>89</td>
<td>1.5</td>
</tr>
<tr>
<td>4</td>
<td>S⁻CH₂</td>
<td>90</td>
<td>1.5</td>
</tr>
<tr>
<td>5</td>
<td>Bu⁺</td>
<td>89</td>
<td>1.75</td>
</tr>
<tr>
<td>6</td>
<td>AcOCH₂</td>
<td>86</td>
<td>2.5</td>
</tr>
</tbody>
</table>

All reactions were carried out at -78 °C and with a mole ratio (substrate/reagent) of 2.5.

1.3.4 1,2-ADDITIONS OF ORGANOALUMINUMS TO CARBON–NITROGEN SYSTEMS

1.3.4.1 Stereoselective Additions

Tosylpyrazolines (56) stereoselectively react with trimethylaluminum to afford pyrazolols (57; equation 26)³³

\[
\text{OH} \quad \text{Me₃Al} \quad \text{OH} \\
\begin{array}{c}
\text{R} \\
\text{N=NN} \\
\text{Ts} \\
\end{array} \quad \begin{array}{c}
\text{R} \\
\text{N=NN} \\
\end{array}
\]

The reaction is highly stereoselective since the organoaluminum always approaches the face of the carbon–nitrogen double bond opposite to the hydroxy substituent. Thus, either cis- or trans-pyrazolols may be selectively prepared. The reaction does not seem to suffer any steric encumbrance since the substituent R was varied from methyl to t-butyl without any decrease in the overall yield. Furthermore, attempts to perform the transformation with organolithiums or Grignards failed, which presumably reflects the inherent differences in the Lewis acidity of organoaluminums and other organometallics.

1.3.4.2 Organoaluminum-promoted Beckmann Rearrangements

The Beckmann rearrangement proceeds through a transition state represented by structure (59) in equation (27). Thus, the organoaluminum-catalyzed protocol presents an opportunity to convert a ketone regiospecifically and stereospecifically into a chain-extended amino substrate.

\[
\begin{array}{c}
\text{R}^1 \quad \text{N=OCR}^2 \\
\text{R}^1 \quad \text{N=OCR}^2 \\
\end{array} \quad \begin{array}{c}
\text{X} \\
\text{R}^1 \quad \text{NH} \\
\end{array}
\]

Table 20 summarizes the variety of substrates (R¹ and R²) that are compatible with the reaction conditions. For example, cyclic and acyclic thioimidates (entries 1–7) are generally prepared in good to ex-
cellent yields (46–90%), with the only reported exception being entry 1. This procedure may also be utilized to stereoselectively synthesize α-monoalkylated amines as well as α,β-dialkylated amines, since the conversion of imine (60) to amine (61; equation 27) may be accomplished by exposure to either a hydride reagent (R^4 = H) or an organometallic (R^4 = alkyl). The α-monoalkylated cases are listed in entries 8–13 and the α,α-dialkylated cases are listed in entries 14–20 (Table 20). The reaction has been successfully conducted on both cyclic and acyclic substrates affording the product amines in good overall yield (51–88%). There is reasonable flexibility with regard to the alkyl group (X = methyl, propyl, substituted alkyne; Table 20), although apparently no alkenylaluminum reagents were utilized. Also, in the one case listed in Table 20 that is capable of diastereoselection (entry 10) there was no determination (other than that it was a mixture of cis–trans isomers) of the level of facial selectivity. The dialkylated substrates (entries 14–20) are prepared by exposure of intermediate (60) to Grignard reagents and, although there does seem to be a fair generality (R^4 = allyl, crotyl and propargyl), it is interesting to note that apparently no alkenyl Grignards were utilized.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate (58)</th>
<th>Organoaluminum</th>
<th>X</th>
<th>Product</th>
<th>Yield (%)</th>
<th>Temp. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(CH₂)₃</td>
<td>p-MeC₆H₄</td>
<td>Bu⁺</td>
<td>SmMe</td>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>CH₂Me(CH₂)₃</td>
<td>p-MeC₆H₄</td>
<td>Bu⁺</td>
<td>SmMe</td>
<td>46</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>(CH₂)₂</td>
<td>Me</td>
<td>Me</td>
<td>SMe</td>
<td>62</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>CH₂Me(CH₂)₂</td>
<td>p-MeC₆H₄</td>
<td>Bu⁺</td>
<td>SmMe</td>
<td>66</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>(CH₂)₂</td>
<td>(60)</td>
<td>Me</td>
<td>SMe</td>
<td>90</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Ph</td>
<td>Me</td>
<td>Me</td>
<td>Ph</td>
<td>88</td>
<td>-78</td>
</tr>
<tr>
<td>7</td>
<td>Ph</td>
<td>Me</td>
<td>Bu⁺</td>
<td>SMe</td>
<td>90</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>(CH₂)₂</td>
<td>Me</td>
<td>Me</td>
<td>Me</td>
<td>(61)R^4 = H</td>
<td>70</td>
</tr>
<tr>
<td>9</td>
<td>(CH₂)₂</td>
<td>Et</td>
<td>C</td>
<td>CBu</td>
<td>(61)R^4 = H</td>
<td>67</td>
</tr>
<tr>
<td>10</td>
<td>Me</td>
<td>Me</td>
<td>Me</td>
<td>Me</td>
<td>(61)R^4 = H</td>
<td>57</td>
</tr>
<tr>
<td>11</td>
<td>Ph</td>
<td>Me</td>
<td>Me</td>
<td>Me</td>
<td>(61)R^4 = H</td>
<td>63</td>
</tr>
<tr>
<td>12</td>
<td>Ph</td>
<td>Me</td>
<td>Et</td>
<td>C≡CMe</td>
<td>(61)R^4 = H</td>
<td>60</td>
</tr>
<tr>
<td>13</td>
<td>Me</td>
<td>Me</td>
<td>Pr</td>
<td>Me</td>
<td>(61)R^4 = H</td>
<td>88</td>
</tr>
<tr>
<td>14</td>
<td>(CH₂)₂</td>
<td>p-MeC₆H₄</td>
<td>Me</td>
<td>Me</td>
<td>(61)R^4 = allyl</td>
<td>51</td>
</tr>
<tr>
<td>15</td>
<td>(CH₂)₂</td>
<td>Me</td>
<td>Me</td>
<td>Me</td>
<td>(61)R^4 = allyl</td>
<td>60</td>
</tr>
<tr>
<td>16</td>
<td>(CH₂)₂</td>
<td>Me</td>
<td>Me</td>
<td>Me</td>
<td>(61)R^4 = propargyl</td>
<td>55</td>
</tr>
<tr>
<td>17</td>
<td>Ph</td>
<td>Me</td>
<td>Me</td>
<td>Me</td>
<td>(61)R^4 = propargyl</td>
<td>61</td>
</tr>
<tr>
<td>18</td>
<td>Ph</td>
<td>Me</td>
<td>Et</td>
<td>C≡CPh</td>
<td>(61)R^4 = allyl</td>
<td>88</td>
</tr>
<tr>
<td>19</td>
<td>Ph</td>
<td>Me</td>
<td>Me</td>
<td>Me</td>
<td>(61)R^4 = crotyl</td>
<td>56</td>
</tr>
<tr>
<td>20</td>
<td>Ph</td>
<td>Me</td>
<td>Et</td>
<td>Me(CH₂)₂C≡C</td>
<td>(61)R^4 = allyl</td>
<td>74</td>
</tr>
</tbody>
</table>

The regioselectivity of this process is inherent to the Beckmann rearrangement, whereas the potential for useful stereoselectivities derives from the organoaluminum protocol, which permits manipulation of the prochiral imine of intermediate (60). Although entry 10 gave disappointing results with regard to stereoselectivity, equation (28) outlines a highly stereoselective example.

The difference in the stereoselectivity for (64) and (65) is most easily rationalized on the basis of the transition state geometry, which is determined by the coordination of aluminum to the nitrogen lone pair of electrons. Scheme 4 details the effect that aluminum has on the transition state geometry and, therefore, the course of the overall reaction.

In the presence of the organoaluminum, the substituent (R) on the chiral center adjacent to nitrogen in (67) is forced to occupy an axial position to relieve the strain created by the steric interaction with aluminum. This would favor approach by hydride from the top face of (67), whereas in the absence of aluminum the favored approach of hydride is from the bottom face of transition state structure (66).
1.3.5 APPLICATIONS TO NATURAL PRODUCT SYNTHESIS

1.3.5.1 Application of MAD and MAT to the Synthesis of (±)-3α-Acetoxy-15β-hydroxy-7,16-secotrinervita-7,11-diene

The synthesis of the title compound (73), which is the defense substance of the termite soldier,88 is outlined in Scheme 5.89

The conversion of intermediate (72) to the natural product (73) was accomplished by exposure of a 1:1 complex of (72) and the hindered organoaluminum reagent (1; MAD)18 to methylolithium (57% yield). This is a fascinating result, not only because attempted methylolithium addition failed, but also because the required configuration of the C-1 position was β with regard to the proton substituent and, therefore,
approach of a nucleophile to the C-2 carbonyl moiety would also be from the less hindered \(\beta \)-face; unfortunately, the natural product required a \(\beta \)-hydroxy substituent, which requires a facial selectivity for the more hindered \(\alpha \)-face of the carbonyl. Although the facial selectivity of the organoaluminum (1) mediated addition was not total, it did give a 3:1 excess of the desired \(\alpha \)-face 1,2-addition product, which was identical to the natural product.

13.5.2 Application of Aminoaluminum Reagents to Natural Product Synthesis

13.5.2.1 Synthesis of an FK-506 fragment

FK-506 (74) is an interesting natural product with potent immunosuppressive properties.\(^9^0\)

\[
\begin{align*}
\text{HO} & \quad 34 \\
\text{MeO} & \\
\text{H} & \\
\text{27} & \\
\text{O} & \\
\text{O} & \\
\text{N} & \\
\text{OH} & \\
\text{20} & \\
\text{OH} & \\
\text{O} & \\
\text{O} & \\
\text{OMe} & \\
\text{OMe} & \\
\end{align*}
\]

(74)

Recently, there have been a number of publications on the synthesis of various segments of (74) in the context of total synthesis and Scheme 6 outlines one approach to the synthesis of the C-20 to C-34 fragment.\(^9^1\) The synthetic approach to the totally blocked C-20 to C-34 fragment relies on an aminolysis via aminoaluminum reagent (82) in three different transformations of the sequence, demonstrating the excellent selectivity of (82) in a very sensitive array of functionality. For example, the conversion of lactone (77) to hydroxyamide (78) selectively opens the lactone ring with no undesired epimerization; furthermore, (82) was also utilized in the aminolysis of the chiral auxiliary with no apparent epimerization.

13.5.2.2 Synthesis of granaticin

Granaticin (83) is a member of the pyranonaphthoquinone group of antibiotics. The portion of the total synthesis of (83) which requires the use of the aminoaluminum reagent (42) is outlined in Scheme 7.\(^9^2\)

The conversion of lactone (86) to hydroxyamide (87) is complicated by the potential for epimerization, which is quite similar to the problem presented by substrate (77) in the previous synthesis. Once again, the transformation proceeds smoothly, with no apparent epimerization.

13.5.3 Application of the Nozaki Protocol

The Nozaki protocol,\(^9^3,\(^9^4\) which is an organoaluminum-ate mediated 1,4-addition followed by a 1,2-addition of the resulting enolate, may be considered a 1-acylethenyl anion equivalent, which does fall within the scope of this review. This process may be conducted in either an intramolecular sense or an intermolecular sense. In general, the protocol is compatible with a wide array of functionality; however, the intermolecular process requires an aldehyde, whereas the intramolecular case may be terminated by either an aldehyde or a ketone.
Nonstabilized Carbanion Equivalents

Scheme 6

Scheme 7
1.3.5.3.1 Intramolecular protocol — application to avermectins

An example of an intramolecular Nozaki process was recently described in the total synthesis of an avermectin aglycon (89). The relevant steps in the sequence are outlined in Scheme 8. The ate complex of lithium thiophenoxide and trimethylaluminum permits the addition of thiophenoxide exclusively in a 1,4-fashion to the α,β-unsaturated aldehyde (93), affording an aluminum enolate that is intramolecularly trapped by the electrophilic ketone moiety. The resulting hydroxy sulfide is oxidized to the corresponding hydroxy sulfoxide, which upon exposure to heat (refluxing toluene) affords the cyclized system (95) in 76% yield. The addition of the ate complex (94) to (93) is not only highly regioselective, but also, unlike the typical intermolecular Nozaki process, which has been reported to proceed only when the terminating carbonyl electrophile is an aldehyde, this example is terminated by a ketone. Presumably entropic factors are driving the ring closure to the ketone in this intramolecular process.

![Scheme 8](image)

1.3.5.3.2 Intermolecular protocol — application to prostanoids

Scheme 9 outlines the synthesis of a prostanoid intermediate (99) that relies on an intermolecular Nozaki process. It is important to note that unlike the intramolecular case described above, the intermolecular version of this protocol requires an aldehyde as the electrophilic trap; however, it is interesting to note that there have been no reports of the addition of Lewis acid activated ketones (presumably, as a preformed complex which would be added via cannula at low temperature) to the preformed aluminum enolate. Finally, in this example, the conversion of enone (96) to adduct (98) is promoted by the less reactive dimethylaluminum phenyl thiolate and not the corresponding ate complex.
1.3.5.4 Synthesis of Nonracemic Sydowic Acid

Sydowic acid (100) was prepared as outlined in Scheme 10. The crucial transformation of ketone (101) to carbinol (102) was accomplished by stereoselective 1,2-addition of trimethylaluminum, which afforded superior facial selectivity for the re-face compared to Grignard reagents. In contrast, methyltrichlorotitanium addition resulted in a si-face stereoselectivity.

1.3.5.5 Synthesis of Racemic Gephyrotoxin-223AB

Gephyrotoxin (106), a constituent of the skin extracts of the poison-dart frog, was synthesized as outlined in Scheme 11. The organoaluminum-promoted Beckmann rearrangement produced an imine, which was stereoselectively reduced (essentially total selectivity) with DIBAL to afford piperidine (109; 41% yield).
1.3.6 REFERENCES

1.4
Organocopper Reagents

BRUCE H. LIPSHUTZ
University of California, Santa Barbara, CA, USA

1.4.1 INTRODUCTION

The direct addition of an organocopper or cuprate reagent to a carbon–heteroatom multiple bond might rightfully be considered the forgotten son of transition metal based carbon–carbon bond formation. Indeed, although organocopper reagents are potent Michael donors, their well-recognized hesitation towards competing 1,2-addition may represent their most salient feature. Still, in most circumstances, while many substitution reactions (e.g. with a primary iodide) and especially 1,4-additions (e.g. with α,β-unsaturated ketones) tend to be far more rapid processes, the appropriately designed substrate can often benefit considerably from a copper reagent mediated 1,2-addition, not only in terms of yield but especially with regard to diastereoselectivity.

Discussed in this chapter, for the most part, are documented cases where complexes derived from (one or more equivalents) of a Grignard or organolithium reagent, in combination with a copper(I) salt, have been used to add to an aldehyde, ketone, imine, amide or nitrile moiety. In the majority of examples, the key issue is one of stereocontrol. Hence, where available, data within the organocopper manifold versus those for other organometallic reagents are provided for comparison.

Several different types of copper reagents have been utilized for the 1,2-additions presented herein. Those formed from Grignard reagents (Scheme 1) may be of the type represented as (1) or (2), depending upon whether ≤0.5 or 1.0 equiv. of CuX (X = I, Br) is involved. In the presence of CuCN, both 'lower order' monoanionic species (3) and 'higher order' dianionic salts (4) are possible. With the latter class, mixed metal clusters result from treatment of this copper(I) source with one equivalent of both RMgX and R'Li. Reagents derived from organolithium precursors (Scheme 2) include mainly the Gilman cuprates R2CuLi (5), organocopper species (6) akin to (2) but containing lithium salts as by-products of metathesis between the metals, and the 'higher order' dilithiocyanocuprates (7). Within this group, i.e. (1) to (7), each is distinct from the others, not only insofar as stoichiometric representations are concerned, but in the reactivity profiles displayed, as well as the regio- and stereo-chemical outcomes of their 1,2-additions (vide infra).
1.42 1,2-ADDITIONS TO ALDEHYDES AND KETONES

1.42.1 Reactions of Aldehydes

The initial observation that organocuprates react in a synthetically useful fashion with aldehydes was made by Posner in 1972 as part of a study aimed at determining functional group compatibility with \(\text{R}_2\text{CuLi} \) versus temperature. Both benzaldehyde and \(n \)-heptanal were found to react at \(-90^\circ\text{C}\) in less than 10 min with lithium dimethylcuprate to afford the corresponding alcohols in good yields (equation 1).

\[
\text{RCHO} + \text{R}^2\text{CuLi} \quad \text{Et}_2\text{O} \quad 90^\circ \text{C}, 10 \text{ min} \\
\text{R} = \text{Ph}, n\text{-C}_6\text{H}_{13}; \text{R}^2 = \text{Me, Bu}^n
\]

The facility and efficiency with which copper reagents add to aldehydes has been examined where unsymmetrical \(\alpha \)- or \(\beta \)-substitution exists, thereby raising the question of diastereoselection. Two types of situation exist in this regard: (i) where opportunities for chelation-controlled attack by the reagent can lead to a significant preference for one diastereomer; and (ii) the nonchelation-controlled delivery of an organic ligand from copper, where steric and perhaps other factors influence the directionality of addition. The former scenario was first noted by Still and Schneider concurrent with studies in this group on Grignard reactions with \(\alpha \)-alkoxy ketones. Since ketones react relatively sluggishly toward cuprates (vide infra), and 1,2-additions to \(\alpha \)-alkoxy aldehydes give unimpressive results, a variety of \(\beta \)-alkoxy aldehydes have been examined. For these systems, cuprates \(\text{Me}_2\text{CuLi} \) and \(\text{Bu}^2\text{CuLi} \) tend to afford good ratios in favor of \textit{anti} isomers, irrespective of the protecting group on oxygen (equation 2). Organocupper species derived from vinyllithium, \(\text{Le.} (\text{vinyl})\text{CuBu}^2 \) and \((\text{vinyl})_2\text{CuLi} \), act in a similar manner, although the ratios are diminished (8:1 and 3:1, respectively) and the aldehyde is only partially consumed (50% conversion) under the standard reaction conditions in the dialkylcuprate cases. By comparison, 1,2-additions employing either the corresponding organolithium or Grignard reagents are essentially stereorandom.

The initially discouraging outcome with \(\alpha \)-alkoxy aldehydes has been reexamined in detail by Mead and Macdonald. Both acyclic and cyclic \(\alpha,\beta \)-dialkxy aldehydes (9) and (10) served as substrates, and reaction variables including reagents, solvents and temperatures were all considered. Excellent selectivities of the order of 94:6 to 98:2 in favor of the

\[
\text{(12a) were obtained from (9) using}
\]
Organocopper Reagents

Organocopper Reagents

RCu·MgBr₂ (prepared from RMgBr plus CuBr·Me₂S) in Et₂O at -78 °C. The α-chelate model (11) appears to account for the observed course of addition,¹² without interference from β-chelation or Felkin-predicted¹³ modes of attack (equation 3).¹⁴ By contrast, (10) did not show the same levels of stereoselectivity under identical conditions, and in fact for the one case studied (MeCu·MgBr₂) in this report¹¹ a 2:1 ratio was obtained favoring the anti isomer. The corresponding allylcopper-MgBr₂ reagent is also not efficient in terms of product ratio (68:32 syn:anti) with (9),¹¹ nor was it of value in additions to a trialkoxy example (13), where the anti material (14b) actually dominated, albeit slightly (equation 4).¹⁵ Lithium cation containing Gilman cuprates appear to be unpredictable,¹¹ as reaction of Me₂CuLi with (9) was nonselective (47:53 syn:anti), although with (10) an improved 82:18 ratio was obtained. Subsequent use of an MgBr₂-modified lower order reagent on α-alkoxy aldehyde (15), however, did show a preference for syn selectivity of 10:1, (16a):(16b) (equation 5).¹⁶ Reversal of selectivity to give high percentages of anti product (12b) can be effected using an excess (2 equiv.) of an organotitanium reagent RTi(OPr)₃ in THF at ca. -40 °C.¹¹

$$\text{(8)}$$

$$\text{CHO}$$

$$\text{EtO, -78 °C}$$

$$\text{R}^2\text{CuLi}$$

$$\text{RO}$$

$$\text{R'}$$

$$\text{OH}$$

$$\text{R}$$

$$\text{Me}$$

$$\text{Ph}$$

$$\text{Bu}$$

$$\text{>20:1}$$

$$\text{30:1}$$

$$\text{92%}$$

$$\text{90%}$$

$$\text{82%}$$

$$\text{9%}$$

$$\text{99%}$$

$$\text{BnO}$$

$$\text{CHO}$$

$$\text{R}$$

$$\text{Me}$$

$$\text{Bu}$$

$$\text{BnO}$$

$$\text{CHO}$$

$$\text{MgBr}$$

$$\text{Me₂S}$$

$$\text{EtO, -78 °C}$$

$$\text{RCu·MgBr₂}$$

$$\text{(9)}$$

$$\text{(10)}$$

$$\text{(11)}$$

$$\text{(12a)}$$

$$\text{(12b)}$$

$$\text{(13)}$$

$$\text{(14a)}$$

$$\text{(14b)}$$

$$\text{(15)}$$

$$\text{(16a)}$$

$$\text{(16b)}$$

$$\text{R} = \text{Me}$$

$$\text{Bu}$$

$$\text{vinyl}$$

$$\text{Ph}$$

$$\text{83%}$$

$$\text{78%}$$

$$\text{80%}$$

$$\text{69%}$$

$$\text{94:6}$$

$$\text{93:7}$$

$$\text{98:2}$$

$$\text{96:4}$$

$$\text{92%}$$

$$\text{2:1}$$

$$\text{90%}$$

$$\text{17:1}$$

$$\text{-78 °C}$$

$$\text{R} = \text{PhCH₂OCH₂}$$

$$\text{R} = \text{THP, PhCH₂}$$

$$\text{Bu}$$

$$\text{BnO}$$

$$\text{BnO}$$

$$\text{BnO}$$
Further work by Sato on couplings with 2,3-O-isopropylidenglyceraldehyde (10) using the same class of reagents R\text{Cu-MgX}_2 has established the critical role of solvent in determining the diastereomeric outcome.17 Thus, performing the reaction in THF rather than Et\textsubscript{2}O leads to highly selective 1,2-additions producing the syn products in high yields. Alkylcopper reagents give ratios ranging from 10:1 to 16:1 for (17a):(17b) (equation 6), while aryl and vinyl organocopper complexes afford virtually all of the syn diastereomer.17 A cyclic mechanism12 (cf. 18) which suggests attack by R\text{Cu} from the direction shown is consistent with the observed data (equation 7).17 Whether the switch from Et\textsubscript{2}O to THF is affecting the ease with which chelate (18) can form, or whether the impact is related to changes in the state of the reagent (e.g. aggregation), or both, is not clear at this time.

![Equation 6](image)

R = Bu\textsubscript{n}, n-pentyl, n-C\textsubscript{10}H\textsubscript{21}, c-C\textsubscript{6}H\textsubscript{11}
74–89%
10:1 to 16:1

R = Ph, p-ClC\textsubscript{6}H\textsubscript{4}, p-NO\textsubscript{2}C\textsubscript{6}H\textsubscript{4}
80–93%
>99:1

R = CH\textsubscript{2}=C(SiMe\textsubscript{3})
86%
>98:2

![Equation 7](image)

Nonchelation-based 1,2-additions to this same aldehyde, thereby leading to high percentages of the anti product (17b), have been achieved18 using higher order cyanocuprate technology.5 Exposure of CuCN to an equivalent of Grignard reagent (19a) and methyllithium forms (stoichiometrically) the mixed metal cuprate (20),6 which upon introduction of (10) at −78 °C gave (21a) and (22a) with a diastereomer excess (de) of 90% (75% chemical yield). Likewise, the corresponding reaction with (19b) afforded a 73% yield of (21b) and (22b), with a 96% de (Scheme 3). The authors point out that the lower order cuprate analog (23) showed considerably reduced stereoselectivity in its reaction with (10). Thus, by simply choosing the appropriate organocopper or organocuprate reagent, excellent syn or anti diastereoselectivity can be realized. The judicious choice of functional group manipulations in (21a) and (22a) ultimately allows for the conversion of a single starting material (i.e. 10) to carbohydrate derivatives (24), (25) and (26).18

Identical treatment of aldehyde (27), derived from (10) via a three-step sequence (proteodesilylation, protection and ozonolysis), once again successfully produces anti compound (28), this time to the exclusion of the syn diastereomer (29) (Scheme 4).19 Pivotal was the role of the hydroxy-protecting group, as use of benzyl in place of t-butyldimethylsilyl drastically lowered the selectivity. A Felkin–Anh13,20 model is proposed to explain the stereochemical results, relying on the bulkiness of the trialkylsilyloxy moiety to assist in strongly maintaining the conformation shown in (30). Unfortunately, with the epimer of (27), compound (31), only a 2:1 selectivity was found (in 75% yield),19 implying that the stereochemistry of the starting aldehyde is important in determining diastereomeric excesses from these couplings, a finding which corroborates an earlier assessment.9

1,2-Additions to aldehydes possessing methoxycarbonyl groups positioned three atoms removed can be an especially attractive route to 4,5-trans-disubstituted-γ-butyrolactones (32) following acid-catalyzed cyclization.21 The two possible isomers are formed in a >95:5 ratio using Me\textsubscript{2}CuLi or Bu\textsubscript{2}CuLi, in yields between 53–82% (equation 8). The authors point to the Felkin–Anh13,20 model (33), where this conformation assumes R > CH\textsubscript{2}CO\textsubscript{2}Me > H. Since this would not apply to the case of R = Me, a stereoelectronic effect due to the ester group may also be involved. Alternatively, the seven-membered chelate (34), invoked in their titanium(IV)-induced 1,2-additions,21 may also be operative. For aldehydes which lack α-heteroatoms and hence have no avenue for stereocntrol via chelation, enhanced Cram selectivity beyond that normally seen with lower order cuprates (i.e. 3:122 to 7:122) can be
Organocopper Reagents

\[
\text{SiMe}_3 R + \text{CuCN} + \text{MeLi} \xrightarrow{\text{THF}} \text{SiMe}_3 R\text{Cu(CN)LiMgBr}
\]

\(a: R = H\)
\(b: R = \text{n-C}_5\text{H}_{11}\)

\[
\text{R} = \text{SiMe}_2\text{Bu}^i
\quad \text{R} = \text{PhCH}_2
\]

\(82\%\)
\(86\%\)

\(>98:2\)
\(5:1\)

Scheme 3

Scheme 4

\(\text{R} = \text{Me}, \text{Bu}^n\)

\(>95:5\)

(8)
induced using BF₃-modified higher order cuprates. Using aldehyde (35) as a model with cuprate (38), equal amounts of the diastereomers (36) and (37) are formed at -78 °C over a 3 h period (equation 9). In the presence of both 15-crown-5 ether and BF₃·C₂H₅O, however, a quantitative conversion occurs along with an 8:1 to 10:1 ratio of syn and anti isomers. The crown ether effect could be duplicated using an ether-containing, alkynic nontransferable ligand as part of the mixed cuprate (39). In this manner the otherwise room temperature inert reagent (39) reacts with BF₃·C₂H₅O in the pot at -78 °C to return (36) and (37) to the extent of 10:1 to 12:1. The importance of the crown ether effect, either internally placed or by external introduction, is clear from the case of reagent (40), where a 2-thienyl ligand does not possess the same virtues in this regard. The increase in diastereoselectivity has been attributed to an increase in effective size of the cuprate which bears the BF₃ on the nitrile ligand, as well as to the proximity of the crown ether–lithium complex. Hence, regardless of whether perpendicular or nonperpendicular attack prevails, an increase in syn selectivity is expected.

Still better ratios of (36) to (37) have been noted with cuprates (38) and (39) in the presence of trialkylsilyl halides. The presence of Me₃SiCl (2 equiv.) improves the otherwise nonselective reaction of (38) from 1:1 to 7:1 syn:anti, while solutions of cuprate (39) containing excess Me₃SiBr lead to a 19:1 ratio in excellent yield (equation 10). The critical variable in this scheme is the Me₃SiCN produced upon sequestering of the cyano group by the silyl chloride from the higher order cuprate, producing a lower order mixed reagent (41; equation 11). Due to the competing reaction between cuprate (39) and Me₃SiCl and/or Me₃SiCN (which consumes active cuprate, forming 42), an excess of (39) is needed for high conversions. The best combination, therefore, is one which utilizes the lower order cuprate (41; R = Buⁿ) together with both Me₃SiCl and Me₃SiCN in a 1:1 ratio (equation 12). Further improvements in diastereoselectivity may be forthcoming by substituting Me₃SiBr for Me₃SiCl. The manner in which these additives act in concert (both are required for maximum yield and diastereoselectivity) to give rise to the Cram selectivity is presently unclear.
Organocopper Reagents

\[
R\left(\text{MeO}\right)\equiv\text{Cu(CN)Li}_2 + 2\text{Me}_3\text{SiCl} \quad \rightarrow \quad \text{Me}_3\text{SiCl} + \text{Me}_3\text{SiCN} + \text{LiCl} \quad \text{(41)}
\]

\[
\text{RCu(CN)Li} + \text{MeO} \equiv \text{SiMe}_3 + \text{LiCl} \quad \text{(minor)}
\]

\[
\text{Bu}^n\left(\text{MeO}\right)\equiv\text{CuLi} + \text{Me}_3\text{SiCl} + \text{Me}_3\text{SiCN} \quad \rightarrow \quad \text{(36) + (37) 96-100\% 10:1 to 12:1}
\]

\[
\text{2Me}_3\text{SiCl} \quad \rightarrow \quad \text{(36) + (37) 55-80\% 8:1 to 10:1}
\]

\[
\text{2Me}_3\text{SiCN} \quad \rightarrow \quad \text{(36) + (37) 8.5:1}
\]

\[
\text{Me}_3\text{SiCN} \quad \rightarrow \quad \text{(36) + (37) 7:1}
\]

\[
\text{Ph} + \text{Ph} \equiv \text{Cu} \quad \rightarrow \quad \begin{array}{c}
\text{Ph} \equiv \text{OH} \quad 98 \\
\text{Ph} \equiv \text{OH} \quad 48 \\
\text{Ph} \equiv \text{OH} \quad 52
\end{array}
\]

\[
\text{Et}_2\text{O}^{-30{\circ}C} \quad \text{with BF}_3
\]

\[
\text{without BF}_3
\]

\[
\text{syn}-\text{Products are also formed from crotylcopper additions to benzaldehyde in the presence of BF}_3\text{Et}_2\text{O}. \text{Although the observed 98:2 ratio is impressive, the regiochemistry of attack is, unfortunately, relatively nonselective, the } \alpha: \gamma \text{ ratio being ca. 2:1. Without the Lewis acid in the pot, the } \text{syn:anti} \text{ ratio is reduced to essentially 1:1 (equation 13).}
\]

Interestingly, Florio has noted that by replacing the methyl group characteristic of the crotyl system with heterocyclic arrays, as in (43) and (44), these allylic copper reagents afford products of exclusive } \gamma \text{-attack with benzaldehyde.} \text{By contrast, the counterions Li}^+\text{, MgBr}^+, \text{and BEt}_3\text{Li}^+ \text{strongly favor the } \alpha-\text{regioisomers. In view of the fact that even the corresponding lithium species are found to add reversibly, it is proposed (Scheme 5) that the 1,2-addition of (45) is reversible, and ultimately proceeds perhaps through a four-centered transition state (47) to give the thermodynamically preferred products. Since only the (E)-stereochemistry is observed in adduct (48), it is suggested that complete dissociation of (46) does not occur, since some isomerization of the free allylcopper might be expected.}

Metallated allylsilanes have also been examined in terms of the effects of various gegenions on } \alpha-\text{versus } \gamma-\text{additions to aldehydes. Using allylaminosilane (49), Tamao and Ito have shown that transmetal-}

\[
\text{ation of the lithiated intermediate to copper using CuCN (1 equiv.) leads to a } \geq 95\% \text{ preference for } \gamma-\text{ad-}
\]

\[
\text{duct (51; Scheme 6).}\text{ Other metals such as magnesium, zinc and titanium show a strong preference for } \alpha-\text{attack (}>95\%), \text{ which ultimately leads to dienes (50) following Peterson alkenation.}
\]

With silicon containing the diethylamino moiety, product (51) can be transformed to the isopropoxy derivative (52), which is susceptible to oxidation with H_2O_2, thereby converting the carbon–oxygen bond to a carbon–oxygen bond. In tandem with a prior MCPBA epoxidation of vinylsilane (52), a new entry to the 2-deoxy-C-nucleoside skeleton is realized (Scheme 7).

Simpler allylic copper reagents, such as lithium diallylcuprate, behave more like allyllithium in their reactions with unsaturated carbonyl systems, usually affording mainly 1,2-adducts. Attempts by Norman to bypass this mode with added TMS-Cl have been completely unsuccessful. High yields of homoaallylic alcohols are to be expected using this reagent, even on such highly conjugated enals as cinnamaldehyde, or with enolizable ketones (Scheme 8). Recent work from our lab has shown that
allicylcuprates are \(\sigma \)-bound (rather than \(\pi \)-bound) species, and that the allylic ligands are undergoing rapid \(\alpha-\gamma \) exchange at \(-78^\circ\text{C}\).\(^{38}\) In light of these spectral studies, allicylcuprates are clearly unique reagents among all those known in organocopper chemistry,\(^{1,2,39}\) and may find general utility as soft, extremely reactive allylic nucleophiles toward 1,2-addition.

\[
\text{Scheme 8}
\]
Gaining preferential entry to the anti-Cram series via organocopper chemistry has been achieved, as described by Yamamoto, through the ‘surprising’ effects of crown ethers on lower order cuprate 1,2-additions. That is, notwithstanding an early report by Langlois, treatment of an aldehyde such as (35) with a THF or Et₂O solution of Bun₂CuLi containing one equivalent of 18-crown-6 ether gave a 1:4:2 ratio favoring the anti isomer (37; equation 14). The cuprate itself led to a 3:1 mix of syn:anti products (36) and (37), and hence these additives completely reverse the normal direction of diastereoselectivity. Similar, although not as pronounced, results were obtained with higher order dilithium (Bu₅Cu(CN)Liz, 1:2 syn:anti) and lower order magnesium (Me₂CuMgBr, 1:2 syn:anti) cuprates, as well as with aggregates such as Bu₅Cu₃Li₂ (1:4:4 syn:anti).

To account for these anti-Cram selectivities, a radical mechanism is proposed based on the ability of R₂CuLi-crown ether complexes to transfer electrons more easily than R₂CuLi itself (e.g. to dicyclopentyl ketone). If such a mechanism prevails, conformations (53) and (54) are destabilized in the transition state due to a build-up of negative charge on oxygen and the ensuing Me/O⁻ interaction. Moreover, the incoming nucleophile may prefer perpendicular attack, all of which taken together favors (55) to ultimately afford anti products.

The use of BF₃·Et₂O to accentuate the reactivity of otherwise sluggish cuprates toward 1,2-additions is also the subject of a recent report by Knochel. Functionalized lower order cyanocuprates incorporating ZnI⁺ as the gegenion in place of Li⁺ or MgX⁺ readily add to aldehydes at low temperatures provided excess Lewis acid is present (Scheme 9). Isolated yields of products are very good, and the observation that ketones do not react under similar conditions adds an element of chemoselectivity to this method.

The iron tricarbonyl stabilized form of 2-formylbutadiene (56) reacts with various organometallic reagents to produce diastereomeric mixes of products (57a) and (57b). While the trend is such that Grignard reagents are nonselective, organolithiums tend to add predominantly from the (exo) face away from the bulky iron tricarbonyl group, especially when doped with additional LiBr. Interestingly, the
diastereoselectivity undergoes a complete turnabout with Gilman's reagent (equation 15). The explanation behind this reversal may involve initial attack either at the metal center or at a CO ligand, which would account for the reduced yield as several other secondary events could occur.\(^4\) Subsequent intramolecular transfer of the methyl group to the aldehyde from the endo direction gives initially (58), as illustrated in equation (16).

\[
\begin{align*}
\text{RM} & \quad \text{Fe(CO)}_3 \quad \text{Fe(CO)}_3 \\
\text{OHC} & \quad \text{HO} \\
\text{(56)} & \quad \text{(57a)} \quad + \quad \text{(57b)} \\
\end{align*}
\]

\[
\begin{align*}
\text{PhMgBr} & \quad 88\% \\
\text{MeLi/LiBr} & \quad 85\% \\
\text{Me}_2\text{CuLi} & \quad 40\% \\
\end{align*}
\]

\[
\begin{align*}
\text{O} & \quad \text{H} \\
\text{Fe(CO)}_3 & \quad \text{Fe(CO)}_3 \\
\text{(56)} & \quad \text{(58)} \\
\end{align*}
\]

\[
\begin{align*}
\text{Me}_2\text{CuLi} & \quad \text{H}_2\text{O}^+ \\
\end{align*}
\]

1.4.2.2 Reactions of Ketones

Although unhindered aldehydes are quite susceptible to attack by Gilman cuprates,\(^8\) ketones tend to be far more resistant electrophiles. For example, \(\text{Me}_2\text{CuLi}\) requires temperatures around \(-10\) °C before it will consume, to any significant degree, di-\(n\)-butyl ketone,\(^8\) while acetophenone gives only 7% of the 1,2-adduct after 24 h at 0 °C.\(^4\) More reactive species, e.g. \(\text{Bu}_2\text{CuLi}\), are effective above \(-35\) °C,\(^5\) but still a far cry from the \(-90\) °C conditions of aldehydic educts. Not surprisingly, esters are unresponsive at 18 °C towards \(\text{Me}_2\text{CuLi}\), while it takes temperatures in excess of \(-10\) °C for \(\text{Bu}_2\text{CuLi}\) to add in a 1,2-manner.\(^8\) Such is not the case, however, with thioesters. As Anderson showed some years ago, thioesters react with lower order cuprates, including \(\text{Me}_2\text{CuLi}\), even at \(-78\) °C (equation 17).\(^4\) Nonetheless, with respect to ketones, conditions are still sufficiently mild such that organocopper 1,2-additions can and have been used to advantage.

\[
\begin{align*}
\text{Me}_2\text{CuLi} & \quad \text{Et}_2\text{O}, -78 \, ^\circ\text{C} \\
\text{Et}_2\text{O} & \quad 75\% \\
\end{align*}
\]

Most of the early work in this area was done by House\(^4\) in the course of developing a model for cuprate conjugate additions to \(\alpha,\beta\)-unsaturated ketones based on measured (polarographic) reduction potentials.\(^4\) Products of 1,2-addition or reductive elimination (in the case of e.g. 59a, 59b) can form upon exposure to \(\text{Me}_2\text{CuLi}\) in \(\text{Et}_2\text{O}\) depending upon the \(\alpha\)-substitution pattern of the ketone,\(^4\) and whether aryl alkyl\(^4\) or diaryl\(^5\) ketones are involved. Intermediate ketyl is usually produced via single-electron transfer, although with more-hindered cases (e.g. 60) additional \(\text{MeLi}\) is necessary to form the 1,2-adduct.\(^5\) This \(\text{Me}_2\text{CuLi}/\text{MeLi}\) mixture has been applied to the stereoselective synthesis of axial alcohols by Macdonald and Still.\(^5\) Relative to several of the more common sources of methyl anion, such a cuprate/RLi combination\(^5\) reacts predominantly to deliver the alkyl group from the equatorial face (equation 18).\(^5\) The difference between results obtained with RLi or \(\text{R}_2\text{CuLi}\) alone lead to the suggestion that \(\text{R}_2\text{CuLi}_2\) is the species responsible for the observed selectivity. Subsequent work by Ashby, however, who was the first to provide physical evidence for the existence of such higher order
cuprates\(^{53}\) points to the likely complexation between \(\text{R}_2\text{CuLi}\) and the ketone \((\text{e.g.} \ \text{61})\) in a Lewis acid–Lewis base sense.\(^{54}\) The newly activated substrate \(\text{62}\) now reacts rapidly with the \(\text{RLi}\) present, the stereochemistry of addition (favoring \(\text{63a}\) over \(\text{63b}\)) altered with respect to that for \(\text{RLi}\) alone since the hybridization at the complexed carbonyl carbon has changed, as has its steric environment. The effect is most noticeable in \(\text{Et}_2\text{O}\) but erodes considerably in \(\text{THF}\) as this solvent is more effective in competing for coordination sites on lithium.\(^{54}\) Use of \(\text{MeLi/LiClO}_4\) in \(\text{Et}_2\text{O}\) can effect the same results. Yamamoto’s reagent, \(\text{RCu-BF}_3\), also adds to \(\text{61}\), although only a \(\approx\)2:1 ratio of axial to equatorial alcohols is obtained.\(^{55}\)

\[
\begin{align*}
\text{(59) a: } X &= \text{OC(O)Me} \\
\text{b: } X &= \text{Br}
\end{align*}
\]

The \((\text{RLi} + \text{R}_2\text{CuLi})\) mixture was seen by Plumet as a route to the desired tertiary alcohols \(\text{65a}\) via 1,2-addition to 7-oxabicyclo[2.2.1]hept-5-en-2-one \(\text{64}\) from the more-hindered \(\text{endo}\) direction (equation 19).\(^{56}\) The argument relies on complexation of the carbonyl group and/or ether oxygen with \(\text{R}_2\text{CuLi}\), thereby blocking attack from the \(\text{exo}\) face. While \(\text{65a}\) was indeed the major product in all but one case \((\text{i.e. using PhLi/Ph}_2\text{CuLi})\), the supposedly unreactive lower order cuprates themselves gave identical results virtually upon mixing.

\[
\begin{align*}
\text{cuprate (3 equiv.)} & \rightarrow \text{Et}_2\text{O}, 0 ^\circ \text{C, 15 min} & \text{65a} \quad \text{65b} \\
\text{64} & \rightarrow \text{OH} + \text{OH} \\
\text{Cuprate} & \text{Yield (\%)} & \text{Ratio} \\
\text{MeLi} + \text{Me}_2\text{CuLi} & 80 & 6:1 \\
\text{Me}_2\text{CuLi} & 85 & 6:1 \\
\text{Ph}_2\text{CuLi} & 85 & 6:1 \\
\text{PhLi} + \text{Ph}_2\text{CuLi} & 75 & 1:10
\end{align*}
\]

Preferential 1,2-addition of Gilman’s cuprate to a ketone over the usually more facile 1,4-mode occurs in the case of keto enone \(\text{67}\).\(^{57}\) When Goldsmith and Sakano treated \(\text{67}\) with 2 equiv. of \(\text{Me}_2\text{CuLi}\) at \(-78^\circ\) \(\text{C}\) and quenched the reaction with acetic anhydride, enone \(\text{66}\) was formed. At higher temperatures Michael addition begins to take place, although the cuprate also generates products of ketone enolization \(\text{68}\) rather than carbon–carbon bond formation (Scheme 10).

Somewhat similar trends have been found by Marino and Floyd concerning their lower order mixed acrylate cuprates \(\text{69}\) toward \(\alpha,\beta\)-unsaturated ketones.\(^{58}\) In \(\text{Et}_2\text{O}\) at \(-78^\circ\) \(\text{C}\) even simple cyclic enones,
Nonstabilized Carbanion Equivalents

e.g. (70a) and (70b), give tertiary bisallylic alcohols (71) and (72), respectively, in moderate to good yields (equations 20 and 21).

Although lithium cuprates bearing two alkynic ligands notoriously resist transfer of this group, when admixed with an equal amount of the lithium alkynide (i.e. 3RC≡CLi:CuI) exclusive 1,2-addition occurs with cyclic enones. While prior efforts to effect this chemistry in strictly ethereal solvents (dioxane) have been unsuccessful, use of HMPA (~20%) as cosolvent now leads to efficient couplings in these cases. The initial products may be isolated as such, or oxidatively worked up to provide, in the case of (73), the rearranged material (74; Scheme 11).

As part of an effort to assess the extent of neighboring group participation in solvolysis reactions of bicyclic systems of type (76a), use of known ketone (75) as starting material has been examined. Both MeLi and MeMgI give excellent percentages of the undesired isomer (76b). Switching to Me₂CuLi is based on the notion that electron transfer might prevail so as to provide a different stereochemical outcome. Indeed, with this reagent under otherwise identical conditions, net formal attack by methyl from the opposite (desired) direction is realized (equation 22). The direct conversion of a ketone carbonyl to a gem-dimethyl moiety has been accomplished, interestingly enough (cf. reactions of 67 on bicyclic α,β-unsaturated ketones containing a pendant COSR' group, as in (78), (79) and (80) (Scheme 12). In sharp contrast, the O-ester analog of (77) (i.e. 78, X = OEt) leads to a 3:1 mix of tertiary alcohols (77a) and (77b), respectively. Intermediate (82; Scheme 13) is postulated as the precursor to (81), as its formation from (78, X = S) leads to the observed product upon treatment with Me₂CuLi.
Organocopper Reagents

\[\text{organometallic} \xrightarrow{\text{Et}_2\text{O}, 0 \, ^\circ \text{C}} \]

\[\begin{align*}
(75) & \rightarrow (76a) + (76b) \\
\text{MeLi} & : 5:95 \\
\text{MeMgI} & : 10:90 \\
\text{Me}_2\text{CuLi} & : 92:8 \\
\end{align*} \]

\[\text{MeCuLi} \]

\[\begin{align*}
(81) & \xrightarrow{\text{R} = \text{SEt}; X = \text{OEt}} 78\% \\
\end{align*} \]

\[\begin{align*}
(78) R = \text{H}; n = 1 \\
(79) R = \text{Me}; n = 1 \\
(80) R = \text{H}; n = 0 \\
\end{align*} \]

\[\begin{align*}
(82) & \xrightarrow{\text{i. MeLi, } -78 \, ^\circ \text{C}} \xrightarrow{\text{ii. NaH, r.t.}} (81) \xrightarrow{\text{Me}_2\text{CuLi} \text{ (3 equiv.)}} \\
& \text{Et}_2\text{O}, -40 \, ^\circ \text{C}, 2 \, \text{h} \\
\end{align*} \]

Scheme 12

Scheme 13

Transmetallation of a lithium enolate to a copper enolate in Davies' iron carbonyl system \([(\eta^5-\text{C}_5\text{H}_5)\text{Fe(CO)(PPh}_3\text{)COEt}] \) allows for highly stereoselective additions to symmetrical ketones.63 Lithium enolates (83) alone give 2:1 to 6:1 ratios of (84a, \text{RR,SS}) and (84b, \text{RS,SR}), and additives (e.g. \text{SnCl}_2, \text{BF}_3, \text{Et}_2\text{AlCl}, \text{ZnCl}_2) either completely suppress the 1,2-addition or do little to influence the diastereoselectivity. Addition of \text{CuCN} (1 equiv.), however, gives in most cases 10:1 to 60:1 product ratios (Scheme 14).

A deacylation reaction has been effected by a reactive lower order cuprate when its reaction partner has no other pathway available. Thus, Kunieda and Hirobe have found that \((-\)-3-ketopinyl-2-oxazolone (85) undergoes smooth cleavage of the chiral auxiliary to afford the heterocycle (86), subsequent elaboration of which leads to either (2S,3R)-3-hydroxyglutamic acid (87) or (3R,4R)-4-amino-3-hydroxy-6-methylheptanoic acid (88) as their hydrochloride salts (Scheme 15).64

1.4.3 1,2-ADDITIONS TO IMINES, NITRILES AND AMIDES

1.4.3.1 Reactions of Imines

Studies on the additions of organocopper complexes across carbon–nitrogen double bonds are relatively few in number. In terms of stereochemical control in substrates bearing \(\alpha\)- and/or \(\beta\)-chiral centers, the information available is even more sparse. That organocopper reagents do add to Schiff bases was shown
Nonstabilized Carbanion Equivalents

\[
\begin{align*}
\text{Ketone} & \quad \text{Ratio (71a):(71b)} & \quad \text{Yield (\%)} \\
\text{O} & \quad \text{>40:1 (3:1)} & \quad 61 \\
\text{O} & \quad \text{>60:1 (4:1)} & \quad 71 \\
\text{10:1 (2:1)} & \quad 68 \\
\end{align*}
\]

*Ratio from reactions of Li enolates

Scheme 14

Scheme 15

by Akiba, most notably where acidic \(\alpha \)-hydrogens are present in these substrates (equation 23). The low basicity of RCuBF\(_3\), prepared from Cul and RMgX in THF at -30 °C to which is added BF\(_3\)-Et\(_2\)O (1 equiv.), precludes such typical side reactions as metalloenamine formation that is observed with Grignards, the low yields of 1,2-adducts obtained from alkyl- or aryl-lithiums, and reductive dimerization. Moderate to good yields of secondary amines are normally received from unhindered aldimines, although \(\alpha \)-branched aldimines give none of the corresponding products. This limitation can be overcome, however, using Bu\(^+\)\(_2\)CuLi.BF\(_3\) (1 equiv.) or the magnesium analog Bu\(^+\)\(_2\)CuMgBr-BF\(_3\) (equation 24). The Lewis acid is essential for success in these reactions, as no 1,2-addition is to be expected in its absence. Unfortunately, thus far there has been no success in similar reactions of ketimines.

Attempts to induce asymmetry at an imine carbon using homochiral amines to form Schiff bases followed by 1,2-additions with organocopper reagents has not produced a viable method as yet. Yamamoto
Organocopper Reagents

\[
\text{Ph-} \equiv \text{N} \cdot \text{Bu}^n \xrightarrow{\text{Bu}_2^5\text{Cu-BF}_3} \text{Ph-} \equiv \text{N} \cdot \text{Bu}^n
\]

\[
\text{THF, } -70^\circ \text{C to r.t.} \quad 78\%
\]

\[
\text{Bu}_2^5\text{CuLi-BF}_3
\]

\[
\text{THF, } -70^\circ \text{C to r.t.} \quad 63\%
\]

has found that imine (89) reacts with \(\text{Bu}_2^5\text{CuLi-BF}_3\) to give an 82:18 mixture of Cram (90a) and anti-Cram (90b) products (equation 25).\(^6\) Much better results have been obtained using allylic boranes (e.g. allyl-9-BBN), where ratios between 94:6 and 100:0 have been achieved. Of course, these borane-mediated allylations share in the benefits associated with a highly ordered cyclic transition state (91) not involved with the analogous copper chemistry.

\[
\text{Ph-} \equiv \text{N} \cdot \text{R}' \xrightarrow{\text{organometallic}} \text{R} \; \text{NHR}' + \text{R} \; \text{NHR}'
\]

\[(89) \; \text{R}' = \text{CHMePh} \quad (90a) \quad (90b)\]

\[
\text{Bu}_2\text{CuLi-BF}_3 \quad 82:18
\]

\[
\equiv \quad , \text{R}' = \text{Pr}^a \quad 96:4
\]

\[
\equiv \quad , \text{R}' = \text{Pr}^i \quad 100:0
\]

\[
\text{Claremon has briefly looked at the effect of catalytic CuI on the MeLi addition to glyceraldehyde acetoni de N,N-dimethylhydrazone (92).}^{57} \text{While the organolithium itself leads to a preference for the } \text{anti} \text{ product (93a) on the order of 3:1 to 6:1 (depending upon the quantity of MeLi and the temperature), the cuprate reverses the ratio to favor the } \text{syn} \text{ isomer (93b; equation 26). Acyclic } \alpha\text{-alkoxyhydrazones, surprisingly, are untouched by organocopper reagents, while organolithiums give excellent (≥97:3) } \text{anti} \text{ selectivities in high yields (85–98%).}
\]

\[
(92)
\]

\[
\xrightarrow{\text{Me-M}}
\]

\[
\text{MeLi, } -10 \text{ to } 25^\circ \text{C, 95\%} \quad 3:1
\]

\[
\text{MeLi (5 equiv.), } -55^\circ \text{C, 75\%} \quad 6:1
\]

\[
\text{MeLi + CuI (0.1 equiv.), } -20^\circ \text{C, 46\%} \quad 1:3
\]

Ketoximes have been synthesized by Fujisawa using a catalytic CuI/Grignard addition to \(\text{aci}\)-nitroiminium chlorides, formed by \(O\)-acylation of a nitroalkane with \(N,N\)-dimethylchloromethyleniminium
Numerous organomagnesium reagents can be employed, and yields of products resulting from 1,2-addition followed by elimination of DMF range from 61–97% (Scheme 16a).

Copper(I) driven activation of the carbon–nitrogen double bond towards addition by RLi takes place in Et₂O, but not THF, where the solvent of poorer Lewis basicity does not compete for nitrogen complexation (cf. 95). On this basis, Bertz converted the bis(tosylhydrazone) (94), via reaction with ‘Me₃CuLi’, to the gem-dimethylated product (96; Scheme 16b). Although several other pathways associated with the various intermediates are followed to account for the five products observed in varying amounts, this study does suggest that otherwise innocuous, soluble copper(I) species may be useful additives for nucleophilic additions to imines and related functional groups.

1,2-Additions of higher order cuprates to acylimines (97) provide a novel route to α-alkylated amino acid derivatives (98; equation 27). Following generation of amide-stabilized systems (97) via action of singlet molecular oxygen on trisubstituted imidazoles, products (98) can be isolated in 57–75% yields. Since Bu’Li and Bu’Li alone (versus Bu’₂Cu(CN)Li₂ and Bu’₂Cu(CN)Li₂) raise the yields to 86% and 61%, respectively, there seems to be no particular advantage in using a cuprate, at least for the functionality present in (97).

Steglich, however, has found that higher order cuprates are the reagents of choice for additions to acylimines of type (100), generated in situ from α-bromo amino acid derivatives (99). Grignard reagents give modest yields at best, and in some cases fail altogether. Ligands transferred from copper to carbon include primary and tertiary alkyl, phenyl, 1-naphthyl and vinyl, with yields of acylated amino acid esters (101) ranging from 30–83%. With (vinyl)₂Cu(CN)Li₂, the initial adduct (101, R = vinyl), formed at –100 °C, can be easily isomerized to the dehydro derivative (102) simply upon warming the reaction mixture to room temperature (Scheme 17).

Similar studies by O’Donnell using the α-acetoxy function as the leaving group (along with the benzophenone Schiff base in 103), and by Williams on a bromide, come to the same conclusion that R₂Cu(CN)Li₂ affords the best results (equation 28). Reactions of the former substrates are highly
Organocopper Reagents

\[
\begin{align*}
\text{O} & \quad \text{N} \quad \text{C} \quad \text{O} \\
\text{R}' \quad \text{H} & \quad \text{O} \\
\text{OMe} & \quad \text{N} \quad \text{C} \quad \text{O} \\
\text{R} \quad \text{H} & \quad \text{O} \\
\text{(97)} & \quad \text{(98)}
\end{align*}
\]

\[
\begin{align*}
\text{Bu}^2\text{Cu(CN)Li}_2 & \quad 75\% \\
\text{Bu}^2\text{Cu(CN)Li}_2 & \quad 57\% \\
\text{Bu}^4\text{Li} & \quad 86\% \\
\text{Bu}^4\text{Li} & \quad 61\%
\end{align*}
\]

\[
\begin{align*}
\text{O} & \quad \text{Br} \\
\text{Ph} & \quad \text{N} \quad \text{CO}_2\text{Me} \\
\text{H} & \quad \text{(99)}
\end{align*}
\]

\[
\begin{align*}
\text{O} & \quad \text{R} \\
\text{Ph} & \quad \text{N} \quad \text{CO}_2\text{Me} \\
\text{H} & \quad \text{(100)}
\end{align*}
\]

\[
\begin{align*}
\text{O} & \quad \text{R} \\
\text{Ph} & \quad \text{N} \quad \text{CO}_2\text{Me} \\
\text{H} & \quad \text{(101)} \quad \text{R} = \text{vinyl}
\end{align*}
\]

\[
\begin{align*}
\text{O} & \quad \text{R} \\
\text{Ph} & \quad \text{N} \quad \text{CO}_2\text{Me} \\
\text{H} & \quad \text{(102)}
\end{align*}
\]

\[
\begin{align*}
\text{O} & \quad \text{H} \\
\text{Ph} & \quad \text{N} \quad \text{CO}_2\text{Et} \\
\text{Ph} & \quad \text{(103)}
\end{align*}
\]

\[
\begin{align*}
\text{O} & \quad \text{H} \\
\text{Ph} & \quad \text{N} \quad \text{CO}_2\text{Et} \\
\text{Ph} & \quad \text{(104)}
\end{align*}
\]

Scheme 17

Sensitive to several parameters, including solvent, temperature and mode of addition. In THF at ca. \(\leq 5\) °C using inverse addition, moderate to good yields of (104) are obtained. In \(\text{Et}_2\text{O}\), only products of reduction are observed.

\[
\begin{align*}
\text{O} & \quad \text{H} \\
\text{Ph} & \quad \text{N} \quad \text{CO}_2\text{Et} \\
\text{Ph} & \quad \text{(105)}
\end{align*}
\]

\[
\begin{align*}
\text{O} & \quad \text{H} \\
\text{Ph} & \quad \text{N} \quad \text{CO}_2\text{Et} \\
\text{Ph} & \quad \text{(106)}
\end{align*}
\]

\[
\begin{align*}
\text{O} & \quad \text{H} \\
\text{Ph} & \quad \text{N} \quad \text{CO}_2\text{Et} \\
\text{Ph} & \quad \text{(107)}
\end{align*}
\]

\[
\begin{align*}
\text{O} & \quad \text{H} \\
\text{Ph} & \quad \text{N} \quad \text{CO}_2\text{Et} \\
\text{Ph} & \quad \text{(108)}
\end{align*}
\]

Related 1,2-additions to imines in the \(\beta\)-lactam area employing organocuprates have also met with considerable success.\(^{75-79}\) Net substitution reactions, proceeding via intermediate imino derivatives, have been achieved with lithium diallyl- and dialkyl-cuprates on educts such as (105)\(^{76}\) and (106).\(^{77}\) When a stereochemical label is present as in (107)\(^{78}\) and (108),\(^{79}\) the major products reflect \(\text{trans}\) addition to imines (109) and (110), respectively (Scheme 18).

1.4.3.2 Reactions of Nitriles

Until recently, organocopper-mediated 1,2-additions to nitriles of any consequence were unknown. Most of those reported occurred as undesirable pathways in attempted 1,4-additions to \(\alpha,\beta\)-unsaturated substrates. According to the House model, correlating reduction potentials \((E_{\text{red}})\) with substrate reactivity toward lithium cuprates,\(^{47}\) prior complexation of the reagent with doubly bonded oxygen, rather than nitrogen (presumably of either \(sp^2\) or \(sp\) hybridization), is an essential ingredient irrespective of \(E_{\text{red}}\). Hence, attempted reaction of cinnamonitrile (111) with \(\text{Me}_2\text{CuLi}\) failed.\(^{47}\) Years later, reinvestigation of this process with a higher order reagent did slowly produce a product; however, the product turned out to be methyl ketone (112), derived from cuprate 1,2-addition followed by hydrolysis of the intermediate imine (equation 29).\(^{80}\) Nonetheless, this reaction was not synthetically useful, nor was the procedure general, as the \(n\)-butyl analog led to (113) along with several unidentified compounds with the same substrate under similar conditions.
Nonstabilized Carbanion Equivalents

\[
\begin{align*}
\text{(105)} & \quad \text{OAc} \\
\text{(106)} & \quad \text{SO}_2\text{Ph}
\end{align*}
\]

\[
\begin{align*}
\text{Br} & \quad \text{Cl} \\
\text{CuLi} & \quad \xrightarrow{\text{Et}_2\text{O, THF}} \\
\text{Br} & \quad \text{N} \quad \text{H} \\
\text{(107)} & \quad \text{(109)} 75\% \quad \text{95:5}
\end{align*}
\]

\[
\begin{align*}
\text{Ph} & \quad \text{O} \quad \text{N} \\
\text{OAc} & \quad \text{N} \quad \text{H} \\
\text{(108)} & \quad \text{THF, } -30 \text{ to } 0 \text{ °C} \\
\text{R}_2\text{CuLi (3 equiv.)} & \quad \xrightarrow{\text{THF, } -30 \text{ to } 0 \text{ °C}} \\
\text{Ph} & \quad \text{N} \quad \text{H} \\
\text{O} \quad \text{N} \quad \text{R} \\
\text{(109)} & \quad \text{(110)} \\
\text{R} = \text{Bu}^n, 60\% \\
\text{R} = \text{allyl}, 32\%
\end{align*}
\]

Scheme 18

\[
\begin{align*}
\text{(111)} & \quad \xrightarrow{\text{(112) } R = \text{Me} \quad (113) R = \text{Bu}^n} \\
\text{R}_2\text{Cu(CN)Li}_2 & \quad \xrightarrow{\text{Et}_2\text{O, } 0 \text{ °C, } 1 \text{ h}} \\
\text{Ph} & \quad \text{R} \\
\text{+ recovered nitrile}
\end{align*}
\]

(29)

Introduction of an additive, *e.g.* TMS-Cl, did lead to good yields of an isolable product; however, the product was shown by Alexakis to be the dialkylated ketone (*e.g.* 114) in all cases studied (equation 30).\(^8^1\) Even the softer organometallic, Yamamoto’s reagent ‘RCuBF₃’, gave mixtures of mono- and dialkylated ketones with acrylonitrile and 1-cyclohexenecarbonitrile.\(^8^2\)

\[
\begin{align*}
\text{(111)} & \quad \xrightarrow{i, 1.2 \text{ Me}_2\text{CuLi/Me}_3\text{SiCl}} \\
\text{Ph} & \quad \text{R} \\
\text{R} & \quad \text{K} \\
\text{(114) 66%}
\end{align*}
\]

(30)

A procedure which seems to skirt these problems, as described by Hall, invokes a catalytic copper salt in the presence of a Grignard reagent in refluxing THF, which affords good yields of adducts.\(^8^3\) The nature of the copper(I) source is not crucial (CuCl, CuBr, CuI, CuCN were all compared), and depending upon manipulation of the initial product, ketones (from hydrolysis), sterically hindered ketimines (from protonolysis) or primary amines (from reduction) can be realized. Since reagents formed from either a 1:1 RMgX:CuX (*i.e.* RCu-MgX₂) or 2:1 (*i.e.* R₂CuMgX-MgX₂) ratio are clearly not responsible for the chemistry observed, higher order reagents have been suggested as the reactive species (Scheme 19a).

1.4.3.3 Reactions of Amides

Considering the proficiency associated with additions of organolithium and organomagnesium reagents to \(N\)-\(N\)-disubstituted amides as a means of preparing aldehydes and ketones,\(^8^4\) it is not surprising that organocopper reagents are not known to function in this capacity. However, imine formation from amides is another matter, and Feringa has recently demonstrated that lower order lithium and magnesium cuprates can indeed be used with \(N\)-trimethylsilyl-\(N\)-alkylformamides to arrive at this functional group.\(^8^5\)
Organocopper Reagents

\[\text{RMgX} + \text{CuX} \rightarrow \text{R}_3\text{Cu(MgX)}_2^+ \rightarrow \text{R'}\text{CN} \text{Cu}^+ \text{R'} \]

\[\text{RCu} + \text{R'}\text{NH} \rightarrow \text{R'}\text{N}^- \text{Cu}^+ \text{A} \]

Scheme 19a

Treatment of formamide (115) with either LiCuR₂ or catalytic CuBr/RMgBr in THF between -80 °C and -20 °C, followed by aqueous work-up, affords aldimine (116) exclusively of (E)-geometry (equation 31).

By switching to the corresponding N-acrylamide (115, R = Ph), secondary amines (120) are the major products resulting from double 1,2-additions (Scheme 19b). Presumably, the initial 1,2-adduct (117) undergoes a silicon migration from nitrogen to oxygen, the intermediate anion (118) being stabilized by the aromatic ring, which subsequently eliminates to reform imine (119) now susceptible to a second-stage alkylation. This secondary process does not occur with Grignard reagents, and thus arylaldimines (119) are formed in high yields using (115, R = Ph) and various RMgX in THF, without the presence of copper(I) salts.

1.4.4 APPLICATIONS TO NATURAL PRODUCT SYNTHESIS

As alluded to earlier, in general, 1,2-additions by organocopper reagents especially on more complex, multifunctionalized substrates are statistically few in number compared with the ever popular alkylation, 1,4-addition, 2 and carbocupration 86 processes. Nonetheless, the examples which follow provide strong testimony to the value of organocopper intermediates as an alternative means of delivering a carbanion of attenuated reactivity in a controlled fashion.

Development of a novel route to the C-7 to C-13 portion (e.g. 122) of erythronolides A and B (i.e. 121a and 121b) by Burke makes use of a stereoselective addition of an isopropenyllithium-derived cuprate to homochiral aldehyde (123) as a first, key step (Scheme 20). 87 Formation of allylic alcohol (124) as the major product presumably reflects a β chelation controlled pathway (vide supra). 9 Subsequent handling of (124), which included as the second critical step a dioxanone to dihydropyran enolate Claisen rearrangement, 88 produces three key subunits, including (122).
A similar strategy invoking these two valued processes has also been applied to the 'left wing' of the ionophoric antibiotic indanomycin (X-14547A), and more generally as an entry to C-pyranosides (125; Scheme 21). Treatment of aldehyde (126), itself prepared from elaboration of (127), likewise formed from (vinyl)₂CuLi addition to aldehyde (128), with the Gilman reagent formed from CuI-PBu₃ and (E)-propenyllithium in Et₂O at low temperature affords a 24:1 ratio of alcohols (129a) and (129b) in good yield (Scheme 22). Unfortunately (129a) is of the undesired stereochemistry and necessitates an oxidation (PCC, 93%)—reduction (Zn(BH₄)₂, 88%) sequence to arrive at (129b) (>100:1 129b:129a). Related model studies on an isopropyl analog of (126) (cf. 130) show that the cuprate 1,2-addition approach to (131), with or without an intervening oxidation/reduction, could be useful for obtaining dioxanones (132) and (133) as precursors to C-glycosides (134) and (135), respectively. Thus, individual exposure of (132) and (133) to the Ireland ester enolate Claisen reorganization, albeit at abnormally high temperatures (ca. 110°C for 3–4 h, affords the desired materials following aqueous acid hydrolysis and treatment with ethereal diazomethane of the initially formed silyl esters (Scheme 23).

Indanomycin has also been a target of the Boeckman group, which, while employing a quite different approach to the pyran nucleus, begins the route with a cuprate 1,2-addition to the readily available homochiral aldehyde (136). An excellent yield of two diastereomers (137) was obtained, epimeric at the carbon bearing the methyl group brought in as part of the cuprate (equation 32). Thus, as confirmed by ¹H NMR on the Mosher esters of (137), the stereoselectivity of the cuprate addition was >98%.

Stereochemical issues associated with polyene macrolide construction, attention being focused on the chiral centers representing C-34 to C-37 in amphotericin B in particular, have been addressed by McGarvey, wherein 1,2-additions by Me₂CuLi play an important role. L-Aspartic acid can be parlayed into
Organocopper Reagents

(126) (129a) 24:1 undesired:desired

\[
\begin{align*}
\text{Ph} & \quad \text{O} \quad \text{CO}_2\text{Bu}^t \\
\text{H} & \quad \text{O} \quad \text{CO}_2\text{Bu}^t \\
\text{OH} & \quad \text{Ph} \\
\end{align*}
\]

Scheme 22

(130)

\[
\begin{align*}
\text{H} & \quad \text{O} \quad \text{CO}_2\text{Bu}^t \\
\rightarrow & \quad \text{CuLi} \\
\text{Et}_2\text{O}, \text{-35 °C} \\
\rightarrow & \quad \text{H}^+ \\
\text{OH} & \quad \text{CO}_2\text{Bu}^t \\
\end{align*}
\]

Scheme 23

(136) (137) 1:1 mix

heterocyclic thioester (138) by a series of efficient steps. \(\alpha\)-Methylation by either a chelation-controlled or stereoelectronically controlled pathway permits selective generation of the corresponding anti (139a) or syn (139b) isomer, respectively (Scheme 24). While DIBAL reduction of each leads cleanly to the aldehyde product (140), the greater reactivity of thioesters (relative to esters) towards Me\(_2\)CuLi (vide supra)\(^{45}\) permits realization of the ketones (141) without epimerization in either type of transformation. Copper-catalyzed reactions using RMgBr/CuBr-Me\(_2\)S on (138) in THF at \(-23 °C\) are also effective (90%).

With aldehydes (140a) and (140b) in hand, further 1,2-additions of Me\(_2\)CuLi have been examined and found to afford results (Scheme 25) opposite to those obtained with, for example, MeMgBr, in good yields (>85%). The preference is explained on the basis of attack onto the chelated bicyclic compound
Nonstabilized Carbanion Equivalents

L-Aspartic acid → steps →

\[
\text{HO}_2\text{C}-\overset{\text{NH}_2}{\text{C}}-\overset{\text{CO}_2\text{H}}{\text{C}} \quad \text{steps} \quad \overset{\text{Bu}_3\text{S}}{\overset{\text{N}}{\text{O}}} \quad \overset{\text{Ph}}{\text{O}}
\]

(N138)

\[
i, \text{NaN(SiMe}_3\text{)}_2 \quad \text{THF} \quad \overset{\text{Bu}_3\text{S}}{\overset{\text{N}}{\text{O}}} \quad \overset{\text{Ph}}{\text{O}}
\]

ii, MeI →

(139a)

\[
\text{Ph} \quad \text{Ph} \quad \overset{\text{Me}}{\text{Me}} \quad \overset{\text{H}}{\text{H}}
\]

(139b)

Scheme 24

(142) from the axial direction with smaller nucleophiles, while the bulkier cuprate comes in from the bottom to avoid a 1,3-diaxial interaction.

\[
\text{MesCuL.i} \quad \overset{\text{OH}}{\text{OH}} \quad \overset{\text{PhMe}, -78 \degree \text{C} >85\%}{\text{DIBAL}} \quad \overset{\text{Bu}_3\text{S}}{\overset{\text{N}}{\text{O}}} \quad \overset{\text{Ph}}{\text{O}}
\]

(139) a: R¹ = Me; R² = H

b: R¹ = H; R² = Me

Scheme 25

As part of an extensive campaign en route to milbemycin β₃, Smith's synthesis of the 'northern hemisphere' (143) relied on the Ireland ester enolate Claisen rearrangements[^58] of both diastereomers (144a) and (144b).[^93] These esters came about from the additions of isopropenyl nucleophiles to aldehyde (145; equation 33). The corresponding Grignard reagent added to (145) to ultimately give a 2:1 mixture of (144a) and (144b), respectively. Although each product could be utilized as part of their 'divergent-
convergent maneuver", a more direct route to (144b) was sought. While the reaction of (145) with isopropenyllithium occurred in a nondiscriminatory manner, the corresponding lithium cuprate gave a much-improved 7:1 (144b):(144a) ratio (equation 34). Chelation associated with the β-alkoxyspiroketal oxygen(s), as in the six-membered ring state (146), presumably encourages pseudoaxial attack to give mainly (144b).

An alternative route to milbemycin β₃ by Baker relies on a straightforward sequence of steps to obtain homochiral alkyne (150), beginning with (S)-methyl 3-hydroxy-2-methylpropionate (147). A Gilman cuprate delivers the methyl group to (148) in a chelation-controlled manner resulting in the threo (anti)
product (149) in high yield (Scheme 26). Coupling of (150) with lactone (151) to give (152), and further handling to give intermediate (153), leads to a formal total synthesis (Scheme 27).

Polyether antibiotic X-206, one of the first examples of this venerable class of natural products discovered close to four decades ago, has recently yielded to total synthesis by Evans and coworkers. Assemblage of the left half portion of the ionophore (i.e. 154) requires the adjoining of two substantial homochiral pieces (155) and (156) such that the (1R)-configuration is generated as the C(11)—C(12) bond is made. Use of the organolithium, itself derived from (156), affords mainly the (1S)-isomer by a factor of 2:1. Incorporation of the organolithium into the higher order cuprate (157), however, leads to clean coupling of these segments in not only excellent isolated yield, but with a 49:1 preference for the desired anti relationship found in (158; equation 35).

As part of an iterative sequence involving successive sigmatropic rearrangements with intervening chelation-controlled additions of vinyl nucleophiles, Kallmerten and Balestra have developed an effective combination for acyclic stereocontrol, successfully applied to the synthesis of the tocopherol side chain (159). 1,2-Addition of a MgBr\textsubscript{2}-Et\textsubscript{2}O-modified (E)-1-propenyllithium-derived reagent to
aldehyde (160) in Et$_2$O at -78 °C gives a (161a):(161b) ratio in excess of 50:1 (equation 36). Subsequent acylation to (162) sets the stage for the glycolate Claisen rearrangement99 of the preformed silyl enol ether, the product from which is taken on to (+)-(159).

![Organocopper Reagents](image)

In order to arrive at (±)-methyl nonactate (164), Baldwin envisioned the addition of a soft organometallic source of methyl anion to aldehyde (163), the stereochemical outcome from which would be regent dependent (equation 37).100 Although earlier work by Ireland had shown that using Me$_2$CuLi in a hydrocarbon medium on (163) is not selective,101,102 the potential for controlled delivery of 'Me-' is predicated on related work by White,103 which focussed on reduction of the corresponding methyl ketone. Thus, changing solvents to Et$_2$O does indeed alter the 1:1 ratio to 4.5:1 with Me$_2$CuLi, although the 8-epimethyl nonactate predominates. The desired material (164) is best achieved using 'MeTiCl$_3'$,10b prepared from TiCl$_4$/Me$_2$Zn in CH$_2$Cl$_2$.

Sato and coworkers have applied the organocopper methodology developed earlier by their group (\textit{vide supra})17 to a multigram scale preparation of a commonly used intermediate (166) for the synthesis of leukotriene A$_4$ (LTA$_4$).104 Hydromagnesiati~105 of silylalkyne (167), catalyzed by titanocene dichloride, is followed by transmetallation with CuI-Me$_2$S to give the vinylcopper species (168; Scheme 28). Addition of (R)-glyceraldehyde acetonide leads to the expected syn product (169) in 85% overall yield from (167). The diastereoselectivity is better than 40:1 (\textit{syn}:\textit{anti}), with allylic alcohol (169) well suited for Sharpless epoxidation, which establishes C-5 and C-6 in (166) and eventually in LTA$_4$. The same protocol can be used to synthesize other homochiral epoxy aldehydes in quantity.104

Analogs of leukotriene B$_4$ (LTB$_4$, 170) have aroused interest based on the potent chemotactic properties of LTB$_4$ itself. The disconnected C-6, C-7 (Z)-alkene in (170) has been viewed by Taylor, in alkylic form, as a ready means of attaching two residues via a carbocupration/1,2-addition scheme (equation 38).106 Extremely high (Z)-stereoselectivity was anticipated for the former step, as discussed by Normant and Alexakis,107 although trapping of the so-formed vinylcopper complex by an aldehyde was on less secure ground. Model studies showed that lower order lithium cuprates were the most efficacious towards addition across alkynes, while reagents such as RCu-ligand (\textit{e.g.} ligand = Me$_2$S, LiBr or MgBr$_2$) gave
none of the desired product. The same negative results were found with higher order cuprates, although this is likely to be due to their greater basicity and precludes their use (as a source of carbon nucleophiles) in the presence of alkyneic protons. Thus, carbocupration of acetylene with mixed cuprate (171) afforded vinylcuprate (172), the formation of which required unusually high temperatures. The 1,2-addition to ester aldehyde (173) was best effected in the presence of BF₃·Et₂O, thereby giving (174), saponification of which gave the hexahydro LTB₄ analog (175; Scheme 29). A double carbocupration,¹⁰⁸ starting with (C₁₁H₂₃)₂CuLi and excess acetylene, and thence 1,2-addition to (173), ultimately led to the tetrahydro LTB₄ analog (176; Scheme 30). Both (175) and (176) can also be converted to their corresponding lactones.

![Scheme 28](image)

![Scheme 29](image)

![Scheme 30](image)
Also within the domain of arachidonic acid derivatives, a 5-exo-dig cyclization of an α-silyl radical onto an alkyne, followed by proteodesilylation, was applied to a synthesis of isocarbacyclin (177), a carbocyclic analog of the potent antihypertensive and platelet aggregation inhibitor prostacyclin (178). The necessary functional group array was set in place by Noyori using a 1,2-addition of a higher order silylcuprate to aldehyde (179; Scheme 31). A mix of alcohols (180) was obtained in good yield, the unspecified ratio being of no consequence. Radical-initiated ring closure, employing either a photochemical step or the action of hot tributyltin hydride on the derived xanthate, formed the bicyclic network (181). Conversion to (177) was subsequently achieved by cleavage of the silyl–carbon bond with TFA, followed by deblocking, isomerization of the exo- to the endo-alkene and saponification.

Tricyclic ketone (183), a photoproduct from the intramolecular [2 + 2] cycloaddition of silyl enol ether (182), was found by Pattenden and Teague to add methyl stereoselectivity through the agency of Me2CuLi/MeLi. The process occurs in Et2O at -68 °C following the Macdonald and Still prescription, the product (184) from which undergoes facile acid-induced ring expansion to cyclooctenone (185). Wittig methylenation, isomerization and Lewis acid promoted transannular cyclization ultimately produces (±)-pentalenene (186; Scheme 32).

In the β-lactam area, Grieco et al. have applied their development of substituted bicyclo[2.2.1]heptanes to a synthesis of the thienamycin precursor (188a), embedded in which are three contiguous asymmetric centers corresponding to C-5, C-6 and C-8 in the natural product (190). Readily obtained bromo aldehyde (187), upon treatment with the MeLi-derived higher order cuprate Me2Cu(CN)Li2 in
Et₂O at reduced temperatures, gave in good yield (79%) diastereomer (188a) together with 8% of the undesired epimer (188b). By contrast, MeLi alone showed no preference in its 1,2-addition to (187). Further processing of (188a) eventually led to β-keto ester (189), a known intermediate en route to (190; Scheme 33).

In search of a practical route to diastereomeric lactones (193) and (194), potential agents for mosquito control needed by entomologists for evaluation, acrolein dimer (191) was deemed as the logical starting point.¹¹⁴ For compound (193), the major component of the oviposition attractant pheromone of the mosquito *Culex pipiens fatigans*, the required stereorelationship can be constructed by the initial action of a Grignard reagent on (191) at -20 °C in THF doped with HMPA, which minimizes chelation-enhanced threo (syn) selectivity, thereby favoring (192a).⁹,¹¹ TMEDA was not an acceptable substitute for HMPA. Addition of CuI to the Grignard, which according to Sato¹⁷ forms the organocopper complex RCuMgBrI, proceeds through a Cram cyclic transition state¹² to arrive at a (192a):(192b) mix now rich in the syn isomer (equation 39). Separation of these 1,2-adducts and subsequent acylation-PCC oxidation culminated this brief approach by Jefford, easily amenable to scale-up (Scheme 34).

Singh and Oehlschlager have used the same starting material (i.e. 191) to study the 1,2-addition of ethylmetallic reagents, in this case with an eye toward both (racemic) exo- and endo-brevisomic.¹¹⁵ The erythro (anti) product (196b) can be obtained with the EtLi/BF₃·Et₂O combination, presumably due to a strong preference for an anti configuration of the polar groups as in (197) once the Lewis acid complexation has occurred.¹¹⁶ Ethylcopper reagents reversed the outcome, giving an ca. 89:11 split in favor of (196a), presumably via (195; Scheme 35), a result comparable to that obtained by Jefford (vide supra).¹¹⁴
Both exo- and endo-brevicomin (vide infra), in optically active form, have been synthesized by elaboration of \(\alpha \)-alkoxy aldehyde (201).117 Condensation of the 1-trimethylsilylvinylcopper reagent (198) with the \((R)\)-glyceraldehyde derivative (199) gave syn product (200) in \(>85\% \) yield with over \(98\% \) diastereoselectivity (Scheme 36). Hydroxy protection, hydrolysis and periodate cleavage of the vic-diol converted (200) to aldehyde (201) in \(50\text{-}65\% \) overall yields for the two steps.
Nonstabilized Carbanion Equivalents

\[
\text{SiMe}_3 \text{Cu}^+ \text{MgBr} \quad + \quad \begin{array}{c}
\text{OHC} \\
\text{Me}_3\text{SiO}
\end{array}
\xrightarrow{\text{THF, Me}_2\text{S}}
\begin{array}{c}
\text{SiMe}_3 \\
\text{CHO}
\end{array}
\]

(198) (199) (200)

\[
\begin{array}{c}
\text{OR} \\
\text{CHO}
\end{array}
\xrightarrow{\text{(+)-exo-Brevicomin}}
\begin{array}{c}
\text{SiMe}_3 \\
\text{OR}
\end{array}
\xrightarrow{\text{(+)-endo-Brevicomin}}
\]

(201)

Scheme 36

1.4.5 REFERENCES

Organocopper Reagents

Nonstabilized Carbanion Equivalents

1.5
Organotitanium and Organozirconium Reagents

CARLA FERRERI, GIOVANNI PALUMBO and ROMUALDO CAPUUTO
Università di Napoli, Italy

1.5.1 INTRODUCTION

In 1861, the first example of an organotitanium reagent was reported. Nevertheless, more than ninety years were necessary before the preparation of the stable compound, phenyltitanium isopropoxide, was achieved. Since then, a tremendous number of organotitanium derivatives have been synthesized in which the metal atom bears a broad variety of ligands sharing both σ- and π-bonds. The stable cyclopentadienyltitanium (titanocene) derivatives became popular following their introduction by Ziegler as reagents for alkene polymerization.

Overcoming the theory that transition metal derivatives could be stable only with a fully coordinated metal atom (18-electron rule), finally opened the route toward the modern application of organotitanium
and, later on, organozirconium reagents in synthesis. This was facilitated by the work that had already been performed by inorganic chemists in devising simple and high-yielding methods for the preparation of organo-titanium and -zirconium derivatives. This chapter will not deal with many of the synthetic applications of these reagents, but rather will focus on organo-titanium and -zirconium additions to C=π-bonds and their advantages in comparison to other organometallic reagents in terms of chemo-, regio-, diastereo- and enantio-selectivity.

1.5.2 ORGANOTITANIUM AND ORGANOZIRCONIUM NUCLEOPHILES: A GENERAL VIEW

1.5.2.1 Chemical Properties and Comparison with Traditional Organometallic Reagents

The organo-titanium and -zirconium derivatives that will be considered here have the general formula RₙMX₄₋ₙ. The compounds consist of two distinct parts, namely the ‘R’ nucleophilic moiety and the ‘X’ ligand system. Considerable stability, selectivity and ease of handling are their most outstanding features as reagents in organic synthesis.

With regard to the ‘R’ nucleophilic moiety, simple linear alkyl residues should generally be avoided, due to their tendency to decompose through various processes, such as reductive elimination (P-H abstraction; equation 1), and oxidative dimerization (equation 2). Attention must be paid when designing an efficient Ti or Zr nucleophile to minimize decomposition. This is achieved by using organic residues which either do not possess β-hydrogens (e.g. methyl, phenyl, benzyl, neopentyl, 1-norbornyl, trimethylsilylmethyl, etc.) or are sufficiently hindered that they do not undergo hydrogen abstraction readily.

\[[\text{M}]^n \overset{R}{\longrightarrow} [\text{M}]^{n-2} + \overset{R}{\text{R}} + \overset{\text{H}^+}{\text{H}} \] \hspace{1cm} (1)

The ‘X’ ligands also influence the stability of the above reagents, primarily as a function of the stability of the bonds (σ or π) between the metal and the bond-forming atom. The most commonly used are alkoxy groups, N,N-dialkylaminyl groups, chlorine atoms or even mixed chlorine and alkoxy groups. Due to its major ability to donate electrons, nitrogen stabilizes Ti and Zr reagents more than oxygen and, consequently, much more than chlorine.

Considering the energy of the M—X bonds for various MX₄ compounds, the bond strengths for Ti, Zr, and Hf decrease in the sequence M—O > M—Cl > M—N > M—C. The M—C bond strength in Ti⁴ and Zr⁴ compounds are comparable with that of other metal–carbon bonds, whereas the rather unusual strength of the M—O bond \(E(\text{Ti—O}) = 115 \text{ kcal mol}^{-1}; E(\text{Zr—O}) = 132 \text{ kcal mol}^{-1} \) serves as a driving force for those reactions involving oxygen coordination by the metal atom. The Ti—O bond is fairly short among the metal–oxygen bonds (compare e.g. Li—O, Mg—O and Zr—O; Table 1), a fact relevant to certain stereoselective reactions that will be discussed later (Section 1.5.3.1.4).

<table>
<thead>
<tr>
<th>Metal</th>
<th>Metal—carbon (Å)</th>
<th>Bond length</th>
<th>Metal—oxygen (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti</td>
<td>-2.10</td>
<td>1.70—1.90</td>
<td></td>
</tr>
<tr>
<td>Zr</td>
<td>-2.20</td>
<td>2.10—2.15</td>
<td></td>
</tr>
<tr>
<td>Li</td>
<td>-2.00</td>
<td>1.90—2.00</td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>-2.00</td>
<td>2.00—2.13</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1.5—1.6</td>
<td>1.36—1.48</td>
<td></td>
</tr>
</tbody>
</table>

Stability aside, the nature of the ligand system determines to some extent the Lewis acid character of Ti⁴ and Zr⁴ reagents. As expected, the higher the tendency of the bond-forming atom to share its elec-
trons with the metal, the lower the acidity of the complex (e.g. Cl > OR > NR₂). This trend can be exploited to modulate the acidity of TiIV and ZrIV reagents by replacing, for instance in the titanium series, chlorine with alkoxy groups so that their acidity decreases in the sequence RTiCl₃ > RTiCl₂(OR') > RTiCl(OR')₂ > RTi(OR')₃.¹²

One advantage of organo-titanium and -zirconium reagents, relative to more traditional organometallic compounds in the field of nucleophilic additions, is their stability at fairly high temperature (from 0 °C to r.t.) for a reasonably long time. For example, MeTi(OPr')₃ is a yellow compound, isolated and purified by distillation at 50 °C under reduced pressure,¹³,¹⁴ and the purple-red crystalline compound MeTiCl₃ (m.p. ~29 °C) can be stored at low temperature for several weeks.¹⁵ They are not strongly toxic and do not afford toxic by-products.⁹ Easy to handle, they require very simple work-up that includes slightly acidic conditions to avoid TiO₂-containing emulsions.¹⁶

Undoubtedly, the success of organo-titanium and -zirconium complexes as reagents for nucleophilic additions lies in their chemical properties, the most characteristic being chemoselectivity. Grignard reagents, organolithium compounds, and other resonance-stabilized carbanions often react more or less unselectively if two or more target functions are present in the substrate molecule. Even with other more recently reported¹⁷ organometallic reagents, e.g. organo-tin, -cadmium and -chromium derivatives, such selectivity is not guaranteed. On the contrary, titanium and zirconium derivatives are capable of discriminating, for example, between an aldehyde and a ketone. More generally speaking, these reagents discriminate between similar functionalities that differ only slightly in their steric and/or electronic environment (Section 1.5.3.1.1). Furthermore, they tolerate several functional groups such as epoxides, ethers, carboxylic acid esters and thioesters, nitriles and alkyl halides.¹⁶ Being less basic than other organometallic reagents, they can be safely utilized for nucleophilic addition to enolizable carbonyl compounds (Section 1.5.3.1.2). 1,2-Addition to α,β-unsaturated carbonyl compounds (Section 1.5.3.1.5), gem-dialkylation (Section 1.5.5.1) and one-step amination/alkylation of the carbonyl group (Section 1.5.5.2), represent a few examples of reactions that are more easily realized due to advances in TiIV and ZrIV chemistry.

Ethyl levulinate (1) is reported to afford the lactone (2) when treated with methyltitanium triisopropoxide (equation 3).¹⁸ In cases like this, in order to prevent lactonization, it may be expedient to use organozirconium derivatives that have a generally milder reactivity.

![Equation 3](Image)

It is possible that the higher chemoselectivity of TiIV and ZrIV reagents relative to the classical carbanions may be due to lower reaction rates. However, this cannot be the only reason, and it is likely that chemoselectivity is dependent on the nature of the C—M bond, which in the case of TiIV and ZrIV is much less polarized than the analogous C—Li or C—Mg bonds.¹⁶ Chemoselectivity is only one of the features of organo-titanium and -zirconium reagents, diastereoselectivity being a second and even more important one. The topic will be broadly covered in Sections 1.5.3.1.3 and 1.5.3.1.4 of this chapter, but as a quick illustration it is useful to compare the results of earlier experiments by Cram et al.¹⁹,²⁰ in the addition of either Grignard reagents or alkyllithium compounds to 2-phenylpropanal (3), and results from the addition of methyltitanium triisopropoxide to the same aldehyde (equation 4).²¹ The diastereomeric products (4) and (5) are obtained, in the first instance, in about a 2:1 ratio versus the 9:1 ratio achieved by the titanium reagent.

![Equation 4](Image)

Enantioselective addition has also been attempted with chirally modified Li or Mg reagents,²² but only TiIV and ZrIV derivatives have provided efficient tools for this purpose, due to the stable bond between chiral ligands and metal. In other cases, dissociation leads to a reduced efficacy of the chiral system.
1.5.2.2 General Preparation of Principal Organotitanium and Organozirconium Derivatives

Among the TiIV and ZrIV complexes that are most commonly used for carbonyl nucleophilic additions, monoalkyl and monoaryl derivatives with alkoxylic ligand systems have the longest history of synthetic application.9 This is likely due to the ease with which they are prepared from the readily available and inexpensive tetraalkoxy compounds (6). These, when treated with the tetrachloride of the same metal (equation 5), afford monochlorotrialkoxy metal derivatives (7), which in turn can be either alkylated or arylated by numerous lithium or magnesium derivatives or by zinc, cadmium, lead and aluminum derivatives,9 in various solvents, including THF, Et\textsubscript{2}O, CH\textsubscript{2}Cl\textsubscript{2}, alkanes, etc. Monochlorotrialkoxytitanium compounds (9) are also reported to undergo ligand exchange by treatment with alcohols (equation 6),24 a reaction which can be used to modulate the chemical properties of the reagent, as was discussed in the previous section.

\[
\begin{align*}
3 \text{M(OR)}_4 & \xrightarrow{\text{MCl}} 4 \text{ClM(OR)}_3 \\
\text{(6)} & \xrightarrow{\text{R}^1\text{Li}} \text{R}^1\text{M(OR)}_3 \\
\text{(5)} & \xrightarrow{\text{R}^1\text{MgX}} \text{(7)} \\
\text{ClTi(OR)}_3 & \xrightarrow{\text{R}^2\text{OH}} \text{ClTi(OR)}^2_3 \\
\text{(9)} & \xrightarrow{\text{R}^1\text{OH}} \text{(10)}
\end{align*}
\]

Monoalkyl TiIV and ZrIV reagents having N,N-dialkylamino ligand systems (12) can be prepared from the corresponding tetra(N,N-dialkylamino) metal derivatives (11),23 according to the procedure reported above for the alkoxylic ligand systems (equation 7). Recently, a large scale preparation of both tetra(N,N-diethylamino)- and chlorotris(N,N-diethylamino)-titanium(IV) compounds (13) and (14) was devised,25 starting from lithium N,N-diethylamide and TiCl\textsubscript{4} (Scheme 1).

\[
\begin{align*}
3 \text{M(NR)}_2 & \xrightarrow{\text{MX}_4} 4 \text{XM(NR)}_2 \\
\text{(11)} & \xrightarrow{\text{R}^1\text{Li}} 4 \text{R}^1\text{M(NR)}_2 \\
\text{R} = \text{Me, Et; } X = \text{Br, Cl} \\
\text{(12)} & \\
\text{Ti(NEt)}_2 & \xrightarrow{\text{TiCl}_4(0.25 \text{ mol equiv.})} \text{LiNEt}_2 \\
\text{(13)} & \xrightarrow{\text{TiCl}_4(0.33 \text{ mol equiv.})} \text{ClTi(NEt)}_2 \\
\text{(14)} &
\end{align*}
\]

Scheme 1

When the ligand system consists of chlorine atoms, monoalkyl- and monoaryl-titanium(IV) compounds are readily made from TiCl\textsubscript{4} by a chlorine atom replacement. The parent compound in this series, MeTiCl\textsubscript{3}, is made conveniently from the reaction of TiCl\textsubscript{4} and dimethylzinc without the use of ethereal solvents,26 the preparation being carried out in n-pentane or dichloromethane. Other methylating species can be used, such as MeMgBr, MeLi and MeAlCl\textsubscript{2}. When MeLi is used in diethyl ether, an equilibrium takes place between different complexation states of Ti in the resulting MeTiCl\textsubscript{3} with the solvent (equation 8).27 Transmetallation from organotin compounds like (15; equation 9) has also been utilized to make trichlorotitanium compounds.28

\[
\begin{align*}
\text{TiCl}_4 & \xrightarrow{\text{MeLi}} \text{Cl} \xrightarrow{\text{Et}_2\text{O}} \text{MeTiCl}_3 \\
\text{(8)} & \xrightarrow{\text{Me} \text{TiCl}_3} \\
\end{align*}
\]

It is not necessary that the ligands around the metal be homogeneous, in fact mixed ligand systems can be very useful in tuning the chemical properties of the metal complexes. Their preparation is generally effected by ligand interchange, \textit{i.e.} by mixing different TiIV species in the proper stoichiometric ratio, as is shown in equation (10) for the preparation of MeTi(OPrt)Cl\textsubscript{2} (16).13
Organotitanium and Organozirconium Reagents

Dialkyl and diaryl TiIV and ZrIV derivatives (18) are somewhat less stable than their monosubstituted analogs. They are generally prepared by alkylation of the corresponding dichloro compounds (17; equation 11).13,29,30 The dichloro derivatives themselves can be prepared in turn by reaction of tetrachlorides with the required amount of organometallic species. For example, zirconocene dichloride is prepared by treating zirconium(IV) chloride with cyclopentadienylsodium.31

Alkenyl and dienyl groups can be present in TiIV and ZrIV complexes as well. Vinyltitanium compounds cannot be exploited for nucleophilic additions, however, due to their propensity to undergo oxidative coupling reactions,32 likewise transition metal derivatives. Vinylzirconium compounds (20) can be prepared from alkynes (hydrozirconation; equation 12) by action of zirconium derivatives like (19).33

Allyltitanium complexes (22) readily add to carbonyl compounds with high regio- and stereo-selection. They are prepared by reaction of a chlorotitanium complex (21) with an allyl-magnesium or -lithium derivative (equation 13).34 Some of these unsaturated TiIV complexes, like (23)–(25) in Scheme 2, obtained from allylmagnesium halides or allyllithium by reaction with titanium tetraisopropoxide or titanium tetramides,35 are known as ‘titanium ate complexes’. The structure of these ate complexes, at least from a formal point of view, can be written with a pentacoordinate Ti atom. Some ate complexes have synthetic interest, as is the case of (allyl)Ti(OPr)₃MgBr which shows sharply enhanced selectivity towards aldehydes in comparison with the simple (allyl)Ti(OPr)₃.16

Crotyl-titanocene and -zirconocene like (31) are readily prepared from the corresponding magnesium and lithium compounds [regardless of (E)- or (Z)-configuration] by reaction with either dichlorobis(cyclopentadienyl)titanium or its zirconium analog (equation 14).36,37 Likewise, crotylmagnesium derivatives react with other TiIV compounds [e.g. (14), (26) and (27); Scheme 3] and afford crotyltitanium complexes [e.g. (28), (29) and (30), respectively] in a stereoconvergent manner, affording solely the (E)-isomer. Finally, some other allylic reagents having a trivalent titanium atom are interesting for their application in synthesis.38 The parent allyltitanium(III) derivative (33) is prepared by reaction of dichlorobis(cyclopentadienyl)titanium (32) and allylmagnesium bromide (equation 15).
1.5.2.3 Titanium versus Zirconium Reactivity

Titanium and zirconium derivatives are in a certain sense complementary as reagents for carbonyl nucleophilic addition. Considering the relative position of both Ti and Zr in the periodic table, the latter is expected to share longer bonds with ligands and with the nucleophilic moiety of the reagent. As a consequence, chelation, when involved, leads to complexes of different structure and thermodynamic stability, factors which directly affect the course of the reaction. Even more important, the lower tendency towards reduction of Zr relative to Ti accounts for the stability of zirconium derivatives at room temperature. Vinylzirconium compounds can be prepared and used as such, whereas their titanium analogs readily undergo oxidative coupling with concomitant reduction of the metal. Enhanced stability has also been verified for those zirconium complexes having branched alkyl groups, that in the case of titanium are quite unstable.

Generally speaking, the preparations of TiIV and ZrIV reagents are quite similar, as was discussed in the previous section, but the ZrIV starting materials, like Zr(OR)₄, are generally two or three times more expensive than the corresponding TiIV compounds and their reactions are slower. This is a characteristic of ZrIV species relative to their TiIV counterparts that is verified also by the relative rates of nucleophilic addition to carbonyl compounds. The slower reaction rates can lead to side reactions: for example, alkylzirconium trialkoxides will reduce carbonyl compounds to the corresponding carbinol in a Meerwein–Ponndorf–Verley fashion.
With these few exceptions, ZrIV reagents perform nucleophilic additions to carbonyls with the same selectivity features as their titanium analogs, under milder conditions. Moreover, due to their lower basicity, they are generally more suitable to interact with easily enolizable carbonyl compounds. The reaction of (34) with MeZr(OBut)$_3$ to afford (35) serves to illustrate how versatile these reagents are in organic synthesis (equation 16).

\[
\text{(34)} \quad \text{MeZr(OBut)$_3$} \quad \text{(35)}
\]

1.5.3 CARBONYL ADDITION REACTIONS

1.5.3.1 Alkyl and Aryl Titanium and Zirconium Reagents

1.5.3.1.1 Addition to simple ketones and aldehydes: chemoselectivity

Methyltitanium triisopropoxide is probably the oldest and most widely studied organotitanium reagent for nucleophilic addition to carbonyls. Its reaction with aldehydes and ketones (equation 17) is comparable to the reaction of more traditional organometallic reagents, like methylmagnesium halides or methyllithium, with carbonyl compounds. The already cited stability of MeTi(OPrt)$_3$ and its solubility in various solvents would be sufficient to recommend it as a nucleophilic addition reagent but, more importantly, a wide range of functionalities (e.g. nitro, cyano, chloromethyl and thiol groups), as shown in Table 2, are tolerated under the reaction conditions. It is also noteworthy to mention a one-pot procedure that allows the preparation of the reagent in situ. A few undesired side reactions of methyl- and other alkyl-titanium triisopropoxides are known which are a result of transfer of the isopropoxy rather than the alkyl group. In fact, the reaction with carboxylic acid esters and with acid chlorides leads to ester interchange and esterification, respectively.

\[
\begin{align*}
R^1 & \quad R^2 \\
\text{ MeTi(OPrt)$_3$} & \quad \text{OH} \\
R^1 = \text{or} & \quad R^2 = H, \text{alkyl or aryl}
\end{align*}
\]

Aldehydes react very fast and at low temperature (between -70 and 0 °C), whereas ketones require higher temperatures and longer reaction times (Tables 2 and 3). In cross experiments performed using benzaldehyde and acetophenone with MeTi(OPrt)$_3$ in 1:1:1 molar ratios, only the aldehyde was consumed, leading almost quantitatively to its corresponding methylphenylcarbinol. Such features are fully exploited in the synthesis of macrocyclic lactones like (36; equation 18).

\[
\text{O} \quad \text{NO}_2 \quad \text{MeTi(OPrt)$_3$} \quad \text{THF} \quad \text{O} \quad \text{NO}_2
\]

The chemoselectivity of organo-titanium and -zirconium reagents is practically unaffected by the nature of the nucleophilic moiety of their molecule. Although aldehydes always react much faster than ketones, the addition rates sometimes differ significantly, depending upon steric and electronic properties.
Table 2: Carbonyl Addition Reactions of Various Alkyl- and Aryl-titanium(IV) Nucleophiles

<table>
<thead>
<tr>
<th>Carbonyl compound</th>
<th>Nucleophile</th>
<th>Solvent</th>
<th>Time (h)</th>
<th>Temperature (°C)</th>
<th>Product</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,2-Dimethylpropanal</td>
<td>MeTi(OPr)₃</td>
<td>Et₂O</td>
<td>1.5</td>
<td>0</td>
<td>3,3-Dimethyl-2-butanol</td>
<td>60</td>
</tr>
<tr>
<td>3-Methylbutanal</td>
<td>MeTi(OPr)₃</td>
<td>CH₂Cl₂</td>
<td>0.5</td>
<td>0</td>
<td>4-Methyl-2-pentanol</td>
<td>— (90)</td>
</tr>
<tr>
<td>Heptanal</td>
<td>MeTi(OPr)₃</td>
<td>THF</td>
<td>4.0</td>
<td>0</td>
<td>2-Octanol</td>
<td>97</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>MeTi(OPr)₃</td>
<td>Et₂O</td>
<td>0.2</td>
<td>0</td>
<td>1-Phenylenethanol</td>
<td>92</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>MeTi(OPr)₃</td>
<td>Et₂O</td>
<td>0.2</td>
<td>0</td>
<td>1-Phenylenethanol</td>
<td>92</td>
</tr>
<tr>
<td>4-Nitrobenzaldehyde</td>
<td>MeTi(OPr)₃</td>
<td>Et₂O</td>
<td>4.0</td>
<td>0</td>
<td>1-(4-Nitrophenyl)ethanol</td>
<td>95</td>
</tr>
<tr>
<td>Cinamaldehyde</td>
<td>MeTi(OPr)₃</td>
<td>Et₂O</td>
<td>0.2</td>
<td>0</td>
<td>4-Phenyl-3-buten-2-ol</td>
<td>91</td>
</tr>
<tr>
<td>Phenylacetaldheyde</td>
<td>MeTi(OPr)₃</td>
<td>Et₂O</td>
<td>2.0</td>
<td>0 to 0</td>
<td>1-Phenyl-2-propanol</td>
<td>74 (90)</td>
</tr>
<tr>
<td>2-Heptanone</td>
<td>MeTi(OPr)₃</td>
<td>Et₂O</td>
<td>24.0</td>
<td>+22</td>
<td>2-Methyl-2-heptanone</td>
<td>47</td>
</tr>
<tr>
<td>2-Heptanone</td>
<td>MeTi(OPr)₃</td>
<td>Et₂O</td>
<td>24.0</td>
<td>+22</td>
<td>2-Methyl-2-heptanone</td>
<td>83 (90)</td>
</tr>
<tr>
<td>Cyclohexanone</td>
<td>MeTi(OPr)₃</td>
<td>THF</td>
<td>48.0</td>
<td>r.t.</td>
<td>1-Methylocyclohexanone</td>
<td>79</td>
</tr>
<tr>
<td>Acetophenone</td>
<td>MeTi(OPr)₃</td>
<td>Et₂O</td>
<td>48.0</td>
<td>r.t.</td>
<td>2-Phenylenethanol</td>
<td>96</td>
</tr>
<tr>
<td>(+)-1,3,3-Trimeyl-2-norbomanone</td>
<td>MeTi(OPr)₃</td>
<td>Isooctane</td>
<td>10.0</td>
<td>+80</td>
<td>1,2,3,3-Tetramethyl-2-norbomane</td>
<td>84</td>
</tr>
<tr>
<td>α-Tetralone</td>
<td>MeTi(OPr)₃</td>
<td>Et₂O</td>
<td>24.0</td>
<td>r.t.</td>
<td>1,2,3,4-Tetrahydro-1-methylnaphthalen</td>
<td>50</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>EtTi(OPr)₃</td>
<td>Et₂O</td>
<td>6.0</td>
<td>30 to +22</td>
<td>1-Phenylpropanol</td>
<td>69 (80)</td>
</tr>
<tr>
<td>4-Iodobenzaldehyde</td>
<td>Bu"Ti(OPr)₃</td>
<td>Et₂O</td>
<td>15.0</td>
<td>10 to r.t.</td>
<td>1-(4-Iodophenyl)pentanol</td>
<td>82</td>
</tr>
<tr>
<td>2-Bromobenzaldehyde</td>
<td>Bu"Ti(OPr)₃</td>
<td>Et₂O</td>
<td>12.0</td>
<td>20</td>
<td>1-(2-Bromophenyl)pentanol</td>
<td>92</td>
</tr>
<tr>
<td>2-Cyanobenzaldehyde</td>
<td>Bu"Ti(OPr)₃</td>
<td>Et₂O</td>
<td>15.0</td>
<td>10 to r.t.</td>
<td>1-(4-Cyanophenyl)pentanol</td>
<td>97</td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>PhTi(OPr)₃</td>
<td>THF</td>
<td>1.0</td>
<td>10</td>
<td>1-Phenylenethanol</td>
<td>86 (95)</td>
</tr>
<tr>
<td>Cyclohexanecarbaldehyde</td>
<td>PhTi(OPr)₃</td>
<td>THF</td>
<td>1.0</td>
<td>10</td>
<td>Cyclohexylphenylmethanl</td>
<td>84 (95)</td>
</tr>
<tr>
<td>4-Nitrobenzaldehyde</td>
<td>PhTi(OPr)₃</td>
<td>Et₂O</td>
<td>0.5</td>
<td>15</td>
<td>(4-Nitrophenyl)phenylmethanl</td>
<td>94</td>
</tr>
<tr>
<td>4-Butylcyclohexanone</td>
<td>Bu"Ti(OPr)₃</td>
<td>Et₂O</td>
<td>15.0</td>
<td>20</td>
<td>1-Phenyl-4-butylcyclohexanol</td>
<td>95</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>CNCH₂Ti(OPr)₃</td>
<td>THF</td>
<td>3.0</td>
<td>78 to +22</td>
<td>2-Cyno-1-phenylethanol</td>
<td>81 (95)</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>CNCH₂Ti(NEt)₃</td>
<td>THF</td>
<td>3.0</td>
<td>78 to +22</td>
<td>2-Cyno-1-phenylethanol</td>
<td>76</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>MeSiCH₂Ti(OPr)₃</td>
<td>THF</td>
<td>48.0</td>
<td>+22</td>
<td>2-Trimethylsilyl-1-phenylethanol</td>
<td>41 (60)</td>
</tr>
</tbody>
</table>

Benzaldehyde

\[
\begin{array}{c}
\text{S} \\
\text{S} \\
\text{S} \\
\text{S} \\
\text{S} \\
\end{array}
\text{Ti(OPr)₃}
\]

Et₂O | 16.0 | r.t. | (1,3-Dithian-2-yl)phenylmethanol | — (90) |

Benzaldehyde

\[
\begin{array}{c}
\text{S} \\
\text{S} \\
\text{S} \\
\text{S} \\
\text{S} \\
\end{array}
\text{PhSO₂CH₂Ti(OPr)₃}
\]

THF | 3.0 | 78 to +22 | 2-Benzensulfonyl-1-phenylethanol | 95 (100) |

Butanal | Me₂TiCl₂ | CH₂Cl₂ | 1.0 | 40 | 2-Pentanal | — (90) |

Cyclohexanecarbaldehyde | Me₂TiCl₂ | CH₂Cl₂ | 1.0 | 40 | 1-Cyclohexylethanol | 78 (95) |

3-Methylbutanal | Me₂TiCl₂ | CH₂Cl₂ | 0.5 | 30 | 4-Methyl-2-pentanol | — (90) |

Cyclohexanecarbaldehyde | Me₂TiCl₂ | CH₂Cl₂ | 0.5 | 40 | 1-Cyclohexylethanol | — (90) |

Cyclohexanecarbaldehyde | Ph₂TiCl₂ | CH₂Cl₂ | 0.5 | 78 | Cyclohexylphenylethanol | — (90) |

Adapted from the tables reported in refs. 21, 39 and 42–44. ¹:1:2 molar ratio unless otherwise specified. ²:Percentages within parentheses are estimated by ²H NMR. ³:No 1,4-adduct formed. ⁴:In the absence of solvent, using distilled MeTi(OPr)₃. ⁵:1:2 molar ratio. ⁶:1:10 molar ratio. ⁷:One diastereomer only. ⁸:1:1 cis:trans mixture.
Table 3 Carbonyl Addition Reactions of Various Alkyl- and Aryl-zirconium(IV) Tri-n-butoxides

<table>
<thead>
<tr>
<th>Carbonyl compound</th>
<th>Nucleophile</th>
<th>Solvent</th>
<th>Time (h)</th>
<th>Temperature (°C)</th>
<th>Product</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Methylcyclohexanone</td>
<td>MeZr(OBu"")_3</td>
<td>CH_2Cl_2</td>
<td>15</td>
<td>-20 to +20</td>
<td>1,2-Dimethylcyclohexanone*</td>
<td>70</td>
</tr>
<tr>
<td>3β-Acetoxy-5-androsten-17-one</td>
<td>MeZr(OBu"")_3</td>
<td>CH_2Cl_2</td>
<td>Overnight</td>
<td>-20 to +20</td>
<td>17α-Methyl-5-androstene-3β,17β-diol^b,c</td>
<td>80</td>
</tr>
<tr>
<td>α-Tetralone</td>
<td>MeZr(OBu"")_3</td>
<td>Et_2O</td>
<td>24</td>
<td>r.t.</td>
<td>1,2,3,4-Tetrahydro-1-methinaphthol</td>
<td>90</td>
</tr>
<tr>
<td>4-Phenyl-4-ketobutyric acid</td>
<td>MeZr(OBu"")_3</td>
<td>CH_2Cl_2</td>
<td>15</td>
<td>-20 to +20</td>
<td>4-Hydroxy-4-phenylpentanoic acid</td>
<td>72</td>
</tr>
<tr>
<td>5-Nitro-2-pentanone</td>
<td>MeZr(OBu"")_3</td>
<td>CH_2Cl_2</td>
<td>2</td>
<td>0</td>
<td>2-Methyl-5-nitro-2-pentanol</td>
<td>72</td>
</tr>
<tr>
<td>2-Methylcyclohexanone</td>
<td>PhZr(OBu"")_3</td>
<td>CH_2Cl_2</td>
<td>15</td>
<td>-20 to +20</td>
<td>1-Phenyl-2-methylcyclohexanol^d</td>
<td>90</td>
</tr>
<tr>
<td>4-t-Butylcyclohexanone</td>
<td>Bu^tZr(OBu"")_3</td>
<td>CH_2Cl_2</td>
<td>8</td>
<td>-80 to +20</td>
<td>1-n-Butyl-4-t-butylcyclohexanol^d</td>
<td>78</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>S-Zr(OBu"")_3</td>
<td>THF</td>
<td>Overnight</td>
<td>-80 to +20</td>
<td>(1,3-Dithian-2-yl)phenylmethanol</td>
<td>85</td>
</tr>
</tbody>
</table>

*Mixture of diastereomers. ^bAfter hydrolysis. ^cOne diastereomer only. ^d14:86 cis:trans mixture.
of the substrate aldehydes as well as the structure of the reagent, including both its nucleophilic moiety and the ligand system (Table 4).

Table 4 Ligand Influence on the Addition to Benzaldehyde of Various MeTi(OR)₃ Derivatives in Ether at −50 °C

<table>
<thead>
<tr>
<th>R</th>
<th>Time (min)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propyl</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>i-Propyl</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>i-Propyl (distilled)</td>
<td>30</td>
<td>98</td>
</tr>
<tr>
<td>(R,S)-2-Butyl</td>
<td>30</td>
<td>99</td>
</tr>
<tr>
<td>(S)-2-Methylbutyl</td>
<td>5</td>
<td>>95</td>
</tr>
</tbody>
</table>

The reaction of MeTi(OPr)₃ with a 1:1 molar ratio of the isomeric hexanal (37) and 2-ethylbutanal (38) affords a mixture of the carbinols (39) and (40) in a 92:8 molar ratio (equation 19). Another example of stereocontrol in the chemoselectivity of these reagents is represented by the cross reactions of the ketone pairs (41) and (42) (equation 20) or (42) and (45) (equation 21). It is worthy of note that the same 1:1 molar mixture of (42) and (45) reacts more or less statistically with MeLi, affording about 50% of both (44) and (46).

Chemoselectivity is affected by electronic factors as well. Cross experiments show that small changes in the electrophilic nature of the carbonyl group are responsible for marked differences in the nucleophilic reactivity of TiIV and ZrIV reagents (equations 22 and 23). The electronic nature of the nucleophilic moiety of the metal reagent also affects the chemoselectivity of the nucleophilic addition. This is the case for some special titanium(IV) triisopropoxide derivatives [e.g., (53)–(56)] which are selective towards aldehydes and give high addition yields, due to their resonance-stabilized residues acting as nucleophiles.
Organotitanium and Organozirconium Reagents

The picture remains substantially unchanged moving from the trialkoxy system to other ligand systems. (Alkyl)Ti(NMe2)3, in spite of their appealing stability, fail to give Grignard-type additions, and lead only to low-yielding aminoalkylation reactions (Section 1.5.5.2). Alkyl- and aryl-chlorotitanium derivatives, like MeTiCl3, Me2TiCl2 and Ph2TiCl2, characteristically exhibit good reactivity leading to nucleophilic addition in high yields (Table 2), accompanied by high chemoselectivity. As already mentioned (equation 8), it is easily obtained from MeLi and TiCl4 in ether and its Et2O complex is very reactive towards aldehydes, acting at -30 °C, much faster and higher yielding than MeTi(OPr')3 and having satisfactory chemoselectivity. Recently, an analogous trichlorotitanium derivative (57) has been prepared from 1,2-diorganometallic species with TiCl4. The reaction of (57) with carbonyl compounds is represented in Scheme 4.

The instability of TiIV reagents with branched alkyl groups is due to their tendency to decompose by β-elimination. For this type of compounds the corresponding zirconium reagents are more suitable, since they do not undergo decomposition. For example, t-butyllzirconium tributoxide (58b) is readily prepared from t-butyllithium and chlorozirconium tributoxide (58a) (equation 24). Alkyl- and aryl-zirconium(IV) tributoxides add to carbonyl compounds (Table 3) in the same fashion as TiIV derivatives, with the advantage of low basicity, as is shown by their reactions with enolizable carbonyl compounds (Section 1.5.3.1.2).

\[
\text{ClZr(} \text{OBu}^\text{t})_3 + \text{Bu'Li} \rightarrow \text{Bu'Zr(} \text{OBu}^\text{t})_3 + \text{LiCl} \tag{24}
\]

A mechanistic interpretation of all the above facts would be attractive at this point. Unfortunately, a comprehensive explanation of the experimental results is not yet available, with the exception of kinetic studies on cyclic ketones and other carbonyls.
150

Nonstabilized Carbanion Equivalents

1.5.3.1.2 Addition to enolizable carbonyl compounds

2-Phenylcyclopentanone (59) is converted to its methylated diastereomeric derivatives (60) and (61) in reasonably high yield (>90%) (equation 25), by treatment with Me₂Ti(OPr)₂.⁴⁶ When methylolithium is used, under comparable experimental conditions, only a 55% yield and lower selectivity is achieved. This can be accounted for by the relatively low basicity of titanium reagents. There is no general rule that allows one to choose the titanium reagent with the proper balance of nucleophilicity and basicity for a particular substrate. As an example, β-tetralone is methylated in 90% yield, using a MeLi/TiCl₄ reagent, versus 60% yield obtained with MeLi alone, due to competing enolization.²⁷

\[
\begin{align*}
\text{O} & \quad \text{Ph} \\
\text{MeLi} & \quad \text{Me₂Ti(OPr)₂} \\
(59) & \quad \begin{array}{c}
\text{MeLi} \\
(60) & \text{MeLi} \\
(61) & \text{Me₂Ti(OPr)₂}
\end{array}
\end{align*}
\]

The above-mentioned requirements of low basicity and fast alkyl transfer are combined in alkylzirconium(IV) species,¹⁶ like tetramethylzirconium which readily methylates enolizable and highly hindered carbonyl compounds such as (62; equation 26). The presence of several alkyl groups on the metal atom imparts enhanced reactivity to the species due to the absence of π-bond-forming electron-donor heteroatoms. In fact, tetramethylzirconium can be regarded as a supermethylating agent, evidenced by the conversion of (65) into (66; equation 27).¹¹

\[
\begin{align*}
\text{Me₄Ti} & \quad 20\% \\
\text{Me₄Zr} & \quad 45\% \\
(62) & \quad \text{Me₄Ti} \\
(63) & \quad \text{Me₄Zr} \\
(64) & \quad \text{Me₄Ti} \\
(65) & \quad \text{Me₄Zr}
\end{align*}
\]

1.5.3.1.3 Stereocontrol in nucleophilic addition to carbonyl compounds

An attempt to prepare (+)-cuparene (68), although unsuccessful, illustrates diastereoselectivity of Ti⁴V reagents.¹⁶ Treatment of (67) with Me₂TiCl₂ (Scheme 5) does not give the desired dimethylated product, but rather produces the diastereomeric tertiary alcohols (69) and (70) in a 95:5 molar ratio. The diastereoselectivity, characteristic of Zr⁴V reagents as well, is influenced by both the electronic nature and the steric hindrance of the metal ligands. Three different types of stereoselection are as follows: (i) diastereofacial selection involving carbonyl substrates bearing a chiral α-carbon atom;¹² (ii) equatorial versus axial selection occurring with six-membered cyclic ketones; and (iii) simple diastereoselectivity that is encountered in the reaction of prochiral crotyltitanium(IV) derivatives with prochiral carbonyl compounds. This type of selectivity will be considered in Section 1.5.3.3.
(i) Diastereofacial selection

Cram's experiments using 2-phenylpropanal with various traditional organometallic reagents have already been mentioned. The same substrate was also subjected to several TiIV and ZrIV complexes (equation 28), the results of which are summarized in Table 5. 2-Phenylbutanal, when treated with MeTi(OR')\textsubscript{3} in Et\textsubscript{2}O, affords preferentially the 'Cram' product (87:13).53a ZrIV derivatives, like MeZr(OR')\textsubscript{3}, follow the same tendency although in some cases the results are somewhat less appealing.41

\begin{align*}
\text{Ph} & \quad \text{H} \\
\text{H} & \quad \text{O} \\
\text{C} & \quad \text{Ph} \\
\text{H} & \quad \text{H} \\
\text{OH} & \quad \text{OH} \\
\text{R} & \quad \text{R} \\
\text{Me} & \quad \text{Me} \\
\text{C} & \quad \text{C} \\
\text{H} & \quad \text{H} \\
\text{(71)} & \quad \text{(72)}
\end{align*}

\text{53a}

\text{41}

\text{11}

\text{11}

\text{11}

\text{11}

\text{53b}

Table 5 Diastereoselective Addition of TiIV and ZrIV Complexes to 2-Phenylpropanal (equation 28)

<table>
<thead>
<tr>
<th>Reagent</th>
<th>(71):(72)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeTi(OR')\textsubscript{3}</td>
<td>87:13</td>
<td>21</td>
</tr>
<tr>
<td>MeTiCl\textsubscript{3}</td>
<td>81:19</td>
<td>21</td>
</tr>
<tr>
<td>MeTi(OPh)\textsubscript{3}</td>
<td>93:7</td>
<td>16</td>
</tr>
<tr>
<td>MeLi/TiCl\textsubscript{2}/Et\textsubscript{2}O</td>
<td>90:10</td>
<td>11</td>
</tr>
<tr>
<td>Ph\textsubscript{2}TiCl\textsubscript{2}</td>
<td>80:20</td>
<td>11</td>
</tr>
<tr>
<td>Bu3Ti(OR')\textsubscript{3}</td>
<td>89:11</td>
<td>41</td>
</tr>
<tr>
<td>(Allyl)Ti(OR')\textsubscript{3}</td>
<td>68:32</td>
<td>53</td>
</tr>
<tr>
<td>[(Allyl)Ti(OR')\textsubscript{4}]+ MgCl-</td>
<td>75:25</td>
<td>11</td>
</tr>
<tr>
<td>MeZr(OR')\textsubscript{3}</td>
<td>90:10</td>
<td>41</td>
</tr>
</tbody>
</table>

TiIV complexes have been extensively used for the stereoselective introduction of side chains in steroidal molecules, e.g. pregnenolone acetate53a and the steroidal11 C-22 aldehyde (73; equation 29). In these cases satisfactory results are only obtained by using TiIV reagents, like methyl, ds-methyl and allyl derivatives, due to the strong steric hindrance that affects the position to be attacked. 1,3-\textit{Anti} diastereoselection in the addition of alkyltitanium reagents to chirally \(\beta\)-substituted aldehydes having a dithiaacetal group at the \(\alpha\)-position (75) was also observed (equation 30).53b
(ii) Equatorial versus axial selection

Nucleophilic additions to 4-t-butylcyclohexanone (76; equation 31), by various MeTiIV and MeZrIV reagents (Table 6), are reported to afford mixtures of (77) and its C-1 epimer (78) with the equatorial methyl bearing isomer (77) always predominating. MeTi(OR)3 has been used successfully in the steroid field, as in the case of cholestan-3-one\(^{33a}\) or as in the case of androstane-3,17-dione (79; equation 32)\(^{11}\) which undergoes regio- and diastereo-selective methyl addition. MeTiCl3 is also reported to react with C-2- and C-3-substituted cyclohexanones, leading to significant excesses of the equatorial methyl bearing epimers (88:12 in the case of 3-methylcyclohexanone), whereas MeMgl furnishes random mixtures of both epimers.\(^{27}\)

Table 6 Equatorial versus Axial Addition of MeTiIV and MeZrIV Reagents to 4-t-Butylcyclohexanone (equation 31)

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Solvent</th>
<th>Temperature (°C)</th>
<th>Equatorial:axial (77):(78)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeTi(OR)3</td>
<td>CH2Cl2</td>
<td>+22</td>
<td>82:18</td>
<td>16</td>
</tr>
<tr>
<td>MeTi(OR)3</td>
<td>Et2O</td>
<td>+22</td>
<td>86:14</td>
<td>16</td>
</tr>
<tr>
<td>MeTi(OR)3</td>
<td>Et2O</td>
<td>0</td>
<td>89:11</td>
<td>16</td>
</tr>
<tr>
<td>MeTi(OR)3</td>
<td>n-Hexane</td>
<td>-15 to +22</td>
<td>94:6</td>
<td>53</td>
</tr>
<tr>
<td>MeTiCl3</td>
<td>CH2Cl2</td>
<td>-78</td>
<td>82:18</td>
<td>21</td>
</tr>
<tr>
<td>MeZr(OR)3 + LiCl</td>
<td>Et2O</td>
<td>+22</td>
<td>80:20</td>
<td>39</td>
</tr>
</tbody>
</table>

\(^{32}\)}
1.5.3.1.4 Addition to chiral alkoxy carbonyl compounds

Chiral α-, β- or γ-alkoxycarbonyl compounds are alkylated by TiIV and ZrIV reagents with high facial stereoselectivity. This is due to chelation by the metal atom which creates a bridge between the oxygen atoms belonging to the carbonyl function and the alkoxy group, respectively. The resulting cyclic intermediate is then attacked by the nucleophilic moiety of the reagent, preferentially from one side, leading to an excess of one of the potential diastereomeric products. This phenomenon has been observed with other organometallic reagents, though only asymmetric 1,2-induction is known for compounds like RMgX, RLi, R$_2$CuLi etc., whereas TiIV and ZrIV reagents are capable of 1,3- and even 1,4-induction. Furthermore, given that chelation is governed by the Lewis acidity of the metal atom, the chelating properties of the organometallic complexes can be tuned by varying the metal ligand system. The electron-withdrawing halogen ligands increase the acidity and enhance the chelation power. In the presence of electron-donor ligands, like alkoxy and N,N-dialkylamino groups, chelation will depend essentially on the nature of the substrates. For example, alkoxy ketones will undergo appreciable chelation, whereas weaker Lewis bases like alkoxy aldehydes will not be chelated, a fact that can be exploited to perform reverse stereochemical control. Examples of asymmetric 1,2- and 1,3-induction are provided by the reactions of the chiral alkoxy aldehydes (81) and (82), with MeTiCl$_3$ as shown in Scheme 6.

Less acidic than TiIV and ZrIV chloroderivatives, MeTi(OPr')$_3$ performs chelation-controlled addition to chiral alkoxy ketones59 as well as or better than organomagnesium compounds,41,58 but fails to chelate to aldehydes or hindered ketones. Should the formation of a cyclic chelation intermediate be forbidden, the reaction is subject to nonchelation control, according to the Felkin-Anh41 (or Cornforth)52 model. Under these circumstances, the ratio of the diastereomeric products is inverted in favor of the 'anti-Cram' product(s). In the case of benzil (83; Scheme 7) this can be accounted for by the unlikely formation of a cyclic intermediate such as (85), and thus the preferential intermediacy of the open chain intermediate (86) that leads to the \textit{threo} compound (87). This view is substantiated by the fact that replacement of titanium with zirconium, which is characterized by longer M—O bonds, restores the possibility of having a cyclic intermediate and, as a consequence, leads to the $\textit{erythro}$ (\textit{meso}) compound (87) thus paralleling the action of Mg and Li complexes.

Nonchelation-controlled addition reactions can be very useful in organic synthesis.58,59,63,64 An example drawn from carbohydrate chemistry is particularly significant in this regard (Scheme 8). Due to chelation, the aldehyde (89) reacts with MeMgBr to give a mixture of the diastereomeric alcohols (91) and (92) in 88:12 molar ratio, whereas, in the reaction with MeTi(OPr')$_3$ under nonchelation control, only the Felkin—Anh product (92) is observed. 2,3-O-Isopropylidene-d-glyceraldehyde (93; equation 33) is also reported to react under nonchelation-controlled conditions with several RTi(OPr')$_3$ reagents.58 Oddly, PhTi(OPr')$_3$ favors the formation of the \textit{syn} product, a unique result that is difficult to rationalize.
Very few examples of asymmetric 1,4-induction are reported in connection with the addition of acidic TiIV complexes to chiral \(\gamma \)-alkoxycarbonyl compounds. According to the Cram model, the chelation is expected to afford a flexible seven-membered ring intermediate, resulting in less efficient induction (equation 34). An early example of asymmetric 1,4-induction is provided by the reaction of o-phthalaldehyde (96, equation 35) with 2 equiv. of MeTi(OPr)₃ which affords an 83:17 molar mixture of racemic-(97) and meso-(98), whereas the analogous reaction with MeMgI leads to a 1:1 mixture of the above diastereomers.

The intrinsic difficulty in preparing various titanium derivatives with the desired alkyl group may be overcome by using reagent systems consisting of TiCl₄ as the chelating agent, and a suitable nucleophile like dialkylzinc, allylsilanes, allylstannanes, etc. The utilization of other nucleophiles, like silyl enol ethers will be covered in Part 1 of Volume 2.
155

\[
\begin{align*}
\text{Ph} & \quad \text{O} \\
\text{H} & \quad \text{H} \\
\text{H} & \quad \text{H} \\
\text{O} & \quad \text{O} \\
\text{H} & \quad \text{H} \\
\text{O} & \quad \text{O}
\end{align*}
\]

\[\text{Ph TiCl}_4 + \text{Me}_2\text{Zn}\]

\[\begin{align*}
\text{Ph} & \quad \text{O} \\
\text{H} & \quad \text{H} \\
\text{H} & \quad \text{H} \\
\text{O} & \quad \text{O} \\
\text{H} & \quad \text{H} \\
\text{O} & \quad \text{O}
\end{align*}\]

\[85\%\]

\[15\%\]

\[\text{Ph CH}_2\text{OH} + \text{Ph CH}_2\text{OH}\]

\[\begin{align*}
\text{Ph} & \quad \text{O} \\
\text{H} & \quad \text{H} \\
\text{H} & \quad \text{H} \\
\text{O} & \quad \text{O} \\
\text{H} & \quad \text{H} \\
\text{O} & \quad \text{O}
\end{align*}\]

\[\text{Ph CH}_2\text{OH} + \text{Ph CH}_2\text{OH}\]

\[\begin{align*}
\text{Ph} & \quad \text{O} \\
\text{H} & \quad \text{H} \\
\text{H} & \quad \text{H} \\
\text{O} & \quad \text{O} \\
\text{H} & \quad \text{H} \\
\text{O} & \quad \text{O}
\end{align*}\]

\[13\%\]

\[87\%\]

1.5.3.1.5 Addition to α,β-unsaturated carbonyl compounds

α,β-Unsaturated carbonyl compounds undergo 1,2-addition by MeTi(OPr)_3.\(^{16,42,43}\) A rare case of conjugate addition is reported in the reaction of (99; equation 36) with Ti(CH_2Ph)_4.\(^{55}\)

\[\begin{align*}
\text{Ph CH} & \quad \text{O} \\
\text{H} & \quad \text{H} \\
\text{H} & \quad \text{H} \\
\text{O} & \quad \text{O} \\
\text{H} & \quad \text{H} \\
\text{O} & \quad \text{O}
\end{align*}\]

\[\text{Ph Ti(CH}_2\text{Ph})_4\]

\[\begin{align*}
\text{Ph} & \quad \text{O} \\
\text{H} & \quad \text{H} \\
\text{H} & \quad \text{H} \\
\text{O} & \quad \text{O} \\
\text{H} & \quad \text{H} \\
\text{O} & \quad \text{O}
\end{align*}\]

\[13\%\]

\[87\%\]

Ti\(^{IV}\) reagents are chemoselective and usually react with α,β-unsaturated carbonyls faster than with their saturated analogs, as is shown by several cross experiments (equation 37).\(^{11}\) An exception to this generality was observed in the case of cyclohex-2-enone versus cyclohexanone,\(^{16}\) the latter being much more reactive (equation 22, Section 1.5.3.1.1).

\[\begin{align*}
\text{Ph} & \quad \text{CH} \quad \text{O} \\
\text{H} & \quad \text{H} \\
\text{H} & \quad \text{H} \\
\text{O} & \quad \text{O} \\
\text{H} & \quad \text{H} \\
\text{O} & \quad \text{O}
\end{align*}\]

\[\text{Ph Ti(OPr)}_3\]

\[\begin{align*}
\text{Ph} & \quad \text{O} \\
\text{H} & \quad \text{H} \\
\text{H} & \quad \text{H} \\
\text{O} & \quad \text{O} \\
\text{H} & \quad \text{H} \\
\text{O} & \quad \text{O}
\end{align*}\]

\[78\%\]

\[22\%\]

1.5.3.2 Vinylzirconium Reagents: Addition to α,β-Unsaturated Ketones

Vinylzirconium(IV) complexes, unlike their Ti\(^{IV}\) analogs (Section 1.5.2.2), are rather stable and can be conveniently used to perform conjugate addition to α,β-unsaturated ketones, sometimes in preference to the more popular alkenylcopper(I) reagents.\(^{66}\) Vinylzirconium(IV) complexes, as such, are not very reactive and need catalytic amounts of Ni(acac)_2 (Scheme 9).\(^{67,68}\) The reaction has been exploited in a prosta-
glandin synthesis. A mechanistic investigation of the addition reaction of vinylzirconium(IV) complexes to carbonyls has been reported.

1.5.3.3 Allylic Titanium and Zirconium Reagents

As the general reactivity of allylic metal derivatives will receive proper attention in Part 1 of Volume 2, only those aspects which are very peculiar of allylic TiIV and ZrIV reagents in organic synthesis will be covered in this section. From a general point of view, the allylic metal derivatives turn out to be fairly more reactive than their alkyl analogs and, as a consequence, show a diminished selectivity. As a matter of fact, (allyl)Ti(OPr')3 reacts with a 1:1 molar mixture of heptanal and heptan-2-one (equation 38), leading to the isomeric homoallylic alcohols (100) and (101) in 86:14 ratio, as well as with a 1:1 molar mixture of benzaldehyde and acetophenone giving (102) and (103) in 84:16 ratio, whereas ketones remain substantially untouched when alkyltitanium reagents are used likewise in cross reactions (Section 1.5.3.1.1).

![Chemical structure](image)

\[(\text{100}) \quad 86\% \\
(\text{101}) \quad 14\% \]

A few examples of chemoselective additions of allyltitanium reagents to aliphatic and aromatic carbonyl compounds are reported in Table 7. Appreciable chemoselectivity toward the aldehydic function is achieved by the titanium ate complex (23), whereas the reverse chemoselectivity toward ketones is realized using aminotitanium complex (104) and the analogous ate complexes (24) and (25), as is shown in Table 7. This is very interesting since it represents a rare case of chemoselectivity in favor of carbanion addition to ketones. A tentative explanation of this inverse chemoselection considers a fast transfer of the aminyl ligand onto the aldehyde function which becomes 'protected', as in (105), and thus unreactive in respect to the keto group. Ketones react also selectively compared with esters, as is shown by the reaction of ethyl levulinate (1) with the ate complex (23; equation 40).

| Table 7 Chemoselective Addition of Allyltitanium Reagents to Equimolar Mixtures of Heptanal/Heptan-2-one (equation 38) and Benzaldehyde/Acetophenone (equation 39)* |
|---------------------------------|----------|----------|
| Reagent | (100):(101) | (102):(103) |
| (Allyl)Ti(OPr')3 | 86:14 | 84:16 |
| [(Allyl)Ti(OPr')3]^+MgCl^+ | 98:2 | 98:2 |
| (Allyl)Ti(NMe2)2 | 13:87 | 50:50 |
| [(Allyl)Ti(NMe2)2]^+MgCl^+ | 4:96 | <1:99 |
| [(Allyl)Ti(NMe2)2]^+Li^+ | 2.98 | 9:91 |

*Adapted from the tables reported in refs. 11, 16 and 35. Prepared in situ.

As far as the stereoselectivity of the addition is concerned, allyltitanium reagents, unlike their alkyl analogs (Section 1.5.3.1.3), give preferentially axial addition to 4-t-butylcyclohexanone. The selectivity
Organotitanium and Organozirconium Reagents

is rather low and can be improved by using tris(dialkylamino) ligands. An example of diastereofacial selectivity of allyl derivatives is offered by tetraallylzirconium in the addition of chiral β-alkoxycarbonyl compounds. 3-hydroxybutanal (106) reacts with tetraallylzirconium (Scheme 10) under chelation control conditions (asymmetric 1,3-induction) affording the epimeric diols (107) and (108) in 19:81 ratio. The chemistry of crotol-TiIV and -ZrIV derivatives is definitely more interesting due to their addition reactions which turn out to be sharply chemoselective, regioselective (since they attack the carbonyl substrate by their more substituted sp2-carbon atom), and diastereoselective.

Chemoselectivity of these reagents, tested in cross experiments (equations 41 and 42), parallels the one already discussed for the allyl derivatives.
Diastereoselectivity is instead extremely important, giving rise to configurationally pure branched homoallylic alcohols. The stereochemistry of the products, which can have threo or erythro configurations, is dependent on the (E)- or (Z)-geometry of the starting crotyl metal reagent. Examples of (Z)-crotyltitanium(IV) derivatives are not known and only 1H NMR evidences allow such reagents to be assigned, not unambiguously, (E)-configuration. The addition of several crotyl-TiIV and -ZrIV derivatives to various aldehydes and ketones (equation 43) leads invariably to a mixture of threo (anti) (109) and erythro (syn) (110) homoallylic alcohols (Table 8; cf. also Table 9). In spite of an influence of the metal ligand system on the diastereoselectivity of the addition (Table 8), the threo product appears to be always predominant regardless of the TiIV reagent used. In this context, no general rule can be put forward about the choice of the suitable ligand system, although the ate complex (30) seems to be the most selective in the addition to aromatic aldehydes, whereas the crotyltriamide complex (28) should be preferred when aliphatic aldehydes are considered. The triphenoxo ligand system is also interesting, as is shown by some entries in Table 8.

$$R = \text{or} \neq H; R' = \text{alkyl or aryl}; X = (\text{NEt}_2)_3, (\text{OPr})_3, (\text{OPh})_3, (\text{OPr})_3\text{MgCl}, (\text{Obu})_3,$$

![Diagram](43)

(43)

Table 8 Diastereoselective Addition of Various Crotyltitanium(IV) Reagents to Carbonyl Compounds (equation 43)*

<table>
<thead>
<tr>
<th>Carbonyl compound</th>
<th>Reagent</th>
<th>threo:erythro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzaldehyde</td>
<td>(Crotyl)Ti(NEt$_2$)$_3$ (28)</td>
<td>69:31</td>
</tr>
<tr>
<td>Hexanal</td>
<td>(Crotyl)Ti(NEt$_2$)$_3$ (28)</td>
<td>82:18</td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>(Crotyl)Ti(NEt$_2$)$_3$ (28)</td>
<td>67:33</td>
</tr>
<tr>
<td>3-Methylbutan-2-one</td>
<td>(Crotyl)Ti(NEt$_2$)$_3$ (28)</td>
<td>97:3</td>
</tr>
<tr>
<td>Heptan-2-one</td>
<td>(Crotyl)Ti(NEt$_2$)$_3$ (28)</td>
<td>72:28</td>
</tr>
<tr>
<td>3,3-Dimethylbutan-2-one</td>
<td>(Crotyl)Ti(NEt$_2$)$_3$ (28)</td>
<td>99:1</td>
</tr>
<tr>
<td>Acetophenone</td>
<td>(Crotyl)Ti(NEt$_2$)$_3$ (28)</td>
<td>85:15</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>(Crotyl)Ti(OPr)$_3$ (29)</td>
<td>80:20</td>
</tr>
<tr>
<td>Hexanal</td>
<td>(Crotyl)Ti(OPr)$_3$ (29)</td>
<td>75:25</td>
</tr>
<tr>
<td>3-Methylbutan-2-one</td>
<td>(Crotyl)Ti(OPr)$_3$ (29)</td>
<td>88:12</td>
</tr>
<tr>
<td>Heptan-2-one</td>
<td>(Crotyl)Ti(OPr)$_3$ (29)</td>
<td>67:33</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>[(Crotyl)Ti(OPr)$_3$] - MgCl$^+$ (30)</td>
<td>84:16</td>
</tr>
<tr>
<td>Hexanal</td>
<td>[(Crotyl)Ti(OPr)$_3$] - MgCl$^+$ (30)</td>
<td>71:29</td>
</tr>
<tr>
<td>3-Methylbutan-2-one</td>
<td>[(Crotyl)Ti(OPr)$_3$] - MgCl$^+$ (30)</td>
<td>78:22</td>
</tr>
<tr>
<td>Heptan-2-one</td>
<td>[(Crotyl)Ti(OPr)$_3$] - MgCl$^+$ (30)</td>
<td>56:44</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>(Crotyl)Ti(OPh)$_3$</td>
<td>85:15</td>
</tr>
<tr>
<td>3,4-Dihydro-1(2H)-naphthalene</td>
<td>(Crotyl)Ti(OPh)$_3$</td>
<td>65:35</td>
</tr>
<tr>
<td>Octan-2-one</td>
<td>(Crotyl)Ti(OPh)$_3$</td>
<td>70:30</td>
</tr>
</tbody>
</table>

*Adapted from the tables reported in refs. 11, 16, 53, 70 and 71.

Addition to ketones represents the real field of broad application of crotyltitanium(IV) reagents. 3-Methylbutan-2-one, by reaction with (28), gives a mixture of its threo and erythro addition products in a 97:3 molar ratio (>95% conversion), other ketones as reported in Table 8 also lead to their addition products in threo:erythro molar ratios which are of synthetic relevance. The simple aliphatic ketones react satisfactorily with (28). The use of (crotyl)Ti(OPh)$_3$ in this case does not give significant advantages, considering both diastereoselectivity of addition and availability of the reagent relative to (28), (29) and (30). The enormous potential of these reagents can be fully understood considering that the corresponding Grignard reagents show no selectivity in the addition, and allylboranes either react very slowly or do not react at all with ketones. Several mechanistic interpretations are also available, accounting for chemo- and diastereo-selectivity of crotyltitanium(IV) reagents. Crotyltitanocene and -zirconocene complexes, like bis(cyclopentadieny1)-TiIV and -ZrIV derivatives (111a-d) react (equation 44) with aldehydes (Table 9) with pronounced threo diastereoselectivity (>90:<10 threo:erythro (112):(113) for TiIV reagents and approximately 80:20 for their ZrIV analogs).
Less electronegative the halogen atom in (111a–c), higher the stereoselectivity of the addition.17,37 Addition reactions of these reagents to ketones are not reported. The enhanced diastereoselectivity of titanocene-like crotyl derivatives may be ascribed to the strong electron-donating nature of the cyclopentadienyl residues which reduces the Lewis acidity of the complex and, hence, its reactivity.

\[
\text{RCHO } + \text{MCP_2X} \rightarrow \text{MCP_2OH} \quad \text{at } -30 ^\circ \text{C} \tag{111} \]

These reagents can be used for diastereoselective addition to aldehydes, as shown in Table 9.

<table>
<thead>
<tr>
<th>Aldehyde</th>
<th>Reagent</th>
<th>threo:erythro</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzaldehyde</td>
<td>(Crotyl)TiCp_2Cl</td>
<td>60:40</td>
<td>96</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>(Crotyl)TiCp_2Br</td>
<td>81:19</td>
<td>90</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>(Crotyl)ZrCp_2Cl</td>
<td>4:96</td>
<td>98</td>
</tr>
<tr>
<td>Propanal</td>
<td>(Crotyl)TiCp_2Cl</td>
<td>66:34</td>
<td>92</td>
</tr>
<tr>
<td>Propanal</td>
<td>(Crotyl)TiCp_2Br</td>
<td>96:4</td>
<td>92</td>
</tr>
<tr>
<td>Propanal</td>
<td>(Crotyl)ZrCp_2Cl</td>
<td>86:14</td>
<td>88</td>
</tr>
<tr>
<td>2-Methylpropanal</td>
<td>(Crotyl)TiCp_2Br</td>
<td>99:1</td>
<td>87</td>
</tr>
<tr>
<td>2-Methylpropanal</td>
<td>(Crotyl)TiCp_2Cl + BF_3OEt_2</td>
<td>87:13</td>
<td>75</td>
</tr>
<tr>
<td>2-Methylpropanal</td>
<td>(Crotyl)ZrCp_2Cl</td>
<td>88:12</td>
<td>90</td>
</tr>
</tbody>
</table>

*a*Adapted from the tables reported in refs. 36, 37 and 72.

Reverse diastereoselectivity is also reported, as achieved by reaction of crotyl-TiIV and -ZrIV complexes with aldehydes in the presence of BF_3OEt_2 (Table 9).72,75

An interesting class of Ti\textsuperscript{III111-containing allylic reagents is represented by (η5-C_5H_5)_2Ti(η3-allyl) compounds (trihaptotitanium compounds), like (114), that are readily prepared from (η5-C_5H_5)_2TiCl_2 (32) by action of allylic Grignard reagents76 or, alternatively, alkyl Grignard species and dienals (equation 45).77 When acetone is added to a purple ethereal solution of trihaptotitanium complex (115) under argon atmosphere,38 a reaction takes place spontaneously at room temperature (the reaction medium becomes dark brown) and 2,3-dimethyl-4-penten-2-01 (116) is formed in 90\% yield (Scheme 11). Benzaldehyde, under the same conditions, affords 1-phenyl-2-methyl-3-buten-1-01 in excellent yield.38 A further advantage is the possibility of recovering the starting material (32), in the end, by simple air oxidation of the acidified reaction mixture (Scheme 11).38 Due to their pronounced air sensitivity, these π-allyltitanium(III) complexes are most commonly prepared in situ.38 The experiments reported in Table 10 show unambiguously the chemo- and regio-selective nature of their addition reactions.38 In fact, other functions (e.g. halogens, double bonds, carboxylic acid esters) are fully tolerated; furthermore, the attack of the allyl residue occurs at the more substituted γ-carbon atom, with no exceptions. Stereoselectivity is also a relevant feature of a reaction which affords an excess of the threo isomer.

Cyclic allyl residues enable the synthesis of cycloalkenes having a 1-hydroxyalkyl side chain.78 Cyclic Ti\textsuperscript{III111 complexes, like (118) and (119) are readily obtained (Scheme 12) by treatment of (η5-C_5H_5)_2TiCl (117) with i-butylmagnesium chloride and cyclohexadiene or cyclopentadiene respectively, in THF at -40 °C for 10 min.76,79 Such complexes are quite unstable and can be prepared only in situ. Propanal
Nonstabilized Carbanion Equivalents

\[
\text{Cp}_2\text{Ti} + \text{O} \rightarrow \text{Cp}_2\text{TiO} \rightarrow \text{Cp}_2\text{TiCl} + \text{OH} \quad (115) \quad (116)
\]

\[
\text{Cp}_2\text{TiCl} + \text{HCl} + \frac{1}{4} \text{O}_2 \rightarrow \text{Cp}_2\text{TiCl}_2 + \frac{1}{2} \text{H}_2\text{O} \quad (32)
\]

Scheme 11

<table>
<thead>
<tr>
<th>Carbonyl compound</th>
<th>R</th>
<th>Product</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>1-Methylallyl(^b)</td>
<td>2,3-Dimethyl-4-penten-2-one</td>
<td>88 (92)(^a)</td>
</tr>
<tr>
<td>Methyl vinyl ketone</td>
<td>1-Methylallyl(^b)</td>
<td>3,4-Dimethyl-1,5-hexadien-3-one(^c)</td>
<td>91</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>1-Methylallyl(^b)</td>
<td>2-Methyl-1-phenyl-3-buten-1-one(^d)</td>
<td>93</td>
</tr>
<tr>
<td>Chloroaacetone</td>
<td>1,2-Dimethylallyl(^b)</td>
<td>2,3,4-Trimethyl-1-chloro-4-penten-2-one</td>
<td>95</td>
</tr>
<tr>
<td>Acrolein</td>
<td>1,2-Dimethylallyl(^b)</td>
<td>4,5-Dimethyl-1,5-hexadien-3-one(^e)</td>
<td>90</td>
</tr>
<tr>
<td>Levulinic acid methyl ester</td>
<td>1,2-Dimethylallyl(^b)</td>
<td>(\gamma)-Methyl-(\gamma)-(1,2-dimethylallyl)-(\gamma)-butyrolactone</td>
<td>94</td>
</tr>
<tr>
<td>Acetone</td>
<td>1-Ethallyl(^f)</td>
<td>2-Methyl-3-ethyl-4-penten-2-one</td>
<td>83 (86)(^a)</td>
</tr>
</tbody>
</table>

\(^a\) If isolated Ti\(^{III}\) complex is utilized. \(^b\) Prepared from (32), proper diene and PrMgBr. 65:35 mixture of threo:erythro diastereomers. \(^c\) Prepared from (32) and 1-ethylallylmagnesium bromide; m.p. 90.5-91.0 °C.

The addition of various allyltitanium(III) complexes (RTiCP2) to carbonyl compounds shows excellent stereoselection, affording exclusively the *erythro* compound (120) in 86% yield (Scheme 13). Benzaldehyde also shows excellent stereoselection in spite of a somewhat lower reaction yield (Scheme 13). \(\eta^3\)-Cyclohexenyltitanium derivative (118) reacts likewise (equation 46), although showing diminished stereoselection. A mechanistic interpretation of the stereochemical course of such addition reactions is also available.

Modified \(\eta^3\)-titanium compounds have been prepared from exocyclic dienes. The compound (123, n = 3) is an example: it is prepared (equation 47) by addition of Bu\(^{1}\)MgCl to a solution of 1-vinylcyclopentene (122, n = 3) and (\(\eta^2\)-C\(_5\)H\(_5\))\(_2\)TiCl. Its reaction with propanal takes place regiospecifically at the carbon atom belonging to the cycle, in 86% yield, affording the sole *erythro* compound (124, n = 3) (equation

\[
\text{Cp}_2\text{TiCl}_2 + \text{Bu}^{1}\text{MgCl} \rightarrow \text{Cp}_2\text{TiCl} \quad (32) \quad (117)
\]

\[
\text{Cp}_2\text{TiCl} + \text{Bu}^{1}\text{MgCl} \rightarrow \text{Cp}_2\text{TiCp}_2 \quad (118)
\]

\[
\text{Cp}_2\text{TiCl} + \text{Bu}^{1}\text{MgCl} \rightarrow \text{Cp}_2\text{TiCp}_2 \quad (119)
\]

Scheme 12

Scheme 13
Organotitanium and Organozirconium Reagents

161

\[\text{TiCp}_2 + \text{EtOH} \rightarrow \text{TiCp}_2(\text{EtOH}) \]

(118)

\[
\text{erythro } 80\% \quad \text{threo } 20\%
\]

having (\(Z\))-configuration of the double bond. The regioselectivity of the attack, however, is a function of the ring dimension and the following order is reported: 90\% (\(n = 5\)), 75\% (\(n = 6\)), 66\% (\(n = 10\)).

\[
\begin{align*}
\text{(CH}_2)_n & \quad \text{Cp}_2\text{TiCl} \\
\text{Bu'}\text{MgCl} & \quad \text{(CH}_2)_n \quad \text{TiCp}_2
\end{align*}
\]

(122)

\[
\text{(CH}_2)_n \quad \text{Cp}_2\text{TiCl} \quad \text{Bu'}\text{MgCl} \quad \text{(CH}_2)_n \quad \text{TiCp}_2
\]

(123)

\[
\begin{align*}
\text{O} & \quad \text{Et}_2\text{C} = \text{O} \\
\text{Bu'}\text{MgCl} & \quad \text{(CH}_2)_n \quad \text{TiCp}_2
\end{align*}
\]

(124)

1.5.3.4 Heterosubstituted Allylic Titanium Reagents

Ti\(^{IV}\) reagents bearing heteroatom-substituted allyl residues are conveniently used in analogy with their nonsubstituted analogs to prepare homoallylic alcohols with sulfur,\(^{80-82}\) silicon,\(^{80,83-85}\) phosphorus,\(^{86,87}\) and other \(\beta\)-substituents.\(^{88}\) These groups can be subsequently exploited to introduce further functions. As the topic will be extensively covered in Part 1 of Volume 2, only a few salient aspects of chemo-, regio- and diastereo-selectivity of such reagents will be considered in this section.

Titanated silyl derivatives, like (125), are among the most interesting of these compounds. They react with carbonyl compounds\(^{35}\) by addition at the \(\gamma\)-carbon atom and with excellent threo diastereoselectivity (equation 48). The reaction of (125) with acetophenone affords a 91:9 molar mixture of the corresponding threo and erythro products (equation 48).\(^{35}\) Peterson alkenation\(^{35,83}\) takes advantage of the availability of such products in a stereospecific diene synthesis. Examples of applications of these reagents in the synthesis of natural products are also reported.\(^{89,90}\) The regiochemistry of the addition is often influenced by the shape and number of substituents on the allyl moiety of the reagent, as is reported for the titanated sulfur-containing compounds (126) which, depending upon the nature of the various substituents, perform either \(\alpha\)- or \(\gamma\)-attack onto carbonyl compounds (equation 49).\(^{81,82}\) In Table 11, this substituent effect is illustrated with cyclohexanecarbaldehyde.\(^{81,82}\)

\[
\begin{align*}
\text{Me}_3\text{Si} & \quad \text{Ti(OPr)}_4^- \quad \text{Li}^+ \\
\quad & \quad \text{R}_1 \quad \text{R}_1 \\
\quad & \quad \text{R}_1 \quad \text{R}_1
\end{align*}
\]

(125)

\[
\begin{align*}
\text{HO} & \quad \text{R}_1 \\
\text{OH} & \quad \text{R}_1 \\
\text{SiMe}_3 & \quad \text{SiMe}_3
\end{align*}
\]

(48)

\[
\begin{align*}
\text{HO} & \quad \text{R}_1 \\
\text{OH} & \quad \text{R}_1 \\
\text{SiMe}_3 & \quad \text{SiMe}_3
\end{align*}
\]

(48)

\[
\begin{align*}
\text{R} & = \text{Ph}, \text{n-C}_6\text{H}_{13}, \text{Pr}^+; \text{R}_1 = \text{H} \\
\text{R} & = \text{Ph}; \text{R}_1 = \text{Me}
\end{align*}
\]

\[
\begin{align*}
\text{threo} & >99\% \quad <1\% \\
\text{erythro} & 91\% \quad 9\%
\end{align*}
\]

Phosphorus-containing allyltitanium(IV) complexes, like (129), have been studied as well.\(^{86,87}\) The synthetic importance of their addition products to aldehydes lies on their ready deoxygenation to afford dienes stereospecifically (equation 50).
Table 11 Influence of Substituents on the Addition of Titanated Sulfur-containing Compounds (126) to Cyclohexancarbaldehyde (equation 49)

<table>
<thead>
<tr>
<th>R¹</th>
<th>R²</th>
<th>R³</th>
<th>R⁴</th>
<th>(127)/(128)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>99:1</td>
</tr>
<tr>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>99:1</td>
</tr>
<tr>
<td>H</td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>96:4</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>Me</td>
<td>H</td>
<td>2:98</td>
</tr>
<tr>
<td>Me</td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>85:4</td>
</tr>
<tr>
<td>H</td>
<td>Me</td>
<td>Me</td>
<td>H</td>
<td><1:99</td>
</tr>
</tbody>
</table>

Ph₂P

(129)

|| + O

R₁ R₂ R₃

R₄

OTiL₄

i, MeI, 0 °C

ii, heating to r.t.

(50)

Metalated N,N-diisopropyl 2-alkenyl carbamates (130) are reported to be successfully utilized to prepare, with high γ-regioselectively (equation 51), 4-hydroxyalkenyl carbamates like (131), which are useful intermediates in the synthesis of substituted 4-butanolides.¹⁰¹

1.5.3.5 Dienyl Titanium and Zirconium Reagents

Zirconocene complexes with conjugated dienes can be described in terms of an equilibrium between the s-trans-diene zirconocene (132) and cyclopentadienyl zirconacyclopentene (133) forms (equation 52).⁹²-⁹⁴ They are readily prepared either from zirconocene dichloride,⁹⁵,⁹⁶ or diphenyl zirconocene² in the presence of conjugated dienes. The equilibrium mixture contains (132) and (133) in approximately 45:55 molar ratio (at 25°C),⁹⁷,⁹⁸ the former being the most reactive.⁹⁴ Addition of the reagent (132 ↔ 133) to carbonyl compounds (134a–f) (Scheme 14) affords oxazirconacycloheptenes (135a–f), which can be hydrolyzed to give alcohol mixtures (136a–f) and (137a–f).⁹⁹

Like allylzirconocene derivatives, conjugated diene zirconocene complexes are highly reactive towards various polar and nonpolar systems, and are characterized by remarkable regioselectivity. For example, isoprene zirconocene (138) reacts (Scheme 15) with various systems regioselectively at the sterically more congested C-1 position of isoprene.¹⁰⁰-¹⁰² Despite the steric congestion of this reaction site regioselectivity is higher than 95% in reactions with saturated or unsaturated aldehydes as well as with ketones, carboxylic acid esters and nitriles.⁹⁴ Furthermore, the yields of such reactions are, without exception, higher than 90%. The highly selective 1,2-addition of diene zirconocene complexes to α,β-unsaturated ketones and esters may be accounted for by the high ionic character of the C—Zr bond and the oxophilic nature of zirconium, in addition to the rigid tetrahedral geometry of the complexes.⁹⁴ Analogously, RTICl₃ and alkyllanthanoids are also able to promote selective 1,2-addition to enones.¹⁰³,¹⁰⁴ Other diene metal complexes of titanium and hafnium are known to give regioselective addition to enones,⁹⁴ although their reactivity toward such substrates is considerably lower than that of their ZrIV analogs.
Reverse regioselectivity is observed when isoprene zirconocene is treated with carbonyl compounds under photochemical conditions, at \(-70^\circ\text{C}\) where the thermally induced addition is totally suppressed.\(^{105}\)

As a case in point, 3,3-dimethylbutan-2-one (139; Scheme 16) upon reaction with the zirconocene complex of isoprene in benzene at 60 °C for 2 h affords (140a), whereas irradiation of the reaction mixture at low temperature in toluene leads to (140b). Mixtures of (140a) and (140b) are obtained by irradiation of isolated (138) and ketone (139) at higher temperatures. As the reaction temperature is lowered, an increasing amount of (140b) is formed. Therefore, it is reasoned that the zirconocene complex reacts in the cis form (138), under thermal conditions, and in the trans form under photochemical conditions.

Zirconocene complexes (with s-cis geometry) of isoprene, 2,3-dimethylbutadiene, and 3-methyl-1,3-pentadiene are reported to give exclusively 1:1 addition with carbonyl substrates even if these are used in excess and the reaction temperature is fairly high (ca. 100°C).\(^{106}\) On the contrary, zirconocene complexes of s-cis-butadiene, 1,3-pentadiene, and 2,4-hexadiene (ca. 1:1 mixture of the s-cis and s-trans isomers) easily accept (equation 53) 2 equiv. of either butanal or 3-pentanone, at low temperature (ca. 30 °C) in high yields (95%).\(^{94,106}\) This can be exploited for the stepwise insertion of two different electrophiles.
Nonstabilized Carbanion Equivalents

Scheme 16

(e.g. isobutanal/pentan-3-one, ethyl acetate/isobutanal, pentan-3-one/acetonitrile) allowing for the preparation of variously substituted diols (Scheme 17). The technique consists of the addition of the first carbonyl compound at 0 °C in hexane, followed by addition of the second electrophile at 60 °C in THF. Attempts to invert the order of addition within the pairs of electrophiles tested (e.g. isobutanal/ethyl acetate) are often unsuccessful.

\[
\begin{align*}
R^1 = \text{Me}, & \quad R^2 = \text{Bu}^t \\
\text{Scheme 16}
\end{align*}
\]

(133)
1.5.3.6 Propargylic Titanium Reagents

In organic synthesis, propargyltitanium(IV) complexes are unique among the organometallic reagents in that they perform efficient addition of either alkynic or allenic residues to carbonyl compounds.107

Since this topic will be covered extensively in Part 1 Volume 2, only the main references concerning their preparation and their more significant synthetic applications are recalled at this point.108,109 Hetero-substituted propargyltitanium(IV) reagents are also very useful in the synthesis of natural products.110

1.5.4 CHIRALLY MODIFIED TITANIUM REAGENTS: ENANTIOSELECTIVE ADDITION

Different strategies have been pursued to achieve enantioselection in the addition of specially designed chiral TiIV reagents to carbonyl compounds. They are essentially based on the use of: (i) organotitanium derivatives having chiral ligands; (ii) complexes having asymmetrically substituted chiral TiIV atoms; and (iii) RTiX\textsubscript{3}-like reagents with the nucleophilic moiety bearing a removable chiral auxiliary. Also worthy of mention in this context is an indirect enantioselective addition that is achieved by the reaction of achiral RTiX\textsubscript{3} complexes with chiral acetal derivatives of the carbonyl compounds, as is shown in Scheme 18.111

1.5.4.1 Organotitanium Derivatives Having Chiral Ligands

Early experiments characterized by low enantiomeric excesses have been reported.44,46 TiIV reagents bearing chiral alkoxy ligands are readily prepared from chlorotrispropoxytitanium by ligand interchange (equation 54) using a chiral alcohol (or phenol), under conditions in which isopropanol can be azeotropically distilled off.112a The resulting chiral chlorotitanium derivative is then converted in situ to the desired organotitanium complex by reaction with either an RMgX or RLi species. The most commonly used chiral ligands are cinchonine, quinine, (S)-1,1'-binaphthol, (-)-menthol, etc.112a The enantioselectivity of the addition is influenced by the nature of both the carbonyl substrate and the ligand system, as well as by the solvent and the temperature.112a

Methyl- and phenyl-TiIV complexes with different chiral ligands have been tested112ab in reactions with aromatic aldehydes. The enantioselectivity of the addition of chiral TiIV reagents having a bidentate 1,1'-binaphthol ligand system to aromatic aldehydes (equation 55) has been also extensively examined,
Nonstabilized Carbanion Equivalents

\[
\text{ClTi(OPr^3)_3} + R'OH \xrightarrow{-3PrOH} \text{ClTi(OR')_3} \quad \text{or} \quad \text{RMgX} \quad \text{or} \quad \text{RLi} \quad \Rightarrow \quad \text{RTi(OR')_3}
\] (54)

and the results obtained are reported in Table 12.113 The relative topicity of the addition is \(\text{Ik} \), leading to \(\text{re} \) attack of the phenyl group to the carbonyl function by the \((M)\)-binaphthol \(\text{Ti}^{IV} \) reagent [hence, the \(\text{(R)} \)-alcohol] (equation 56) and \(\text{si} \) attack by its \((P)\)-binaphthol analog.

\[
\text{Ar'C} + \text{Ti(OAr')_3 + THF} \xrightarrow{\text{THF}} \text{HOH} \quad \text{(55)}
\]

Table 12 Enantioselective Addition of \((M)\)-Binaphtholphenyltitanium isopropoxide to Aromatic Aldehydes

<table>
<thead>
<tr>
<th>Aldehyde</th>
<th>Temperature (°C)</th>
<th>Product</th>
<th>Yield (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Methylbenzaldehyde</td>
<td>-2</td>
<td>(2-Methylphenyl)phenylmethanol</td>
<td>89</td>
<td>85</td>
</tr>
<tr>
<td>4-Methylbenzaldehyde</td>
<td>-2</td>
<td>(4-Methylphenyl)phenylmethanol</td>
<td>78</td>
<td>86</td>
</tr>
<tr>
<td>Anisaldehyde</td>
<td>-69</td>
<td>(4-Methoxymethyl)phenylmethanol</td>
<td>84</td>
<td>82</td>
</tr>
<tr>
<td>1-Naphthaldehyde</td>
<td>-15</td>
<td>1-Naphthylphenylmethanol</td>
<td>—</td>
<td>63</td>
</tr>
<tr>
<td>1-Naphthaldehyde</td>
<td>-75</td>
<td>1-Naphthylphenylmethanol</td>
<td>82</td>
<td>>98</td>
</tr>
<tr>
<td>2-Naphthaldehyde</td>
<td>-17</td>
<td>2-Naphthylphenylmethanol</td>
<td>—</td>
<td>57</td>
</tr>
<tr>
<td>2-Naphthaldehyde</td>
<td>-65</td>
<td>2-Naphthylphenylmethanol</td>
<td>85</td>
<td>>98</td>
</tr>
<tr>
<td>Anisaldehyde</td>
<td>-69</td>
<td>2-Naphthylphenylmethanol</td>
<td>—</td>
<td>57</td>
</tr>
</tbody>
</table>

Attempts to prepare chiral \(\text{Ti}^{IV} \) reagents capable of transferring groups other than phenyl have been reported.117 Among these reagents, the methyltitanium \((S)\)-acylpyrrolidinylmethoxide disopropoxides (144) are of some interest. They are prepared (Scheme 19) from \((S)\)-N-acylpyrrolidinylmethanols (143) and dimethyltitanium disopropoxide.114 Their reactions with either benzaldehyde or 1-naphthaldehyde lead to alcohols with acceptable enantiomeric excesses, as is shown in Table 13.114
Table 13 Enantioselective Addition of Methyltitanium (S)-N-Acylpyrrolidinylmethoxides (144) to Aromatic Aldehydes (Scheme 19)

<table>
<thead>
<tr>
<th>Aldehyde</th>
<th>R^1</th>
<th>R^2</th>
<th>Product</th>
<th>R</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzaldehyde</td>
<td>H</td>
<td>H</td>
<td>(146)</td>
<td>Phenyl</td>
<td>33.0</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>H</td>
<td>Ph</td>
<td>(146)</td>
<td>Phenyl</td>
<td>17.6</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>Me</td>
<td>H</td>
<td>(145)</td>
<td>Phenyl</td>
<td>23.9</td>
</tr>
<tr>
<td>1-Naphthaldehyde</td>
<td>Me</td>
<td>H</td>
<td>(145)</td>
<td>1-Naphthyl</td>
<td>27.6</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>Me</td>
<td>Me</td>
<td>(145)</td>
<td>Phenyl</td>
<td>18.6</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>Me</td>
<td>Ph</td>
<td>(145)</td>
<td>Phenyl</td>
<td>39.0</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>Ph</td>
<td>H</td>
<td>(145)</td>
<td>Phenyl</td>
<td>13.9</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>PhCH$_2$O</td>
<td>Me</td>
<td>(146)</td>
<td>Phenyl</td>
<td>23.0</td>
</tr>
<tr>
<td>1-Naphthaldehyde</td>
<td>PhCH$_2$O</td>
<td>Me</td>
<td>(146)</td>
<td>1-Naphthyl</td>
<td>27.0</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>PhCH$_2$O</td>
<td>Ph</td>
<td>(145)</td>
<td>Phenyl</td>
<td>54.1</td>
</tr>
</tbody>
</table>

Further attempts to replace alkoxy groups with other ligand systems, like cyclopentadienyl, in order to reduce the Lewis acidity of the metal atom have been unsuccessful.11

1.5.4.2 Derivatives Having a Chiral Titanium(IV) Atom

This strategy was devised to enable the chiral center of the reagent to be closer to the carbonyl group during the addition. Ligand systems based on cyclopentadienyls lead to unsatisfactory enantiomeric excesses,11 as is reported for the reaction of benzaldehyde with the chiral allyltitanium(IV) reagent (148) derived from (147) by *in situ* treatment with allylmagnesium chloride (Scheme 20).

![Scheme 20](image)

A noteworthy improvement comes from the use of ligand systems which are themselves optically active.11 This is the case of the complex (150), shown in Scheme 21, that is prepared from a sulfenylated norephedrine (149). The results reported for the *in situ* reactions of (150) with various aldehydes (Scheme 21) are summarized in Table 14.11 Nothing is reported concerning the mechanism of the enantioselective addition, since the absolute configuration of the asymmetrically substituted TiIV atom is not known.

![Scheme 21](image)
168

Nonstabilized Carbanion Equivalents

Table 14 Enantioselective Addition of Methyltitanium(IV) derivatives (150) of Various N-Sulfonylated Norephedrines to Aldehydes (Scheme 21)

<table>
<thead>
<tr>
<th>R in (150)</th>
<th>Aldehyde</th>
<th>Yield (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Tolyl</td>
<td>Benzaldehyde</td>
<td>78</td>
<td>85</td>
</tr>
<tr>
<td>4-Tolyl</td>
<td>2-Nitrobenzaldehyde</td>
<td>91</td>
<td>79</td>
</tr>
<tr>
<td>4-Tolyl</td>
<td>1-Naphthaldehyde</td>
<td>96</td>
<td>81</td>
</tr>
<tr>
<td>Methyl</td>
<td>Benzaldehyde</td>
<td>89</td>
<td>62</td>
</tr>
<tr>
<td>Mesityl</td>
<td>Benzaldehyde</td>
<td>93</td>
<td>88</td>
</tr>
<tr>
<td>Mesityl</td>
<td>2-Nitrobenzaldehyde</td>
<td>86</td>
<td>90</td>
</tr>
<tr>
<td>Mesityl</td>
<td>1-Naphthaldehyde</td>
<td>92</td>
<td>90</td>
</tr>
<tr>
<td>4-Tolyl</td>
<td>Octanal</td>
<td>81</td>
<td>60</td>
</tr>
<tr>
<td>Mesityl</td>
<td>Octanal</td>
<td>82</td>
<td>58</td>
</tr>
</tbody>
</table>

*In all cases the reaction products have the (R)-configuration.

1.5.4.3 Reagents with the Nucleophilic Moiety Bearing a Removable Chiral Auxiliary

These reagents can be obtained by titanation of a lithium derivative containing the chiral auxiliary (Scheme 22).116a Regio- and enantio-selective addition of (151) to aldehydes and ketones is reported to afford chiral homoaldol compounds in satisfactory yields and with appreciable enantiomeric excesses (Scheme 22). This reaction has been used in the synthesis of natural products.116a

\[\text{Me}^\text{Li}^+ \rightarrow \text{Me}^\text{Ti(NEt}_2)_3 \]

\[(151) \]

Lithiated chiral dihydro-1,4-dithiins (152) have been recently utilized116b in the addition to prochiral aldehydes in the presence of Ti(OPr)_4 (Scheme 23). Under such conditions (Z)-allylic alcohols have been obtained in good yields and with satisfactory enantioselectivity (ee >40%), after removal of the chiral sulfur-containing moiety of the addition product. The reaction is likely to proceed via the formation of a cyclic five-membered transition state (153) involving titanium, oxygen and one of the sulfur atoms.53b When Ti(OPr)_4 is replaced by TiCl_4, the addition becomes slower than the uncatalyzed reaction itself.

\[\text{Me}^\text{Ph} \rightarrow \text{Me}^\text{Ti(OCl)}_3 \]

\[(153) \]
1.5.5 MISCELLANEOUS REACTIONS

1.5.5.1 Geminal Dialkylation of Aldehydes and Ketones

This represents probably one of the earliest interests in the chemistry of TiIV compounds. Ketones, like cyclohexanone, are easily dimethylated by MeTiCl3, Me2TiCl2, and Me2Zn/TiCl4. Depending upon the molecular ratio of Me2Zn and TiCl4, various products (43), (154) and (155) are obtained from cyclohexanone (equation 57), as is reported in Table 15. The reaction proceeds through cationic intermediates; various functionalities (e.g. carboxylic acid esters, primary and secondary alkyl halides) are well tolerated. Some problems arise when α,β-unsaturated ketones are utilized, because of the formation of two distinct dimethylated products (equation 58).

\[
\begin{align*}
\text{Scheme 23}
\end{align*}
\]

Table 15 Geminal Dimethylation of Cyclohexanone (equation 57)

<table>
<thead>
<tr>
<th>Entry</th>
<th>TiCl4/ZnMe2 (mmol)</th>
<th>Temperature (°C)</th>
<th>Time (h)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30/10</td>
<td>-30</td>
<td>4</td>
<td>>90</td>
</tr>
<tr>
<td>2</td>
<td>10/10</td>
<td>-30</td>
<td>4</td>
<td>>90</td>
</tr>
<tr>
<td>3</td>
<td>22/22</td>
<td>-30 to +22</td>
<td>4</td>
<td>>90</td>
</tr>
<tr>
<td>4</td>
<td>10/20</td>
<td>-30 to +22</td>
<td>4</td>
<td>>90</td>
</tr>
</tbody>
</table>

*In all cases 10 mmol of cyclohexanone were used in CH2Cl2.

Aromatic aldehydes are also easily dimethylated by Me2TiCl2, and aromatic acyl chlorides form t-butyl derivatives directly when treated with an excess of Me2Zn/TiCl4 in methylene chloride. Some examples are also known of application of such a reaction in the synthesis of natural products.
1.5.5.2 Alkylative Amination

Alkyltitanium(IV) complexes having \(N,N\)-dialkylamino ligand systems, \(\text{RTi(NR}_2\text{)}_3\), fail to give nucleophilic additions to carbonyl compounds (Section 1.5.3.1.1). Their reaction with aldehydes leads instead to tertiary amines by addition of both the alkyl moiety of the reagent and one of the \(N,N\)-dialkylamino ligands (equation 59). The synthetic interest of the reaction is restricted to nonenolizable aldehydes, since enolizable carbonyl compounds lead to enamines.48

\[
\text{RTi(NR}_2\text{)}_3 + \text{R}^2\text{H} \rightarrow \text{R}^2\text{NR}_2\text{R} \quad (59)
\]

A few examples of alkylative amination of aldehydes are reported in Table 16.48

<table>
<thead>
<tr>
<th>Aldehyde</th>
<th>(R)</th>
<th>Product</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzaldehyde</td>
<td>Me</td>
<td>(N,N)-Diethyl-1-phenylethylamine</td>
<td>48</td>
</tr>
<tr>
<td>4-Methylbenzaldehyde</td>
<td>Me</td>
<td>(N,N)-Diethyl-1-p-tolylethylamine</td>
<td>47</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>Bu</td>
<td>(N,N)-Diethyl-1-phenylpropylamine</td>
<td>15</td>
</tr>
<tr>
<td>2-Furfurylaldehyde</td>
<td>Me</td>
<td>(N,N)-Diethyl-(2-furyl)ethyamine</td>
<td>73</td>
</tr>
<tr>
<td>Cinnamaldehyde</td>
<td>Me</td>
<td>(N,N)-Diethyl-4-phenylbut-3-en-2-ylamine</td>
<td>44</td>
</tr>
<tr>
<td>Pivaldehyde</td>
<td>Me</td>
<td>(N,N)-Diethyl-3,3-dimethylbut-2-ylamine</td>
<td>55</td>
</tr>
</tbody>
</table>

1.5.5.3 Protection of Aldehydes

The tendency of \(\text{Ti}^{IV}\) reagents like \(\text{Ti(NR}_2\text{)}_4\) to release the \(N,N\)-dialkylamino group\(^{42,48}\) is conveniently exploited to temporarily inactivate a carbonyl function which is fairly reactive (e.g. an aldehyde),\(^{122}\) thus enabling a second, less reactive carbonyl function (e.g. a ketone), to react with another nucleophilic reagent. This leads to a sort of reverse chemoselectivity which is highly effective in discriminating between different carbonyl compounds, as well as between carboxyls having different steric environments.

1.5.6 REFERENCES

1.6
Organochromium Reagents

NICHOLAS A. SACCOMANO
Pfizer Central Research, Groton, CT, USA

1.6.1 INTRODUCTION
Organochromium(III) complexes were among the first transition metal organometallic compounds to be synthesized and have enjoyed a rich history of investigation and utility. These materials can be prepared either by the addition of Grignard, organolithium or organoaluminum reagents to chromium(III) halides or by the reduction of organic halides with chromium(II) ions. Both routes provide chromium(III) complexes that are believed to possess a Cr—C σ-bond. The organometallic reagents to be described herein serve as carbanion equivalents and participate in a variety of chemo- and stereo-selective carbon–carbon bond-forming reactions via the addition to C—X π-bonds. Such processes are the substance of this review.
1.6.2 ORGANOCHROMIUM(III) CARBANION EQUIVALENTS

1.6.2.1 Synthesis and Structure of Organochromium(III) Complexes

The synthesis of organometallic compounds of chromium was pioneered by Hein in the 1920s and 1930s, and this work has been reviewed in a monogram by Zeiss. However, preparation and adequate characterization of the first simple kinetically stable chromium(III) alkyl in solution was reported by Anet and Leblanc. Pentaaquabenzylchromium(III) perchlorate (2) was prepared from benzyl chloride (1) and chromium(II) perchlorate in aqueous perchloric acid (equation 1). It is known that readily available chromium(II) salts function effectively as reducing agents for a variety of compounds, including organic halides. The mechanism of chromium(II) ion mediated reductions of organic halides has been thoroughly investigated. Kinetic data have verified the formation of a discrete organochromium intermediate, and mechanistic studies have established that the reaction proceeds by a single-electron reduction of the C—X bond followed by reduction of the resulting radical (3) by a second equivalent of chromium(II) ion to provide a chromium(III) organometallic species (4; Scheme 1). As the reductions are most commonly performed in aqueous media, protonolysis of the organochromium intermediate (4) rapidly produces the reduction products (5). The coexistence of water in the reaction medium represents an impediment to the mechanistic evaluation of chromium(II) ion reduction of organic halides and a limitation of organochromiums, prepared in this fashion, as potential synthetic reagents. However, the use of anhydrous chromium(II) salts (e.g. CrCl₂; see Section 1.6.3.1) has more recently allowed for the controlled generation of organochromium compounds and provides for their current and potential utility as carbanion equivalents.

\[
\text{CH}_2\text{Cl} + \text{Cr(CIO}_4\text{)_2} \xrightarrow{\text{HClO}_4, \text{H}_2\text{O}} \text{Cr(H}_2\text{O)}_2^{2+} 2\text{ClO}_4^- \tag{1}
\]

\[
\text{C—X} \xrightarrow{\text{Cr}^{II}} \text{C}^* \xrightarrow{\text{Cr}^{II}} \text{C—Cr}^{III} \xrightarrow{\text{H}^+} \text{C—H} \tag{2}
\]

Scheme 1

An alternative synthesis of organochromium(III) compounds involves the addition of organometallic reagents to chromium(III) salts. This route provided the first example of an isolable covalent organochromium(III) compound. Herwig and Zeiss reported that the addition of PhMgBr to CrCl₃ provided triphenyltris(tetrahydrofuran)chromium(III) (6; equation 2). Verification of Zeiss’ structural assignment has more recently been provided in the form of X-ray data reported by Khan and Bau. They have shown that (6) maintains three σ-bonded phenyl groups arranged in a cis facial fashion, as illustrated in equation (2). A related series of organochromiums was first prepared by Kurras and subsequently investigated by Yamamoto and coworkers. Treatment of CrCl₃ with organoaluminums provides organochromium(III) complexes (7), as shown in equation (3). The synthesis and X-ray crystal structure of dichloro(tris(tetrahydrofuran)-p-tolylchromium(III) (8) was reported by Sneeden and coworkers (equation 4). The crystal structure reveals a complex of the mer-type geometry with the Cr—O distance of the THF ligand trans to the σ-aryl bond appearing longer than for the other THF molecules. Other Group VI σ-alkyl and σ-aryl complexes have been studied and this area has been reviewed. However, complexes (6), (7) and (8) are most pertinent to this review as they are representative of organochromiums that have been shown to participate in C—C bond-forming reactions.

\[
\text{CrCl}_3 + \text{PhMgBr} \xrightarrow{\text{THF}/-20 \degree \text{C}} \text{Cr—C 2.060 \AA} \tag{2}
\]
1.6.2.2 Formation of C—C Bonds: Background

The ability of chromium(II) ion generated organochromium(III) species to take part in C—C bond-forming reactions was discovered during mechanistic studies of the chromium(II) ion reduction of halides. Kochi and coworkers\(^6\) have shown that the benzylchromium ion \((2)\) when treated with acrylonitrile provides phenylbutyronitrile \((9)\) and toluene \((10)\) in 40–50\% and 40–45\% yield, respectively (equation 5). In addition, it was shown that \((2)\) in the presence of butadiene afforded a 4–6\% yield of 4-phenyl-1-butene \((11)\) and 60–80\% yield of toluene (equation 6), demonstrating the carbanionic nature of the organochromium species. Barton and coworkers\(^8\) subsequently showed that 9-\(\alpha\)-bromo-11-\(\beta\)-hydroxyprogesterone \((12)\) when treated with chromium(II) acetate in DMSO provides 11-\(\beta\)-hydroxyprogesterone \((13)\), the \(\Delta^{\delta,11}\)alkene \((14)\) and the 5,9-cyclosteroid \((15)\) with the product distribution and yield being a function of solvent and additives (equation 7). These studies\(^6,8\) support the proposed mechanism of chromium(II) ion mediated reductions and also reveal the nucleophilic character of the \textit{in situ} generated organochromium(III) intermediates.

Organochromium compounds prepared from chromium(III) salts and organometallic reagents have been shown to possess carbanionic character and provide the first examples of organochromium additions to carbonyl substrates. Sneeden and coworkers\(^\text{10}\) reported that triphenyltris(tetrahydrofuran)chromium...
mum(III) (6) when treated with carbon monoxide provided benzpinacol (16; equation 8). It was also shown that treatment of 3-pentanone (17) with the solvated triphenylchromium complex (6) afforded diethylphenylicarbabinol (18) and diol (19, R = Ph; equation 9). Cyclohexanone (20; equation 10) provided (21), (22) and (23) upon treatment with (6). These experiments are noteworthy since they demonstrate the ability of σ-organochromium complexes to add to ketones in a Grignard-like fashion. Interestingly, generation of the aldol and aldol-derived products (19), (22) and (23) occurred without stoichiometric consumption of organometallic reagent. The authors suggested that in these instances (6) does not promote aldol condensation by acting as a conventional organic base, but rather that the chromium atom is functioning as a coupling center or a reaction template at which the aldol process occurs. Monoarylchromium complex (24) provided addition products with aldehydes and ketones (yields for equations 11 and 12 based on 24). Reaction of (24) with neat acetone produced 2-phenyl-2-propanol (25) and mesityl oxide (26; equation 11). Also, (24) reacted with benzaldehyde to produce benzophenone (27) and benzyl benzoate (28; equation 12). It was rationalized that the benzophenone arose from a β-hydrogen elimination of the alkoxychromium intermediate (29; equation 13), while (28) was generated by a chromium-mediated Tischchenko reaction.
1.63 ALLYL-, METHALLYL-, CROTYL- AND PROPARGYL-CHROMIUM REAGENTS

1.63.1 Carbonyl Addition Reactions: General Features

The early studies and structural investigations of organochromium(III) compounds revealed the potential synthetic utility of these reagents as carbanion equivalents. However, it was Hiyama and coworkers9,19 who expanded on the initial findings. These workers reported that the Barbier-Grignard-type addition of allylic halides and tosylates to carbonyl compounds was effectively mediated by anhydrous CrCl\textsubscript{2} (equation 14). Anhydrous chromium(II) chloride is commercially available20 or can be generated \textit{in situ} by the reduction of chromium(III) chloride21 with either LiAlH\textsubscript{4} or Na(Hg)\textsubscript{22} in THF (equation 15). Although the exact nature of the low valent chromium reagent generated \textit{in situ} has not been established, its functional attributes are indistinguishable from those of the commercially available material.

\[
\begin{align*}
\text{R}^1\text{O} + \text{R}^4\text{C} = \text{X} & \xrightarrow{\text{CrCl}_2 \text{, DMF or THF}} \text{R}^1\text{OH} \text{R}^3\text{R}^4 \text{R}^4 \\
\text{CrCl}_3 & \xrightarrow{\text{LiAlH}_4 \text{ or Na(Hg) \text{, THF}}} \text{CrCl}_2
\end{align*}
\]

Reduction of the allylic halide (or tosylate) in this reaction is consistent with expectations.4 Two mol equivalents of CrCl\textsubscript{2} are required for the consumption of each halide. Polar aprotic solvents (i.e. DMF) greatly facilitate the reduction and in some cases (e.g. chlorides and tosylates) are essential for the generation of the organochromium species. Under these conditions allyl chloride and tosylate add to benzaldehyde (equation 16) to provide the homoallylic alcohol (30). In a similar fashion an allyl group can be delivered to ketones (equations 17 and 18), but requires a larger mol ratio of allylchromium reagent to obtain comparable results. The chemoselective nature of this reagent is further revealed by its ability to
add selectively to aldehydes in the presence of ketones (equation 19), esters (equation 20) and nitriles (equation 21). In fact, the allylchromium reagent discriminates between ketones of nearly identical reactivity (equation 22). In the same study it was shown that the more-substituted γ-carbon of prenyl bromide adds to the carbonyl carbon of aldehydes (equation 23). This is a general feature of substituted allylchromiums.

\[
\text{OHC} - \text{Bu} \quad \text{CrCl}_2, \text{THF} \quad \text{Br} \quad 66\%
\]

(19)

\[
\text{OHC} - \text{CO}_2\text{Me} \quad \text{CrCl}_2, \text{THF} \quad \text{Br} \quad 75\%
\]

(20)

\[
\text{OHC} - \text{CN} \quad \text{CrCl}_2, \text{THF} \quad \text{Br} \quad 66\%
\]

(21)

\[
\text{HO} + \text{HO} \quad \text{CrCl}_2, \text{THF} \quad \text{Br} \quad 82\%
\]

(22)

49\% at 54\% conversion
(91\% based on recovered ketone)

\[
\text{CHO} + \text{(31)} \quad \text{CrCl}_2, \text{LiAlH}_4 \quad \text{DMF} \quad \text{Br} \quad 71\%
\]

(23)

The addition to α,β-unsaturated aldehydes proceeds exclusively in a 1,2-fashion (equation 24). This regiochemical preference is general for all organochromium compounds. The addition to 4-t-butylcyclohexanone (32) occurs predominantly via equatorial addition (equation 25), as it provides (33) and (34) in an 88:12 ratio. Allylchromium is one of the most efficient reagents for this transformation (Table 1).

\[
\text{CHO} + \text{(31)} \quad \text{CrCl}_2, \text{THF} \quad \text{Br} \quad 82\%
\]

(24)

\[
\text{Bu}' \text{CHO} \quad \text{CrCl}_2, \text{THF} \quad \text{Br} \quad 85\%
\]

(25)

(32)
Table 1 Addition of Allyl Organometallics (CH₂CH₂M) to 4-t-Butylcyclohexanone (32; equation 25)

<table>
<thead>
<tr>
<th>M</th>
<th>Conditions</th>
<th>Yield (%)</th>
<th>Ratio (33):(34)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr(III)</td>
<td>THF/r.t.</td>
<td>85</td>
<td>88:12</td>
<td>9</td>
</tr>
<tr>
<td>ZnBr</td>
<td>THF/5 °C</td>
<td>79</td>
<td>85:15</td>
<td>23</td>
</tr>
<tr>
<td>Al₂ZnBr</td>
<td>THF/5 °C</td>
<td>83</td>
<td>68:32</td>
<td>23</td>
</tr>
<tr>
<td>MgBr</td>
<td>THF/5 °C</td>
<td>33</td>
<td>45:55</td>
<td>23</td>
</tr>
<tr>
<td>Li</td>
<td>THF/−20 °C</td>
<td>67</td>
<td>35:65</td>
<td>23</td>
</tr>
<tr>
<td>Na</td>
<td>THF/−20 °C</td>
<td>68</td>
<td>35:65</td>
<td>23</td>
</tr>
<tr>
<td>K</td>
<td>THF/−20 °C</td>
<td>30</td>
<td>37:63</td>
<td>23</td>
</tr>
<tr>
<td>Bu₃Sn</td>
<td>BF₃·Et₂O</td>
<td>93</td>
<td>92:8</td>
<td>24</td>
</tr>
<tr>
<td>Sm(III)</td>
<td>THF/r.t.</td>
<td>72</td>
<td>87:13</td>
<td>25</td>
</tr>
</tbody>
</table>

1.6.3.2 Allylic Chromium Reagents: 1,2-Asymmetric Induction (Anti/Syn Control)

In the original report of the CrCl₂-mediated carbonyl addition reaction Hiyama⁹,¹⁹ reported that crotyl bromide added to benzaldehyde in the presence of chromium(II) ion and afforded a single diastereomer. Follow-up results from Heathcock and Buse²⁶ and subsequent work by Hiyama and coworkers,²⁷ show that this reaction delivers the anti (threo) isomer (35) exclusively in 96% yield (equation 26). Conversion to the known β-hydroxy acid (36) provides proof of the stereochemistry of (35). The reaction of crotyl bromide with a variety of aldehydes was investigated (equation 27) and the following trends emerged (Table 2).²⁷ It was shown that the selective formation of the anti addition product occurred with unhindered aldehydes (entries 1–3), but that this preference was reversed for very large substrate aldehydes (entry 4). Moreover, solvent substitution of DMF for THF led to erosion of the anti preference (entries 5–8), with concomitant increase in overall chemical yield (entries 6 and 7). Hiyama also showed that the anti selectivity was not a function of alkene geometry in the starting bromide since both cis- and trans-1-bromo-2-butene gave exclusively the anti addition product with benzaldehyde. The stereochemical course of addition is rationalized in the following manner. Chromium(II) complexes prefer to exist in an octahedral configuration in which the coordination sphere is often supplemented with solvent molecules (i.e. THF).¹¹,¹⁴ A preferred transition state which is consistent with this and the stereochemical data has been proposed²⁶,²⁷ and is detailed in Scheme 2. The octahedral (E)-crotylchromium(III) reagent (40) is formed from either (E)- or (Z)-crotyl bromide with two equivalents of CrCl₂. Such double-bond isomer-
ization of organometallic reagents to access the more stable \((E)\)-double bond geometry is likely to be operative and is the situation which has been noted for crotyl-magnesium,\(^{28}\) -lithium,\(^{29}\) -zinc,\(^{30}\) -titanium\(^{31,41}\) and -zirconium compounds.\(^{32}\) Ligand replacement with substrate aldehyde generates reactive complexes \((41)\) and \((42)\) which on transfer of the crotyl group from \(\text{Cr}\) to carbon with allylic transposition provides \textit{anti}- and \textit{syn}-homoallylic alcohols \((43)\) and \((44)\), respectively. The steric requirements of \(R\) and \(L\) should preclude transition structure \((42)\), favor \((43)\), and as a consequence direct the formation of \textit{anti}-homoallylic alcohol \((43)\). If the \textit{gauche} interaction between \(R\) and the \(\gamma\)-methyl group becomes highly pronounced, as would be the case with very large aldehydes (\textit{i.e.} \(R = \text{Bu}^t\)), \((41)\) will be supplanted by a skew boat \((45)\) as the favored transition structure. Finally, the reduction of stereoselectivity when DMF is used is interpreted as a perturbation of the reactive chromium template by the strong donor solvent.

![Scheme 2](image)

The addition of allyl metal derivatives to aldehydes represents an important and well-developed strategy for the control of acyclic stereochromy.\(^{33}\) The transition state models which have been proposed to describe the origin of the \(1,2\)-diastereoselection obtained with \(\gamma\)-substituted allyl organometallics are classified as either syncinal (cyclic) \((46)\) or antiperiplanar (acyclic) \((47; \text{Scheme } 3)\). Involvement of a particular transition state is a function of the metal center and the reaction conditions. Denmark and Weber\(^{34}\) have suggested that substituted allyl metals are of three types with regard to alkene geometry and \(1,3\)-diastereogenesis \((lk:ul)\).\(^{50}\) For type 1, the \textit{anti}:\textit{syn} \((lk:ul)\) ratio is dependent on the \((Z):(E)\) ratio of the alkene in the organometallic (\(B, Al, Si\)); with type 2, \textit{syn} \((ul)\) selective processes are independent of alkene geometry (\(Sn, Si\)); and for type 3, \textit{anti} \((lk)\) selective reactions are independent of alkene geometry. Examples of types 1–3 crotyl metal reagents are provided in Table 3 and equation (28). The allyl boronates (Table 3, entries 5 and 6)\(^{37}\) and the pentacoordinate silicates (entries 15 and 16)\(^{43}\) are crotyl metals of type 1 which react through a syncinal reaction geometry and produce \textit{anti} products from the \((E)\)-crotyl metal reagent and \textit{syn} products from the \((Z)\)-crotyl metal reagent. Trialkyl-stannanes\(^{38}\) and -silanes\(^{39}\) (entries 7, 8 and 9) are type 2 reagents which react under Lewis acid catalysis \textit{via} an open antiperiplanar transition state and consequently produce \textit{syn} products. The type 3 reagents consist of \(\alpha\)- and \(\eta^3\)-crotyltitanium,\(^{41,42}\) -crotylzirconium\(^{32,40}\) and organochromium(III) compounds.\(^{27}\) These reagents are believed to react exclusively \textit{via} the \(\alpha\)-\((E)\)-crotyl metal complex through a syncinal cyclic chair transition state which leads to \textit{anti} addition products. Set against the fabric of crotyl metal additions, the crotylchromiums represent the most convenient and perhaps the most selective reagents for the production of \textit{anti}-homoallylic alcohols. However, with sterically demanding aldehydes, the \(\eta^3\)-crotyltitanocenes recently reported by Collins\(^{42}\) exhibit a higher \textit{anti} selectivity than the chromium(III) organometallics.\(^{27}\)
Addition of crotyl organometallics to aldehydes (equation 28)

Table 3

<table>
<thead>
<tr>
<th>Entry</th>
<th>M (48)</th>
<th>R</th>
<th>Conditions</th>
<th>(E):(Z) (48)</th>
<th>Anti:syn (49):(50)</th>
<th>Yield (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Li</td>
<td>Ph</td>
<td>THF/-78 °C</td>
<td>55:45</td>
<td>80</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MgCl</td>
<td>Ph</td>
<td>Ether/-10 °C</td>
<td>38:62</td>
<td>93</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Et3Al+/Li+</td>
<td>Ph</td>
<td>Ether/-70 °C</td>
<td>56:44</td>
<td>93</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Et3B-/Li+</td>
<td>Ph</td>
<td>Ether/-70 °C</td>
<td>82:18</td>
<td>90</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Bu3Sn</td>
<td>Ph</td>
<td>Ether/-78 °C</td>
<td>93:7</td>
<td>94:6</td>
<td>80</td>
<td>37</td>
</tr>
<tr>
<td>6</td>
<td>Bu3Sn</td>
<td>Ph</td>
<td>Ether/-78 °C</td>
<td><5:<95</td>
<td>6:96</td>
<td>22</td>
<td>37</td>
</tr>
<tr>
<td>7</td>
<td>Bu3Sn</td>
<td>Ph</td>
<td>BF3:Et2O</td>
<td>100:0</td>
<td>6:96</td>
<td>90</td>
<td>38</td>
</tr>
<tr>
<td>8</td>
<td>Bu3Sn</td>
<td>Ph</td>
<td>CH2Cl2/-78 °C</td>
<td>100:0</td>
<td>6:96</td>
<td>90</td>
<td>38</td>
</tr>
<tr>
<td>9</td>
<td>Me3Si</td>
<td>Pr</td>
<td>TiCl4/CH2Cl2/-78 °C</td>
<td>0:100</td>
<td>90</td>
<td>90</td>
<td>38</td>
</tr>
<tr>
<td>10</td>
<td>Me3Si</td>
<td>Pr</td>
<td>TiCl4/CH2Cl2/-78 °C</td>
<td>3:97</td>
<td>90</td>
<td>90</td>
<td>39</td>
</tr>
<tr>
<td>11</td>
<td>CrCl2</td>
<td>Ph</td>
<td>THF/r.t.</td>
<td>100:0</td>
<td>90</td>
<td>90</td>
<td>39</td>
</tr>
<tr>
<td>12</td>
<td>CrCl2</td>
<td>Ph</td>
<td>THF/r.t.</td>
<td>100:0</td>
<td>90</td>
<td>90</td>
<td>39</td>
</tr>
<tr>
<td>13</td>
<td>Cp2ZrCl</td>
<td>Ph</td>
<td>THF/-78 °C</td>
<td>86:14</td>
<td>90</td>
<td>90</td>
<td>40</td>
</tr>
<tr>
<td>14</td>
<td>Cp2ZrCl</td>
<td>Ph</td>
<td>Ether/-30 °C</td>
<td>100:0</td>
<td>90</td>
<td>90</td>
<td>40</td>
</tr>
<tr>
<td>15</td>
<td>Ph</td>
<td>Ph</td>
<td>THF, hexane/r.t.</td>
<td>88:12</td>
<td>88:12</td>
<td>82</td>
<td>43</td>
</tr>
<tr>
<td>16</td>
<td>Ph</td>
<td>Ph</td>
<td>THF, hexane/r.t.</td>
<td>21:79</td>
<td>22:78</td>
<td>91</td>
<td>43</td>
</tr>
</tbody>
</table>

1.6.3.3 Crotylchromium Reagents: α- or 2,3-Asymmetric Induction

Addition of crotyl metal reagents to aldehydes bearing a stereogenic center α to the carbonyl (51; Scheme 4) has been used as a strategy for the controlled synthesis of the stereo triads. Two of the four possible diastereomers (52) and (53) are available from the addition of an (E)-crotyl metal reagent to (51).
via synclinal cyclic transition states. Synclinal reaction geometries (presumed to be operative for crotylchromiums, *vide infra* (A) and (B) (R² = Me) are (lklu) and (lk,lk) 1,2-processes, respectively. Both reaction manifolds will afford the anti-1,2 stereochemical arrangement (a general feature of crotylchromiums), where (A) leads to the 2,3-anti product (52) and (B) leads to the 2,3-syn product (53). Transition structure (B) (and consequently the formation of 53) was predicted to predominate by Cram's rule and is consistent with the Felkin–Ahn model. In the general model R¹ represents either the largest group or that group whose bond to C₉ maintains the greatest σ*-π* overlap with orbitals of the carbonyl carbon. In the previous section, the ability of organochromiums to deliver a crotyl group and produce 1,2-anti stereochemistry selectively (52 and 53) was described. The potential for α- or 2,3- as well as 1,2-asymmetric induction was first addressed by Heathcock and Buse. Addition of crotyl bromide/CrCl₂ to aldehyde (54; equation 29) provides two of the four possible diastereomers (55) and (56) in a 2.6:1 ratio, with complete 1,2-stereochemical control. However, the Cram:anti-Cram ratio (55):(56) was modest. The major product (55) is that which is predicted by the Felkin–Ahn addition model. In a similar fashion (57) yields the two anti addition products (58) and (59) in nearly equal amounts (equation 30). Modest 2,3-diastereoselection has also been encountered by Hiyama and coworkers. Crotylchromium addition to (60; equation 31) provided a 1,2-anti:syn selectivity (61 : 62):(63) of 93:7, and a disappointing Cram:anti-Cram ratio (61 + 63):(62) of 69:31. The question of 2,3-asymmetric induction has also been addressed by Kishi and coworkers. During studies directed toward the construction of the Rifamycin ansa bridge, crotylchromiums were shown to add to more complex substrate.
aldehydes with excellent 1,2- and 2,3-diastereoselectivity. Aldehyde (64) afforded (65), which maintains the 1,2-anti and 2,3-syn (or Cram) diastereochmical relationships. A similar qualitative and quantitative result was realized with aldehyde (66). The origin of the selectivity seen for the production of (65) and (67) was probed in a subsequent study by Kishi and Lewis. The stereochemical outcome was shown not to be a consequence of chelation control as is shown by the insensitivity of the Cram:anti-Cram ratio toward polarity of the reaction medium (equation 34) and toward a variety of hydroxy-protecting groups (R; equation 35). It is apparent that the origin of the 2,3-induction is a function of the steric size and chemical nature of the large α-substituent. Other examples of additions to chiral aldehydes reported by Kishi are provided in Table 4. The major homoallylic alcohols obtained all possess the 1,2-anti, 2,3-syn (Cram) relationship which arises from an (ll,kk) 1,2-process consistent with the expectation for a synclinal transition state and a Felkin-Anh-type approach. Enhanced selectivity with respect to earlier reports and differences in diastereogenesis amongst these cases is rationalized on the basis of predicted torsional preferences about the C(3)–C(4) bond in the substrate aldehydes. In a related transformation, addition of allylchromium to a β-alkoxy-α-methyl aldehyde (84) also provided a Cram addition product (85) with 91% stereoselectivity (equation 41).
Nonstabilized Carbanion Equivalents

\[
\begin{align*}
\text{RO} & \quad \text{H} \\
\text{CrCl}_2, \text{THF} & \\
\text{RO} & \quad \text{OH} + \quad \text{RO} & \quad \text{OH} \quad \quad \quad (35)
\end{align*}
\]

\[
\begin{align*}
R = \text{CH}_2\text{OBn} & : \quad -50 \\
R = \text{THP} & : \quad -50
\end{align*}
\]

Table 4 Crotylchromium Addition to Chiral Aldehydes with \(\alpha\)-Methyl and \(\beta\)-Alkoxy Substituents

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{O} \\
\text{H} & \\
\text{CrCl}_2, \text{THF} & \\
\text{O} & \quad \text{OH} & \\
\text{O} & \quad \text{OH} \\
\text{O} & \quad \text{OH} \\
\text{O} & \quad \text{OH} \quad \quad \quad (36)
\end{align*}
\]

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{O} \\
\text{H} & \\
\text{CrCl}_2, \text{THF} & \\
\text{O} & \quad \text{OH} & \\
\text{O} & \quad \text{OH} \\
\text{O} & \quad \text{OH} \\
\text{O} & \quad \text{OH} \quad \quad \quad (37)
\end{align*}
\]

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{O} \\
\text{H} & \\
\text{CrCl}_2, \text{THF} & \\
\text{O} & \quad \text{OH} & \\
\text{O} & \quad \text{OH} \\
\text{O} & \quad \text{OH} \\
\text{O} & \quad \text{OH} \quad \quad \quad (38)
\end{align*}
\]

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{O} \\
\text{H} & \\
\text{CrCl}_2, \text{THF} & \\
\text{O} & \quad \text{OH} & \\
\text{O} & \quad \text{OH} \\
\text{O} & \quad \text{OH} \\
\text{O} & \quad \text{OH} \quad \quad \quad (39)
\end{align*}
\]

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{O} \\
\text{O} & \quad \text{O} \\
\text{H} & \\
\text{CrCl}_2, \text{THF} & \\
\text{O} & \quad \text{OH} & \\
\text{O} & \quad \text{OH} \\
\text{O} & \quad \text{OH} \\
\text{O} & \quad \text{OH} \quad \quad \quad (40)
\end{align*}
\]

*Ratio of major diastereomer to next most abundant diastereomer: only structure of major diastereomer was determined.

Reaction of crotylchromium with \(\alpha\)-methyl-\(\beta\)-\(\gamma\)-unsaturated aldehyde (87) afforded (88) as the major diastereomer. The other Cram product (89), which is expected to arise from an antiperiplanar transition state (46; Scheme 3), is obtained from a BF\(_3\)-catalyzed tributylcrotylstannane addition. The remaining members of the stereo triad can be accessed by inversion of the C-2 hydroxy (i.e. 88 to 91 and 89 to 90)
via an oxidation (PDC)-reduction (LiBEt3H) sequence. In general it has been shown that (87) and related substrates react with nucleophiles (H-, C-) selectively to give products consistent with the Felkin–Anh mode of addition.44

\[
\text{(87)} \quad \text{SiMe}_3 \text{OH} \quad \text{SiMe}_3 \text{OH} \quad \text{SiMe}_3 \text{OH}
\]

Chromium-mediated addition of crotyl halides to α-alkoxy chiral aldehydes has been the subject of several interesting reports. Reaction of crotyl bromide/CrCl2 with 2,3-O-isopropylidenglyceraldehyde (92; equation 44)57 provides the 1,2-anti products with 98% stereoselectivity, given by the ratio (93 + 95):(94 + 96),53 while 2,3-control, given by the ratio (93 + 94):(95 + 96), was nearly inoperative. However, a related substrate (97) produced exclusively 2,3-syn products with a 96:4 1,2-anti:syn ratio (equation 45).55 Mulzer and coworkers56 investigated the importance of the γ-substituent of the allylchromium(III) reagent with respect to 1,2- and 2,3-diastereogenesis in the addition reactions to α-alkoxy chiral aldehydes (equation 46 and Table 5). It was found in all cases that the level of 1,2-anti selectivity, given by the ratio (103 + 104):(105 + 106), was complete. Moreover, it was demonstrated that the 2,3-syn selectivity increased as a function of increasing the size of R2. This result is consistent with both the transition state models proposed for addition of γ-substituted allylchromiums to aldehydes and with the expectation that products will be generated by Felkin–Anh-type addition (103 and 106).58,60

The addition of γ-alkoxy allylic chromium(III) reagents to aldehydes has been reported by Takai and coworkers.76 This work is reviewed in Section 1.6.3.6.
Nonstabilized Carbanion Equivalents

\[
\begin{align*}
&\text{Table 5} & \text{Addition of Substituted Allylchromium Reagents to Protected } \alpha-\text{Hydroxy Aldehydes (equation 46) }^{55} \\
\text{Entry} & R^1 & R^2 & (103):(104):(105):(106) & \text{Total yield (\%)} \\
1 & \text{THP} & \text{Me} & 89:11:0:0 & 80 \\
2 & \text{THP} & \text{Ph} & 91:9:0:0 & 71 \\
3 & \text{THP} & \text{Bu} & >99:<1:0:0 & 75 \\
4 & \text{TBDMS} & \text{Bu} & >99:<1:0:0 & 90 \\
\end{align*}
\]
1.6.3.4 Other \textit{n,m}-Asymmetric Induction

The use of allylic chromium reagents to control the relative stereochemistry of remote asymmetric centers has been described by Takeshita and coworkers.61d-64 The condensation of iridoid aldehyde synthons (107) and its enantiomer (109) with homochiral allylic chloride (108) provided in each case only two of the four possible diastereomers equations (47) and (48). In this reaction the γ-carbon of the organochromium offers only its \textit{re}-face to the substrate aldehydes (107) and (109). Therefore, the two diastereomers arise from addition to either face of the aldehyde with addition to the \textit{re}-face predominating in both cases with good to excellent selectivity. These materials were used in rather inventive syntheses of the 5-8-5 tricyclic sesterterpenes fusicocca-2,8,10-triene (114) and cycloaranosine (115). The approach to (115) uses a second chromium(II)-mediated aldehyde addition reaction (intramolecular) to form the eight-membered ring (see equation 52, Section 1.6.3.5).62 A similar strategy was developed for the synthesis of ceroplastol II (116) and albolic acid (117).63 Reaction of (108) with (118) in the presence of CrCl\textsubscript{2} provided (120) selectively with only 3% contamination by the hydroxy epimer (equation 49). The stereochemistry of (120) is consistent with the synclinal transition structure (119).

\begin{align*}
\begin{array}{c}
\text{(107)} \\
\text{CHO} \\
\text{Cl H H} \\
\text{Bn} \\
\text{(108)}
\end{array}
\begin{array}{c}
\text{CrCl}_2 \\
82\%
\end{array}
\begin{array}{c}
\text{OH} \\
\text{OBn H} \\
\text{OBn} \\
\text{(110) 78:22 (111)}
\end{array}
\end{align*}

\begin{align*}
\begin{array}{c}
\text{(109)} \\
\text{CHO} \\
\text{Cl H H} \\
\text{Bn} \\
\text{(108)}
\end{array}
\begin{array}{c}
\text{CrCl}_2 \\
77\%
\end{array}
\begin{array}{c}
\text{OH} \\
\text{OBn H} \\
\text{OBn} \\
\text{(112) 95:5 (113)}
\end{array}
\end{align*}

\begin{align*}
\begin{array}{c}
\text{(114)} \\
\text{(115)} \\
\text{(116) R = CH}_2\text{OH (117) R = CO}_2\text{H}
\end{array}
\end{align*}

1.6.3.5 Intramolecular Addition Reactions

The intramolecular variant of the chromium(II) ion mediated Barbier–Grignard-type addition reaction was first described by Still and Mobilio65 in an elegant synthesis of (±)-Asperdiol (122; $R = H$). Chromium(II)-mediated cyclization of (121; $R = \text{Bn}$) provided a 4:1 mixture of (122) and (123) in 64% yield (equation 50). The relative topicity of the process is \textit{fk}. This result is in accord with a synclinal chair transition structure (124) in which both hydrocarbon chains diverge from the reacting centers pseudo-
Nonstabilized Carbanion Equivalents

\[
\text{CrCl}_2, (108) \quad \text{DMF, THF, PrOH} \quad 88\%
\]

\[
\begin{align*}
&\text{(118)} \\
&\text{equatorially (dihedral angle } C(2)-C(1)-C(14)-C(13) = \text{ca. } 30^{\circ}; \text{ 125). Medium}^{66,67} \text{ and large}^{68,69} \text{ ring closures employing allylstannanes,}^{68,69} \text{ allylzinc}^{68} \text{ and allylnickel}^{69} \text{ compounds are also described in the literature. However, the relative topicity of these intramolecular carbon-carbon bond-forming reactions is } ul \text{ (see equations 55 and 56 in Section 1.6.3.6).}^{72,73}
\end{align*}
\]

\[
\begin{align*}
&\text{L}^\text{re,re } (124)
\end{align*}
\]

\[
\text{A related reaction has been described by Kitagawa and coworkers}^{70} \text{ in which (126) exclusively provides (127) upon treatment with CrCl}_3-LAH \text{ (equation 51). The relative stereochemical result is qualitatively identical to that reported by Still and Mobilo}^{65} . \text{ Cyclodecadienol (127) was subsequently transformed into (}\pm\text{-})\text{-costunolide. A third example of a related chromium-initiated cyclization was reported by Takeshita and coworkers}^{62} \text{ in a synthesis of cycloaranosine (115). Serial treatment of (128) with } \text{MsCl/pyridine} \text{ and CrCl}_3-LAH \text{ provided (129) stereospecifically in 95\% yield (equation 52). Another example of internal addition of an allylic chromium reagent to an aldehyde has been reported by Oshima and coworkers and is outlined in Section 1.6.3.6.}^{72,73}
\]

\[
\begin{align*}
&\text{Intramolecular alkenylchromium additions to aldehydes have been reported}^{94,95} \text{ and are outlined in Section 1.6.4.3. An intriguing example of an intramolecular organochromium reaction has been communicated by Gorques and coworkers.}^{71} \text{ Treatment of (130; Scheme 5) with CrCl}_2 \text{ in HMPA elicits a reductive 1,5-acyl transposition and generates chromium phenoxide (131). Work-up with aqueous ammonium chloride affords phenol (132). However, when the reaction occurs in the presence of boron trifluoride etherate benzo[b]furan (133) is obtained directly in excellent yield.}
\end{align*}
\]
Organochromium Reagents

Miscellaneous Substituted Substrates

Allylic chromium reagents bearing an electron-withdrawing group at the β-position of the starting halide have been the subject of several reports. Oshima and coworkers and Drewes and Hoole have shown that CrCl₃-LAH facilitates the addition of ethyl α-bromomethylacrylate (134) to benzaldehyde to generate the α-methylenelactone (135) directly. It was noted that when commercially available CrCl₂ was used in place of Hiyama's reagent (CrCl₃-LAH) hydroxy ester (138) was obtained as the sole product. The reagent prepared from (134) and chromium(II) ion added specifically to the aldehyde functionality in (135) to provide keto lactone (137). Appending a substituent at the β-position of (134) (i.e. Bu; 139) introduces the possibility for 1,2-asymmetric induction. In sharp contrast to other allylic chromium reagents, (E)- or (Z)-(139) upon treatment with CrCl₃-LAH adds to benzaldehyde with ul relative topicity to provide the syn-α-methylenelactone (140) stereospecifically. An intramolecular variant of this reaction reported by Oshima and coworkers describes the transformation of (141) cleanly into (142). Other reducing metal centers (Ni and Zn) have been used to initiate the construction of α-methylenelactones from allylic bromides and aldehydes. These processes also proceed with ul relative topicity. Another example of a trisubstituted allylic chromium reagent bearing an electron-withdrawing group at the β-position to the chromium atom was reported by Knochel and coworkers. Sulfone (143) adds to isovaleraldehyde (144) in the presence of CrCl₂. The addition proceeds stereoselectively to provide a 96:4 ratio of syn-(145) to anti-(146) in 95% yield. The specificity of this transformation was shown to be general (with six examples). The selective ul relative topicity of the addition reaction of sulfone (143) has been ascribed by Knochel to a synclinal transition structure (147). The preferred (E)-alkene geometry fixes the γ-substituent of the nu-
cleophile in a pseudoaxial position. Alternatively, Oshima and coworkers explained their results by implicating an antiperiplanar reaction geometry (148), which is favored because coordination of the substrate aldehyde is replaced by internal ligation from an ester oxygen.

\[
\text{Br} + \text{CH} + \text{H} \rightarrow \text{Ph} \rightarrow \text{Et} \rightarrow \text{O} \rightarrow \text{C} \rightarrow \text{OH}
\]

(Takai and coworkers have recently reported their findings on the addition of \(\gamma\)-alkoxyallylic chromium compounds to aldehydes.\(^7\)) The reagents, which were generated by the reduction of dialkyl acetals (149) with \(\text{CrCl}_2\) in the presence of trimethylsilyl iodide, added to aldehydes (150) to produce vicinal diols
The addition proceeded efficiently and stereoselectively at \(-30^\circ\text{C}\) providing the \textit{erythro}-1,2-diols \((151)\) as the major products. The reaction tolerated substitution at the \(\alpha\)- and \(\beta\)-positions (Table 6, entries 12 and 13 and entries 10 and 11, respectively) of the acetal. Suprisingly, however, the dibenzyl acetal of crotonaldehyde did not provide a useful chromium-based reagent. \textit{Erythro/threo} selectivity was high in all cases except for addition to pivaldehyde (entry 8). As is the case for other organochromium(III) reagents, the oxygenated analogs generated from acrolein acetals add chemo specifically to aldehydes in the presence of ketones (equation 59). The authors suggest that the organochromium reagent was constrained to an \(s\text{-cis}\) configuration caused by internal ligation of the \(\gamma\)-oxygen atom to the metal center. As a consequence, the possible synclinal transition state geometries are boat-like arrangements \((157)\) and \((158)\). Preferred complexation of the aldehyde lone pair which is \textit{syn} to hydrogen\(^7\) and the presence of fewer eclipsing interactions make \((157)\) the favored transition state and the \textit{erythro} isomer \((151)\) the predominant product.

\begin{equation}
\begin{align*}
\text{(149) OR}^1 \text{R}^3 \text{OR}^1 + \text{R}^4 \text{H} \xrightarrow[\text{THF, \(-30^\circ\text{C}\)}]{\text{CrCl}_2, \text{Me}_3\text{SiI}} \text{(151) \text{erythro}} \quad \text{(152) \text{threo}}
\end{align*}
\end{equation}

Table 6 Reaction of Unsaturated Dialkyl Acetals with Aldehydes using \text{CrCl}_2/TMS-I (equation 58)\(^7\)

<table>
<thead>
<tr>
<th>Entry</th>
<th>(R^1)</th>
<th>(R^2)</th>
<th>(R^3)</th>
<th>(R^4)</th>
<th>Time (h)</th>
<th>Yield (%)</th>
<th>\textit{Erythro/threo} ((151):(152))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>Ph</td>
<td>3</td>
<td>99</td>
<td>88:12</td>
</tr>
<tr>
<td>2</td>
<td>Bn</td>
<td>H</td>
<td>H</td>
<td>Ph</td>
<td>1.5</td>
<td>97</td>
<td>71:29(^a)</td>
</tr>
<tr>
<td>3</td>
<td>Bn</td>
<td>H</td>
<td>H</td>
<td>Ph</td>
<td>3</td>
<td>98</td>
<td>88:12</td>
</tr>
<tr>
<td>4</td>
<td>Bn</td>
<td>H</td>
<td>H</td>
<td>Ph</td>
<td>9</td>
<td>33</td>
<td>91:9(^h)</td>
</tr>
<tr>
<td>5</td>
<td>Bn</td>
<td>H</td>
<td>H</td>
<td>n-CsH(_7)</td>
<td>6</td>
<td>95</td>
<td>87:13</td>
</tr>
<tr>
<td>6</td>
<td>Bn</td>
<td>H</td>
<td>H</td>
<td>PhCH(_2)CH(_2)</td>
<td>2.5</td>
<td>99</td>
<td>88:12</td>
</tr>
<tr>
<td>7</td>
<td>Bn</td>
<td>H</td>
<td>H</td>
<td>Cyclohexyl</td>
<td>6</td>
<td>93</td>
<td>88:12</td>
</tr>
<tr>
<td>8</td>
<td>Bn</td>
<td>H</td>
<td>H</td>
<td>t-Buyl</td>
<td>7</td>
<td>91</td>
<td>33:67</td>
</tr>
<tr>
<td>9</td>
<td>Bn</td>
<td>H</td>
<td>H</td>
<td>PhCH(_2)CH(_2)</td>
<td>2</td>
<td>97</td>
<td>76:24(^c)</td>
</tr>
<tr>
<td>10</td>
<td>Bn</td>
<td>H</td>
<td>H</td>
<td>Ph</td>
<td>3</td>
<td>99</td>
<td>88:12</td>
</tr>
<tr>
<td>11</td>
<td>Bn</td>
<td>Me</td>
<td>H</td>
<td>n-CsH(_7)</td>
<td>3</td>
<td>99</td>
<td>88:12</td>
</tr>
<tr>
<td>12</td>
<td>Bn</td>
<td>H</td>
<td>Me</td>
<td>Ph</td>
<td>8</td>
<td>88</td>
<td>92:8</td>
</tr>
<tr>
<td>13</td>
<td>Bn</td>
<td>H</td>
<td>Me</td>
<td>n-CsH(_7)</td>
<td>5</td>
<td>83</td>
<td>93:7</td>
</tr>
</tbody>
</table>

\(^a\)Reaction performed at \(25^\circ\text{C}\). \(^b\)Reaction performed at \(-42^\circ\text{C}\); 42\% PhCHO recovered. \(^c\)\(1,2\)-Addition.

\begin{equation}
\begin{align*}
\text{(153) + (154) \xrightarrow[\text{THF, \(-30^\circ\text{C}\)}]{\text{CrCl}_2, \text{Me}_3\text{SiI}} \text{(155) \text{ + (156)}}
\end{align*}
\end{equation}

1.6.3.7 Propargylchromium Reagents

The chromium-mediated addition of propargyl halides to carbonyl compounds was studied by Gore and coworkers.\(^7\)\(^8\)\(^9\) Unlike the crotylchromium reagents already described (\textit{vide supra}), which react ex-
clusively with allylic transposition, propargyl systems (159) react with carbonyl compounds (160) to provide a mixture of alkynic and allenic products (161) and (162) (equation 60). The regioselectivity was shown to be a function of the propargyl bromide and carbonyl substrate and of the presence of HMPA (hexamethylphosphoramide) in the reaction medium (Table 7). The authors suggest that the organochromium(III) reagent reacts entirely by allylic transposition (Scheme 6). Therefore, the regiochemical outcome reflects the ratio of organochromiums (165) and (166) which are formed as a mixture or equilibrate via mesomeric radical intermediates (163) and (164).

Table 7 Chromium(II)-mediated Addition of Propargyl Bromides to Aldehydes and Ketones (equation 60)

<table>
<thead>
<tr>
<th>Entry</th>
<th>R^1</th>
<th>R^2</th>
<th>R^3</th>
<th>R^4</th>
<th>(161):(162)</th>
<th>(equiv.)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>n-C$_7$H$_5$</td>
<td>85:15</td>
<td>0</td>
<td>72</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>(CH$_2$)$_5$</td>
<td>65:35</td>
<td>0</td>
<td>68</td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>H</td>
<td>(CH$_2$)$_5$</td>
<td>21:79</td>
<td>5</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>Cs$_7$H$_5$</td>
<td>H</td>
<td>Pr$_n$</td>
<td>0:100</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>H</td>
<td>Cs$_7$H$_5$</td>
<td>Me</td>
<td>Me</td>
<td>0:100</td>
<td>0</td>
<td>78</td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>Cs$_7$H$_5$</td>
<td>(CH$_2$)$_5$</td>
<td>0:100</td>
<td>0</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>n-C$_7$H$_5$</td>
<td>H</td>
<td>H</td>
<td>Pr$_n$</td>
<td>100:0</td>
<td>0</td>
<td>76</td>
</tr>
<tr>
<td>8</td>
<td>n-C$_7$H$_5$</td>
<td>H</td>
<td>Me</td>
<td>Me</td>
<td>0:100</td>
<td>0</td>
<td>66</td>
</tr>
<tr>
<td>9</td>
<td>n-C$_7$H$_5$</td>
<td>H</td>
<td>(CH$_2$)$_5$</td>
<td>60:40</td>
<td>0</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>n-C$_7$H$_5$</td>
<td>H</td>
<td>(CH$_2$)$_5$</td>
<td>20:80</td>
<td>1</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Pr$_n$</td>
<td>Et</td>
<td>H</td>
<td>Pr$_n$</td>
<td>100:0</td>
<td>0</td>
<td>65</td>
</tr>
<tr>
<td>12</td>
<td>Pr$_n$</td>
<td>Et</td>
<td>Me</td>
<td>Me</td>
<td>75:25</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>13</td>
<td>Pr$_n$</td>
<td>Et</td>
<td>(CH$_2$)$_5$</td>
<td>80:20</td>
<td>0</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

Scheme 6

1.6.3.8 Enantioselective Addition Reactions

Allylic organometallics modified at the metal center by chiral adjuvants add to aldehydes and ketones to provide optically active homoallylic alcohols. This process has been described for reagents containing boron, tin and chromium metal centers. Gore and coworkers have shown that a chromium-mediated addition reaction of allylic bromides to simple aldehydes that uses a complex of lithium N-methyl-norephedrine and chromium(II) chloride occurs with modest (6–16% ee) enantioselectivity (equation 61, Table 8).
Organochromium Reagents

1.6.4 ALKENYLCHROMIUM REAGENTS

1.6.4.1 General Features

The ability of the anhydrous chromium(II) ion to reduce vinyl halides and provide alkenylchromium compounds which participate in aldehyde addition reactions was first described by Takai and coworkers. Treatment of 2-iodopropane (173) and benzaldehyde with anhydrous chromium(II) chloride in DMF afforded allylic alcohol (174) in quantitative yield (equation 62).

General features of the process are illustrated in Table 9. The addition to aldehydes is more facile than to ketones (entries 1 and 2 versus 3). Vinyl bromide (177) adds to aldehydes in the presence of CrCl₂. The separate addition of (E)-bromostyrene (180) and (Z)-bromostyrene (182) to benzaldehyde occurs stereospecifically to provide (E)-(181) and (Z)-(183), respectively (entries 6 and 7). However, trisubstituted (E)- and (Z)-vinyl iodides (184) and (186) add to benzaldehyde in a stereoconvergent fashion wherein (E)-(185) is the exclusive product in both cases. Lastly, iodobenzene (187) adds more effectively to nonanal than does bromobenzene (189). The chemoselectivity of alkenylchromiums mirrors that of crotlylchromium reagents (see equations 19 and 21). Selective addition to the aldehyde carbonyl of bifunctional compounds (190) and (192) yields adducts (191) and (193), respectively (equation 63 and 64).

Takai and coworkers have shown that alkenylchromium reagents can also be generated from enol triflates and chromium(II) chloride under nickel catalysis (equation 65). This work, as well as reports from Kishi and coworkers, shows that nickel, as a trace contaminant in commercially available CrCl₂ is essential for most Barbier-like organochromium reactions. Consonant with this finding is the fact that high purity CrCl₂, free from nickel salt contamination, does not reproducibly promote organochromium formation. A catalytic cycle which is likely to be operative has been proposed (Scheme 7). Vinyl halide or triflate (194) undergoes oxidative addition to nickel(0) to provide a nickel(II) species (195) which, after metal exchange with chromium(III), affords an alkenylchromium(III) reagent. The appropriate quantities of nickel(0) and chromium(III) are provided by the facile redox couple between nickel(II) and chromium(III). In cases where (194) is an iodide, both nickel(II) and palladium(II) salts promote the catalytic cycle and the addition reaction to aldehydes. However, triflates are converted to competent alkenylchromium reagents only under nickel catalysis. Since it has been shown that palladium(0) undergoes facile oxidative addition to alkenyl and aryl triflates, the alkenylpalladium triflate (195; M = Pd,

\[
\text{I} + \text{PhCHH} \rightarrow \text{PhOH} \quad \text{CrCl₂, DMF, 15 min, 25 °C, 100%} \quad \text{(174)}
\]
Nonstabilized Carbanion Equivalents

<table>
<thead>
<tr>
<th>Entry</th>
<th>Alkenyl halide</th>
<th>Aldehyde/ketone</th>
<th>Yield (%)</th>
<th>Time (h)</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I (173)</td>
<td>PhCHO</td>
<td>100</td>
<td>0.25</td>
<td>(174)</td>
</tr>
<tr>
<td>2</td>
<td>I (173)</td>
<td>n-C₈H₁₇CHO</td>
<td>100</td>
<td>0.25</td>
<td>(175)</td>
</tr>
<tr>
<td>3</td>
<td>I (173)</td>
<td>Cyclohexanone (172)</td>
<td>22⁵</td>
<td>3</td>
<td>(176)</td>
</tr>
<tr>
<td>4</td>
<td>Br (177)</td>
<td>PhCHO</td>
<td>80</td>
<td>15</td>
<td>(178)</td>
</tr>
<tr>
<td>5</td>
<td>Br (177)</td>
<td>n-C₈H₁₇CHO</td>
<td>77</td>
<td>1.5</td>
<td>(179)</td>
</tr>
<tr>
<td>6</td>
<td>Br (180)</td>
<td>PhCHO</td>
<td>82</td>
<td>1</td>
<td>(181) (E) only</td>
</tr>
<tr>
<td>7</td>
<td>Br (182)</td>
<td>PhCHO</td>
<td>78</td>
<td>1</td>
<td>(183) (Z) only</td>
</tr>
<tr>
<td>8</td>
<td>I (184)</td>
<td>PhCHO</td>
<td>91</td>
<td>3</td>
<td>(185) (E) only</td>
</tr>
</tbody>
</table>
X = OTf) may fail to accomplish metal exchange and consequently hinder the formation of the alkenylchromium reagent. Few examples of the use of enol triflates as progenitors of vinyl carbanion equivalents have appeared. Consequently, the work from Takai and coworkers is particularly useful. The alkenylchromiums generated from enol triflates are functionally indistinguishable from those generated from iodoalkenes (equation 65 and table 10). This fact is disclosed by comparison of Table 9 with Table 10.
<table>
<thead>
<tr>
<th>Entry</th>
<th>Triflate</th>
<th>Aldehyde</th>
<th>Time (h)</th>
<th>Product</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BuOTf</td>
<td>PhCHO</td>
<td>1</td>
<td>Bu-OH</td>
<td>72</td>
</tr>
<tr>
<td>2</td>
<td>BuOTf</td>
<td>n-C₈H₁₇CHO</td>
<td>3</td>
<td>Bu-n-C₈H₁₇-OH</td>
<td>81</td>
</tr>
<tr>
<td>3</td>
<td>BuOTf</td>
<td>OHC=Pr</td>
<td>4</td>
<td>Bu-OH</td>
<td>64</td>
</tr>
<tr>
<td>4</td>
<td>BuOTf</td>
<td>OHC-C₇=O</td>
<td>1</td>
<td>Bu-C₇-OH</td>
<td>87</td>
</tr>
<tr>
<td>5</td>
<td>BuOTf</td>
<td>OHC-C₂=C₂-CN</td>
<td>2</td>
<td>Bu-C₂=C₂-CN-OH</td>
<td>78</td>
</tr>
<tr>
<td>6</td>
<td>OTf</td>
<td>n-C₈H₁₇CHO</td>
<td>4</td>
<td>n-C₈H₁₇-OH</td>
<td>74</td>
</tr>
<tr>
<td>7</td>
<td>OTf</td>
<td>n-C₈H₁₇CHO</td>
<td>4</td>
<td>n-C₈H₁₇-OH</td>
<td>76</td>
</tr>
<tr>
<td>8</td>
<td>OTf</td>
<td>PhCHO</td>
<td>1</td>
<td>Ph-PhHO</td>
<td>92</td>
</tr>
<tr>
<td>9</td>
<td>OTf</td>
<td>PhCHO</td>
<td>3</td>
<td>Ph-PhHO</td>
<td>46</td>
</tr>
<tr>
<td>10</td>
<td>OTf</td>
<td>PhCHO</td>
<td>1</td>
<td>Ph-PhHO</td>
<td>85</td>
</tr>
<tr>
<td>11</td>
<td>OTf</td>
<td>PhCHO</td>
<td>2</td>
<td>Ph-PhHO</td>
<td>72</td>
</tr>
</tbody>
</table>
1.6.4.2 Synthetic Applications

A great portion of the chemical research involving alkenylchromium reagents is described by Kishi and coworkers. During synthetic studies directed towards palytoxin\(^{92}\) generation of an organocuprate derived from (201) proved untenable. However, the use of an *in situ* prepared organochromium reagent allowed for C(16)—C(17) bond formation (equations 66 and 67). The coupling proceeded with complete...
retention of the C(17)—C(18) alkene geometry but with a low level of diastereogenesis at C(16). Retention of double-bond configuration is a general feature of disubstituted alkenylchromium compounds (see also entries 6 and 7, Table 9). However, alkenylchromiums derived from trisubstituted iodoalkenes and trisubstituted β-iodoenones\(^9\) exclusively provide products with an (E)-alkene geometry. This stereochemical feature, also noted by Takai and coworkers (entries 8 and 9 in Table 9; entries 8 and 9 in Table 10),\(^{84,85}\) is evident in equations (68) and (69). Both (E)- and (Z)-idoalkenes provide only (E)-allylic alcohols as the addition product. Moreover, both reagents provide identical levels of diastereoselection, as seen from the ratios (210):(211) and (214):(215). Notwithstanding these similarities, the organometallic prepared from the (E)-idoalkenes provides higher yields of the addition products. The major products obtained, (210) and (215), are consistent with the Felkin–Anh prediction for diastereoselective addition reactions to α-alkoxy aldehydes.\(^7\) The reactions outlined in equations (68) and (69) serve as useful model studies for the coupling reaction between the C(1)—C(7) and C(8)—C(51) fragments in the actual synthesis of Palytoxin.

Kishi and coworkers\(^{91–95}\) have also implemented alkenylchromium reagents for the synthesis of glycosides and C-methyl glycoside analogs. In the synthesis of the C-analog (217) of isomaltose (216), the C(5)—C(6) bond was established by the nickel(II) chromium(II)-mediated coupling of (Z)-idoalkene
Organochromium Reagents

(218) with alkoxy aldehyde (219; equation 70). The reaction proceeds with excellent stereochemical control via a Felkin–Anh approach and provides a >15:1 ratio of cis-allylic alcohols (220) and (221). Continuing studies in this area include the synthesis of C-sucrose (226). The nickel(II)/chromium(II) coupling of vinyl iodide (222) with α-benzyloxy aldehyde (223) affords (224) and (225; equation 71). The major product (225) possesses the 3',4'-anti arrangement which arises rationally from a Felkin–Anh addition pathway. This result is consistent with previously described examples (vide supra).

\[
\begin{align*}
\text{(216) Isomaltose: } X &= \text{O, } Y = \text{H} \\
\text{(217) Methyl-C-glycoside: } X &= \text{CH}_2, \ Y = \text{Me}
\end{align*}
\]

\[
\begin{align*}
\text{(218)} & \quad \text{BnO} \\
\text{(219)} & \quad \text{O} \\
\text{(220)} & \quad >94\% \\
\text{(221)} & \quad <6\% \\
\text{(222)} & \quad \text{BnO} \\
\text{(223)} & \quad \text{O} \\
\text{(224)} & \quad 9\% \\
\text{(225)} & \quad 91\%
\end{align*}
\]
1.6.4.3 Intramolecular Addition Reactions

Examples of intramolecular addition reactions of alkenylchromium reagents to aldehydes have appeared.96,97 In the course of synthetic studies in the brefeldin structural series, the nickel(II)/chromium(II)-mediated intramolecular addition reactions of (E)-iodoalkenes (227) and (230) were studied by Schreiber and Meyers (equations 72 and 73).96 Treatment of (227) with CrCl\textsubscript{2} and a catalytic portion of [Ni(acac)\textsubscript{2}] in DMF produced a 4:1 mixture of 4-epibrefeldin C (228) and (+)-brefeldin (229) in 60\% yield. In a similar fashion, precursor iodide (230) afforded a >10:1 mixture of cyclized hydroxy lactones (231) and (232) in 70\% yield. An explanation of the stereochemical preference observed has been eloquently offered in a discussion of local conformational preferences found in the starting material and the product lactone, as each is relevant to a transition structure for a 13-membered ring closure.

Another intramolecular addition of an alkenylchromium to an aldehyde was reported by Rowley and Kishi in synthetic studies toward the ophiobolins.97 Treatment of (223; equation 74) with CrCl\textsubscript{2}/NiCl\textsubscript{2} afforded the cyclized product (234) as a single diastereomer in 56\% yield.

\begin{equation}
\text{OHC} \quad \begin{array}{c}
\text{H} \\
\text{5} \\
\text{H} \\
\text{O} \\
\text{O} \\
\text{C} \\
\text{I}
\end{array} \\
\begin{array}{c}
\text{H} \\
\text{2} \\
\text{O} \\
\text{15} \\
\text{14}
\end{array}
\quad \text{CrCl}_2 \\
1\% \text{ w/w} \quad [\text{Ni(acac)}_2] \\
\text{DMF} \\
60\%
(227)
\end{equation}

\begin{equation}
\text{HO} \\
\begin{array}{c}
\text{4} \\
\text{2} \\
\text{1} \\
\text{O} \\
\text{15} \\
\text{14}
\end{array} \\
\begin{array}{c}
\text{H} \\
\text{5} \\
\text{H}
\end{array} \\
\begin{array}{c}
\text{O} \\
\text{C}
\end{array}
\quad \text{CrCl}_2 \\
1\% \text{ w/w} \quad [\text{Ni(acac)}_2] \\
\text{DMF} \\
60\%
(228) 80\% \\
(229) 20\%
(72)

\begin{equation}
\text{OHC} \quad \begin{array}{c}
\text{H} \\
\text{5} \\
\text{H} \\
\text{O} \\
\text{O} \\
\text{C} \\
\text{I}
\end{array} \\
\begin{array}{c}
\text{H} \\
\text{2} \\
\text{O} \\
\text{15} \\
\text{14}
\end{array}
\quad \text{CrCl}_2 \\
1\% \text{ w/w} \quad [\text{Ni(acac)}_2] \\
\text{DMF} \\
70\%
(230)
\end{equation}

\begin{equation}
\text{HO} \\
\begin{array}{c}
\text{4} \\
\text{2} \\
\text{1} \\
\text{O} \\
\text{15} \\
\text{14}
\end{array} \\
\begin{array}{c}
\text{H} \\
\text{5} \\
\text{H}
\end{array} \\
\begin{array}{c}
\text{O} \\
\text{C}
\end{array}
\quad \text{CrCl}_2 \\
1\% \text{ w/w} \quad [\text{Ni(acac)}_2] \\
\text{DMF} \\
70\%
(231) >91\% \\
(232) <9\%
(73)
1.6.5 ALKYNYLCHROMIUM REAGENTS

The generation of alkynylchromium reagents and their addition to carbonyl compounds has been studied by Takai and coworkers. The chemoselectivity of these reagents resembles that of other organochromium(II) reagents. Preparation of alkynylchromiums can be accomplished by treatment of haloalkynes with chromium(II) chloride in DMF. Representative addition reactions of alkynylchromiums are offered in equations (75) to (79).

\[
\text{Ph} + \text{PhH} \xrightarrow{\text{CrCl}_2, \text{DMF}} \text{Ph} - \text{PhOH} \quad (75)
\]

\[
\text{OHC} - \text{C} - \text{C} - \text{CN} \xrightarrow{\text{Bu} \equiv \text{I}, \text{CrCl}_2, \text{DMF}} \text{Bu} - \text{OH} - \text{C} - \text{C} - \text{CN} \quad (77)
\]

\[
\text{OHC} - \text{C} \xrightarrow{\text{Ph} \equiv \text{I}, \text{CrCl}_2, \text{DMF}} \text{Ph} - \text{OH} \quad (78)
\]
Nonstabilized Carbanion Equivalents

\[
\begin{align*}
\text{Ph} & \quad \text{O} \quad \text{H} & \quad \text{Bu}^\prime \text{Me}_2 \text{Si} & \quad \text{Br} & \quad \text{Bu}^\prime \text{Me}_2 \text{Si} \\
\text{CrCl}_2 & \quad \text{DMF} & \quad 25 \degree \text{C} & \quad 83\% & \\
\text{OH} & \quad \text{Ph} & & \\
(79)
\end{align*}
\]

1.6.6 \(\alpha\)-ACYLCROMIUM REAGENTS

The aldol-type reaction of \(\alpha\)-bromo ketones with aldehydes, mediated by \(\text{CrCl}_2\), has been studied by Dubois and coworkers.\(^99\) The reaction is carried out by addition of (241; equation 80) to a solution of (242) and \(\text{CrCl}_2\) in THF. The reaction proceeds with high levels of syn selectivity with bulky bromo ketones (241), independent of the substrate aldehyde used (Table 11, entries 1-6). However, the reaction is stereorandom with bromoacetophenone (entry 7) and selectively anti with 2-bromocyclohexanone (entry 8). No explanation of the stereoselectivity has been advanced, but the reaction is believed not to proceed via a simple chromium enolate since no condensation reaction is obtained by addition of (242) to a solution of (241) and \(\text{CrCl}_2\). Moreover, Nozaki and coworkers\(^100\) have demonstrated that chromium(II) chloride treatment of 1-bromocyclododecanone followed by treatment with either methyl iodide or TMS-Cl produces only cyclododecanone.

\[
\begin{align*}
\text{R}^1 & \quad \text{O} \quad \text{R}^2 & \quad + & \quad \text{R}^3 & \quad \text{O} \quad \text{R}^3 & \quad \text{H} & \quad \text{OH} & \quad \text{R}^1 & \quad \text{O} \quad \text{R}^1 & \quad \text{OH} \\
(241) & & (242) & & (243) \text{anti} & & (244) \text{syn} & \\
\end{align*}
\]

Table 11 Reaction of \(\alpha\)-Bromo Ketones (241) with Aldehydes (242) using \(\text{CrCl}_2\) (equation 80)\(^99\)

<table>
<thead>
<tr>
<th>Entry</th>
<th>(\text{R}^1)</th>
<th>(\text{R}^2)</th>
<th>(\text{R}^3)</th>
<th>Yield (%)</th>
<th>Anti:syn (243):(244)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\text{Bu}^\prime)</td>
<td>Me</td>
<td>Me</td>
<td>50</td>
<td>0:100</td>
</tr>
<tr>
<td>2</td>
<td>(\text{Bu}^\prime)</td>
<td>Me</td>
<td>Et</td>
<td>81</td>
<td>0:100</td>
</tr>
<tr>
<td>3</td>
<td>(\text{Bu}^\prime)</td>
<td>Me</td>
<td>(\text{Pr}^\prime)</td>
<td>70</td>
<td>0:100</td>
</tr>
<tr>
<td>4</td>
<td>(\text{Bu}^\prime)</td>
<td>Me</td>
<td>(\text{Pr})</td>
<td>83</td>
<td>0:100</td>
</tr>
<tr>
<td>5</td>
<td>(\text{Bu}^\prime)</td>
<td>Me</td>
<td>(\text{Ph})</td>
<td>75</td>
<td>0:100</td>
</tr>
<tr>
<td>6</td>
<td>(\text{Bu}^\prime)</td>
<td>Me</td>
<td>(\text{Bu}^\prime)</td>
<td>87</td>
<td>0:100</td>
</tr>
<tr>
<td>7</td>
<td>Ph</td>
<td>Me</td>
<td>(\text{Ph})</td>
<td>68</td>
<td>50:50</td>
</tr>
<tr>
<td>8</td>
<td>-(CH(_2))(_4)</td>
<td>Ph</td>
<td>(\text{Ph})</td>
<td>75</td>
<td>100:0</td>
</tr>
</tbody>
</table>

1.6.7 ALKYLCHROMIUM REAGENTS

Addition of alkylchromium reagents to carbonyl compounds was studied first by Kauffmann and coworkers.\(^101\) Organochromium reagent (246) can be generated \textit{in situ} by treatment of trimethylsilylmethylmagnesium chloride (245) with \(\text{CrCl}_3\) (Scheme 8). Condensation with aldehydes provides chromium alkoxide (247), which is transformed into the alkenated products (248) by warming with aqueous perchloric acid. Ketones are apparently inert to (246), providing none of the desired alkene product. A more extensive examination of alkylchromium(III) reagents has been subsequently disclosed.\(^102\) Preparation of a variety of dichlorotris(tetrahydrofuran)alkylchromium(III) complexes (249) has been carried out by treatment of \(\text{CrCl}_3\) with organomagnesium or organolithium reagents in tetrahydrofuran (equation 81). Complexes of this sort can also be prepared from organoaluminums and \(\text{CrCl}_3\),\(^12,13\) and X-ray data has revealed the structure of one such complex (249; \(R = \text{p-tolyl}\)). Addition of (250) to aldehydes (equation 82 and Table 12) proceeds smoothly (\(R^3 = \text{H}\); Table 12, entries 2, 5 and 8), but towards ketones (250) is entirely unreactive (\(R^3 \neq \text{H}\); entries 3 and 6). The chemoselectivity is underscored by competition experiments (entries 4 and 7). Also, the addition reaction proceeds more efficiently with a molar excess of alkylchromium (entries 1 \textit{versus} 2 and 8 \textit{versus} 9). Generation of alkylchromium(III) reagents from \(\text{CrCl}_3\) and organic halides has been reported by Takai and coworkers.\(^103\) In particular, it has been demonstrated that \(\alpha\)-thioalkylchromium(III) compounds (254), prepared by chromium(II) ion reduction of \(\alpha\)-iodo sulfides (generated \textit{in situ} from \(\text{LiI}\) and 253),\(^104\) add smoothly and selectively to aldehydes to afford...
thioether carbinols (256; equation 83, Table 13), (257; equation 84) and (258; equation 85). In contrast to the chemoselectivity of this organochromium compound, it has been noted that α-thiomethyllithium exhibits no chemoselectivity for aldehydes in the presence of ketones. The butylchromium reagent prepared by chromium(II) ion reduction of iodobutane provides only 11% of 1-phenyl-1-pentanol (259; equation 86) after 24 h. However, Kauffmann and coworkers have demonstrated that the butylchromium reagent prepared from n-butyllithium and CrCl₂ yields 81% of (259) after 18 h. These data reveal the importance of the sulfide group for the efficient reduction of the alkyl iodide.

Diastereoselective addition of thiophenylalkylchromium(III) reagents has been studied by Takai and coworkers. Treatment of aldehyde (260) with α-chloro sulfide (261), LiI and CrCl₂ gives β-phenylthio alcohols (262) and (263) (equation 87 and Table 14). The syn isomer (262) was generated diastereoselectively in all cases (262:263 ≥ 4:1). The diastereoselectivity of the addition reactions of thiophenylalkylchromiums is especially noteworthy as the lithium reagent prepared from phenyl ethyl sulfide and Bu'Li–HMPA adds to benzaldehyde in a stereorandom fashion (contrast entry 2, table 14).

![Scheme 8](image)

Table 12 Addition of Alkylchromium(III) Complexes (250) to Carbonyl Compounds (equation 82)

<table>
<thead>
<tr>
<th>Entry</th>
<th>R¹</th>
<th>R²</th>
<th>R³</th>
<th>(250):(251)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me</td>
<td>n-C₆H₁₃</td>
<td>H</td>
<td>1:1</td>
<td>36</td>
</tr>
<tr>
<td>2</td>
<td>Me</td>
<td>n-C₆H₁₃</td>
<td>H</td>
<td>3:1</td>
<td>85</td>
</tr>
<tr>
<td>3</td>
<td>Me</td>
<td>Me</td>
<td>Me</td>
<td>1:1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Me</td>
<td>n-C₆H₁₃</td>
<td>H</td>
<td>2:1:1</td>
<td>71</td>
</tr>
<tr>
<td>5</td>
<td>Prⁿ</td>
<td>n-C₆H₁₃</td>
<td>H</td>
<td>3:1</td>
<td>73</td>
</tr>
<tr>
<td>6</td>
<td>Buⁿ</td>
<td>Et</td>
<td>Et</td>
<td>1:1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Prⁿ</td>
<td>n-C₆H₁₃</td>
<td>H</td>
<td>2:1:1</td>
<td>66</td>
</tr>
<tr>
<td>8</td>
<td>PhCH₂</td>
<td>n-C₆H₁₃</td>
<td>H</td>
<td>1:1</td>
<td>52</td>
</tr>
<tr>
<td>9</td>
<td>PhCH₂</td>
<td>n-C₆H₁₃</td>
<td>H</td>
<td>3:1</td>
<td>65</td>
</tr>
<tr>
<td>10</td>
<td>Buⁿ</td>
<td>n-C₆H₁₃</td>
<td>H</td>
<td>1:1</td>
<td>81</td>
</tr>
</tbody>
</table>
Table 13 Addition of α-Halo Sulfides (253) to Aldehydes (255) Using CrCl₂ (equation 83)

<table>
<thead>
<tr>
<th>Entry</th>
<th>R¹</th>
<th>R²</th>
<th>Temp (°C)</th>
<th>Time (h)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me</td>
<td>Ph</td>
<td>40</td>
<td>5</td>
<td>88</td>
</tr>
<tr>
<td>2</td>
<td>Me</td>
<td>C₆H₁₇</td>
<td>40</td>
<td>9</td>
<td>72</td>
</tr>
<tr>
<td>3</td>
<td>Me</td>
<td>PrCH=CH</td>
<td>40</td>
<td>13</td>
<td>64</td>
</tr>
<tr>
<td>4</td>
<td>Ph</td>
<td>Ph</td>
<td>60</td>
<td>10</td>
<td>63</td>
</tr>
<tr>
<td>5</td>
<td>Ph</td>
<td>C₆H₁₇</td>
<td>40</td>
<td>10</td>
<td>48</td>
</tr>
</tbody>
</table>

*1,2-Product only

\[\text{PhCHO} + \text{PhO} \xrightarrow{\text{MeSCH₂Cl, LiL, CrCl₂, THF, 40 °C, 5 h}} \text{PhOH} + \text{PhSMe} \]
\[\text{(84)} \]

\((257) \) 94% 86% recovered

\[\text{CHO} \xrightarrow{\text{MeSCH₂Cl, LiL, CrCl₂, THF, 40 °C, 3 h}} \text{OH} \]
\[\text{(85)} \]

\((258) \)

\[\text{PhH} \xrightarrow{i, Bu"Li, CrCl₂, THF, rt., 24 h, 11\% or ii, Bu"Li, CrCl₂, THF, 18 h, -60 °C to rt., 81\%} \rightarrow \text{PhOH} \]
\[\text{(86)} \]

The process is sensitive to solvent additives. Both yields and syn selectivities benefit from the addition of TMEDA (entries 1 versus 3 and 5 versus 6), HMPA (entry 5 versus 7), triphenylphosphine (entry 5 versus 8) or 1,2-bis(diphenylphosphino)ethane (entry 5 versus 9). The effectiveness of a given additive (vis-a-vis selectivity and/or % conversion) has been shown to be substrate dependent.

Table 14 Addition of α-Halo Sulfides (261) to Aldehydes (260) using CrCl₂ (equation 87)

<table>
<thead>
<tr>
<th>Entry</th>
<th>R¹</th>
<th>R²</th>
<th>Ligand</th>
<th>Time (h)</th>
<th>Yield (%)</th>
<th>(262):(263)</th>
<th>Aldol</th>
<th>(261) recovered (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph</td>
<td>Me</td>
<td>—</td>
<td>16</td>
<td>58</td>
<td>80:20</td>
<td>—</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>Ph</td>
<td>Me</td>
<td>TMEDA</td>
<td>6</td>
<td>96</td>
<td>88:12</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Ph</td>
<td>Pr²</td>
<td>TMEDA</td>
<td>6</td>
<td>95</td>
<td>86:14</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Ph</td>
<td>Pr²</td>
<td>TMEDA</td>
<td>25</td>
<td>46</td>
<td>80:20</td>
<td>—</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>C₆H₁₇</td>
<td>Me</td>
<td>—</td>
<td>17</td>
<td>17</td>
<td>86:14</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>C₆H₁₇</td>
<td>Me</td>
<td>TMEDA</td>
<td>1.5</td>
<td>25</td>
<td>90:10</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>C₆H₁₇</td>
<td>Me</td>
<td>HMPA</td>
<td>20</td>
<td>33</td>
<td>97:3</td>
<td>23</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>C₆H₁₇</td>
<td>Me</td>
<td>Ph₃p</td>
<td>20</td>
<td>23</td>
<td>84:16</td>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td>9</td>
<td>C₆H₁₇</td>
<td>Me</td>
<td>DIPHOS</td>
<td>19</td>
<td>53</td>
<td>>98:<2</td>
<td>△3</td>
<td>32</td>
</tr>
<tr>
<td>10</td>
<td>C₆H₁₇</td>
<td>Pr²</td>
<td>DIPHOS</td>
<td>40</td>
<td>8</td>
<td>>98:<2</td>
<td>△5</td>
<td>71</td>
</tr>
<tr>
<td>11</td>
<td>c-C₆H₁₁</td>
<td>Me</td>
<td>DIPHOS</td>
<td>18</td>
<td>11</td>
<td>90:10</td>
<td>△5</td>
<td>50</td>
</tr>
<tr>
<td>12</td>
<td>c-C₆H₁₁</td>
<td>Me</td>
<td>TMEDA</td>
<td>18</td>
<td>65</td>
<td>81:19</td>
<td>△5</td>
<td>13</td>
</tr>
</tbody>
</table>
1.6.8 ALKYL-GEM-DICHROMIUM REAGENTS: ALKENATION REACTIONS

gem-Dimetaalloorganic compounds are useful reagents for the alkenation of aldehydes and ketones. A variety of gem-dichromium reagents have also been used for this purpose. Takai and coworkers have reported the conversion of aldehydes (264) to vinyl halides (265) and (266) using haloform and chromium(II) salts in THF (equation 88 and Table 15). The (E)-alkenyl halide is generated selectively with the exception of the CHI₃/CrCl₂ reactions of α,β-unsaturated aldehydes (Table 15, entry 12), which give variable results with respect to alkene geometry. The rate of reaction has been shown to be a function of the haloform and increases in the order Cl < Br < I. In addition, the (E):(Z) ratio (265):(266) is also a function of the haloform used and increases in the order I < Br < Cl. The use of HCB₃/BrCl₂ provides a mixture of alkenyl chlorides and bromides (entries 2 and 6). This problem can be alleviated by the use of CrBr₃/LiAlH₄ as the source of CrBr₂, which affords the alkenyl bromides cleanly. Haloform–CrBr₂ reagents condense selectively with aldehydes in the presence of ketones (equation 89), and provide vinyl halides suitable for alkenylchromium preparation (see Section 1.6.4).

\[
\text{O} \quad R \quad \text{H} \quad \xrightarrow{\text{CHX₃, CrCl₂}} \quad \text{CHX₃, CrCl₂} \quad \text{THF} \quad \text{R} \quad \text{CH} = \text{CH I} \quad + \quad \text{R} \quad \text{CH} = \text{CH I} \quad \text{(88)}
\]

Table 15 Selective Synthesis of (E)-Alkenyl Halides (265) from Aldehydes (264) and CHX₃–CrCl₂/THF (equation 88)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Aldehyde (264)</th>
<th>Haloform X</th>
<th>Chromium(II) source</th>
<th>Temperature (°C)</th>
<th>Time (h)</th>
<th>Yield (%)</th>
<th>(265):(266)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PhCHO</td>
<td>I</td>
<td>CrCl₂</td>
<td>0</td>
<td>3</td>
<td>87</td>
<td>94:6</td>
</tr>
<tr>
<td>2</td>
<td>PhCHO</td>
<td>Br</td>
<td>CrCl₂</td>
<td>25</td>
<td>1.5</td>
<td>X = Br 32</td>
<td>95:5</td>
</tr>
<tr>
<td>3</td>
<td>PhCHO</td>
<td>Br</td>
<td>CrBr₃/LiAlH₄</td>
<td>50</td>
<td>1</td>
<td>70</td>
<td>95:5</td>
</tr>
<tr>
<td>4</td>
<td>n-C₆H₁₇CHO</td>
<td>Cl</td>
<td>CrCl₂</td>
<td>65</td>
<td>2</td>
<td>76</td>
<td>95:5</td>
</tr>
<tr>
<td>5</td>
<td>n-C₆H₁₇CHO</td>
<td>I</td>
<td>CrCl₂</td>
<td>0</td>
<td>2</td>
<td>82</td>
<td>83:17</td>
</tr>
<tr>
<td>6</td>
<td>n-C₆H₁₇CHO</td>
<td>Br</td>
<td>CrCl₂</td>
<td>25</td>
<td>2</td>
<td>X = Br 37</td>
<td>89:11</td>
</tr>
<tr>
<td>7</td>
<td>n-C₆H₁₇CHO</td>
<td>Br</td>
<td>CrBr₃/LiAlH₄</td>
<td>50</td>
<td>2</td>
<td>61</td>
<td>87:13</td>
</tr>
<tr>
<td>8</td>
<td>CHO</td>
<td>Cl</td>
<td>CrCl₂</td>
<td>65</td>
<td>4</td>
<td>76</td>
<td>94:6</td>
</tr>
<tr>
<td>9</td>
<td>CHO</td>
<td>I</td>
<td>CrCl₂</td>
<td>0</td>
<td>1</td>
<td>78</td>
<td>89:11</td>
</tr>
<tr>
<td>10</td>
<td>CHO</td>
<td>Br</td>
<td>CrBr₃/LiAlH₄</td>
<td>50</td>
<td>2.5</td>
<td>55</td>
<td>89:11</td>
</tr>
<tr>
<td>11</td>
<td>CHO</td>
<td>Cl</td>
<td>CrCl₂</td>
<td>65</td>
<td>2.5</td>
<td>55</td>
<td>92:8</td>
</tr>
<tr>
<td>12</td>
<td>CHO</td>
<td>I</td>
<td>CrCl₂</td>
<td>0</td>
<td>0.5</td>
<td>76</td>
<td>75:25 to 55:45</td>
</tr>
<tr>
<td>13</td>
<td>Bu⁻[O]</td>
<td>I</td>
<td>CrCl₂</td>
<td>25</td>
<td>4</td>
<td>75</td>
<td>—</td>
</tr>
</tbody>
</table>

\[
\text{O} \quad \xrightarrow{\text{CHI₃, CrCl₂}} \quad \text{THF, 0 °C} \quad \text{PhCHO} + \text{PhCHO} \quad \text{PhCH} = \text{CH I} \quad + \quad \text{Ph} \quad \text{(89)}
\]

Takai and coworkers have reported that the formation of alkyl-gem-dichromium compounds (269) can be achieved by the CrCl₂ reduction of gem-diiodoalkanes (268; equation 90). These reagents add to aldehydes and afford alkyldenation products (271) and (272) efficiently and with high levels of (E)-al-
Nonstabilized Carbanion Equivalents

kene selectivity (equation 90 and Table 16). The addition of 1,1-diiodoethane to aldehydes proceeds smoothly and with excellent (E)-selection (entries 1–5).

\[
\begin{align*}
\text{R}^2\text{I} + \text{CrCl}_2 - \text{DMF} & \xrightarrow{\text{THF}} \text{R}^2\text{I}^{\text{III}} \\
\text{R}^1\text{CHO} & \xrightarrow{\text{(268)}} \text{R}^1\text{I}^{\text{III}} + \text{R}^2\text{I}^{\text{III}} \\
\end{align*}
\]

(268) (269) (270) (271) (272)

Table 16 Alkenation of Aldehydes (270) with gem-Dichromium Compounds (269; equation 90)

<table>
<thead>
<tr>
<th>Entry</th>
<th>R¹</th>
<th>R²</th>
<th>Conditions</th>
<th>Time (h)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>n-CsH₁₁</td>
<td>Me</td>
<td>A</td>
<td>4.5</td>
<td>94</td>
</tr>
<tr>
<td>2</td>
<td>n-CsH₁₁</td>
<td>Me</td>
<td>A</td>
<td>5.0</td>
<td>81</td>
</tr>
<tr>
<td>3</td>
<td>n-CsH₁₁</td>
<td>Me</td>
<td>A</td>
<td>10</td>
<td>85</td>
</tr>
<tr>
<td>4</td>
<td>Et₂CH</td>
<td>Me</td>
<td>A</td>
<td>2.0</td>
<td>99</td>
</tr>
<tr>
<td>5</td>
<td>4-PrC₆H₄</td>
<td>Me</td>
<td>A</td>
<td>1.0</td>
<td>97</td>
</tr>
<tr>
<td>6</td>
<td>4PrC₆H₄</td>
<td>C</td>
<td>A</td>
<td>5.0</td>
<td>84</td>
</tr>
<tr>
<td>7</td>
<td>n-CsH₁₁</td>
<td>Pr</td>
<td>A</td>
<td>1.5</td>
<td>85</td>
</tr>
<tr>
<td>8</td>
<td>n-CsH₁₇</td>
<td>Pr</td>
<td>B</td>
<td>1.0</td>
<td>96</td>
</tr>
<tr>
<td>9</td>
<td>n-CsH₁₇</td>
<td>Pr</td>
<td>B</td>
<td>1.0</td>
<td>87</td>
</tr>
<tr>
<td>10</td>
<td>Bu⁺</td>
<td>Pr</td>
<td>C</td>
<td>0.5</td>
<td>60</td>
</tr>
<tr>
<td>11</td>
<td>Ph</td>
<td>Pr</td>
<td>C</td>
<td>2.4</td>
<td>72.28</td>
</tr>
<tr>
<td>12</td>
<td>n-CsH₁₁</td>
<td>Pr⁺</td>
<td>A</td>
<td>2.0</td>
<td>79</td>
</tr>
<tr>
<td>13</td>
<td>Ph</td>
<td>Pr⁺</td>
<td>B</td>
<td>2.0</td>
<td>80</td>
</tr>
<tr>
<td>14</td>
<td>Ph</td>
<td>H</td>
<td>A</td>
<td>2.4</td>
<td>70</td>
</tr>
<tr>
<td>15</td>
<td>Ph</td>
<td>H</td>
<td>B</td>
<td>3.0</td>
<td>92</td>
</tr>
</tbody>
</table>

* A: (270) 1.0 mmol, (268) 2.0 mmol, CrCl₂ 8.0 mmol, THF; B: (270) 1.0 mmol, (268) 2.0 mmol, CrCl₂ 8.0 mmol, DMF 8.0 mmol, THF; C: (270) 1.0 mmol, (268) 2.0 mmol, CrCl₂ 8.0 mmol, Zn⁺ 6.0 mmol, THF.

However, all other gem-dichromium reagents (R² = Pr, H, Pr⁺) require DMF as a cosolvent to obtain useful yields of alkene products. The effect is attributed to the enhanced reducing ability of chromium(II) in the presence of donor ligands (vide supra). Use of Zn/CrCl₂ as a source of chromium(II) ion provides inferior stereochemical results (Table 16, entries 6 and 11). Lastly, Takai and coworkers have reported the synthesis of (E)-alkenylsilanes. Treatment of dibromotrimethylsilane (273) with CrCl₂ yields gem-dichromium reagent (274) which reacts with aldehydes to produce (E)- and (Z)-vinylsilanes like (276) and (277). As with other gem-dichromiums (equation 88, Table 15; equation 90, Table 16), the alkenation process occurs efficiently with a strong preference for the generation of the (E)-vinylsilane (equation 91, Table 17). In corresponding carbon-substituted cases, diiodo substrates are required for useful yields of the alkene to be obtained; however, the presence of the silicon atom allows for the use of dibromo precursors. The general features of reactivity seen with other organochromiums are apparent with this reagent as well (Table 17). The authors believe that the reaction proceeds by the formation of a gem-dichromium species (280; Scheme 9). Subsequent addition to an aldehyde provides the β-oxy-metal organometallic (281) which then suffers elimination to afford the alkene products (282). No explanation of the stereochemical outcome has been forwarded.

\[
\begin{align*}
\text{Me₃SiBr} + \text{Br} & \xrightarrow{\text{CrCl₂, 25 °C}} \text{Me₃SiBr} \\
\text{Me₃SiBr} & \xrightarrow{\text{THF}} \text{Me₃SiBr} \\
\text{Me₃SiBr} & \xrightarrow{\text{R¹CHO}} \text{Me₃Si} + \text{Me₃Si} \\
\end{align*}
\]

(273) (274) (275) (276) (277)
Table 17 Synthesis of (E)-Alkenylsilanes (276) from Aldehydes (275) and gem-Dichromium Reagents (274)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Aldehyde (275)</th>
<th>Time (h)</th>
<th>Yield (%)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PhCHO</td>
<td>24</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PhCH₂CH₂CHO</td>
<td>24</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>n-C₅H₁₁CHO</td>
<td>24</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PhCH=CHCHO</td>
<td>18</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>18</td>
<td>79</td>
<td>1,2-Addition</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>16</td>
<td>76</td>
<td>Addition to aldehyde</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>24</td>
<td>72</td>
<td>Addition to aldehyde</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>60</td>
<td>0</td>
<td>99% recovery of starting material</td>
</tr>
</tbody>
</table>

![Diagram](image)

\[
\begin{align*}
R^1 & = \text{halogen, SiMe}_3, \text{alkyl} \\
\text{Scheme 9}
\end{align*}

1.6.9 CONCLUSION

A large variety of organochromium(III) compounds has been described. The addition reactions of these materials with carbonyl substrates represent an elaborate array of chemoselective and stereoselective processes. Because of the unique reactivity and chemical properties of these reagents, organochromiums are useful reagents for organic synthesis.

1.6.10 REFERENCES

Nonstabilized Carbanion Equivalents

1.7
Organozinc, Organocadmium and Organomercury Reagents

PAUL Knochel
University of Michigan, Ann Arbor, MI, USA

1.7.1 GENERAL CONSIDERATIONS
Organozinc compounds1,2 are readily prepared by oxidative addition of zinc to alkyl, allylic or benzylic halides, or by transmetallation reactions. Cadmium organometallics are prepared in similar ways, but show a lower thermal stability. Zinc and cadmium derivatives show a much lower reactivity and, consequently, a higher chemoselectivity than their lithium and magnesium counterparts. Organozinc halides containing various important classes of organic functional groups can be prepared in high yields and used, after transmetallation to more reactive copper or palladium organometallics, to form new carbon–carbon bonds. The addition of organozinc compounds to aldehydes and ketones is of considerable synthetic utility. Thus, alkyl- and aryl-zinc and -cadmium reagents add to aldehydes in the presence of Lewis acid catalysts with excellent chemoselectivity. If a chiral catalyst is used, very high enantioselectivities can be achieved. The addition of the more reactive allylic zinc and cadmium compounds to aldehydes and ketones does not require a catalyst and proceeds with high yields, good regioselectivity and, in some cases, excellent diastereoselectivity. The easy preparation of allylic zinc halides, combined with their high reactivity, makes them ideal nucleophilic allylating reagents.
1.7.2 PREPARATION OF ORGANOZINC REAGENTS

1.7.2.1 Introduction

The carbon–zinc bond,\(^1\)\(^2\)\(^3\), which is a moderately strong carbon–metal bond (bond energy of \(\text{Me}_2\text{Zn} = 42 \text{ kcal mol}^{-1}\; (1 \text{ cal} = 4.18 \text{ J})\)), has a high covalent character (85\%) and thus is relatively unreactive toward most organic electrophiles. However, this low reactivity allows for the preparation of a wide range of highly functionalized organozinc compounds. The presence of empty \(sp\)-orbitals of low energy at the zinc atom makes these organometallics very sensitive toward proton sources (such as water and alcohols) and toward oxygen. The two most important classes of zinc organometallics are organozinc halides (\(\text{RZnX} ; 1\)) and diorganozincs (\(\text{R}_2\text{Zn} ; 2\); see Scheme 1). These are prepared either by the oxidative addition of organic halides to zinc metal or by transmetallation reactions. The organometallics (1) and (2) show different reactivities and selectivities in addition reactions to carbonyl compounds.

![Scheme 1](image_url)

1.7.2.2 Preparation by Oxidative Addition

Zinc organometallics can be prepared by heating an alkyl halide/zinc mixture without solvent.\(^1\) This procedure initially affords an alkylzinc iodide of type (1). Further heating and subsequent distillation converts (1) into the corresponding dialkylzinc (2; see Scheme 1). A zinc–copper couple has to be used to make the reaction reproducible, and only alkyl iodides or a mixture of alkyl iodide and the corresponding bromide are suitable substrates. This method is successful for low boiling point dialkylzinc reagents (dimethylzinc to dipentylzinc). The preparation of higher analogs requires high distillation temperatures, leading to substantial decomposition of the organometallic and to difficult separations from Wurtz coupling products and unreacted alkyl iodides.\(^1\) The reaction can be performed under much milder conditions and with more elaborate organohalides in the presence of a solvent such as ether, ethyl acetate/toluene, 1,2-dimethoxyethane, THF, DMF, DMSO or HMPA. An alkyl halide is always less readily converted into a zinc organometallic than into the corresponding magnesium organometallic. Only alkyl iodides and activated organic bromides (benzyle, allylic or propargylic) can be used successfully. Allylic or benzyllic chlorides can only be converted to the zinc derivative in very polar solvents, such as DMSO,\(^4\) or in THF at high temperatures (50–60 °C).\(^5\) Very mild reaction conditions can be achieved if the zinc metal has been activated. Several procedures for the activation of zinc metal have been developed.\(^6\) The reduction of zinc chloride with various reagents such as potassium,\(^6\)\(^8\) potassium–graphite (C\(_8\)K) or lithium in the presence of naphthalene\(^6\)\(^d\) affords a very reactive zinc powder, which allows otherwise impossible reactions (see Scheme 2).\(^6\)\(^d\) Activation of zinc by ultrasound wave irradiation\(^8\) or by the use of active zinc slurries prepared by metal vapor techniques\(^7\) has also been reported. A very convenient activation\(^8\) is realized by the treatment of cut zinc foil or zinc dust with 4 mol % of 1,2-dibromoethane, then with 3 mol % of TMS-Cl. Under these conditions, a wide range of functionalized iodides can be converted, in THF, to the corresponding organozinc iodides in high yields (85–95\%; see equation 1). Primary alkyl iodides react between 30 and 45 °C, whereas most secondary alkyl iodides are smoothly converted into the corresponding zinc derivatives between 25 and 30 °C. The tolerance of functional groups in organozinc halides is noteworthy. The zinc organometallics (3)–(13) have been prepared in THF,\(^8\)\(^11\)\(^13\) benzene/\(N\)/\(N\)-dimethylacetamide,\(^12\)\(^16\) or benzene/HMPA\(^10\) in good yields. In polar solvents such as DMF, zinc inserts even into C(sp\(^2\))–I bonds of aromatic and heteroaromatic iodides affording zinc reagents such as (11b).\(^5\) Iodomethylzinc iodide (13) was found to undergo a new 1,2-migration with a variety of copper derivatives NuCu, affording the methylene-homologated organo-
Organozinc, Organocadmium and Organomercury Reagents

213

copper NuCH₂Cu·ZnI₂. Interestingly, the presence of the THF soluble copper salt CuI·2LiI allows iodomethylzinc iodide (13) to convert allylic bromides directly to homoallylic iodides in high yields (see Scheme 3).¹⁷

```
ZnCl₂ → Zn + Br\_i
\ii \rightarrow \text{ZnBr}_2 \quad 73\%
```

i, Li (2.1 equiv.), naphthalene (10 mol %), DME, 25 °C, 15 h; ii, DME, reflux, 10 h

Scheme 2

```
FG–R–I \rightarrow FG–R–ZnI
\text{FG} = \text{OCOR, CONR}_2, \text{CO}_2\text{R, N(COR)}_2, \text{Cl, Si(OR)}_3, \text{P(O)(OR)}_2, \text{SR, S(O)R, S(O)}_2\text{R}
```

\(n = 2, 3 \) or 4

\(n = 3, 4 \) or 5

\(n = 2 \) or 3

\(n = 0 \) or 1

Scheme 3
The same methodology has been used to prepare various functionalized benzylic zinc organometallics,\(^\text{19}\) which are not available by other methods (see equation 2).\(^\text{20}\) In the case of electron rich aromatic bromomethyl derivatives, Wurtz coupling can become a major reaction pathway. This side reaction is generally avoided by using the corresponding benzylic chloride. The formation of the zinc reagent\(^\text{5b}\) must then be performed at 45 °C instead of 5 °C (see equation 3). ortho-Bis(trimethylsilyl)aminobenzylic zinc organometallics can be easily prepared and used for the synthesis of heterocycles such as indoles (see equation 4).\(^\text{19b}\)

$$\begin{align*}
\text{FG} & \quad \text{Br} \\
\text{Zn, THF} & \quad 5 \degree \text{C}, 2-3 \text{ h} \\
\text{FG} & \quad \text{ZnBr} \\
\text{R} & \quad \text{R}
\end{align*}$$

(2)

$$\begin{align*}
\text{OAc} & \quad \text{Cl} \\
\text{i} & \quad \text{Zn dust (2 equiv.), THF/DMSO (4:1), 45 \degree \text{C}, 4 \text{ h}} \\
\text{OAc} & \quad \text{ZnCl} \\
\text{OAc} & \quad \text{OAc}
\end{align*}$$

(3)

i, Zn dust (2 equiv.), THF/DMSO (4:1), 45 °C, 4 h

$$\begin{align*}
\text{N(SiMe}_3\text{)}_2 & \quad \text{Br} \\
\text{i-iv} & \quad \text{i, Zn, THF, 0 \degree \text{C}, 5 \text{ h}; ii, CuCN, 2LiCl, -78 \degree \text{C to } -20 \degree \text{C, 5 min;}} \\
\text{N(SiMe}_3\text{)}_2 & \quad \text{iii, RCOCl, -20 \degree \text{C, 14 h; iv, aqueous work-up}} \\
\text{R} & \quad \text{N}
\end{align*}$$

(4)

Various allylic zinc compounds, such as (14)–(16), can be prepared in good yields from the corresponding allylic bromide and zinc in THF. The tendency to form Wurtz coupling products increases with the number of substituents of the allylic bromide, with the presence of electron-donating groups at the double bond and with higher reaction temperatures. Thus, whereas (15) can be prepared\(^\text{21}\) in high yields at 25 °C, the preparation of (14) has to be performed below 10 °C\(^\text{22}\) and (16) can only be obtained in good yield\(^\text{5c}\) if prepared below -5 °C. Cinnamylzinc bromide has to be prepared at -15 °C.\(^\text{22a}\)

$$\begin{align*}
\text{ZnBr} & \quad \text{CO}_2\text{R} \\
\text{ZnBr} & \quad \text{O} \quad \text{OMe} \\
\text{ZnBr} & \quad \text{R}
\end{align*}$$

(14) (15) (16)

1.7.2.3 Preparation by Transmetallation Reactions

Grignard reagents\(^1\text{,2,3,23}\) have been used extensively to prepare alkylzinc halides (1; see equation 5) and to some extent to prepare dialkylic zinc reagents not available by oxidative addition reactions, such as di-\(\alpha\)-butylzinc\(^\text{24}\) or divinylzinc (see Scheme 4).\(^\text{25}\) Although moderate yields are often obtained,\(^1\) some optically active dialkylic zinc reagents have been prepared in 49–81% yield.\(^1\text{,26}\)

$$\text{RMgX} + \text{ZnX}_2 \rightarrow \text{RZnX} + \text{MgX}_2 \quad (5)$$

(1)

Compared to Grignard reagents, lithium organometallics\(^27\) have been used less frequently for the preparation of organozinc compounds. Their high reactivity\(^28\) or their easy availability\(^29,30\) can, however, be
Organozinc, Organocadmium and Organomercury Reagents

2Bu′MgCl + ZnCl₂ → Bu′₂Zn; MgBr + ZnCl₂ → (Zn₂
i, ether, 25 °C, then distillation; ii, THF, 55 °C, 12 h, then distillation

Scheme 4

useful for the synthesis of several functionalized zinc organometallics, such as (17) and (18) in Scheme 5. Trialkylium compounds readily react with various zinc salts affording dialkylzinc derivatives in good yields, but only one alkyl group per molecule of R₃A₁ is transferred to zinc (see equation 6).

\[
\begin{align*}
\text{Li} & \quad \text{Fe(CO)₃} \\
\text{i} & \quad \text{ZnBr} \\
\quad & \quad \text{Fe(CO)₃} \\
\text{ii} & \quad \text{2LiCHCl₂} \\
& \quad \text{Zn(CHCl₂)₂}
\end{align*}
\]

(17) (18)

i, ZnBr₂ (1.1 equiv.), THF, -78 to 25 °C; ii, ZnCl₂ (0.5 equiv.), THF, -74 to 25 °C

Scheme 5

2Me₃Al + Zn(OAc)₂ → Me₂Zn + Me₂AlOCOME

i, decalin, -10 to 10 °C, 2 h, then distillation

In contrast to organoaluminum compounds, the reaction with organoboranes has good synthetic potential. The addition of a triallyl- or tribenzyl-borane to dimethylzinc furnishes, under mild conditions, a diallyl- or dibenzyl-zinc compound and trimethylborane (b.p. -20 °C), which escapes from the reaction mixture and rapidly drives the reaction to completion (see equation 7). Diorganomercury reagents react with zinc at higher temperatures (>100 °C), giving zinc organometallics in satisfactory to good yields. Miscellaneous methods, such as the insertion of diazomethane into zinc halides, the electrolysis of alkyl halides, the opening of siloxycyclopropanes, a bromide-zinc exchange reaction, the reduction of π-allylpalladium complexes and the metallation of acidic hydrocarbons, have been reported.

\[
\begin{align*}
\text{B} & \quad \text{(19)} \\
\text{3} & \quad \text{Me₂Zn} \\
\quad & \quad \text{0 °C} \\
\quad & \quad \text{100%} \\
& \quad \text{Zn} \\
\text{3} & \quad \text{BMe₃}
\end{align*}
\]

(7)

1.7.3 ADDITION REACTIONS OF ORGANOZINC REAGENTS

1.7.3.1 Introduction

Allylic, propargylic and, to some extent, benzylic zinc organometallics are more reactive toward addition to carbonyl compounds than alkylzinc derivatives. Without catalysts, dialkylzinc reagents display a very low reactivity toward aldehydes and are unreactive toward ketones. The addition of Lewis acids (electrophilic catalysis), such as magnesium or zinc bromide, boron trifluoride etherate, chlorotrimethylsilane, and trimethylsilyl triflate, or the addition of Lewis bases (nucleophilic catalysis) such as tetraalkylammonium halides and amino alcohols, can strongly enhance the rate of the addition either by activating the aldehyde, leading to an intermediate of type (19), or by activating the organozinc compound by the formation of a more reactive zincate of type (20; see Scheme 6). A common side reaction with zinc organometallics having β-hydrogens is the reduction of the carbonyl compound (see Scheme 7). The carbonyl addition can be favored over the reduction by the addition of tetraalkylammonium salts, as shown in Table 1 (nucleophilic catalysis).
Nonstabilized Carbanion Equivalents

\[\begin{align*}
\text{R'} & \quad \text{H} \\
\text{O} & \quad \text{electrophilic catalysis} \\
\text{A} & \quad [\delta^+ \cdot \delta^-] \\
\text{R'} & \quad \text{H} \\
\end{align*} \]

\[\text{R}_2\text{Zn} \quad \text{B:} \quad [\delta^- \cdot \delta^+] \quad \text{R'} \quad \text{R} \quad \text{CHO} \]

Scheme 6

\[\begin{align*}
\text{R} & \quad \text{ZnX} \\
\text{H} & \quad \text{O} \\
\text{OH} & \quad \text{R'} \\
\end{align*} \]

Scheme 7

Table 1 Influence of the Addition of Tetrabutylammonium Salts on the Reaction of Benzaldehyde with Diisopropylzinc in Ether

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Reduction product (%) (benzyl alcohol)</th>
<th>Addition product (%) (1-phenylbutanol)</th>
<th>Relative rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>44</td>
<td>56</td>
<td>1.0</td>
</tr>
<tr>
<td>Bu₄NI</td>
<td>23</td>
<td>77</td>
<td>1.1</td>
</tr>
<tr>
<td>Bu₄NBr</td>
<td>8</td>
<td>92</td>
<td>4.1</td>
</tr>
<tr>
<td>Bu₄NCl</td>
<td>6</td>
<td>94</td>
<td>8.9</td>
</tr>
</tbody>
</table>

1.7.3.2 Addition Reactions of Alkyl- and Aryl-zinc Reagents

Without the presence of a catalyst, the addition of alkylzinc organometallics \((\text{RZnX} \text{ or } \text{R}_2\text{Zn})\) to aldehydes is unsatisfactory and leads to an appreciable amount of reduced product. For example, the reaction of diethylzinc and 4-chlorobenzaldehyde gives a mixture of 4-chlorobenzyl alcohol \((45\%)\) and 1-(4-chlorophenyl)propanol \((38\%)\). The addition of only 5 mol % of magnesium bromide to the reaction mixture results in faster addition and higher yields. Thus, the treatment of distilled \(\text{Bu}_4\text{Zn}\) with benzaldehyde affords a 15% yield of 1-phenylpentanol, whereas the same reaction in the presence of 2 equiv. of \(\text{MgBr}_2\) produces 70% of the addition product. Ketones usually do not react; benzophenone is reduced by diethylzinc, and only diphenylzinc gives the addition product under severe conditions (toluene, reflux, 30 h). Preparatively more useful is the reaction of ester-containing alkylzinc iodides with aldehydes in the presence of an excess of TMS-Cl and with DMA or NMP as a cosolvent (see equation 8).

\[\begin{align*}
\text{EtO} & \quad \text{ZnI} \\
\text{O} & \quad \text{R'CH} \\
\text{OH} & \quad \text{R'} \\
\text{EtO} & \quad \text{HO} \\
\text{i, Me}_3\text{SiCl (3 equiv.), toluene, DMA, 25–60 °C, 3 h to 3 d} \end{align*} \]

Far milder reaction conditions are possible if a transmetallation of the zinc organometallic \((21)\) to the mixed copper–zinc derivative \((22)\) is first performed and if the reaction is carried out in the presence of 2 equiv. of \(\text{BF}_3\cdot\text{OBu}_2\). A wide range of functional groups are tolerated in compounds \((21)\) and \((22)\), and high yields are usually obtained \((68–93\%); \text{see Scheme 8})\), the reaction showing a good chemoselectivity. The treatment of a 1:1 mixture of benzaldehyde and acetophenone with the organozinc iodide \((23); \text{2 h at})
-30 °C) furnishes the acetoxy alcohol (24) in 86% isolated yield, with acetonaphone recovered in 93% GLC yield (see equation 9). With an unsaturated aldehyde, such as cinnamaldehyde, a 1,2-addition reaction is observed in the presence of BF₃·OEt₂, but only the 1,4-addition product is obtained if the reaction is performed with TMS-Cl as an additive (see Scheme 9).¹⁰

\[
\begin{align*}
FG\text{-}R\text{-}ZnI & \quad \text{i} \quad FG\text{-}RCu(CN)ZnI \\
& \quad \text{ii} \quad 68-93\% \\
\end{align*}
\]

ester, nitrile, enoate or imide

i, CuCN·2LiCl (1.0 equiv.), THF, 0 °C, 10 min; ii, R'CHO (0.7-0.85 equiv.), BF₃·OEt₂ (2 equiv.), -78 °C, then 4-16 h at -30 °C

Scheme 8

\[
\begin{align*}
\text{Ph} & \quad + \quad \text{Ph} \quad + \quad \text{AcO} \quad \text{Cu(CN)ZnI} \\
i, & \quad \text{BF}_3\text{·OEt}_2 \quad (2.8 \text{ equiv.}), \quad -78 \text{ to } -30 \text{ °C, } 2 \text{ h} \\
\end{align*}
\]

i, cinnamaldehyde, BF₃·OEt₂ (2 equiv.), -78 to -30 °C, 2 h

Scheme 9

A transmetallation to titanium derivatives¹²,¹³,⁴⁵-⁴⁷ also promotes the addition of various zinc organometallics to carbonyl compounds. However, the functional group tolerance seems to be limited (see Scheme 10).¹⁰,¹³,⁴⁷ Interestingly, diethylzinc reacts with aromatic 1,2-diketones to give α-ethoxy ketones (see equation 10).⁴⁸

\[
\begin{align*}
\text{PrZnBr} & \quad \text{i} \quad \text{86\%} \quad \text{Pr} \quad \text{OH} \\
i, & \quad \text{CITi(OPr)}_3 \quad (1 \text{ equiv.}), \quad -30 \text{ °C, then PhCHO (1 equiv.), } -20 \text{ to } -25 \text{ °C, } 2 \text{ h} \quad \text{⁴⁶} \\
\end{align*}
\]

Scheme 10
1.7.3.3 Addition Reactions of Allylic and Propargylic Zinc Reagents

The addition of allylic and propargylic zinc bromides to aldehydes and ketones proceeds readily\(^{22,29,49,50}\) and is of high synthetic interest since the starting allylic and propargylic organometallics are easily prepared (see Scheme 11).\(^{22}\) Several functionalized aldehydes or ketones can be used.\(^{22,49,51}\) The reaction of allylzinc bromide with anthraquinone affords a cis,trans mixture of the diol (25) and produces only the 1,2-addition product with unsaturated ketones (see Scheme 12). Note that trialkylzincates, on the other hand, provide the 1,4-addition product in good yields.\(^{52}\) Highly functionalized allylic zinc halides\(^{29,53,54}\) can be prepared and afford, after addition to aldehydes or ketones, a direct approach to five-membered carbo- or hetero-cycles (see Scheme 13). A straightforward approach to the sex pheromone of the bark beetle (26) via the iron–diene complex (27) illustrates the synthetic utility of the Zn–Fe bimetallic isoprenoid reagent (17; see Scheme 14).

\[
\text{Et}_2\text{Zn} + \text{Ph} = \text{Et}_2\text{O}, 25 \degree \text{C}, \text{then H}_2\text{O}^+ \rightarrow \text{Ph} \rightarrow \text{EtO} \quad (10)
\]

\[
\begin{align*}
\text{Br} & \quad \text{ZnBr} & \quad \text{ZnBr} \\
\text{i, Zn (1 equiv.), THF, 10 \degree \text{C}, 3-4 \text{ h}; ii, R_1\text{COR}_2 \quad (aldehyde or ketone), 25 \degree \text{C}, \text{several hours}} \\
\end{align*}
\]

Scheme 11

![Scheme 11](image)

\[
\begin{align*}
\text{Br} & \quad \text{ZnBr} & \quad \text{ZnBr} \\
\text{i, H}_2\text{C} = \text{CHCH}_2\text{ZnBr (2.5 equiv.), THF, -5 to 0 \degree \text{C}, 2 \text{ h}; ii, H}_2\text{C} = \text{CHCH}_2\text{ZnBr (1.25 equiv.), 25 \degree \text{C}, \text{several hours}} \\
\end{align*}
\]

Scheme 12

![Scheme 12](image)

\[
\begin{align*}
\text{SiMe}_3 & \quad \text{Ph} & \quad \text{Ph} \\
\text{i, Zn, THF, then Bu}_4\text{NF, then H}_2\text{O}^+; & \quad \text{ii, THF, 25 \degree \text{C}, overnight, then Pd(PPh}_3)_4 (5-10 \text{ mol%}), 65 \degree \text{C}, 16-24 \text{ h}} \\
\end{align*}
\]

Scheme 13
The *in situ* generation of allylic zinc reagents in the presence of an electrophile (Barbier conditions)\(^5\) can be advantageous compared to a conventional two-step procedure and allows several new synthetic possibilities, such as: (i) the generation of functionalized zinc organometallics of type (28), which add readily to various carbonyl compounds (see Scheme 15); and (ii) the generation of allylic zinc compounds in aqueous medium.\(^6\) In this case, the reaction has a radical character\(^6\) and does not proceed through a true zinc organometallic (see Scheme 16). The addition of substituted allylic zinc bromides proceeds with an allylic rearrangement via a cyclic six-membered transition state.\(^5\) The new carbon–carbon bond is always formed from the most substituted end of the allylic system (see Scheme 17 and equation 11).

\[
\text{Y} \text{ZnBr}
\]

\[Y = \text{CO}_2\text{R}, \text{SO}_2\text{R}, \text{SOR}, \text{PO(OR)}_2, \text{SiMe}_3\]

Scheme 14

Under suitable reaction conditions,\(^6\) the addition of allylic zinc bromides to ketones can be reversible. Thus, the reaction of diisobutyl ketone with 2-pentenylzinc bromide in THF affords, after a short reaction time, a mixture of (29) and (30) in a 44:56 ratio, whereas after 12 h, only the thermodynamically

Scheme 15

Scheme 16
Nonstabilized Carbanion Equivalents

\[
\text{Scheme 17}
\]

more stable zinc alcoholate (29) is present (see equation 12). Propargylic bromides (31)1,22,64,65,66 are readily converted to the corresponding zinc derivatives (Zn, THF, -10 to -5 °C), which exist as allenic organometallics of type (32) if R\textsubscript{1} = H or Ph and R\textsubscript{2} = alkyl or H, and as a mixture of (32) and (33) if R\textsubscript{1} = alkyl and R\textsubscript{2} = H. Their reaction with carbonyl compounds generally affords a mixture of homopropargylic and allenic alcohols of type (34) and (35) respectively in which the former predominates (see Scheme 18). The ratio between (34) and (35) strongly depends on the nature of the substituents R\textsubscript{1} and R\textsubscript{2} of (31), on the solvent, and/or on the carbonyl group used. With allenylzinc bromides in which R\textsubscript{1} = H and R\textsubscript{2} = alkyl, an almost exclusive formation of alkynic alcohols of type (34) is observed.66 In the presence of polar cosolvents like HMPA, a reversible addition to ketones is observed.65d

\[
\text{Scheme 18}
\]

1.7.3.4 Diastereoselective Addition Reactions

Zinc and cadmium reagents usually add to aldehydes and ketones with good diastereoselectivity compared to Grignard reagents. Dicrotyl-zinc and -cadmium reagents4g add to sterically hindered aldehydes to produce mostly the anti-alcohols (36) via the cyclic transition state (37; see Scheme 19). 2-Substituted allylic zinc bromides display a syn diastereoselectivity. The bromo sulfones (38) react under Barbier conditions with aldehydes to give the syn-alcohols (39) with a high selectivity57b via a transition state such as (40), which minimizes the steric interactions between R\textsubscript{1}, R\textsubscript{2} and the PhSO\textsubscript{2} group (see Scheme 20).
Remarkable selectivities are observed in the addition of allenic zinc chlorides to aldehydes, affording \textit{anti}-homopropargylic alcohols \textit{via} a transition state of type (41) (see Scheme 21). An extension to 1-substituted trimethylsilyllallenic zinc chlorides was also possible and gave the \textit{anti}-alcohols (42) in 92–99\% stereoisomeric purity.

\begin{equation}
\text{R} \quad \text{M} \quad \text{anti (\%)} \quad \text{syn (\%)}
\end{equation}

\begin{align*}
\text{Pr}^i & \quad \text{Mg} & 58 & 42 \\
\text{Zn} & \quad 70 & 30 \\
\text{Cd} & \quad 80 & 20 \\
\text{Bu}^t & \quad \text{Mg} & 75 & 25 \\
\text{Zn} & \quad 84 & 16 \\
\text{Cd} & \quad 86 & 14
\end{align*}

\textit{i}, ether, $-20 \, ^\circ\text{C}$ or $-35 \, ^\circ\text{C}$, 1 h, then H_3O^+

\textbf{Scheme 19}

\begin{align*}
\text{SO}_2\text{Ph} & \quad \text{Zn, THF} \\
\text{25–40} \, ^\circ\text{C} & \quad 90–99\%
\end{align*}

\textbf{Scheme 20}

The addition of methylzinc (and cadmium) organometallics to chiral aldehydes67 proceeds with low stereoselectivity and leads to a mixture of \textit{syn}- and \textit{anti}-alcohols (see Scheme 22). A better diastereoselectivity can be achieved by using the mixed copper–zinc reagents RCu(CN)ZnI.10 In contrast, the more reactive diallylzinc reacts with several α-alkoxy aldehydes58 of type (43) to give \textit{anti} addition.
Nonstabilized Carbanion Equivalents

\[
\begin{align*}
\text{Scheme 21} \\
\text{products (44) with over 80\% de (diastereoisomeric excess). The addition follows Cram's rule via a transition state such as (45). Zinc has a strong ability to complex with oxygen atoms and this property can be used to perform several chelate-controlled additions to \(\alpha \)-alkoxy aldehydes. Thus, diethylzinc adds in ether to the aldehyde (46), furnishing the syn-alcohol (47) as the major diastereoisomer (70\% de) through a chelate-controlled transition state of type (48). The alcohol (47) could be converted into exo-brevicomin (49; see Scheme 23).}
\end{align*}
\]

\[
\begin{align*}
\text{i, Et}_2\text{Zn, ether, 0–25 °C, 5 h; ii, TMEDA (0.25 equiv.), BuLi (2.5 equiv.), 0–25 °C, 12 h, then ether, TMEDA (2.5 equiv.), MeI (5 equiv.), 0–25 °C, 1 h, then H}_3\text{O}^+ \\
\text{Scheme 23}
\end{align*}
\]

\[
\begin{align*}
\text{i, Bu'Li, THF, –90 °C, 1 h, then ZnCl}_2 \text{ in THF, –74 to –65 °C; ii, R'CHO, –74 to 25 °C, 1 h, then H}_3\text{O}^+
\end{align*}
\]
In situ generated perfluoroalkylzinc iodides add to chromium tricarbonyl complexes of aromatic aldehydes with fair diastereoselectivity (44–66% de). The low reactivity of \(R_2Zn \) toward ketones makes a stereochemical study rather difficult, since extensive reduction is observed. However, it has been found that methylzinc (and cadmium) derivatives give more axial attack with 4-t-butylcyclohexanone than the corresponding magnesium reagents, whereas allyl and propyl-zinc and -cadmium compounds mainly furnish the products derived from an equatorial attack (see Scheme 24). The low tendency of \(Pr_2Cd \) to reduce 4-t-butylcyclohexanone is noteworthy (addition/elimination ratio = 10:1 compared to 1.2–2.0:1 for propyl-zinc and -magnesium reagents). The reactive \((-\)-menthyl phenylglyoxalate gives \(-\)-substituted \((-\)-menthyl mandelates in good yields and with good stereoselectivity (71–88% de; see equation 13).

\[
\begin{align*}
\text{Bu}^1 \text{O} & \quad \text{+ RM} \quad \rightarrow \quad \text{Bu}^1 \text{OH} \quad R \quad + \quad \text{Bu}^1 \text{OH} \\
M & \quad \text{Equatorial attack (%)} & \quad \text{Axial attack (%)} \\
\text{MeMgBr} & \quad 68.4 & \quad 31.6 \\
\text{Me}_2\text{Zn-MgBr}_2 & \quad 46.5 & \quad 53.5 \\
\text{Me}_2\text{Cd-MgI}_2 & \quad 51.6 & \quad 48.4 \\
\text{PrMgBr} & \quad 69.0 & \quad 31.0 \\
\text{Pr}_2\text{Zn-MgBr}_2 & \quad 75.0 & \quad 25.0 \\
\text{Pr}_2\text{Cd-MgBr}_2 & \quad 80.0 & \quad 20.0 \\
(\text{Allyl})_2\text{Mg} & \quad 44.5 & \quad 55.5 \\
(\text{Allyl})_2\text{Zn} & \quad 84.0 & \quad 16.0 \\
(\text{Allyl})_2\text{Cd} & \quad 77.5 & \quad 22.5 \\
\end{align*}
\]

Scheme 24

\[
\begin{align*}
(\text{Ph})_2\text{O} & \quad \text{Pr}^1 \quad \text{O} \\
& \quad \text{H} \\
\text{RCHO} & \quad \text{CO}_2\text{H} \\
& \quad \text{i, R}_2\text{Zn, } -78^\circ\text{C, 3 h, then } 25^\circ\text{C, 1 h; ii, H}_3\text{O}^+; \text{ iii, OH}^- \\
& \quad 78-84\% \\
& \quad (71-88\% \text{ de}) \\
\end{align*}
\]

1.7.3.5 Enantioselective Addition Reactions

The enantioselective addition of organometallics to aldehydes is a useful approach to optically active secondary alcohols. \(^{52a,73}\) Diorganozinc reagents\(^{73-84}\) add with excellent enantioselectivity to aldehydes in the presence of a chiral catalyst such as 1,2- or 1,3-amino alcohols (see equation 14 and Table 2). In most cases, diethylzinc has been used, but the reaction could be extended to some other dialkylzinc reagents and to divinylzinc. \(^{25b}\) Alkylzinc halides afford secondary alcohols with a substantially lower enantiomeric excess. \(^{82}\) Many aldehydes are good substrates, \(^{25b,79}\) but the best results are usually obtained with aromatic aldehydes. \(^{73-84}\)

\[
\begin{align*}
R_2Zn & \quad + \quad R'CH{\text{O}} \\
& \quad \text{chiral catalysis} \\
& \quad \rightarrow \\
& \quad \text{R'}R \quad \text{or} \quad \text{R'}R \quad \text{or} \quad \text{R'}R \\
& \quad \text{OH} \quad \text{OH} \quad \text{OH} \quad \text{OH} \\
\end{align*}
\]

The mechanism of the reaction has been investigated in detail and it has been established that 2 equiv. of \(\text{Et}_2Zn \) per molecule of the catalyst are required to observe an addition. If a 1:1 ratio is used, merely the reduction of the aldehyde is observed. \(^{76}\) Only the ethyl groups coming from the second equivalent of \(\text{Et}_2Zn \) are transferred to the aldehyde. Thus, the sequential addition of \((\text{C}_2\text{H}_5)_2\text{Zn} \) and \((\text{C}_2\text{D}_5)_2\text{Zn} \) to the catalyst \(^{64; \text{see Table 2}}\), followed by benzaldehyde in a 1:1:1:1 ratio affords deuterated 1-phenylpropanol, whereas the addition of \((\text{C}_2\text{D}_5)_2\text{Zn} \) first, followed by \((\text{C}_2\text{H}_5)_2\text{Zn} \) gave only nondeuterated products. \(^{25b}\) A six-membered bimetallic transition state of type \((66)\) has been proposed\(^{73,76b,80,82,85}\) in which
the first equivalent of the diethylzinc (Zn
) activates the carbonyl group toward nucleophilic attack (electrophilic catalysis), whereas the second equivalent of Et
Zn, which is made more nucleophilic by the coordination of a donor ligand (nucleophilic catalysis), transfers the ethyl group. The catalytic cycle of Scheme 25 is in agreement with most experimental results. The starting amino alcohol (67) is deprotonated by Et
Zn to afford the tricoordinated ethylzinc derivative (68). Complexation of a second molecule of Et
Zn at the oxygen of the zinc amino alcoholate from the less hindered side affords the di-

Table 2 Catalysts (50)–(65) for the Enantioselective Addition of Diorganozinc Reagents to Aldehydes

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>(R), 48.8% ee</th>
<th>(R), 85% ee</th>
<th>(52a) R = Me; (S), 99% ee</th>
<th>(52b) R = polymer; (S), 92% ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>(50)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(51)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(52a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(52b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Catalyst | (R), 80% ee | (R), 68% ee | (S), 90% ee | (56a) R = Ph, R = Me; (S), 97% ee | (56b) R = H, R = Me; (R), 74% ee | (56c) R = H, R = n-C
11; (R), 100% ee |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(53)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(54)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(55)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>(R), 92% ee</th>
<th>(S), 95% ee</th>
<th>(R), 90% ee</th>
<th>(57) (R), 92% ee</th>
<th>(58) (S), 95% ee</th>
<th>(59) (R), 90% ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>(60)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(61)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>(S), 91% ee</th>
<th>(R), 89% ee</th>
<th>(R), 87% ee</th>
<th>(62) (R), 87% ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>(63)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(64)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>(R), 75% ee</th>
<th>(S), 92% ee</th>
<th>(X = O; (R), 91% ee</th>
<th>(X = 2H; (R), 82% ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>(65a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(65b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The absolute configuration of 1-phenylpropanol obtained by the addition of Et
Zn to benzaldehyde in the presence of the catalyst as well as the enantiomeric excess (% ee) observed are indicated.
metallic reagent (69), which coordinates the aldehyde leading to (70). This coordination occurs in the half space which contains Et₂Zn, unless a tridentate chiral inductor such as (64) is used. The complexation of zinc occurs at the sterically most easily available carbonyl lone pair (cis to hydrogen; see 71). After the transfer of an ethyl group affording the bicyclic zinc alcololate (72), the product (73) is liberated, regenerating the catalyst (68). Interestingly, the use of a configurationally impure catalyst such as 1-piperidyl-3,3-dimethyl-2-butanol (74; 10.7% ee) affords, upon addition of Et₂Zn to benzaldehyde, a product of 82% enantiomeric excess. This asymmetric amplification phenomenon can be explained by diastereomeric interactions between the enantiomers of (74). Furthermore, the reaction rate with a 66% ee catalyst is 5.5 times faster than with the racemic catalyst. These results indicate that in the case of simple bidentate amino alcohols, the actual mechanism of the enantioselective addition may be more complex than that indicated in Scheme 25. High asymmetric inductions have also been obtained recently by using dialkylzinc-orthotitanate complexes, chiral oxazaborolidines as catalysts or secondary amino alcohols derived from camphor. Applications to the preparation of optically active 2-furylcarbinols have been reported.

\[\text{Scheme 25} \]

1.7.4 ADDITION REACTIONS OF ORGANOCADMIUM AND ORGANOMERCURY REAGENTS

1.7.4.1 Addition Reactions of Alkyl- and Aryl-cadmium Reagents

Whereas organomercury compounds do not add to aldehydes and ketones, cadmium organometallics show a useful reactivity. As in the case of organozinc derivatives, allylic cadmium compounds
Nonstabilized Carbanion Equivalents

are far more reactive than alkyl- or aryl-cadmium organometallics. Alkylcadmium organometallics are prepared in similar ways to the corresponding zinc compounds. However, their high thermal and photochemical instability makes their preparation and isolation more difficult.87,88 Purified diorganocadmium compounds react very slowly with aromatic aldehydes.89,90 However, if the reaction is conducted in the presence of magnesium, zinc, lithium or aluminum halides, a fast reaction is observed (electrophilic catalysis; see Section 1.7.3.1). Magnesium bromide and magnesium iodide are the most active promoters (see equation 15).91 The replacement of ether by THF leads to slower addition rates.92 Aliphatic aldehydes and ketones react less cleanly and the desired addition product is obtained in low yields (20–40%) together with reduction products.87,93 The functionalized organocadmium compound (75) can be prepared and added in 50–90% yield to aldehydes (see Scheme 26).94 Synthetically useful is the reaction of dialkylcadmium compounds with certain functionalized ketones87,95 containing halides, an ester or a nitro group at the α-position, which furnishes polyfunctionalized molecules in fair yields (see Scheme 27). The addition of cadmium organometallics to 4-tert-butylcyclohexanone has been reported (see Section 1.7.3.4).

\[
\text{Et}_2\text{Cd} + \text{PhCHO} \xrightarrow{\text{i, MgBr}_2 (1.2 \text{ equiv.}, \text{ether}, 35 \degree \text{C}, 1 \text{ h})} \text{EtCH(OH)Ph}
\]

(15)

\[
2 \text{EtO-MgBr} + \text{CdI}_2 \xrightarrow{\text{ether, -15 \degree \text{C}, 6 h}} \text{EtO} \text{Cd} \text{OEt} + \text{O} \xrightarrow{\text{50–90\%}} \text{R} \text{OEt}
\]

Scheme 26

\[
\text{R}_2\text{Cd}+\text{MgX}_2 + \text{ether, 35 \degree \text{C}, 11 h} \xrightarrow{\text{38–70\%}} \text{R} \text{OH}
\]

Scheme 27

1.7.4.2 Addition Reactions of Allylic and Benzylic Cadmium Reagents

Allylic cadmium organometallics react in good yields (50–90%)49a with aldehydes and ketones.49a,87,88 If the allylic reagent is substituted, only the alcohol formed after allylic rearrangement is obtained (see Scheme 28).49a If polyfunctionalized substrates are used, the allylic cadmium reagent shows a high

\[
\text{EtO} \xrightarrow{\text{i, ether, 10–20 \degree \text{C}, 3 h then H}_3\text{O}^+} \text{EtOH}
\]

Scheme 28
chemoselectivity and attacks only the aldehyde function (see equation 16). Enones react with allylic cadmium organometallics to give only the 1,2-addition product in high yields. Benzyl cadmium reagents display a more moderate reactivity, but add cleanly to aliphatic and aromatic aldehydes to furnish various benzylic alcohols in fair to good yields (see equation 17). Sulfur-stabilized allylic cadmium derivatives react with aldehydes with high γ-selectivity.

1.7.5 REFERENCES

Nonstabilized Carbanion Equivalents

1.8
Organocerium Reagents
TSUNEO IMAMOTO
Chiba University, Japan

1.8.1 INTRODUCTION

Elements of the lanthanide series possess unique electronic and stereochemical properties due to their f-orbitals, and have great potential as reagents and catalysts in organic synthesis. During the 1970s and 1980s many synthetic reactions and procedures using lanthanide elements were reported, in conjunction with significant development in the chemistry of organolanthanides. Several review articles covering this field of chemistry have appeared.

Of the 15 elements from lanthanum to lutetium, cerium has the highest natural abundance, and its major inorganic salts are commercially available at moderate prices. The present author and his coworkers have utilized this relatively inexpensive element in reactions which form carbon–carbon bonds, studying the generation and reactivities of organocerium reagents. The cerium reagents, which are prepared from organolithium compounds and cerium(III) halides, have been found to be extremely useful in organic synthesis, particularly in the preparation of alcohols by carbonyl addition reactions. They react with various carbonyl compounds to afford addition products in satisfactory yields, even though the substrates are susceptible to so-called abnormal reactions when using simple organolithiums or Grignard reagents.

This chapter surveys the addition reactions of organocerium reagents to the C—X π-bond. Emphasis is placed on the utility of cerium chloride methodology, and many examples of its practical applications.
are given. Experimental procedures are also described in detail to enable readers to employ this method immediately in practical organic syntheses.

Other organolanthanide reagents are covered in Chapter 1.10 in this volume, while selective carbonyl addition reactions promoted by samarium and ytterbium reagents are surveyed in Chapter 1.9.

1.8.2 ORGANOCERIUM REAGENTS

1.8.2.1 Generation of Organocerium Reagents

Organocerium reagents are prepared in situ by the reaction of organolithium compounds with anhydrous cerium chloride or cerium iodide, as shown in equation (1). A variety of organolithium compounds can be employed, including alkyl-, allyl-, alkenyl- and alkynyl-lithiums, which are all converted to the corresponding cerium reagents.

\[
\text{RLi} + \text{CeX}_3 \xrightarrow{\text{THF}} \text{RCeX}_2 + \text{LiX} \quad (1)
\]

No systematic studies on the structure of organocerium reagents have been made so far. Although some experimental results indicate that no free organolithium compounds are present in the reagents, the structure of the reagents has not yet been elucidated. The cerium reagents are presumed to be \(\sigma-(\text{RCeX}_2)\) or ate \([\text{RCeX}_2]\text{Li}^+\) complexes, but other possibilities such as a weakly associated complex \((\text{RLiCeX}_3)\) are not excluded. In this text, organocerium reagents are represented as \(\text{RCeX}_2\) for convenience.

1.8.2.1.1 General comments

Organocerium reagents can be generated without difficulty, but the following suggestions will help to ensure success.

Cerium chloride, rather than cerium iodide, is recommended because preparation of the iodide requires the handling of pyrophoric metallic cerium. Anhydrous cerium chloride is commercially available from Aldrich, but can also be prepared in the laboratory by dehydration of cerium chloride heptahydrate using thionyl chloride, or by reduction of cerium(IV) oxide using HCO\(_2\)H/HCl followed by dehydration. Heating the hydrate without additive in vacuo is a comparatively simple method and is satisfactory for the generation of organocerium reagents.

Ethereal solvents such as tetrahydrofuran (THF) and dimethoxyethane (DME) are employed in the reactions, with THF generally being preferred. Usually, THF freshly distilled from potassium or sodium with benzophenone is used. Use of hot THF is not recommended, because on addition to cerium chloride a pebble-like material, which is not easily suspended, may be formed.

1.8.2.1.2 General procedure for the preparation of anhydrous cerium chloride

Cerium chloride heptahydrate (560 mg, 1.5 mmol) is quickly ground to a fine powder in a mortar and placed in a 30 mL two-necked flask. The flask is immersed in an oil bath and heated gradually to 135–140 °C with evacuation (ca. 0.1 mmHg). After 1 h, a magnetic stirrer is placed in the flask and the cerium chloride is dried completely by stirring at the same temperature in vacuo for a further 1 h.

The following procedure is recommended for the small-scale preparation of anhydrous cerium chloride. Cerium chloride heptahydrate (ca. 20 g) is placed in a round-bottomed flask connected to a dry ice trap. The flask is evacuated and heated to 100 °C for 2 h. The resulting opaque solid is quickly pulverized in a mortar and is heated again, in vacuo at the same temperature, for 2 h with intermittent shaking. A stirrer is then placed in the flask, which is subsequently evacuated, and the bath temperature is raised to 135–140 °C. Drying is complete after 2–3 h of stirring.

Anhydrous cerium chloride can be stored for long periods provided it is strictly protected from moisture. Cerium chloride is extremely hygroscopic; hence, it is recommended that it be dried in vacuo at ca. 140 °C for 1–2 h before use.
1.8.2.1.3 General procedure for the generation of organocerium reagents

Cerium chloride heptahydrate (560 mg, 1.5 mmol) is dried by the procedure described above. While the flask is still hot, argon gas is introduced, after which the flask is cooled in an ice bath. Tetrahydrofuran (5 mL) is added all at once with vigorous stirring. The ice bath is removed and the suspension is stirred well for 2 h or more (usually overnight) under argon at room temperature. The flask is cooled to \(-78^\circ C\) and an organolithium compound (1.5 mmol) is added with a syringe. Stirring for 0.5-2 h at the same temperature, or a somewhat higher temperature (\(-40^-20^\circ C\)), results in the formation of a yellow or red suspension, which is ready to use for reactions.

1.8.2.1.4 Reactions with ketones and similar compounds

The addition reactions are usually carried out at \(-78^\circ C\), except for reactions of the Grignard reagent/cerium chloride system (Section 1.8.4), which are conducted at 0 \(^{\circ} C\). A substrate is added to the well-stirred organocerium reagent and the mixture is stirred until the reaction is complete. Work-up is carried out in the usual manner: quenching with dilute HCl or dilute AcOH and extraction with a suitable organic solvent. When the substrates are acid sensitive, work-up using tetramethylenediamine is recommended.\(^{17}\)

1.8.2.2 Scope of the Reactivity

1.8.2.2.1 Thermal stability

The reagents are generally stable at low temperature \((-78 to -20^\circ C)\) and react readily with various carbonyl compounds to give the corresponding addition products in high yields. However, at temperatures above 0 \(^{\circ} C\), reagents with \(\beta\)-hydrogens decompose; reactions with ketones provide reduction products (secondary alcohols and pinacol coupling products), as shown in Scheme 1. Other reagents, such as methyl- and phenyl-cerium reagents, are stable at around room temperature but decompose at about 60 \(^{\circ} C\).\(^{13,14,18}\)

\[
\begin{align*}
R^1COR^3 & \rightarrow OH \quad R^1R^3 \quad \text{R}^2COR^3 \\
R^1CeX_2 & \quad \text{R}^1 = \text{Et, Bu}^n, \text{Bu}^s \\
X & = \text{Cl, I} \\
0-50^\circ C & \quad \text{0 \(^{\circ} C\) to r.t.}
\end{align*}
\]

Scheme 1

1.8.2.2.2 Reactions with organic halides, nitro compounds and epoxides

The reactivities of organocerium reagents toward organic halides are in sharp contrast to the reactivities of alkylolithiums. No metal-halogen exchange occurs at \(-78^\circ C\); aryl bromides and iodides are quantitatively recovered unchanged after treatment with \(n\)-butyl- or \(t\)-butyl-cerium reagents.\(^{18,19}\) Alkyl iodides are also inert to prolonged treatment with organocerium reagents at the same temperature. Benzylic halides undergo reductive coupling to give 1,2-diphenylethane derivatives upon treatment with the \(n\)-butylcerium reagent.\(^{18}\)

Nitro compounds react immediately with organocerium reagents at \(-78^\circ C\) to give many products,\(^ {19}\) while epoxides undergo ring opening followed by deoxygenation to yield substituted alkenes.\(^ {20}\)
1.8.2.3 Reactions with Carbonyl Compounds

Organocerium reagents react readily with various ketones at low temperature to give the addition products in good to high yields.\[^{12-14,21}\] Some representative results are shown in Table 1,\(^{12,13}\) together with the results obtained on using the corresponding organolithiums alone.

Table 1: The Reaction of Organocerium Reagents with Ketones

<table>
<thead>
<tr>
<th>Ketone</th>
<th>Reagent</th>
<th>Product</th>
<th>Yield (%)^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>(PhCH₂)₂CO</td>
<td>Bu''CeCl₂</td>
<td>(PhCH₂)₂C(OH)Bu''</td>
<td>96 (33)</td>
</tr>
<tr>
<td>(PhCH₂)₂CO</td>
<td>Bu''CeCl₂</td>
<td>(PhCH₂)₂C(OH)Bu'</td>
<td>65 (trace)</td>
</tr>
<tr>
<td>(PhCH₂)₂CO</td>
<td>HC≡CMeCl₂</td>
<td>(PhCH₂)₂C(OH)C≡CH</td>
<td>95 (60)</td>
</tr>
<tr>
<td>PhC≡CCeCl₂</td>
<td></td>
<td></td>
<td>89 (30)</td>
</tr>
<tr>
<td>Bu''CeCl₂</td>
<td></td>
<td></td>
<td>88 (trace)</td>
</tr>
<tr>
<td>H₂C≡C(Me)CeCl₂</td>
<td></td>
<td></td>
<td>88 (12)</td>
</tr>
<tr>
<td>Bu''CeCl₂</td>
<td></td>
<td></td>
<td>57 (<10)</td>
</tr>
<tr>
<td>p-IC₄H₄COMe</td>
<td>Bu''CeCl₂</td>
<td>p-IC₄H₄C(OH)(Me)Bu''</td>
<td>93 (trace)</td>
</tr>
<tr>
<td>p-BrC₄H₄COMe</td>
<td>Bu''CeCl₂</td>
<td>p-BrC₄H₄C(OH)(Me)Bu''</td>
<td>96 (43)</td>
</tr>
<tr>
<td>p-BrC₄H₄COCH₂Br</td>
<td>PhC≡CCeCl₂</td>
<td>p-BrC₄H₄C(OH)(CH₂Br)C≡CPh</td>
<td>95 (trace)</td>
</tr>
<tr>
<td>p-NCC₆H₆COMe</td>
<td>Bu''CeCl₂</td>
<td>p-NCC₆H₆C(OH)(Me)Bu''</td>
<td>48</td>
</tr>
<tr>
<td>m-O₂NC₆H₆COMe</td>
<td>Bu''CeCl₂</td>
<td>p-NCC₆H₆C(OH)(Me)Bu''</td>
<td>93</td>
</tr>
<tr>
<td>PhOCOPh</td>
<td>Bu''CeCl₂</td>
<td></td>
<td>52</td>
</tr>
</tbody>
</table>

^a The figures in parentheses indicate the yields obtained by use of the lithium reagent alone.

It is noteworthy that the reagents are only weakly basic and react even with readily enolizable ketones in moderate to good yields. Another important fact is that selective carbonyl addition occurs in the presence of carbon–halogen bonds.

The chemoselectivity between aldehydes and ketones has been studied by Kauffmann et al.\(^{22}\) Cerium reagents exhibit moderate aldehyde selectivities, although these are much lower than those of the organometallic reagents of titanium, zirconium and chromium (Scheme 2).\(^{23-26}\)
Stereoselectivities have been studied by several research groups. In the case of \(\alpha \)-heterosubstituted carbonyl compounds, both chelation control and nonchelation control have been observed, depending on the reagents and substrates (Section 1.8.2.6).

1.8.2.4 Selective Addition to \(\alpha,\beta \)-Unsaturated Carbonyl Compounds

Organocerium reagents react with \(\alpha,\beta \)-unsaturated carbonyl compounds to give 1,2-addition products in good to high yields (equation 2).27 28

\[
\text{RCeCl}_2 + \begin{array}{c} \text{R}^1 \quad \text{O} \\ \text{R}^2 \quad \text{R}^3 \end{array} \rightarrow \begin{array}{c} \text{THF} \\ -78 \degree \text{C} \end{array} \rightarrow \begin{array}{c} \text{R}^1 \quad \text{R}^2 \quad \text{OH} \\ \text{R}^3 \end{array}
\]

The reactions of (E)- and (Z)-1-(4'-methoxyphenyl)-3-phenyl-2-propen-1-ones (1a and 1b; Scheme 3) are representative examples. The 1,2-selectivities are generally higher than those of the corresponding lithium reagents and Grignard reagents (Table 2);28 however, the selectivity can be severely eroded by steric effects, as exemplified by the reactions of an isopropylcerium reagent.

The reactions of (Z)-PhCH=CHCOC\(_6\)H\(_4\)-p-OMe with cerium reagents provide (Z)-allyl alcohols in excellent yields, suggesting that the addition reactions proceed almost exclusively through a polar pathway.

Another notable difference between cerium and lithium reagents has been observed in the reaction of a stabilized carbanion with cyclohex-2-enone. The reaction with \(\alpha \)-cyanobenzylithium is known to be thermodynamically controlled; thus, the initially formed 1,2-adduct dissociates to the starting carbanion and \(\alpha \)-enone, which in turn are gradually converted to the thermodynamically stable 1,4-adduct.29 In contrast, the corresponding cerium reagent affords the 1,2-adduct exclusively in good yield, regardless of reaction time (Scheme 4 and Table 3).28 Trivalent cerium is strongly oxophilic and intercepts the intermediate 1,2-adduct by virtue of its strong bonding to the alkoxide oxygen, thus suppressing the reverse reaction.
Table 2 Reaction of Organocerium, Organolithium or Grignard Reagents with (E)- or (Z)-PhCH=CHCOC_6H_4-OMe-p

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Reagent</th>
<th>Solvent</th>
<th>Conditions*</th>
<th>Yield of products (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1a)</td>
<td>MeCeCl_2</td>
<td>THF-ether (12:1)</td>
<td>30</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>MeLi</td>
<td>THF-ether (5:1)</td>
<td>30</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>MeMgBr</td>
<td>THF</td>
<td>30</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>BuCeCl_2</td>
<td>THF-hexane (8:1)</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>BuLi</td>
<td>THF-hexane (2:1)</td>
<td>30</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>BuMgBr</td>
<td>THF</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>PhCeCl_2</td>
<td>THF-ether (8:1)</td>
<td>30</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>PhLi</td>
<td>THF-ether (3:1)</td>
<td>30</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>PhMgBr</td>
<td>THF</td>
<td>30</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>PrCeCl_2</td>
<td>THF-hexane (4:1)</td>
<td>30</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>PrLi</td>
<td>THF-hexane (3:1)</td>
<td>30</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>PrMgCl</td>
<td>THF</td>
<td>30</td>
<td>44</td>
</tr>
<tr>
<td>(1b)</td>
<td>MeCeCl_2</td>
<td>THF-ether (12:1)</td>
<td>60</td>
<td>Trace</td>
</tr>
<tr>
<td></td>
<td>MeLi</td>
<td>THF-ether (5:1)</td>
<td>60</td>
<td>Trace</td>
</tr>
<tr>
<td></td>
<td>MeMgBr</td>
<td>THF</td>
<td>60</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>BuCeCl_2</td>
<td>THF-hexane (8:1)</td>
<td>60</td>
<td>Trace</td>
</tr>
<tr>
<td></td>
<td>BuLi</td>
<td>THF-hexane (2:1)</td>
<td>60</td>
<td>Trace</td>
</tr>
<tr>
<td></td>
<td>BuMgBr</td>
<td>THF</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>PhCeCl_2</td>
<td>THF-ether (8:1)</td>
<td>90</td>
<td>Trace</td>
</tr>
<tr>
<td></td>
<td>PhLi</td>
<td>THF-ether (3:1)</td>
<td>90</td>
<td>Trace</td>
</tr>
<tr>
<td></td>
<td>PhMgBr</td>
<td>THF</td>
<td>90</td>
<td>25</td>
</tr>
</tbody>
</table>

* All reactions were carried out at -78 °C. b Isolated yield.

![Scheme 4](image)

Table 3

<table>
<thead>
<tr>
<th>M</th>
<th>Temperature (°C)</th>
<th>Time (min)</th>
<th>1,2-Addition</th>
<th>1,4-Addition</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td>-70</td>
<td>1</td>
<td>29</td>
<td>36</td>
<td>29</td>
</tr>
<tr>
<td>Li</td>
<td>-70</td>
<td>15</td>
<td>21</td>
<td>49</td>
<td>29</td>
</tr>
<tr>
<td>Li</td>
<td>-70</td>
<td>180</td>
<td>0</td>
<td>90</td>
<td>29</td>
</tr>
<tr>
<td>CeCl_2</td>
<td>-78</td>
<td>4</td>
<td>61</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>CeCl_2</td>
<td>-78</td>
<td>15</td>
<td>60</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>CeCl_2</td>
<td>-78</td>
<td>240</td>
<td>62</td>
<td>0</td>
<td>28</td>
</tr>
</tbody>
</table>

* All reactions carried out using THF as solvent.

1.8.2.5 Addition to C—N π-Bonds

The reaction of cerium reagents with imines and nitriles which possess α-hydrogens has been studied by Wada et al.₃⁰ Available data indicate that the reagents do not effectively add to these substrates, although the results are better than with alkylolithiums themselves. A modification of the procedure improves the yields of addition products. Thus, addition of the organocerium or organolithium reagent to an
admixture of cerium chloride and imine or nitrile at -78 °C affords the adducts in acceptable yields, as exemplified in equation (4).³⁰

\[
\text{Pr^+N=NPh} \xrightarrow{\text{i, CeCl}_3 \text{ ii, Bu''CeCl}_2} \text{Pr''N=NPh} \quad (4)
\]

It has been reported by Denmark et al. that aldehyde hydrazones react smoothly with organocerium reagents to give addition products in good to high yields (Section 1.8.2.6).³¹

1.8.2.6 Synthetic Applications

1.8.2.6.1 Alkylcerium reagents

Mash has recently employed a methylcerium reagent in the synthesis of (-)-chokol A.³² The reagent reacts with the readily enolizable cyclopentanone derivative (4) to give (-)-chokol A in 80% yield, as shown in Scheme 5.

\[
\text{O} \xrightarrow{12 \text{ steps}} \text{O} \xrightarrow{\text{i, MeCeCl}_2 \ (5 \text{ equiv.}), \text{THF, -78 °C, 2 h}} \text{HO} \xrightarrow{\text{i, 80%}} \text{HO}
\]

\[(4) \quad (-)-\text{Chokol A}\]

Scheme 5

Corey and Ha have successfully employed a cerium reagent at the crucial step in the total synthesis of venustatriol, as illustrated in Scheme 6.³³

\[
\text{CHO} + \xrightarrow{-78 °C, 10 \text{ min, then 0 °C, 2 h}} \xrightarrow{\text{85%}} \text{OH} \xrightarrow{3 \text{ steps}} \text{Venustatriol}
\]

Scheme 6
In a total synthesis of (-)-bactobolin, Garigipati and Weinreb used a dichloromethylcerium reagent. The intermediate product (5) was isolated in 54% yield as a single isomer, as shown in Scheme 7. Dichloromethyl lithium alone in this reaction afforded intractable material.

![Scheme 7](image)

The stereochemistry in the reactions mentioned above is consistent with a chelation-controlled addition of the organocerium reagents. On the other hand, nonchelation-controlled addition of alkylcerium reagents to carbonyl components has also been observed, as shown in Scheme 8.

![Scheme 8](image)

Johnson and Tait prepared a trimethylsilylmethyl cerium reagent and examined its reaction with carbonyl compounds. The reagent adds to aldehydes and ketones including many readily enolizable ones to afford 2-hydroxysilanes. This modified Peterson reagent gives vastly superior yields in comparison with trimethylsilylmethyl lithium. An example is shown in Scheme 9.

![Scheme 9](image)

The same reagent reacts with acyl chlorides to afford 1,3-bis(trimethylsilyl)-2-propanol derivatives, which efficiently undergo a trimethylchlorosilane-promoted Peterson reaction to afford allysilanes in high overall yields (equation 5).
Recently, Mudryk and Cohen have found that reactions of lactones with organocerium reagents provide lactols in good yields, as exemplified in Scheme 10.38 This reaction leads to an efficient one-pot synthesis of spiroketalts, as illustrated in Scheme 11.38

\begin{equation}
\text{Organocerium Reagents}
\end{equation}

\textbf{Scheme 10}

\begin{equation}
\text{Organocerium Reagents}
\end{equation}

\textbf{Scheme 11}

Denmark \textit{et al.} have recently reported that aldehyde SAMP-hydrazones react with various alkylcerium reagents in good yields and with high diastereoselectivities.31 The method can be applied to the synthesis of optically active primary amines, as exemplified in Scheme 12.

\begin{equation}
\text{Organocerium Reagents}
\end{equation}

\textbf{Scheme 12}

1.8.2.6.2 \textit{Allylcerium reagents}

Cohen \textit{et al.} have extensively studied the generation and reactivities of allylcerium reagents.39,40 Allylcerium reagents react with α,β-unsaturated carbonyl compounds in a $1,2$-selective fashion. It is particularly noteworthy that unsymmetrical allylcerium reagents react with aldehydes or enals mainly at the least-substituted terminus, as opposed to other allylorganometallics such as allyltitanium reagents. An example is shown in Scheme 13.59

Another prominent feature is that the reaction at -78°C provides (Z)-alkenes, while at -40°C (E)-alkenes are formed. Allylcerium reagents have been successfully employed in an economical synthesis of
Nonstabilized Carbanion Equivalents

\[
\begin{align*}
\text{Li}^+ & \quad \text{i}, MX_n, -78 \degree \text{C} \\
\text{ii}, \text{MeCH} = \text{CHCHO}, -78 \degree \text{C} \\
\end{align*}
\]

\[
\begin{align*}
\text{MX}_n &= \text{CeCl}_3 \quad 82\% \\
\text{MX}_n &= \text{Ti(OPr}^3)_4 \quad 90\% \\
\end{align*}
\]

Scheme 13

some pheromones. Typical examples, which illustrate these characteristic reactivities, are shown in Schemes 14 and 15.\(^{40}\)

\[
\begin{align*}
\text{H}_2\text{C} = \text{CHCHO, } -78 \degree \text{C} \\
\text{H}_2\text{C} = \text{CHCHO, } -78 \degree \text{C} \\
\end{align*}
\]

\[
\begin{align*}
i, \text{Li}^+ & \quad \text{ii}, \text{Ti(OPr}^3)_4 \quad 65\% \\
\text{iii}, \text{CH}_2\text{O} \quad \text{iv}, \text{Bu}^3\text{P/PhSSPh} \\
\text{OH} & \quad \text{OH} \\
\end{align*}
\]

\[
\begin{align*}
i, \text{lithium } \rho^\rho\text{-di-t-butylbiphenylide (LDBB) or lithium } 1\text{-}(\text{dimethylamino})\text{naphthalenide (LDMAN), } -60 \degree \text{C} \; \text{ii, CeCl}_3, -78 \degree \text{C} \; \text{iii, H}_2\text{C} = \text{CHCHO} \; \text{iv, Bu}^3\text{P/PhSSPh} \\
\end{align*}
\]

Scheme 14

\[
\begin{align*}
\text{PhS} & \quad \text{i, v, iii, vi} \quad 56\% \\
\text{OAc} & \quad (Z):(E) = 98:2 \\
\end{align*}
\]

\[
\begin{align*}
i, \text{LDBB; ii, Ti(OPr}^3)_4; \text{iii, CH}_2\text{O;} \text{iv, Ph}_3\text{P/CBr}_4, \text{MeCN;} \text{v, CeCl}_3; \text{vi, Ac}_2\text{O/pyridine} \\
\end{align*}
\]

Scheme 15

1.8.2.6.3 Alkenyl- and aryl-cerium reagents

Suzuki et al. found that \(\alpha\)-trimethylsilylvinylcerium reagents add to readily enolizable \(\beta,\gamma\)-enones. The method has been employed in the synthesis of \((-\text{-eldanolide, as shown in Scheme 16.}^{41}\)

Paquette and his coworkers have employed alkenylcerium reagents in the efficient stereoselective synthesis of polycyclic molecules.\(^{42,43}\) A typical example is illustrated in Scheme 17. \(\beta,\gamma\)-Enone (6) reacts with alkenylcerium reagent (7) with high diastereoselectivity to give adducts (8) and (9) in a ratio of 95:5. The major product (8) undergoes an oxy-Cope rearrangement, creating two chiral centers with high stereoselectivity to furnish (10).
Organocerium Reagents

i, H₂C=CSiMe₃CeCl₂, THF-Et₂O-hexane (4:1:1), -78 ºC, 0.5 h

Scheme 16

A notably stereoselective reaction of an arylcerium reagent has been reported by Terashima et al.⁴⁴ As shown in Scheme 18, the cerium reagent provides adducts (11) and (12) in a ratio of 16:1 in 95% combined yield. In contrast, the organolithium reagent gives a lower and reversed stereoselectivity.

<table>
<thead>
<tr>
<th>M</th>
<th>Conditions</th>
<th>Yield (%)</th>
<th>(11):(12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CeCl₂</td>
<td>THF, -78 ºC</td>
<td>95</td>
<td>94:6</td>
</tr>
<tr>
<td>Li</td>
<td>THF, 0 ºC</td>
<td>56</td>
<td>12:88</td>
</tr>
<tr>
<td></td>
<td>Ether/THF (4:1), 0 ºC</td>
<td>74</td>
<td>11:89</td>
</tr>
<tr>
<td></td>
<td>Ether, 0 ºC</td>
<td>77</td>
<td>34:66</td>
</tr>
</tbody>
</table>

Scheme 18
Recently, a new method for synthesizing coumarin derivatives has exploited the properties of arylcerium reagents, as illustrated in Scheme 19.45 Interestingly, the bulky arylcerium reagent (13) adds to the easily enolizable t-butyl acetoacetate in satisfactory yield.

\[
\begin{align*}
\text{Br} & \text{CeCl}_2 \quad \text{+} \quad \text{CO}_2\text{Bu}^+ \\
\text{O} & \text{OMe} \\
\text{(13)} & \quad \text{THF, -78 °C} \\
\end{align*}
\]

An example of the reaction of an alkenylcerium reagent with a cyclopentanone derivative has been reported. As shown in Scheme 20, the (E)-cerium reagent adds to the ketone to provide a single adduct in modest yield.46 However, the (Z)-cerium reagent did not react, presumably due to steric effects.

\[
\begin{align*}
\text{Me} & \text{SiMe}_2\text{Ph} \\
\text{Cl}_2\text{Ce} \quad \text{+} \quad \text{O} \\
\text{CN} & \text{NMe} \\
\text{(E):(Z) 50:50} \\
\text{Scheme 20} & \\
\end{align*}
\]

1.8.2.6.4 Alkynylcerium reagents

The trimethylsilylalkynylcerium reagent, which was initially prepared by Terashima et al., is useful for adding ethynyl groups to carbonyl moieties.47 This method was successfully employed in the preparation of daunomycinone and related compounds.47-51 Illustrative examples are shown in Scheme 21.49
The utility of this reagent has been demonstrated by Tamura et al. in its reaction with the readily enolizable ketone (14).52,53 The ethynylation of the ketone proceeds smoothly with the cerium reagent, as shown in Scheme 22; in sharp contrast, the corresponding lithium reagent provides the desired adduct (15) in only 11% yield.

Some other alkynylcerium reagents have been generated and used for the synthesis of alkynyl alcohols and related compounds in good yields.54-56 An example is illustrated in Scheme 23.

1.8.3 CERIUM ENOLATES

Cerium enolates are generated by the reaction of lithium enolates with anhydrous cerium chloride in THF.57 The cerium enolates react readily with various aldehydes and ketones at $-78 \, ^\circ \text{C}$ (Scheme 24). The yields are generally higher than in reactions of lithium enolates. This is presumably due to the relative stabilities of the adducts, that of the cerium reagent being greater by virtue of coordination to the more oxophilic cerium atom. The stereochemistry of the products is almost the same as in the case of lithium enolates, as shown in Table 4. The reaction is assumed to proceed through a six-membered, chair-like transition state, as with lithium enolates.

A synthetic application of this cerium chloride methodology has been reported by Nagasawa \textit{et al.}, as shown in Scheme 25.58 It is noteworthy that aldol reaction of the cerium enolate proceeds in high yields, even though the acceptor carbonyl group is sterically crowded and is readily enolized by lithium enolates.

Fukuzawa \textit{et al.} found that reduction of α-halo ketones followed by aldol reaction with aldehydes or ketones is promoted by CeI_3, CeCl_3/NaI or $\text{CeCl}_3/\text{SnCl}_2$.59,60 These reactions are carried out at room
Nonstabilized Carbanion Equivalents

Table 4

<table>
<thead>
<tr>
<th>Enolized ketone</th>
<th>Acceptor carbonyl compound</th>
<th>Reagent</th>
<th>Yield (%)</th>
<th>Three:erythro</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhCOCH₂Me</td>
<td>MeCOCH₂Me MeCOCH₂Me</td>
<td>LDA-CeCl₃ LDA</td>
<td>62</td>
<td>40:60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>37:63</td>
</tr>
<tr>
<td>PhCHO</td>
<td>PhCHO</td>
<td>LDA-CeCl₃ LDA</td>
<td>94</td>
<td>91:9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>91:9</td>
</tr>
<tr>
<td>PhCHO</td>
<td></td>
<td>LDA-CeCl₃ LDA</td>
<td>91</td>
<td>93:7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>88:12</td>
</tr>
</tbody>
</table>

Scheme 25

Gelatination. Use of CeCl₃ provides α,β-unsaturated carbonyl compounds, while methods using CeCl₃/NaI or CeCl₃/SnCl₂ afford exclusively β-hydroxy ketones, as shown in Scheme 26.

1.8.4 GRIGNARD REAGENT/CERIUM CHLORIDE SYSTEMS

The addition of Grignard reagents to C—X π-bonds is undoubtedly one of the most fundamental and versatile reactions in synthetic organic chemistry. Nevertheless, it is also well recognized that these reactions are often accompanied by undesirable side reactions such as enolization, reduction, condensation, conjugate addition and pinacol coupling. In some cases, such abnormal reactions prevail over the 'normal addition reaction', resulting in poor yields of the desired products.
Table 5 Reactions of Carbonyl Compounds with Grignard Reagents in the Presence of Cerium Chloride or with Grignard Reagents Alone

<table>
<thead>
<tr>
<th>Carbonyl compound</th>
<th>Reagent</th>
<th>Method</th>
<th>Product(s)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Et<sub>3</sub>CCOMe</td>
<td>Et<sub>3</sub>CCOMe</td>
<td>A</td>
<td>Et<sub>3</sub>CC(OH)Me<sub>2</sub></td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>MeMgBr/CeCl<sub>3</sub></td>
<td>A</td>
<td>Et<sub>3</sub>CC(OH)Me<sub>2</sub></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MeMgBr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PhCOMe</td>
<td>MgBr/CeCl<sub>3</sub></td>
<td>A</td>
<td>PhOH</td>
<td>73</td>
</tr>
</tbody>
</table>

Method A: Addition reaction.
<table>
<thead>
<tr>
<th>Carbonyl compound</th>
<th>Reagent</th>
<th>Method</th>
<th>Product(s)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,3-cyclohexadiene</td>
<td>Pr3MgCl/CeCl\textsubscript{3}</td>
<td>B</td>
<td></td>
<td>3, 80</td>
</tr>
<tr>
<td></td>
<td>Pr3MgCl</td>
<td></td>
<td></td>
<td>72, Trace</td>
</tr>
<tr>
<td>1,3-cyclohexadiene</td>
<td>Pr3MgCl/CeCl\textsubscript{3}</td>
<td>B</td>
<td></td>
<td>80, 0</td>
</tr>
<tr>
<td></td>
<td>Pr3MgCl</td>
<td></td>
<td></td>
<td>30, 35</td>
</tr>
<tr>
<td>Pr2CO</td>
<td>Pr3MgCl/CeCl\textsubscript{3}</td>
<td>A</td>
<td>Pr3COH, Pr2CHOH</td>
<td>52, 31</td>
</tr>
<tr>
<td></td>
<td>Pr3MgCl</td>
<td></td>
<td>Pr3COH, Pr2CHOH</td>
<td>3, 58</td>
</tr>
<tr>
<td>Bu1-cyclohexane</td>
<td>Bu1MgCl/CeCl\textsubscript{3}</td>
<td>A</td>
<td></td>
<td>89, 10</td>
</tr>
<tr>
<td></td>
<td>Bu1MgCl</td>
<td></td>
<td></td>
<td>38, 40</td>
</tr>
<tr>
<td>tetrahydro-2H-pyran</td>
<td>Me\textsubscript{2}C=CH(CH\textsubscript{2})\textsubscript{2}MgBr/CeCl\textsubscript{3}</td>
<td>Bb</td>
<td></td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>Me\textsubscript{2}C=CH(CH\textsubscript{2})\textsubscript{2}MgBr</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>PhCOCH\textsubscript{2}Br</td>
<td>H\textsubscript{2}C=CHMgBr/CeCl\textsubscript{3}</td>
<td>A</td>
<td>PhC(OH)(CH\textsubscript{2})\textsubscript{3}CH=CH\textsubscript{2}</td>
<td>95</td>
</tr>
<tr>
<td>PhCOCH\textsubscript{2}Br</td>
<td>H\textsubscript{2}C=CHMgBr</td>
<td></td>
<td>PhC(OH)(CH\textsubscript{2})\textsubscript{3}CH=CH\textsubscript{2}</td>
<td>66</td>
</tr>
<tr>
<td>PhCH=CHCOPh</td>
<td>PhMgBr/CeCl\textsubscript{3}</td>
<td>A</td>
<td>PhCH=CHC(OH)Ph\textsubscript{2}, Ph\textsubscript{2}CHCH\textsubscript{2}COPh</td>
<td>58, 33</td>
</tr>
<tr>
<td>PhCH=CHCOPh</td>
<td>PhMgBr/CeCl\textsubscript{3}</td>
<td>Ac</td>
<td>PhCH=CHC(OH)Ph\textsubscript{2}, Ph\textsubscript{2}CHCH\textsubscript{2}COPh</td>
<td>89, 11</td>
</tr>
<tr>
<td>PhCH=CHCOPh</td>
<td>PhMgBr/CeCl\textsubscript{3}</td>
<td>Bc</td>
<td>PhCH=CHC(OH)Ph\textsubscript{2}, Ph\textsubscript{2}CHCH\textsubscript{2}COPh</td>
<td>88, 9</td>
</tr>
<tr>
<td>PhCH=CHCOPh</td>
<td>MeMgBr/CeCl\textsubscript{3}</td>
<td>A</td>
<td>PhCH=CHC(OH)MePh, PhMeCHCH\textsubscript{2}COPh</td>
<td>92, 6</td>
</tr>
<tr>
<td>PhCH=CHCOPh</td>
<td>MeMgBr</td>
<td></td>
<td>PhCH=CHC(OH)MePh, PhMeCHCH\textsubscript{2}COPh</td>
<td>52, 41</td>
</tr>
<tr>
<td>(Z)-PhCH=CHCOPh</td>
<td>PhMgBr/CeCl\textsubscript{3}</td>
<td>A</td>
<td>PhCH=CHC(OH)Ph\textsubscript{2}d, Ph\textsubscript{2}CHCH\textsubscript{2}COPh</td>
<td>67, 19</td>
</tr>
<tr>
<td>(Z)-PhCH=CHCOPh</td>
<td>PhMgBr</td>
<td></td>
<td>PhCH=CHC(OH)Ph\textsubscript{2}e, Ph\textsubscript{2}CHCH\textsubscript{2}COPh</td>
<td>15, 83</td>
</tr>
</tbody>
</table>
Table 5 (continued)

<table>
<thead>
<tr>
<th>Carbonyl compound</th>
<th>Reagent</th>
<th>Method</th>
<th>Product(s)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pr(^{t})MgCl/CeCl(_{3})</td>
<td>A</td>
<td></td>
<td>91.5, 12.53</td>
</tr>
<tr>
<td>PhCH({2})CO({2})Me</td>
<td>Pr(^{t})MgCl/CeCl(_{3})</td>
<td>A</td>
<td>PhCH(_{2})C(OH)Pr(^{t}) _2</td>
<td>97</td>
</tr>
<tr>
<td>PhCH=CHCO(_{2})Et</td>
<td>H({2})C=CHMgBr/CeCl({3})</td>
<td>B</td>
<td>PhCH=CHC(OH)(CH=CH({2}))({2})CH=CH(_{2})</td>
<td>68, 9</td>
</tr>
<tr>
<td>PhCH=CHCO(_{2})Et</td>
<td>H(_{2})C=CHMgBr</td>
<td>B(^{f})</td>
<td>PhCH=CHC(OH)(CH=CH({2}))({2})CH=CH(_{2})</td>
<td>24, 39</td>
</tr>
<tr>
<td>PhCH({2})CONMe({2})</td>
<td>Bu(^{n})MgBr/CeCl(_{3})</td>
<td>B(^{f})</td>
<td>PhCH(_{2})COBu(^{n})</td>
<td>66</td>
</tr>
<tr>
<td>PhCH({2})CONMe({2})</td>
<td>Bu(^{n})MgBr</td>
<td></td>
<td>PhCH(_{2})COBu(^{n})</td>
<td>8</td>
</tr>
</tbody>
</table>

* All reactions are carried out in THF at 0 °C with a molar ratio of 1:1.5:1.5 (carbonyl compound:Grignard reagent:CeCl\(_{3}\)) unless otherwise stated.
 \(^{b}\) Molar ratio 1:2:3 (carbonyl compound:Grignard reagent:CeCl\(_{3}\)).
 \(^{c}\) Molar ratio 1:1.5:2.5 (carbonyl compound:Grignard reagent:CeCl\(_{3}\)).
 \(^{d}\) \((Z):(E) = 91:9\).
 \(^{e}\) \((Z):(E) = 60:40\).
 \(^{f}\) Molar ratio 1:3:3 (amide:Grignard reagent:CeCl\(_{3}\)).
It has been found that use of cerium chloride as an additive effectively suppresses abnormal reactions, resulting in the formation of normal addition products in significantly improved yields.61,62 The reactions are usually carried out by one of the following two methods.

(i) The Grignard reagent is added to the suspension of cerium chloride in THF at 0 °C, the mixture is stirred well for 1–2 h at the same temperature and finally the substrate is added (method A). As vinylic Grignard reagents decompose rapidly on treatment with cerium chloride at 0 °C, reactions using these reagents should be carried out at a lower temperature.

(ii) The Grignard reagent is added at 0 °C to the mixture of substrate and cerium chloride in THF that has previously been stirred well for 1 h at room temperature (method B).

Representative examples of the reactions of various carbonyl compounds with Grignard reagents under these conditions are listed in Table 5.62 It is emphasized that enolization, aldol reaction, ester condensation, reduction and 1,4-addition are remarkably suppressed by the use of cerium chloride. Various tertiary alcohols, which are difficult to prepare by the conventional Grignard reaction, can be synthesized by this method.

The Grignard reagent/cerium chloride system has been applied to practical organic syntheses.63–69 A typical example is shown in Scheme 27.63 In sharp contrast to the reaction in the presence of cerium chloride, the Grignard reagent alone affords only a 2% yield of the adduct.

\begin{center}
\begin{tikzpicture}
\node (a) at (0,0) {\includegraphics[width=0.8\textwidth]{scheme27.png}};
\end{tikzpicture}
\end{center}

\textbf{Scheme 27}

Recently this method has been successfully applied to the preparation of substituted allylsilanes from esters. A variety of allylsilanes with other functional groups have been synthesized in good yields, as shown in Scheme 28.70,71

\begin{center}
\begin{tikzpicture}
\node (a) at (0,0) {\includegraphics[width=0.8\textwidth]{scheme28.png}};
\end{tikzpicture}
\end{center}

\textbf{Scheme 28}

1.8.5 REFERENCES

Organocerium Reagents

33. K. Suzuki and T. Ohkuma, private communication.
Nonstabilized Carbanion Equivalents

1.9
Samarium and Ytterbium Reagents

GARY A. MOLANDER
University of Colorado, Boulder, CO, USA

1.9.1 INTRODUCTION
In contrast to more traditional organometallic nucleophiles, the application of samarium and ytterbium reagents to selective organic synthesis has a relatively brief history. Early studies of lanthanide reagents simply sought to develop reactivity patterns mimicking those of more established organolithium or Grignard reagents. However, as the complexity of organic molecules requiring synthesis increased, demands for more highly selective reagents heightened accordingly. Consequently, the search for reagents which would complement those of the traditional organometallic nucleophiles brought more serious attention to the lanthanides, and an explosive expansion in the application of lanthanide reagents to organic synthesis began. This growth is perhaps best reflected by the publication of a number of excellent review articles.1 In addition, quite thorough surveys on the synthetic and structural aspects of organolanthanide chemistry have appeared.2 This chapter concentrates on applications of samarium and ytterbium reagents in selective organic synthesis, and specifically their employment in C—X π-bond addition reactions. Emphasis is placed on transformations that are unique to the lanthanides, and on processes that complement existing synthetic methods utilizing more traditional organometallic reagents. Since additions to C—X π-bonds comprise one of the most essential aspects of carbon—carbon bond formation, fundamental contributions made in this area are by definition of substantial importance to the art of organic synthesis.

The perception that lanthanide metals were rare and therefore inaccessible or expensive was a contributing factor to their long-lasting neglect and slow development as useful synthetic tools. In fact, 'rare earths' in general are relatively plentiful in terms of their abundance in the earth's crust. Samarium and ytterbium occur in proportions nearly equal to those of boron and tin, for example.3 Modern separation methods have made virtually all of the lanthanides readily available in pure form at reasonable cost.
Unlike many of their main group and transition metal counterparts, inorganic lanthanide compounds are generally classified as nontoxic when introduced orally. In fact, samarium chloride and ytterbium chloride exhibit similar toxicity to that of sodium chloride. Although toxicity may obviously vary to some extent based on the ligands attached to the metal, in most cases lanthanide complexes are converted to hydroxides immediately on ingestion, and thus have limited absorption through the digestive tract. Moderate toxicity is exhibited by lanthanide salts introduced via the intraperitoneal route.

The +3 oxidation state is the most stable oxidation state for both samarium and ytterbium. The +2 oxidation state of ytterbium (f⁴) and samarium (f⁶) is of great importance with regard to applications in organic synthesis. As expected on the basis of its electronic configuration, Yb²⁺ is the more stable of these two dipositive species, and Sm²⁺ is a powerful one-electron reducing agent (Sm²⁺/Sm³⁺ = 1.55 V, Yb²⁺/Yb³⁺ = -1.15 V). The utility of Sm²⁺ as a reductant in organic synthesis is discussed in detail below, and various aspects of its chemistry have been previously reviewed as well. The type of two-electron redox chemistry on a single metal center, typical of several transition elements, is not observed in lanthanides.

It is the special combination of inherent physical and chemical properties of the lanthanides that sets them apart from all other elements, and provides a unique niche for these elements and their derivatives in selective organic synthesis. The lanthanides as a group are quite electropositive (electronegativities of samarium and ytterbium are 1.07 and 1.06, respectively, on the Allred–Rochow scale³) and the chemistry of these elements is predominantly ionic. This is because the 4f-electrons do not have significant radial extension beyond the filled 5s²5p⁶ orbitals of the xenon inert gas core. The lanthanides therefore behave as closed-shell inert gases with a tripositive charge, and in general electrostatic and steric interactions play a greater role in the chemistry of the lanthanides than do interactions between the metal and associated ligand orbitals.

The f-orbitals do play a bonding role in complexes in which the coordination number is higher than nine. Compared with transition metals, the ionic radii of the lanthanides are large. Most transition metal ionic radii lie in the range from 0.6 to 1.0 Å, whereas the lanthanides have an average ionic radius of approximately 1.2 Å. Divalent species are, of course, even larger; eight-coordinate Sm²⁺ has an ionic radius of 1.41 Å, for example. The relatively large ionic radii of the lanthanides allow the accommodation of up to 12 ligands in the coordination sphere, and coordination numbers of seven, eight and nine are common. Owing to the well-known 'lanthanide contraction', ionic radii decrease steadily across the row of lanthanides in the periodic table; eight-coordinate Sm³⁺ has an ionic radius of 1.219 Å, whereas the ionic radius of eight-coordinate Yb³⁺ is only 1.125 Å. The lanthanide contraction is a consequence of poor shielding of the 4f-electrons, resulting in an increase in effective nuclear charge and a concomitant decrease in ionic radius. As expected, higher coordination numbers are most common in the larger, early lanthanides.

According to the concept of hard and soft acids and bases (HSAB) established by Pearson⁶ lanthanide +3 ions are considered to be hard acids, falling between Mg²⁺ and Ti⁴⁺ in the established scale. Lanthanides therefore complex preferentially to hard bases such as oxygen donor ligands. The strong affinity of lanthanides for oxygen is further evidenced by the bond dissociation energies (D₀) for the gas phase dissociation of diatomic lanthanide oxides (LnO).⁷ Although they are among the lowest values for the lanthanides, both SmO (136 kcal mol⁻¹; 1 cal = 4.18J) and YbO (95 kcal mol⁻¹) exhibit values significantly higher than that for MgO (86.6 kcal mol⁻¹). This demonstrated oxophilicity (strong metal–oxygen bonds and hard Lewis acid character) has been used to great advantage in organic synthesis. As described below, these properties have been exploited extensively to enhance carbonyl substrate reactivity, and also to control stereochemistry in carbonyl addition reactions through chelation.

1.9.2 SAMARiUM REAGENTS

Surprisingly few organosamarium reagents have been synthesized and exploited for their utility in selective organic synthesis. However, examples of both organosamarium(III) and organosamarium(II) reagents are known, and provide some insight into potentially useful areas of further study. By far the most extensive work thus far has been carried out on use of samarium(III) species as reductants and reductive coupling agents in organic synthesis. Applications of all three of these types of reagents to C—X π-bond additions are discussed below.
1.9.2.1 Organosamarium(III) Reagents

Organosamarium(III) dihalides are typically generated by a simple transmetalation reaction involving SmCl₃ or SmI₃ and 1 equiv. of an organolithium or Grignard reagent. Unfortunately, little characterization of such reactions has been performed. As a consequence, limited information is available on the structure of these molecules or the exact nature of the reactive species in such mixtures. While they have been denoted as simple monomeric σ-bonded species ("RSmX₂"), certainly other compositions (e.g. "ate" complexes or species resulting from Schlenk-type equilibria) cannot be excluded.

Reagents prepared in this fashion have been demonstrated to undergo facile carbonyl addition reactions. Two promising features of these reactions have emerged. The first is that modest selectivity in reactions of aldehydes over that of ketones can be achieved (equation 1). The second, and perhaps more exciting, development is the efficient reaction of organosamarium(III) reagents with highly enolizable ketones (equation 2). Good yields of 1,2-addition products can be obtained from ketone substrates that produce less than 35% of carbonyl addition product on reaction with organolithium reagents alone. Rigorously anhydrous samarium salts must be used in order to achieve high yields of the alcohols. This carbonyl addition process with enolizable ketones takes advantage of the attenuated basicity of organosamarium reagents as compared to that of their organolithium counterparts, as well as the amplified Lewis acidity of the Sm³⁺ ion. The combination of these factors apparently minimizes enolization of the carbonyl substrate, while at the same time enhancing nucleophilic addition. Although only a limited study of this phenomenon has been carried out to this point, the process rivals that of organocerium reagents (Volume 1, Chapter 1.8), and certainly the results bode well for future exploration.

$$\text{Bu}^n\text{Li}/\text{SmI}_3 + \text{n-C}_6\text{H}_{13}\text{CHO/EtCOEt} \xrightarrow{\text{i, THF, } -70 \degree \text{C}} \text{n-C}_6\text{H}_{13}\text{Bu}^n + \text{EtCOEt} \xrightarrow{\text{ii, } \text{H}_2\text{O}^+} \text{OH Bu}^n \xrightarrow{\text{76%}} \text{Et} \xrightarrow{\text{24%}}$$ (1)

$$\text{Bu}^n\text{Li}/\text{SmCl}_3 + \text{Ph} \xrightarrow{\text{i, THF, } -78 \degree \text{C, 3 h}} \text{Ph} \xrightarrow{\text{ii, } \text{H}_2\text{O}^+} \text{OH Ph} \xrightarrow{\text{60%}}$$ (2)

Reaction of benzylic halides with 2 equiv. of dicyclopentadienylsamarium reportedly generates a benzylsamarium(III) species along with dicyclopentadienylsamarium halide (equation 3). Benzylsamariums undergo carbonyl addition with a variety of aldehydes and ketones, providing high yields of the corresponding alcohols (equation 4). These complexes also react with carboxylic acid chlorides, providing modest yields of ketones and minor amounts of dibenzylated tertiary alcohol by-products (equation 5).

$$2\text{Cp}_2\text{Sm} + \text{Ar} \xrightarrow{\text{THF, r.t.}} \text{Ar}\text{SmCp}_2 \xrightarrow{\text{Cp}_2\text{SmX}}$$ (3)

$$\text{Ph} \xrightarrow{\text{SmCp}_2} + \text{n-C}_6\text{H}_{13}\text{OH} \xrightarrow{\text{i, THF, r.t.}} \text{n-C}_6\text{H}_{13}\text{Ph} \xrightarrow{\text{ii, } \text{H}_2\text{O}^+} \text{80%}$$ (4)

$$\text{Ph} \xrightarrow{\text{SmCp}_2} + \text{Bu}^l\text{Cl} \xrightarrow{\text{THF, } -30 \degree \text{C, 35 °C}} \text{Bu}^l\text{Ph} \xrightarrow{\text{88%}} \text{Bu}^l\text{OH Ph} \xrightarrow{\text{12%}}$$ (5)

The preparation and reactivity of organosamarium "ate" complexes have also been described. By addition of methyllithium to samarium trichloride in Et₂O in the presence of TMEDA, [Li(TMEDA)]₃[Sm(Me)₆] can be isolated in 48% yield as a crystalline solid. This complex is extremely...
sensitive toward air and moisture, and yet has been fully characterized. Preliminary studies indicate that it provides good selectivity for 1,2-carbonyl addition in reactions with several unsaturated aldehydes and ketones (equation 6). Unoptimized yields in all cases exceed 80%. Chemoselectivity has also been briefly studied with somewhat less impressive results. Reaction of the 'ate' complex with a 1:1 mixture of benzalacetone and cinnamaldehyde demonstrated that addition to the aldehyde was favored by a ratio of only 1.5:1 to 2:1.

\[
\text{O} \quad + \quad [\text{Li(TMEDA)}]_3[\text{SmMe}_6] \quad \xrightarrow{\text{THF, Et}_2\text{O}} \quad \text{O} \quad \xrightarrow{\text{Bu}^+} \quad >95\% \quad \text{OH} \quad + \quad \text{Bu}^+ \quad \text{OH} \quad <5\%
\]

(6)

These preliminary results indicate that substantial promise holds for the further development of organosamarium(III) reagents. The synthesis and characterization of new organosamarium complexes, and application of these reagents to selective synthetic transformations awaits more extensive exploration.

1.9.2.2 Organosamarium(II) Reagents

Like the organosamarium(III) reagents discussed in Section 1.9.2.1, few organosamarium(II) reagents have been satisfactorily characterized. In many respects, however, the known chemistry of these reagents mimics that of organomagnesium halides. For example, the preparation of organosamarium(II) halides is apparently best carried out by reaction of samarium metal with organic halides (equation 7). This procedure generates a mixture of divalent and trivalent organosamarium species as determined by magnetic susceptibility measurements and a variety of other analytical methods. Solutions of these reagents exhibit reactivity with ketones that is very similar to that of the corresponding Grignard reagents (equation 8).

\[
\text{Sm} \quad + \quad \text{PhI} \quad \xrightarrow{\text{THF} \quad -30^\circ \text{C}} \quad \text{'PhSmI'}
\]

(7)

\[
\text{'PhSmI'} \quad + \quad \text{Ph} \quad \xrightarrow{\text{THF} \quad 41\%} \quad \text{Ph} \quad \text{OH} \quad + \quad \text{Ph} \quad \text{OH}
\]

(8)

Reactions of organosamarium(II) halides with aldehydes are somewhat more complicated and synthetically less useful than those with ketones. The ability of Sm²⁺ species to serve as strong reducing agents introduces a number of alternative reaction pathways. For example, reaction of 'EtSmI' with benzaldehyde provides a mixture of benzyl alcohol, benzoin, hydrobenzoin, and benzyl benzoate in low yields. The first three products presumably arise from benzaldehyde ketyl, generated by single-electron transfer from the Sm²⁺ reagent to benzaldehyde. The benzyl benzoate apparently is derived from a Tischenko-type condensation reaction between a samarium oxide species and benzaldehyde.

The intermediate generated by the reaction of samarium metal with methyl β-bromopropionate has found a useful niche in selective synthesis. This reagent, when treated with acetophenone, generates a γ-lactone directly in yields of about 70% (equation 9). Although a significant amount (20%) of pinacol product from the ketone is also generated in this process, the method does provide a useful alternative to the use of other β-metallo ester nucleophiles. Similar processes using zinc or magnesium in place of samarium provide the γ-lactones in yields of less than 30%, with unreacted starting material the predominant substance isolated. A samarium(II) ester homoenoate is postulated as the reaction intermediate in this transformation. Several other lanthanide metals (e.g. cerium, lanthanum and neodymium) have been found to work equally well in this transformation.
1.9.2.3 Reactions Promoted by Samarium Diiodide and Dicyclopentadienylsamarium

Although organosamarium reagents have made little impact thus far in selective organic synthesis, the emergence of low-valent samarium reagents as reductive coupling agents has had a major influence on the field of C—X π-bond addition reactions. The disclosure of a convenient procedure for generation of samarium diiodide (SmI₂) and subsequent development of this reagent by Kagan and his coworkers precipitated explosive growth in the application of this reductant in organic synthesis. Simple functional group reductions as well as a host of reductive coupling reactions have since been investigated. In these processes, SmI₂ demonstrates reactivity and selectivity patterns which nicely complement reductants such as zinc, magnesium and other low-valent metal reductants. In addition to the advantages SmI₂ provides as a THF-soluble reductant, the Sm³⁺ ion generated as a result of electron transfer can serve as a template to control stereochemistry through chelation in C—X π-bond addition reactions. It has thus become the reagent of choice for numerous synthetic transformations.

Samarium diiodide is very conveniently prepared by oxidation of samarium metal with organic dihalides or with iodine (equations 10–12). Deep blue solutions of SmI₂ (0.1 M in THF) are generated in virtually quantitative yields by these processes. This salt can be stored as a solution in THF for long periods when it is kept over a small amount of samarium metal. Tetrahydrofuran solutions of SmI₂ are commercially available as well. If desired, the solvent may be removed to provide Si~I~(THF)~ as a powder. For synthetic purposes, SmI₂ is typically generated and utilized in situ.

\[
\text{Sm} + \text{I} + \text{I} \xrightarrow{\text{THF}, 0 ^\circ \text{C}, 1 \text{h}} \text{SmI}_2 + 0.5 \text{H}_2\text{C} = \text{CH}_2
\]

(10)

\[
\text{Sm} + \text{I} + \text{I} \xrightarrow{\text{THF}, 0 ^\circ \text{C}, 1 \text{h}} \text{SmI}_2 + \text{H}_2\text{C} = \text{CH}_2
\]

(11)

\[
\text{Sm} + \text{I}_2 \xrightarrow{\text{THF}, 65 ^\circ \text{C}, 16 \text{h}} \text{SmI}_2
\]

(12)

Other ether solvents (e.g. Et₂O, DME) are ineffective for the preparation of SmI₂, and samarium(II) salts such as SmBr₂ are only slowly generated by procedures analogous to those utilized for preparation of SmI₂. Furthermore, SmBr₂ is not nearly as soluble in THF as is SmI₂. With the exception of studies on dicyclopentadienylsamarium (vide infra), little effort has been made in exploring other potential samarium(II) reducing salts.

Samarium diiodide has been characterized in solution by absorption spectroscopy, magnetic susceptibility measurements, titrations of lanthanide ions with EDTA, potentiometric titrations of iodide ion, and acidometric titration and reaction of iodine, which measures the reductive capability of the solutions. All of these analyses are consistent with a species possessing the stoichiometry ‘SmI₂’. However, little is known of the degree of aggregation or solution structure of this reagent. Crystal structure determinations of SmI₂(NCBut)₂ and SmI₂[0(CH₂CH₂OMe)₂]₂ have been performed. The former is an infinite chain of SmI₂(NCBut)₂ with bridging iodides. The geometry about the samarium ion in this complex is a distorted octahedron. The diglyme complex is monomeric in the solid state; the geometry about the octacoordinate samarium ion is best described as a distorted hexagonal bipyramid.

Dicyclopentadienylsamarium (Cp₂Sm) is readily prepared by reaction of SmI₂ with dicyclopentadienyl sodium. It is a red powder that can be stored for days at a time under an inert atmosphere without any apparent decomposition. Although it has limited solubility in most organic solvents, Cp₂Sm is emerging as a useful reductant. It appears to have reduction capabilities even greater than those of SmI₂.

Both SmI₂ and Cp₂Sm have unique characteristics which lend themselves to selective organic synthesis, and their application to a variety of problems in formal C—X π-bond addition reactions is outlined below.

1.9.2.3.1 Barbier-type reactions

As a homogeneous reductant, SmI₂ provides many advantages over more traditional reagents such as magnesium or lithium in Barbier-type syntheses. Both intermolecular and intramolecular variants of the Barbier reaction utilizing SmI₂ are finding important uses in the synthesis of complex organic molecules.
Samarium diiodide has been utilized successfully to promote intermolecular Barbier-type reactions between ketones and a variety of organic halides and other substrates. Allylic and benzylic halides (chlorides, bromides and iodides) react with ketones within a few minutes at room temperature in THF when treated with 2 equiv. of SmI₂ (equation 13). Unsymmetrical allylic halides provide mixtures of regioisomers in these coupling reactions. Dialkylated (or dibenzylated) tertiary alcohols result from SmI₂-promoted reactions of allylic iodides or benzyl bromide with carboxylic acid halides (equation 14). In some instances, homocoupling of the organic halide or carboxylic acid halide effectively competes with the desired cross-coupling reaction.

\[
\text{PhBr} + n\text{-C}_8\text{H}_{13} \xrightarrow{2\text{SmI}_2, \text{THF}, \text{r.t., 0.5 h}} n\text{-C}_8\text{H}_{13} \xrightarrow{69\%} \text{PhOH}
\]

\[
n\text{-C}_7\text{H}_{15} \xrightarrow{\text{O}} + 2\text{I} \xrightarrow{4\text{SmI}_2, \text{THF}, \text{r.t., 20 min}} n\text{-C}_7\text{H}_{15} \xrightarrow{72\%} \text{HO}
\]

Allylic halides are not as readily accessible as allylic alcohols or their ester derivatives. Thus, the requirement that allylic halides must be used as precursors for carbonyl addition reactions in conjunction with magnesium and other similar reductants is a severe restriction limiting the convenience of these routes to homoallylic alcohols. In this regard, samarium diiodide can be used to great advantage, because substrates other than allylic halides are suitable precursors for such transformations. For example, allylic phosphate esters have been reported to couple with carbonyl substrates in the presence of SmI₂ (equation 15). Since esters and nitriles are unreactive under these conditions, the SmI₂-mediated process is likely to be more chemoselective than those promoted by magnesium or lithium.

\[
n\text{-C}_6\text{H}_{13} \xrightarrow{\text{O}} + \text{O} \xrightarrow{2\text{SmI}_2, \text{THF}, \text{r.t., 1 h}} 93\%
\]

Curiously, the geometry about the allylic double bond is retained in these reactions (as demonstrated by stereospecific reactions with neryl phosphate and geranyl phosphate), even though the coupling lacks regioselectivity (i.e. homoallylic alcohols are isolated as mixtures of products in which coupling has occurred at the \(\alpha\)- and \(\gamma\)-positions of the allylic phosphates). The procedure also lacks stereoselectivity; reactions of substituted allylic phosphates with prochiral aldehydes and ketones provide mixtures of diastereomers. The process has other limitations; although alkyl ketones couple nicely utilizing this procedure, aryl ketones and aldehydes provide significant amounts (50–85%) of pinacol by-products. This is a result of the reducing capabilities of SmI₂. Furthermore, \(\alpha,\beta\)-unsaturated aldehydes and ketones provide complex mixtures of products.

Allylic acetates can also be utilized as substrates in SmI₂-mediated carbonyl addition reactions, but only when these reactions are performed in the presence of palladium catalysts. No reaction occurs in the absence of the palladium catalyst, and a \(\pi\)-allylpalladium species is undoubtedly a key intermediate. Once generated, the \(\pi\)-allylpalladium probably undergoes oxidative–reductive transmetalation with SmI₂, generating an allylsamarium species. The latter reacts with the aldehyde or ketone, providing the observed products (Scheme 1). Significantly, palladium(II) salts can also be utilized in the reaction, indicating that SmI₂ produces a palladium(0) species \textit{in situ} which is capable of entering the catalytic cycle. In these reactions, there is a type of synergism between the palladium(0) catalyst and SmI₂; the latter serves as the stoichiometric reductant in the process, while the palladium catalyst functions as an activator for the relatively unreactive allylic acetate. Samarium diiodide regenerates the catalyst, and brings
about a charge inversion in the process by converting the electrophilic π-allylpalladium species to a nucleophilic allylsamarium.

![Scheme 1](image)

In most cases, carbon–carbon bond formation occurs at the least substituted terminus of the allylic unit. A wide range of aldehydes and ketones can be utilized in the reaction, and one cyclization process has been reported (equation 16). Aromatic and α,β-unsaturated substrates cannot be used owing to competitive pinacolic coupling reactions promoted by SmI$_2$.

![Equation 16](image)

Propargylic acetates undergo analogous reactions with ketones.23 Aldehydes can be utilized only with highly reactive propargylic acetates, again due to competitive pinacolic coupling. Primary propargylic acetates produce mixtures of allenic and homopropargylic alcohols, whereas most secondary and all tertiary propargylic carboxylates provide exclusively the allenic alcohols (equation 17). Although other transition metal salts, e.g. palladium(II), nickel(II) and cobalt(II), can be utilized as catalysts, lower yields are obtained.

![Equation 17](image)

In addition to reactive allylic and benzylic substrates, other organic precursors have proven suitable for SmI$_2$-promoted intermolecular Barbier-type reactions. Primary organic iodides and even organic tosylates undergo carbonyl coupling, but under much harsher conditions than their allylic halide counterparts. Typically, reactions must be heated for 8–12 h in THF to accomplish complete conversion to product. Again, the ability to utilize organic tosylates in these transformations sets SmI$_2$ apart from more traditional reductants (equation 18). A Finkelstein-type reaction apparently converts alkyl tosylates to the corresponding iodides, which are subsequently involved in the coupling reaction. Addition of a catalytic amount of sodium iodide to the reaction mixture greatly facilitates the coupling. Alkyl bromides are less reactive than corresponding iodides and tosylates, and alkyl chlorides are virtually inert.

![Equation 18](image)

Much milder reaction conditions in the Barbier-type reaction can be employed by utilizing iron(III) salts as catalysts. For example, when 2 mol % FeCl$_3$ is added to SmI$_2$, the Barbier reaction between a primary organic iodide and a ketone is complete within 3 h at room temperature (equation 19). The iron(III) is probably reduced by SmI$_2$ to a low-valent species which serves as an efficient electron transfer catalyst, thus lowering the activation energy for the coupling process (vide infra).
Nonstabilized Carbonion Equivalents

\[
\text{Bu}^n\text{I} + \text{n-C}_6\text{H}_{13}\text{CO} \quad \xrightarrow{25\text{ml}_2, \text{cat. FeCl}_3, \text{THF}, \text{r.t., } 3\text{ h}} \quad \text{Bu}^n\text{OH} + \text{n-C}_6\text{H}_{13} \quad (19)
\]

Utilization of THF–HMPA as solvent for the reaction provides another useful technique for facilitating the SmI\(_2\)-mediated Barbier-type coupling reaction.\(^{24}\) Even in the absence of a catalyst, both Bu\(^n\)Br and Bu\(^t\)Br are cleanly coupled with 2-octanone within 1 min at room temperature in this solvent system, providing greater than 90% yields of the desired tertiary alcohols.

Dicyclopentadienylsamarium (Cp\(_z\)Sm) presents a third means by which less reactive organic halides can be induced to participate in intermolecular Barbier-type processes (equation 20).\(^{19}\) Experimental conditions in intermolecular Barbier reactions are much milder with Cp\(_z\)Sm (ambient temperature) than with SmI\(_2\) (THF heated at reflux). Secondary alkyl iodides, reluctant to undergo SmI\(_2\)-mediated Barbier coupling under normal conditions, can be efficiently coupled with ketones utilizing Cp\(_z\)Sm.

\[
\text{Bu}^n\text{I} + \text{Bu}^t\text{I} \quad \xrightarrow{2\text{Cp}_2\text{Sm}, \text{THF}, \text{r.t.}} \quad \text{Bu}^n\text{OH} + 86\% \quad \text{Bu}^t\text{OH} + 14\% \quad (20)
\]

Alkenyl halides and aromatic halides are unreactive with ketones in the presence of SmI\(_2\) in THF.\(^{16c}\) Pinacolic coupling products can be detected in 10–20% yield under these conditions. In THF/HMPA, iodo-benzene reacts in the presence of a ketone to generate a phenyl radical, which abstracts a hydrogen from THF. Samarium diiodide induced coupling of the THF radical to the ketone (or ketyl) provides the major observed product (equation 21).\(^{25}\)

\[
\text{PhI} + \text{Ph} \quad \xrightarrow{25\text{ml}_2, \text{THF, HMPA}} \quad \text{PhOH} \quad 50\% \quad (21)
\]

Aldehydes cannot be coupled to marginally reactive organic halides in SmI\(_2\)-promoted processes. A mixture of products results as a consequence of a Meerwein–Ponndorf process, initiated by reaction of the secondary samarium alkoxide intermediate with the aldehyde.\(^{26}\) Highly reactive (allylic and benzylic) halides can be utilized and couple fairly efficiently with aldehydes, since they react quickly enough to suppress the undesired consecutive reaction. A two-step process (Barbier coupling followed by in situ oxidation) can be successfully employed with these reactive halides, providing high yields of coupled ketone (equation 22).\(^{26b}\)

\[
\text{n-C}_7\text{H}_{15} \quad \xrightarrow{2\text{SmI}_2, \text{i, BuCHO}} \quad \text{n-C}_7\text{H}_{15} \quad 74\% \quad \text{Bu}^t\text{CHO} \quad \xrightarrow{\text{ii, H}_2\text{O}, \text{+}} \quad \text{n-C}_6\text{H}_{13} \quad (22)
\]

Dicyclopentadienylsamarium has been utilized to ameliorate the problem of Meerwein–Ponndorf oxidation in Barbier coupling reactions with aldehydes.\(^{19}\) Dicyclopentadienylsamarium accelerates the coupling process, thereby preventing subsequent oxidation from occurring to any great extent. The enhanced reactivity of Cp\(_z\)Sm permits even secondary alkyl iodides to undergo Barbier reactions with aldehydes, providing the desired alcohols in reasonable yields (equation 23). Further studies are likely to uncover other useful reactivity patterns for Cp\(_z\)Sm that complement those of SmI\(_2\).

\[
\text{Pr}^t\text{I} + \text{n-C}_6\text{H}_{13}\text{CO} \quad \xrightarrow{3\text{Cp}_2\text{Sm}, \text{THF, r.t.}} \quad \text{n-C}_6\text{H}_{13} \quad (23)
\]

The mechanism of the intermolecular SmI\(_2\)-promoted Barbier-type reaction is still open to debate. Direct S\(_N\)2-type displacement of the halide by a ketyl or a ketyl dianion is unlikely, since optically active
2-bromoocane reacts with cyclohexanone in the presence of SmI$_2$ to provide an optically inactive tertiary alcohol.27 One caveat concerning this evidence is that SmI$_2$ itself reacts with organic halides in a Finkelstein-type reaction.16c,27 Thus, racemization of the 2-bromoocane prior to coupling has not been ruled out in these studies.

Reduction of the organic halide to an organosamarium species might also be involved. Subsequent carbonyl addition by this organometallic reagent would provide the observed product. This mechanism finds support in studies utilizing 2-(bromomethyl)tetrahydrofuran as the alkyl halide substrate. Treatment of this halide with SmI$_2$ in the presence of 2-octanone produces a 60\% yield of 4-penten-1-ol, and only 3\% of coupled product.27 This is indicative of the generation of a tetrahydrofuranyl anion, which rapidly rearranges to the ring-opened alkoxide.

Another plausible mechanism for the SmI$_2$-mediated Barbier reaction involves coupling of ketyl and alkyl radicals in a diradical coupling mechanism.28 Alternatively, addition of an alkyl radical to a Sm$^{3+}$-activated ketone carbonyl may be invoked.

Highly selective synthetic transformations can be performed readily by taking advantage of the chemoselectivity of SmI$_2$. It has been pointed out that there is a tremendous reactivity differential in the Barbier-type reaction between primary organic iodides or tosylates on the one hand, and organic chlorides on the other. As expected, selective alkylation of ketones can be accomplished by utilizing appropriately functionalized dihalides or chlorosulfonates (equation 24).16c Alkenyl halides and, presumably, aryl halides can also be tolerated under these reaction conditions.

\begin{equation}
\text{n-C}_6\text{H}_{13} + \text{TsO-Cl} \xrightarrow{2\text{SmI}_2, \text{cat. NaI, THF, 65 °C, 24 h}} \text{n-C}_6\text{H}_{13} \text{Cl} \quad (24)
\end{equation}

Nitriles and esters are also unreactive in SmI$_2$-promoted Barbier reactions. A very useful procedure for lactone synthesis has been developed making use of this fact. Treatment of γ-bromobutyrates or δ-bromovalerates with SmI$_2$ in THF/HMPA in the presence of aldehydes or ketones results in generation of lactones through a Barbier-type process (equations 25 and 26).24 This nicely complements the β-metallo ester or 'homoenolate' chemistry of organosamarium(III) reagents described above (Section 1.9.2.1), and also the Reformatsky-type chemistry promoted by SmI$_2$ (Section 1.9.2.3.2). Further, it provides perhaps the most convenient route to γ- and δ-carbanionic ester equivalents yet devised.

\begin{equation}
\text{n-C}_{11}\text{H}_{23} \text{O} \xrightarrow{\text{Br-CO}_2\text{Et}, \text{THF, HMPA, r.t., 1 min}} \text{n-C}_{11}\text{H}_{23} \text{O} \quad (25)
\end{equation}

A very convenient hydroxymethylation process has been developed based on the SmI$_2$-mediated Barbier-type reaction.29 Treatment of aldehydes or ketones with benzyl chloromethyl ether in the presence of SmI$_2$ provides the alkoxymethylated products in good to excellent yields. Subsequent reductive cleavage of the benzyl ether provides hydroxymethylated products. Even ketones with a high propensity for enolation can be alkylated by this process in reasonable yields. The method was utilized by White and Somers as a key step in the synthesis of (±)-deoxystemodinone (equation 27).30 This particular ketone substrate resisted attack by many other nucleophilic reagents (such as methylthiom) owing to competitive enolate formation.

A unique alkoxymethylation reaction can be accomplished by treatment of α-alkoxycarboxylic acid chlorides with ketones in the presence of SmI$_2$ (equation 28).31 The reaction is postulated to proceed by a reductive decarbonylation process, leading to a relatively stable α-alkoxy radical. Addition of this radical to the Sm$^{3+}$-activated carbonyl and further reduction and hydrolysis provides the observed product. An
alternative mechanism involves reduction of the α-alkoxy radical to a transient anion, followed by nucleophilic addition and eventual hydrolysis. These two processes have not been distinguished at this point. With acid halides that do not afford a particularly stable radical on decarbonylation, reduction to the samarium acyl anion becomes competitive with the decarbonylation process. The chemistry of acyl radicals and samarium acyl anions is discussed separately in Section 1.9.2.3.5.

Halomethylation of aldehydes and ketones is difficult to achieve using α-halo organolithium species owing to the thermal instability of these organometallics. As an alternative, SmI$_2$ or samarium metal can be utilized as a reductant in conjunction with diiodomethane to induce an analogous iodomethylation reaction.32 A wide range of aldehydes and ketones are efficiently alkylated at room temperature under these conditions. Even substrates that are susceptible to enolization react reasonably well, providing moderate yields of the iodo-acyclic ketone (equation 29).32a Only 1,2-addition products are observed with conjugated aldehydes and ketones (equation 30).32a Excellent diastereoselectivity is achieved in reactions with both cyclic and acyclic ketones (equations 31 and 32).32b

Utilization of dibromomethane also results in the isolation of iodo-acyclic ketones. Based on this observation and the fact that SmI$_3$ will cleave epoxides to generate iodo-acyclic ketones, it has been suggested that the iodo-acyclic ketone that is initially generated cyclizes to an epoxide intermediate. The
Samarium and Ytterbium Reagents

\[
\text{PhCHO} \xrightarrow{\text{SmI}_2, \text{CH}_2\text{I}_2} \text{PhI} + \text{PhI} \quad (32)
\]

SmI\(_2\)X that is produced as a result of this process then serves to open the epoxide, generating the iodohydrin. Although this appears to be a likely scenario, a more direct route involving a Finkelstein reaction between the bromomethylsamarium alkoxide and various samarium iodide salts\(^ {16, 27}\) cannot be ruled out (Scheme 2).

\[\text{O} \quad \xrightarrow{\text{CH}_2\text{Br}_2} \quad \text{I}_2\text{SmO} \quad \xrightarrow{2 \text{SmI}_2} \quad \text{O} \quad \xrightarrow{\text{SmI}_2\text{X}} \quad \text{O} \quad \text{H}_2\text{O}^+ \]

\text{Scheme 2}

A one-pot carbonyl methylenation reaction has been developed based on this iodomethylenation reaction.\(^ {33}\) Treatment of an iodomethylsamarium alkoxide (generated \textit{in situ} by reaction of aldehydes or ketones with SmI\(_2/\text{CH}_2\text{I}_2\)) with SmI\(_2/\text{HMPA}\) and N,N-dimethylaminoethanol (DMAE) induces a reductive elimination, resulting in the generation of the corresponding methylenated material (equation 33).

\[
i, \text{SmI}_2, \text{CH}_2\text{I}_2, 5 \text{ min} \\
\text{ii, SmI}_2, \text{DMAE}, \text{HMPA}, <5 \text{ min} \\
80\%
\]

When \(\alpha\)-halo ketones are treated with diiodomethane and samarium at 0 °C, cyclopropanols can be obtained in reasonable yields. Curiously, under the same conditions 1,2-dibenzoylethane also leads to cyclopropanol products (equations 34 and 35).\(^ {32a}\) Several pathways for conversion of \(\alpha\)-halo ketones to the observed cyclopropanols can be envisioned. It has been proposed that the mechanism of this reaction involves reduction of the \(\alpha\)-halo ketone by Sm (or SmI\(_2\)) to a samarium enolate. Cyclopropanation of this enolate with a samarium-based carbenoid subsequently provides the observed product.\(^ {32c}\)

\[
i, \text{SmI}_2, \text{CH}_2\text{I}_2, \text{THF}, 0 ^\circ \text{C} \\
\text{OH} \\
88\%
\]

\[
i, \text{SmI}_2, \text{CH}_2\text{I}_2, \text{THF}, 0 ^\circ \text{C} \\
\text{OH} \\
68\%
\]

Although numerous reductants (e.g. magnesium, lithium, sodium, organolithiums, organocuprates and chromium(II) salts, to name only a few) have been utilized in attempts to promote intramolecular Barbier-type reactions, SmI\(_2\) is by far the most general reductive coupling agent in terms of its utility and its scope of application. It has therefore become the reagent of choice for such processes. Isolated cyclopentanol can be synthesized with considerable diastereoselectivity when appropriately substituted \(\omega\)-iodoalkyl ketones are treated with SmI\(_2\) in THF at \(-78 ^\circ \text{C}\) and allowed to warm to room
temperature (equation 36).\(^3\)\(^4\) The reaction is clearly not subject to steric inhibition about the ketone carbonyl, and provides a useful alternative to intermolecular reactions between organometallic reagents (e.g. RLi or RMgX) and \(\alpha\)-substituted cyclopentanones. Intermolecular reactions between organometallic reagents and cyclopentanones often suffer from competitive enolization and/or reduction processes.

\[
\begin{align*}
\text{Pr}^t\text{C} & \rightarrow \text{Bu}^t \quad \text{THF, \(-78^\circ C\) to r.t.,} \\
& \quad 77\% \\
\text{Pr}^t\text{C} & \rightarrow \text{Bu}^t + \text{Pr}^t\text{C}
\end{align*}
\]

Perhaps more valuable is the application of the SmI\(_2\) reductive coupling technology to the synthesis of bicyclic alcohols. Shiner and Berks have demonstrated that the procedure can be utilized to generate three-membered rings starting from \(\alpha\)-tosyloxymethylcycloalkanones (equation 37).\(^3\)\(^5\) An advantage of SmI\(_2\) over reductants such as magnesium is that one is not restricted to organic halides in these reactions. As in this example, organic tosylates appear perfectly well suited to the Barbier process also.

\[
\begin{align*}
\text{OTs} & \rightarrow \text{HO} \\
& \quad \text{THF, r.t.,} \\
& \quad 70\%
\end{align*}
\]

Although the synthesis of four-membered rings has yet to be thoroughly explored, samarium diiodide can be utilized in the annulation of five- and six-membered rings through an intramolecular Barbier process.\(^3\)\(^6\) The development of this approach to six-membered ring formation in fused bicyclic systems is particularly important. Prior to this discovery there existed no reliable and convenient method to achieve this simple annulation process. The reactions proceed with considerable diastereoselectivity when cyclopentanone substrates are utilized, or when substituents are placed at the \(\alpha\)-position of the cycloalkanone (equations 38 and 39). Diastereoselectivity in other systems depends on whether or not an iron(III) catalyst is utilized in the reaction. In addition, in some cases higher diastereoselectivities can be obtained utilizing samarium metal, ytterbium metal, or Yb\(_2\) as reductant (Section 1.9.3.3). Unfortunately, the sense and magnitude of stereoselectivity that can be achieved by employing these other reductants are unpredictable from substrate to substrate.

\[
\begin{align*}
\text{O} & \rightarrow \text{HO} \\
& \quad \text{THF, r.t.,} \\
& \quad 67\%
\end{align*}
\]

The SmI\(_2\)-mediated intramolecular Barbier procedure has been applied to several diverse systems, and in each case has been determined to be superior to other protocols. Suginome and Yamada applied the technique to syntheses of exaltone and \((\pm)\)-muscone (equation 40).\(^3\)\(^7\) Surprisingly, cyclization in this case generates a single diastereomer. It is claimed that the SmI\(_2\) procedure provides better yields than procedures incorporating Mg/HgCl\(_2\) or \(n\)-butyllithium.

Murray and coworkers have used the SmI\(_2\)-promoted intramolecular Barbier synthesis to produce 3-protoadamantanol (equation 41).\(^3\)\(^8\) Although the yield in this example was not particularly high, it was the only method among several attempted that proved successful.\(^3\)\(^9\)

In an elegant approach to polyquinines, Cook and Lannoye developed a bisannulation process based on the SmI\(_2\)-mediated cyclization process (equation 42).\(^4\)\(^0\) Remarkably, both of the carbon–carbon bond-
forming reactions in this process proceed with approximately 90% yield, providing an incredibly efficient entry to these complex molecules.

Exceptionally clean cyclization can be accomplished by utilizing conjugated enones as precursors for the Barbier reaction (equation 43). High diastereoselectivity is achieved in these reactions, and under the mild conditions required for cyclization the TMS ether protecting group remains intact. It is also interesting that a neopentyl halide is effective in the cyclization. This result would appear to exclude an $S_{N}2$-type displacement of an organic halide by a samarium ketyl as a possible mechanism for the SmI$_2$-promoted intramolecular Barbier reaction.

Ketylts appear to be important intermediates in Barbier-type coupling reactions promoted by SmI$_2$. This provided the very real possibility that the Sm$^{3+}$ ion generated on electron transfer could be utilized as an effective Lewis acid template to control stereochemistry via chelation in suitably functionalized substrates. Indeed, a number of systems have been designed with this idea in mind. In β-ketoamide systems, the samarium(III) ion can participate in a rigid, chelated intermediate which serves to control stereochemistry in the cyclization process (equation 44). These particular cyclization reactions appear to proceed under kinetic control; there is no evidence to suggest that any equilibration takes place under the reaction conditions, and a single diastereomer is generated in each example. Six-membered rings can also be constructed by this process, although the yields are lower. By-products derived from simple reduction of the ketone to an alcohol are also isolated in these cases.

Allylic halide precursors provide exceptional yields of cyclic products, and both five- and six-membered rings comprising several different substitution patterns can be accessed by the same technology
In some cases, excellent stereochemical control at three contiguous stereocenters is established.

\[
\begin{align*}
\text{O} & \quad \text{NEt}_2 \\
\text{I} & \quad \text{H} \\
\text{2SmI}_2 & \quad \text{THF, } -78^\circ \text{C}, 0.5 \text{ h} \\
\text{68\%} &
\end{align*}
\]

A number of analogous \(\beta\)-keto esters have also been explored as substrates for intramolecular Barbier cyclization. In the alkyl halide series, a convenient route to 2-hydroxycyclopentanecarboxylates results (equation 47). However, six-membered rings are inaccessible utilizing this procedure. In contrast to \(\beta\)-ketoamide substrates, the \(\beta\)-keto ester series provide products which are clearly under thermodynamic control; that is, the observed diastereoselectivity is the result of a retroaldol–aldol equilibration, which serves to equilibrate the initially formed samarium aldolates. In most cases, diastereoselectivity is high, and the sense of relative asymmetric induction is predictable, based on a simple model for the reaction. However, the degree of diastereoselectivity is highly dependent on substituent and solvent effects. In particular, the use of coordinating solvents or additives (such as tetruglyme, 18-crown-6, or \(N,N\)-dimethylacetamide) that serve to strip the samarium(II) ion away from the chelating center, radically diminish the diastereoselectivity observed in these reactions. It should be pointed out that these cyclizations cannot be carried out by treating the substrates with activated magnesium. Unreacted starting material is recovered under these conditions.

\[
\begin{align*}
\text{O} & \quad \text{Ph} \quad \text{Ph} \\
\text{OEt} & \\
\text{I} & \\
\text{2SmI}_2 & \quad \text{THF, } -78^\circ \text{C}, 0.5 \text{ h} \\
\text{83\%} &
\end{align*}
\]

Evidence for a radical coupling mechanism (as opposed to a carbanionic carbonyl addition mechanism) in the intramolecular \(\text{SmI}_2\)-promoted Barbier reactions has come from studies on appropriately functionalized substrates in the \(\beta\)-keto ester series. It is well known that heterosubstituents are rapidly eliminated when they are adjacent to a carbanionic center. Indeed, treatment of a \(\beta\)-methoxy organic halide (suitably functionalized for cyclization) with an organolithium reagent leads only to alkene (equation 48). No cyclized material can be detected. On the other hand, treatment of the same substrate with \(\text{SmI}_2\) provides cyclized product and a small amount of reduced alcohol, with none of the alkene detected by gas chromatographic analysis (equation 49).

\[
\begin{align*}
\text{O} & \quad \text{Ph} \\
\text{OEt} & \\
\text{I} & \\
\text{Bu}^\text{Li} & \quad \text{THF, } -100^\circ \text{C} \\
\text{70\%} &
\end{align*}
\]

\[
\begin{align*}
\text{O} & \quad \text{Me} \\
\text{OEt} & \\
\text{I} & \\
\text{2SmI}_2 & \quad \text{THF, } -78^\circ \text{C to r.t.} \\
\text{45\%} & + \quad \text{17\%}
\end{align*}
\]
These results, together with the mechanistic studies by Kagan et al. 27 lend strong support for a radical cyclization process. Two general mechanisms are suggested (Scheme 3). In both, initial electron transfer from SmI₂ to the ketone carbonyl occurs, generating a ketyl. This chelated intermediate might suffer one of two fates. Dissociative electron transfer from the second equivalent of SmI₂ to the halide could occur (pathway A), providing a diradical species. Closure to the samarium aldolate and hydrolysis would result in formation of the observed product. Alternatively, the initially generated ketyl could undergo a dissociative intramolecular electron transfer to the halide (pathway B). Addition of the alkyl radical to the Sm³⁺-activated ketone carbonyl, 28 subsequent reduction of that intermediate with the second equivalent of SmI₂ and hydrolysis would again complete the process. Experiments have yet to be designed and carried out to distinguish between a process involving cyclization after single-electron transfer and two-electron cyclization processes. However, it is clear that samarium carbanions are not involved in these intramolecular processes.

Scheme 3

Allylic halide substrates in the β-keto ester series cyclize well, and convenient routes to five-, six- and seven-membered rings have been described (equations 50 and 51). 42 Unfortunately, the diastereoselectivity in these examples again is highly dependent on the substitution patterns about the dicarbonyl substrate.

\[
\begin{align*}
\text{Scheme 3}
\end{align*}
\]
Attempts to cyclize ethyl \((E)-2\)-acetyl-2-methyl-6-bromo-4-hexenoate have been unsuccessful, with ethyl 2-methyl-3-oxobutanoate isolated as the major product of the reaction (equation 52).\(^{42}\) Loss of butadiene, as required for this transformation, is clearly facilitated by the ability of a \(\beta\)-keto ester stabilized (radical or anion) intermediate to serve as an effective leaving group in the reaction. Thus, cyclization of \((E)-8\)-bromo-4-methyl-6-octen-3-one proceeds smoothly to provide the expected carbocycle in 91% isolated yield (equation 53).

\[
\begin{align*}
\text{Br} & \quad \overset{\text{OEt}}{\text{O}} & & & & \overset{\text{OEt}}{\text{O}} & & & & \text{Et} \quad \overset{\text{EtOH}}{\text{O}} \\
\text{Br} & \quad \overset{\text{O}}{\text{O}} & & & & \overset{\text{O}}{\text{O}} & & & & \text{Et} \quad \overset{\text{OH}}{\text{O}}
\end{align*}
\]

These examples again have some mechanistic implications in that they appear to rule out cyclization via \(S_N2\) displacement of the halide by a samarium ketyl. However, one cannot distinguish between a mechanism based on allylsamarium addition to the carbonyl versus an electron transfer mechanism as outlined for the alkyl halide substrates above. Both mechanisms allow for isomerization of the double bond (via 1,3-allylic transposition in the case of an allylmethylalkyl\(^{45}\) or configurational instability in an allylic radical\(^{46}\) in a diradical coupling mechanism) and also provide reasonable routes for generation of butadiene. Further mechanistic work is clearly required in order to provide a more detailed understanding of all of these intramolecular Barbier-type reactions.

1.9.2.3.2 Reformatsky-type reactions

In addition to serving as a useful replacement for lithium or magnesium in Barbier-type coupling reactions, SmI\(_2\) also provides advantages over zinc as a reductant in Reformatsky-type coupling reactions (equation 54).\(^{16c,27}\) The latter only performs well when an activated form of zinc is utilized, and thus the homogeneous conditions afforded by SmI\(_2\) provide the advantage of enhanced reactivity under milder conditions.

\[
\text{Br} \quad \overset{\text{CO}_2\text{Et}}{\text{CO}_2\text{Et}} & \quad \overset{\text{EtOH}}{\text{EtOH}} \\
\text{Br} & \quad \overset{\text{CO}_2\text{Et}}{\text{CO}_2\text{Et}} & & & & \overset{\text{CO}_2\text{Et}}{\text{CO}_2\text{Et}} & & & & \text{Et} \quad \overset{\text{OH}}{\text{O}}
\]

The procedure has been adapted to permit construction of medium- and large-ring lactones through an intramolecular process (equation 55).\(^{47}\) Eight- to fourteen-membered ring lactones can be synthesized under high dilution conditions in 75–92% yields, and the process appears much better than procedures involving use of Zn–Ag/Et\(_2\)AlCl.\(^{48}\) Diastereoselectivity in the SmI\(_2\)-mediated cyclizations utilizing \(\alpha\)-bromopropionate ester precursors was less than 2.5:1.

\[
\begin{align*}
\text{Br} & \quad \overset{\text{O}}{\text{O}} & & & & \overset{\text{O}}{\text{O}} & & & & \text{OAc} \\
\text{Br} & \quad \overset{\text{O}}{\text{O}} & & & & \overset{\text{O}}{\text{O}} & & & & \text{OAc}
\end{align*}
\]

Vedejs and Ahmad have used this SmI\(_2\)-promoted macrocyclization technique as a key step in the total synthesis of a cytochalasin (equation 56).\(^{49}\) In this reaction, the 11-membered ring product is isolated in
46% yield as a single diastereomer. Curiously, the zinc-promoted process provides a 1:1 mixture of diastereomers in 75% yield.

\[\text{SiMe}_3 \]

Reductive cyclizations of β-bromoacetoxy aldehydes and ketones promoted by SmI\(_2\) afford β-hydroxyvalerolactones with unprecedented degrees of 1,3-asymmetric induction (equation 57).\(^{50}\) Numerous attempts at utilizing zinc-mediated intramolecular Reformatsky reactions to access these lactones have failed. The successful development of the SmI\(_2\)-based methodology therefore provides perhaps the most convenient entry to this important class of molecules.\(^{50}\)

Yields in the SmI\(_2\)-promoted intramolecular Reformatsky reaction are typically higher for ketones than for aldehyde substrates, but in both series diastereoselectivity is virtually complete. It has been suggested that reaction of SmI\(_2\) with the β-bromoacetoxy initially generates a Sm\(^{3+}\) ester enolate, with cyclization taking place through a rigid cyclic transition structure enforced by chelation (Scheme 4).\(^{50}\)

In contrast to other reported methods of 1,3-asymmetric induction, the SmI\(_2\)-mediated intramolecular Reformatsky procedure permits strict control of stereochemistry even in diastereomeric pairs of substrates bearing α-substituents (equations 58 and 59).\(^{50}\) Although the diastereoselectivity is somewhat lower for the syn diastereomeric substrate, where the α-substituent would be axially disposed in the proposed transition structure leading to the product, 1,3-asymmetric induction is still predominant and overwhelms other effects to an impressive extent.

Only a few exceptions to this general pattern of diastereoselection have been observed.\(^{50,51}\) Some syn diastereomeric α-substituted β-bromoacetoxy aldehydes and ketones provide diastereomeric mixtures of products or the opposite diastereomeric product than is anticipated on the basis of the transition structure proposed in Scheme 4 (equation 60). Steric factors which preclude access to chair transition structures may be responsible for the change in the sense of diastereoselectivity in these examples.
Nonstabilized Carbanion Equivalents

Surprisingly, 1,3-asymmetric induction can be relayed from a tertiary acetoxy stereocenter (equation 61). The unprecedented degree of stereochemical control exhibited by this process appears to be general for aldehydes and ketones, although the scope of the reaction with regard to substituents at the β-position is limited.51

Seven-membered ring lactones can be accessed in excellent yields by the SmI\textsubscript{2}-mediated intramolecular Reformatsky reaction as well. Although several substitution patterns provide exceptional relative asymmetric induction in this process (equation 62), it is clear that high diastereoselectivity cannot be achieved for all substitution patterns in the formation of seven-membered ring lactones.52

1.9.2.3.3 Ketyl–alkene coupling reactions

The ability of SmI\textsubscript{2} to generate ketyls prompted its use for the reductive cross-coupling of ketones with alkenes. Both intermolecular and intramolecular processes of this type have been described.

Conjugated esters react with aldehydes and ketones in the presence of 2 equiv. of SmI\textsubscript{2} and a proton source, affording reasonable yields of butyrolactones (equation 63).53 The presence of HMPA dramatically enhances reactivity (and yields), permitting reactions to run to completion in 1 min as opposed to 3–6 h without this additive. The method complements electroreductive,34 photoreductive,55 and other metal-induced ketone–alkene cyclizations56 that have been developed. Use of unsaturated esters such as ethyl methacrylate and ethyl crotonate leads to diastereomeric mixtures of products in reactions with prochiral aldehydes and ketones.53c Conjugated nitriles do not fare as well as their unsaturated ester counterparts in these reactions. Yields of 17–20\% are reported for the nitrile substrates.53a In terms of the ketyl precursor, both aliphatic and aromatic ketones and aldehydes can be utilized,53a and even formaldehyde is effective to some degree.53b

The reaction is considered to proceed by a radical process.53c When the reaction is carried out with MeOD as the proton source, α-monodeuterolactone is generated. Two mechanisms can be envisioned which are consistent with this observation. The first involves coupling of a samarium ketyl with an allylic radical derived from single-electron reduction of the unsaturated carbonyl substrate. Protonation...
and cyclization to the lactone completes the process. A more likely mechanism involves simple ketyl addition to the conjugated ester. Subsequent reduction of the radical intermediate, protonation and cyclization would again provide the observed lactones. A third mechanism initially suggested involved reduction of the unsaturated ester by SmI\(_2\), generating a stable samarium \(\beta\)-metallo ester intermediate. Direct addition of this intermediate to a ketone or aldehyde would also provide an entry to the lactone (see Section 1.9.2.2). This latter mechanism seems unlikely, since addition of an aldehyde or ketone to a mixture of ethyl acrylate and SmI\(_2\) failed to produce a reasonable yield of lactone.

Bicyclic butyrolactones can be generated when intramolecular versions of the reaction are carried out (equation 64).\(^{57}\) The yields are improved by addition of HMPA, and reactions can be carried out under milder conditions. Addition of a catalytic amount of FeCb has little effect on the yields. In most cases, diastereoselectivities range from 2.5:1 to 4:1.

A much more highly diastereoselective process results when alkenic \(\beta\)-keto ester and \(\beta\)-ketoamide substrates can be utilized in the ketone–alkene reductive coupling process. Both electron deficient and unactivated alkenes can be utilized in the reaction (equations 65 and 66).\(^{58}\) In such examples, one can take advantage of chelation to control the relative stereochemistry about the developing hydroxy and carboxylate stereocenters. Favorable secondary orbital interactions between the developing methylene radical center and the alkyl group of the ketyl,\(^{54c,56a,59}\) \(^{54c,56a,59}\) and/or electrostatic interactions in the transition state account for stereochemical control at the third stereocenter.

Since 2 equiv. of SmI\(_2\) are required for the reaction, the reductive coupling process must be a two-electron process overall (Scheme 5).\(^{58}\) Cyclization appears to occur after transfer of a single electron, with Sm\(^{3+}\) controlling the stereochemistry at this stage by chelation with the Lewis basic ester carbonyl. Subsequent reduction to a transient carbanion, followed by immediate protonation, accounts for the observed products. Only if a transient anion is generated can one account for >90% deuterium incorporation at the methyl group when the reaction is performed in MeOD (equation 67).\(^{44}\)

There is an inherent competition between simple reduction of the ketone and the reductive cyclization process with unsaturated carbonyl substrates. Cyclization processes that are slower than that of the ketyl–alkene cyclization forming a five-membered ring, suffer from lower yields owing to this competition. For example, ketyl–alkyne coupling can also be achieved when mediated by SmI\(_2\), but yields are lower than those achieved with analogous keto–alkenes (equation 68). This might have been expected on the basis that radical additions to alkynes are slower than corresponding additions to alkenes.\(^{60}\) Similarly, the rate
Nonstabilized Carbanion Equivalents

An elegant tandem radical cyclization process promoted by SmI₂ has been developed as a key step in the synthesis of (±)-hypnophilin and the formal total synthesis of (±)-coriolin (equation 69). Cyclization in this case again occurs after transfer of a single electron, and in fact the entire process requires less than 2 equiv. of SmI₂. When cyclizations were quenched with D₂O, no deuterium was incorporated at the newly formed vinyl carbon. This implies that the alkenyl radical produced after tandem cyclization abstracts a hydrogen from the solvent faster than it is reduced to the anion by SmI₂. This and the work by Molander and Kenny described above are completely in line with observations of Inanaga et al. in work on the reduction of organic halides with SmI₂. Thus, alkyl halides are reduced to hydrocarbons by means of a transient anion (which can be trapped by D₂O) with SmI₂, whereas aryl (and presumably alkenyl) halides show no deuterium incorporation on reduction. With sp²-hybridized radicals, hydrogen abstraction from the THF solvent is thus faster than reduction by SmI₂ to the anion. Further studies in ketone–alkene reductive cyclization reactions are bound to lead to exciting new entries to highly complex carbocyclic ring systems.

1.9.2.3.4 Pinacolic coupling reactions

As expected with a reagent that is capable of generating ketals, intermolecular pinacolic coupling reactions can also be carried out with considerable efficiency using SmI₂. Treatment of aldehydes or
ketones with SmI₂ in the presence of a proton source such as methanol results in selective reduction to the corresponding alcohols, and the formation of pinacols is negligible. However, in the absence of a proton source, both aldehydes and ketones can be cleanly coupled in the presence of SmI₂ to generate pinacols (equation 70). The yields are excellent in nearly every case, and the method therefore competes effectively with other established procedures for this process. Unfortunately, roughly equimolar ratios of threo and erythro isomers are generated in these reactions. Aromatic aldehydes and ketones couple within a few seconds at room temperature in THF. Aliphatic aldehydes require a few hours under these conditions, and a day is needed for complete reaction of aliphatic ketones. Amines, nitriles, aryl halides and nitro groups are tolerated under these conditions. Samarium diiodide is thus superior to other reductants in terms of its functional group compatibility. Surprisingly, even carboxylic acids can also be incorporated into substrates with little decrease in the yields of pinacolic products. It is not clear why competitive reduction to the alcohols is not observed in this instance, since a proton source is provided by the acid.

\[
\begin{align*}
2 \text{O}_2\text{N-CHO} & \rightarrow 2\text{SmI}_2 \\
\text{THF, r.t., 0.5 min} & \rightarrow 95\% \\
\end{align*}
\]

Dicyclopentadienylsamarium also promotes intermolecular pinacolic coupling reactions with exceptional efficiency. Both benzaldehyde and acetophenone are reported to undergo coupling very rapidly at room temperature in the presence of this reductant. After hydrolysis, pinacols are isolated in virtually quantitative yields.

Samarium diiodide has also been utilized as a reductant to promote pinacolic coupling reactions mediated by low-valent titanium species (equation 71). Utilizing this protocol, high diastereoselectivity can be achieved, although the yields for this particular process were not reported.

\[
\begin{align*}
2 \text{PhCHO} & \rightarrow \text{Sml}_2, \text{Cp}_2\text{TiCl}_2 \\
\text{THF, -78 °C to r.t.} & \rightarrow 92\% + 8\%
\end{align*}
\]

Intramolecular pinacolic coupling reactions have also proven successful with SmI₂. Yields with simple diketones are relatively low. However, excellent yields and diastereoselectivities are achieved in intramolecular pinacolic coupling reactions of β-keto ester and β-ketoamide substrates (equation 72). A variety of substitution patterns can be tolerated in these reactions to generate five-membered carbocycles. Six-membered rings can also be generated by this process, but substantially lower yields and diastereoselectivities are observed (equation 73). Yields obtained for β-ketoamide substrates are also lower than those observed in the β-keto ester series.

\[
\begin{align*}
\text{O} & \rightarrow \text{Et} \text{OEt} \\
\text{H} & \rightarrow \text{H} \\
\text{Et} \text{OEt} & \rightarrow \text{2SmI}_2 \\
\text{THF, MeOH, -78 °C} & \rightarrow 82\%
\end{align*}
\]

\[
\begin{align*}
\text{O} & \rightarrow \text{Et} \text{OEt} \\
\text{H} & \rightarrow \text{H} \\
\text{Et} \text{OEt} & \rightarrow \text{2SmI}_2 \\
\text{THF, MeOH, -78 °C} & \rightarrow 47\%
\end{align*}
\]

Curiously, the relative stereochemistry between the carboxylate and the adjacent hydroxy group in the SmI₂-mediated intramolecular pinacolic coupling reaction is opposite to that observed in the intramolecular Barbier reactions and ketone-alkene reductive coupling reactions discussed previously (compare
Nonstabilized Carbanion Equivalents

From a synthetic point of view, this result is highly advantageous because it provides entry to the manifold of diastereomeric products. The results also have mechanistic implications. Unlike potential substrates for ketone-alkene reductive coupling reactions, precursors for the pinacolic coupling reaction contain two nearly equally reducible functional groups. This complicates any rational assessment of the stereochemical outcome of these reactions. Furthermore, several different mechanisms can be proposed for the intramolecular pinacolic coupling reaction. One scenario involves two-electron reduction followed by cyclization. After initial reduction of one of the carbonyl substituents to a ketyl, intermolecular reduction to generate a dianion could ensue. Subsequent nucleophilic attack by this dianion at the unreduced carbonyl and hydrolysis would provide the observed product. A mechanism of this type can be ruled out. Ketyl dianions are generally inaccessible, even under the most brutal reducing conditions. Reduction of a ketyl is highly endothermic, and certainly SmI_2 is not a strong enough reducing agent to generate such a species. Furthermore, a dianion intermediate would quickly become protonated under reaction conditions utilized for these reactions ($pK_a \text{BuOH} = 17$, $pK_a \text{MeOH} = 16$, $pK_a \text{carbonyl dianion} \approx 49-51$), resulting in large amounts of uncyclized reduction products.

The most feasible pathway to coupled products is intramolecular ketyl addition to the Sm^{3+}-coordinated ketone (see Scheme 6). Several examples of ketyl addition to Lewis acid activated carbonyls have been reported in the literature. Clerici and Porta have demonstrated in detailed experiments that intramolecular addition of ketals to carbonyls can be a rapid process. Generally, ketyl addition to carbonyls is a reversible reaction. However, reversibility can be greatly affected by Lewis acid chelation of the complex, and further reduction of the radical intermediate (8) by the second equivalent of SmI_2 would serve to make the process irreversible.

In the SmI_2-promoted pinacolic coupling, two different ketals can be generated initially. In either of these intermediates, chelation of the resulting Sm^{3+} ion with the carboxylate (carboxamide) moiety (4) and (6) might be of minimal consequence. That is, Lewis acid activation of the unreduced aldehyde or ketone (5) and (7) may be required for efficient cyclization. A frontier molecular orbital approach is useful in thinking about the effects of Lewis acid complexation on the rate of radical addition to activated carbonyl substrates versus their unactivated counterparts. Reetz has quantitatively measured the effect of Lewis acid complexation on the HOMO (π_{CO}) and LUMO (π^*_{CO}) of carbonyl substrates. Calculations indicate that the LUMO energy decreases by -50 kcal on coordination with BF$_3$. Thus, the electrophilicity of the carbonyl is greatly enhanced, making it more susceptible to nucleophilic radical addition. In the SmI_2-promoted pinacolic coupling reaction, the rate of ketyl addition may be substantially increased by complexation of Sm^{3+} to the ketone as in intermediates (5) and (7). If complexation is required for efficient cyclization, this would explain the cis-diol stereochemistry observed for these substrates, regardless of which carbonyl is first reduced to initiate the reductive cyclization process.

Dipolar repulsion between the carboxylate moiety and the developing diol centers in intermediates (5) and (7) would account for the (trans) relative stereochemistry between these stereocenters. Following cyclization, intermolecular reduction of the Sm^{3+}-chelated complex (8) by the second equivalent of SmI_2 and protonolysis by alcohol irreversibly drives the reaction to completion, generating the observed products.
Certainly another plausible mechanism must also be considered. After initial ketyl formation, a second intermolecular reduction could follow, generating a diketyl intermediate. Subsequent carbon–carbon bond formation and protonolysis would again provide the observed products. One cannot unambiguously distinguish between this mechanism and the ketyl addition mechanism. However, both cis- and trans-diols might be expected from a diketyl coupling reaction. Corey has investigated intramolecular pinacolic coupling reactions promoted by Ti²⁺ (which also lead to generation of cis-diols), and argues that a diketyl coupling mechanism is unlikely. Strong dipolar repulsion between the Ti³⁺-complexed ketyl would appear to favor generation of trans-diols. The same argument may apply in the SmI₂-mediated process; exclusive formation of cis-diols would not seem likely from coupling of a di-Sm³⁺-complexed diketyl. Furthermore, one might speculate that Lewis acid catalyzed intramolecular carbonyl addition (by the ketyl) may be faster than intermolecular reduction of a ketone to a ketyl by SmI₂.

In a useful extension of the methodology, highly functionalized nonracemic carbocycles can be synthesized by intramolecular pinacolic coupling reactions utilizing readily available oxazolidinone precursors (equation 74).

\[
\text{O} \quad \text{CHO} \quad \text{THF, Bu'OH} \quad 52\%
\]

Related to the intramolecular pinacolic coupling reactions in some respects is a ketone–nitrile reductive coupling process. This process also permits the construction of highly functionalized carbocycles, although the yields are somewhat reduced owing to the reluctance of nitriles to undergo such radical addition reactions (equation 75). Presumably, simple reduction of the ketone to the alcohol competes with the desired process.

\[
\text{O} \quad \text{Et} \quad \text{THF, Bu'OH} \quad 45\%
\]

1.9.2.3.5 Acyl anion and acyl radical chemistry

Lithium acyl anions, long sought as unique intermediates, have only recently been synthesized and utilized effectively in synthetic organic chemistry. These reactive organometallics are generated by reaction of organolithiums with carbon monoxide at extremely low temperatures. Samarium acyl anions can be prepared in a somewhat analogous fashion. Thus, when Bu'Br is added to Cp₂Sm while under an atmosphere of CO in THF at low temperature, a samarium acyl anionic complex is apparently generated (equation 76). Addition of an aldehyde to the reaction mixture at −20 °C, followed by hydrolysis, results in the formation of an α-ketol in modest yields.

\[
\text{Bu'Br} + \text{Cp₂Sm} + \text{CO} \rightarrow \text{But} \quad \text{SmCp₂} \quad \text{Bu'} \quad \text{n-C₆H₁₃} \quad \text{OH} \quad 42\%
\]

In the absence of the aldehyde, homocoupled pinacol and a compound resulting from a double carbonylation are isolated in low yields. Both products are consistent with initial formation of a samarium acyl anion.

In addition to the carbon monoxide insertion route, samarium acyl anions can also be prepared under reductive conditions by reaction of SmI₂ with acyl halides. In the absence of any other electrophiles, the acyl halides provide moderate yields of α-diketones (equation 77). The main by-product generated in these reactions is the α-ketol.
Mechanistic studies strongly suggest the intermediacy of a samarium acyl anion. For example, the phenylacetyl radical (PhCH₂CO⁻) is known to rapidly decarbonylate \((k = 5.2 \times 10^7 \text{ s}^{-1}) \), providing a benzyl radical which dimerizes to bibenzyl. However, addition of phenylacetyl chloride to a solution of SmI₂ in THF leads to a 75% yield of the expected diketone, and neither toluene nor bibenzyl is detected. Apparently, intermolecular reduction of this acyl radical to the corresponding anion proceeds at a rate which is greater than \(5.2 \times 10^7 \text{ s}^{-1} \).

The acylsamarium species has not been isolated or characterized spectroscopically. Its structure has tentatively been assigned as (9) or (10), analogous to that of Cp₂LuCOBu'. The latter compound has been prepared from Cp₂LuBu' and CO. Samarium acyl anions can be trapped by electrophiles other than acid halides. For example, addition of a mixture of a carboxylic acid chloride and an aldehyde or ketone to a solution of SmI₂ in THF results in the synthesis of \(\alpha \)-hydroxy ketones (equations 78 and 79). Intramolecular versions of the reaction have also been performed, although the scope of the reaction is limited owing to the difficulty in obtaining suitable substrates for the reaction (equation 80).

Samarium acyl anions can be trapped by electrophiles other than acid halides. For example, addition of a mixture of a carboxylic acid chloride and an aldehyde or ketone to a solution of SmI₂ in THF results in the synthesis of \(\alpha \)-hydroxy ketones (equations 78 and 79). Intramolecular versions of the reaction have also been performed, although the scope of the reaction is limited owing to the difficulty in obtaining suitable substrates for the reaction (equation 80).

Intramolecular trapping studies have verified the intermediacy of acyl radicals in the conversion of carboxylic acid chlorides to samarium acyl anions by SmI₂. Treatment of 2-allyloxybenzoyl chlorides with SmI₂ resulted in a very rapid reaction, from which cyclopropanol products could be isolated in yields of up to 60% (equation 81). Apparently, initial formation of the acyl radical was followed by rapid radical cyclization. The \(\beta \)-keto radical generated by this process undergoes cyclization by a radical or anionic process, affording the observed cyclopropanols (Section 1.9.2.3.1).

1.9.2.3.6 Miscellaneous

A new method for the masked formylation of aldehydes and ketones has been developed which relies on the ability of SmI₂ to generate phenyl radicals from iodobenzene. As pointed out previously, aryl
halides do not undergo Barbier-type coupling reactions with ketones in the presence of SmI$_2$. Instead, THF adducts of the carbonyl compounds are obtained (equation 21). When 1,3-dioxolane is utilized in place of THF, the initially formed phenyl radical can abstract a hydrogen from the dioxolane. The resulting dioxolanyl radical can couple to the carbonyl, generating the observed products (Scheme 7). Both aldehydes and ketones can be utilized in the reaction, with yields ranging from 73-77% for five different substrates.

$$\begin{align*}
\text{SmI}_2 + \text{PhI} & \quad \text{MeCN, HMPA} \\
& \quad \text{<5 min} \\
\text{Ph}^+ + \text{O}_\circ & \quad \longrightarrow \quad \text{PhH} + \text{O}_\circ
\end{align*}$$

Scheme 7

Martin et al. have described the reductive cyclization of ω-unsaturated α-amino radicals mediated by SmI$_2$. Reduction of ω-unsaturated iminium salts by SmI$_2$ in the presence of camphorsulfonic acid generates the ω-unsaturated α-amino radicals, which cyclize to provide good yields of nitrogen heterocycles (equation 82). The process is restricted to the formation of five-membered nitrogen heterocycles, and increased steric bulk adjacent to the radical center was also found to inhibit cyclization. As expected, the presence of an activating group on the acceptor double bond (e.g. an aryl substituent) increases the yield of the cyclization. The process could be carried out electrochemically as well as by utilizing cobalt(I) reductants, but the relative strengths and weaknesses of these various approaches has yet to be fully assessed.

$$\begin{align*}
\text{R}^+ & \quad \text{H} \quad \text{H} (\text{R}') \quad \text{H}_\text{O} \\
\text{O}_\circ & \quad \text{H}_\text{O} \\
\text{Sml}_2 & \quad \text{H}_\text{O}
\end{align*}$$

Scheme 7

1.9.3 YTTERBIUM REAGENTS

Ytterbium reagents have certainly not attained the status achieved by the corresponding samarium reagents in terms of their utility in selective organic synthesis. Nevertheless, there are indications that ytterbium reagents, too, have the potential to serve as selective nucleophiles in C—X π-bond addition reactions, and eventually will take their place among the other lanthanide reagents with a unique role in organic synthesis. The similarity between samarium and ytterbium reagents in many cases is quite striking. As a consequence, the organization of this section mirrors that of the samarium reagents above, and many resemblances between the two classes of reagents will become apparent.
1.9.3.1 Organoytterbium(III) Reagents

Remarkably little chemistry of organoytterbium(III) reagents has been explored as it pertains to selective organic synthesis. These reagents do show promise as useful organic nucleophiles, however. Reaction of 4-t-butylcyclohexanone with Bu"Li-YbCl$_3$ provides a nearly quantitative yield of the expected carbonyl addition product (equation 83). Unfortunately, no mention is made of the diastereoselectivity of this process. Although it might be anticipated that organoytterbium(III) reagents, like their cerium and samarium counterparts, will undergo clean carbonyl addition to highly enolizable ketones, this point has apparently not been addressed.

\[
\text{Bu}^t\text{Li}-\text{YbCl}_3 + \begin{array}{c}
\text{O} \\
\text{Bu}^t
\end{array} \xrightarrow{\text{THF}} \begin{array}{c}
\text{Bu}^t\text{YbCl} \\
\text{Bu}^t
\end{array} \quad (83)
\]

1.9.3.2 Organoytterbium(II) Reagents

The accessibility of a stable +2 oxidation state for ytterbium leads to the possibility of Grignard-type reagents and chemistry. Indeed, both the methods of preparation and reactions of organoytterbiums reported to date closely mimic those of the corresponding Grignard reagents. In spite of rather significant study, these organoytterbium reagents have yet to really assume a special role in organic synthesis. Nevertheless, some unique reactivity patterns have been observed, and with further systematic study one can expect more original reaction manifolds to emerge.

Organoytterbium(II) halides are most conveniently prepared by oxidative metalation of organic iodides with ytterbium metal (equation 84). Since an induction period is often noticed in such reactions, activation of the metal with a trace amount of CH$_2$I$_2$ can be utilized to facilitate this process.

\[
\text{EtI} + \text{Yb} \xrightarrow{\text{THF}} \text{EtYbI} \quad (84)
\]

Compounds prepared in this fashion have been determined to consist largely of 'RYbI' stoichiometries, although the possible existence of Schlenk-type equilibria has never been examined. Ytterbium to iodine ratios determined by elemental analysis, the measured magnetic susceptibilities, and reactivity patterns of these reagents are all consistent with this formulation. From magnetic susceptibilities, the calculated percentages of 'RYbI' generated in solution by this procedure were determined to range from 83–93%, depending on the structure of the organic iodide substrate. This is drastically different from the situation involving samarium reagents discussed in Section 1.9.2.2, in which significant amounts of Sm$^{3+}$ species were also generated. The attenuated reductive capabilities of Yb$^{2+}$ species accounts for the increased selectivity in generation of the organoytterbium(II) reagents.

Oxidative-reductive transmetalation of ytterbium metal with diorganomercury compounds has been utilized as an entry to dialkynyl- and polyfluorinated diaryl-ytterbiums (equations 85 and 86). The dialkynyl ytterbiums are indefinitely stable in an inert atmosphere at room temperature. On the other hand, the polyfluorinated diaryl ytterbiums exhibit variable stability. Isolated yields are often low owing to thermal decomposition of these organometallics. However, most can be generated in nearly quantitative yields by this procedure and simply characterized in situ.

\[
\text{Ph} = \text{Hg} = \text{Ph} + \text{Yb} \xrightarrow{\text{THF}} \text{Ph} = \text{Yb} = \text{Ph} + \text{Hg} \quad (85)
\]

\[
(o\text{-HC}_6\text{F}_4)_2\text{Hg} + \text{Yb} \xrightarrow{\text{THF}} (o\text{-HC}_6\text{F}_4)_2\text{Yb} + \text{Hg} \quad (86)
\]
Metal–hydrogen exchange processes have also been exploited to generate dialkynylytterbiums (equation 87). Clearly, this procedure is of much less synthetic value than the oxidative–reductive transmetalation method described above. Of perhaps greater synthetic utility is the metal–hydrogen exchange reaction of MeYbI with other carbon acids. For example, phenylacetylene and fluorene both react readily to generate reasonable yields of the corresponding organoytterbium iodides (equations 88 and 89). Triphenylmethane and diphenylmethane do not react under these conditions. Incidentally, methyl Grignard reagents provide far lower yields of metalated products than organoytterbiums under comparable reaction conditions.

Useful applications of organoytterbium reagents to organic synthesis pale in comparison to those of organocerium and organosamarium reagents. Most reactivity patterns of organoytterbiums closely mimic those of organomagnesium and organolithium reagents. Carbonation reactions can be carried out on organoytterbiums, but yields are modest. Alkynes can be converted to a one-carbon homologated carboxylic acid in about 50% overall yield (equation 90). Carbonation of bis(pentafluorophenyl)ytterbium generates the expected carboxylic acid in 50% yield, along with nearly 20% of 2,3,4,5-tetrafluorobenzoic acid. It is proposed that the latter is generated by an ortho oxidative metatation reaction which is triggered by the initially formed ytterbium(II) carboxylate (equation 91).

Organoytterbium(II) reagents react with aldehydes and ketones to provide modest yields of the corresponding alcohols (equation 92). Significant quantities of pinacol products are generated when diorganoytterbiums are reacted with aromatic ketones, presumably as a result of electron transfer from the ytterbium(II) organometallic. Although principally carbanion transfer reagents, it is clear that organoytterbium(II) reagents can also serve as effective reductants.

Organoytterbium(II) halides provide higher 1,2-selectivity in reactions with α,β-unsaturated aldehydes and ketones than their Grignard counterparts, although yields are sometimes low (equation 93).

More surprising is the attenuated reactivity of organoytterbium reagents for ketones, especially when compared to carboxylic acid esters. Competitive reaction of phenyl ytterbium iodide with a 1:1 mixture of
methyl benzoate and acetophenone results in the formation of 34\% benzophenone and only 17\% 1,1-di-
diphenylethanol.\(^9\) Unfortunately, no account was made of the remainder of the material. However, these results imply that organoytterbium reagents are more reactive towards esters than ketones. The attenu-
ated reactivity towards ketones has been exploited in the development of a selective ketone synthesis
from carboxylic acid derivatives (equation 94).\(^8^4\) Iron trichloride proved to be an effective catalyst for
this reaction, providing higher selectivity than reactions utilizing copper(I) salts or with the organoytter-
bium reagent alone. Unfortunately, yields reported are too low to be of much value in synthesis.

Phenylytterbium(II) iodide has also been demonstrated to react selectively with \(N,N\)-dimethylbenz-
amide, affording a 60\% yield of benzophenone (equation 95).\(^1^4^a\) Under comparable conditions, the corre-
sponding Grignard reagent provided benzophenone in only 20\% yield.

\[
\begin{align*}
\text{PhYbI} + \text{PhCl} & \xrightarrow{\text{FeCl}_3, \text{THF}, -20 ^\circ\text{C}} \text{PhCl} + \text{PhOH} \\
& \quad \text{ThF, 65 \(^\circ\text{C}, 2\ h\}} \\
& \quad 60\% \\
\end{align*}
\]

Nitriles do not undergo efficient reactions with organoytterbium reagents.\(^9\) However, isocyanates
are reported to provide good yields of the corresponding amides (equation 96).\(^1^3\)

\[
\begin{align*}
\text{PhYbI} + \text{PhNCO} & \xrightarrow{\text{THF, 65 \(^\circ\text{C}\), 2 h}} \text{PhHN} \\
& \quad \text{Ph} \\
& \quad 52\% \\
\end{align*}
\]

1.9.3.3 Barbier-type Reactions Promoted by Ytterbium Diiodide

Although the application of SmI\(_2\) as a reductant and reductive coupling reagent has already had a
major impact on selective organic synthesis, utilization of the corresponding ytterbium reagents has
lagged behind. There are several important reasons for this. First, although several rapid and convenient
syntheses of SmI\(_2\) have been reported, preparation of YbBr\(_2\) by reaction of ytterbium with 1,2-dibro-
moethane requires a reaction time of over 2 d. In addition, although SmI\(_2\) is relatively soluble in solvents
like THF (0.1 M), both YbI\(_2\) and YbBr\(_2\) have limiting solubilities of \(<0.04\ M\) in the same solvent.\(^1^6^0,8^5\)
Finally, the redox potential of ytterbium(II) species is borderline for the types of transformations that are
of interest to synthetic organic chemists. Nevertheless, some transformations have been reported which
nicely complement those accomplished by SmI\(_2\).

Intermolecular Barbier-type reactions are reportedly not possible when YbI\(_2\) is utilized as the reduc-
tant.\(^1^6^e\) However, intramolecular versions of the reaction proceed smoothly.\(^3^6\) Both five- and six-mem-
bered rings can be generated in this process, and in some cases the observed diastereoselectivities exceed
those achieved with SmI\(_2\) (equation 97). Unfortunately, diastereoselectivity is not always high nor pre-
dictable, and thus mixtures of cis and trans bicyclic alcohols are usually generated.
Other types of reactions that so successfully employ SmI₂ as a reductant have yet to be attempted utilizing YbI₂. As a milder reductant that might also provide some advantages in terms of diastereoselectivity over SmI₂, YbI₂ and other ytterbium(II) reagents may have a bright future in synthetic organic chemistry.

1.9.3.4 Miscellaneous

Ytterbium metal has been found to promote cross-coupling reactions between diaryl ketones and a variety of C—X σ-bond electrophiles. The reactions reportedly occur by nucleophilic addition of an ytterbium diaryl ketone dianion to the electrophiles. The net result of these transformations is that the diaryl ketones have been converted by the ytterbium from an electrophilic species to a nucleophilic diarylcarbinol anion equivalent. Although this methodology probably will not be a general one from the point of view of the ketone (alkyl ketone dianions are, in general, energetically inaccessible), the procedure does have synthetic utility when nucleophilic incorporation of diarylcarbinols is desired.

The earliest studies on this reaction began with an attempt to generate simple symmetrical pinacols. Reaction of 1 equiv. of ytterbium metal with 2 equiv. of a diaryl ketone in THF/HMPA provided excellent yields of the corresponding symmetrical pinacols. Interestingly, when equimolar quantities of ytterbium metal and benzophenone were employed, the sole product isolated after aqueous work-up was benzhydrol. When D₂O was utilized to quench this reaction mixture, C-deuterated benzhydrol was formed. These latter results indicated that a discrete ketone dianionic intermediate was generated in the reaction between ytterbium metal and diaryl ketones.

Spectral studies lend support to the existence of a discrete organoytterbium species. IR spectra taken of reaction mixtures provide evidence for a three-membered oxametallacyclic structure incorporating a divalent ytterbium. Of course, the precise nature of this intermediate is still unknown; nevertheless, available evidence does point to a unique type of intermediate which may prove useful in further synthetic transformations.

Indeed, it has been found that unsymmetrical pinacols can be generated in surprisingly high yields by treating 1 equiv. of a diaryl ketone with 1 equiv. of ytterbium metal, and subsequently quenching the resultant reaction mixture with a variety of aldehydes and ketones. Yields in most cases are high, and this particular transformation represents one of the very few ways in which such a process can be accomplished efficiently. Reaction of benzophenone/ytterbium with 2-cyclohexen-1-one provides mixtures of 1,2- and 1,4-addition products, together with some benzhydrol.

Recognition that a discrete intermediate could be trapped by aldehydes and ketones led to further studies involving a variety of electrophiles. For example, CO₂ was found to react effectively with the
ytterbium intermediate, providing good yields of α-hydroxycarboxylic acids (equation 101). Carbonylation did not take place at room temperature under ambient pressures of CO, and carbon disulfide provided a mixture of unidentified products.

\[
\text{Ph} = \text{Yb} \quad \text{THF} \quad \text{CO}_2 \quad \text{PhCO}_2\text{H} \\
\text{Ph} + \text{Yb} \quad \text{THF} \quad \text{CO}_2 \quad \text{1 atm} \quad 61\%
\]

Carboxylic acid derivatives such as esters and amides undergo nucleophilic acyl substitution reactions with the ketone dianion derived from benzophenone, providing modest yields of the corresponding carbonyl products (equations 102 and 103).86 Benzhydrol is a significant by-product in these reactions.

\[
\text{Ph} = \text{Yb} \quad \text{THF} \quad \text{MeCO}_2\text{Et} \quad \text{r.t., 2 h} \\
\text{Ph} + \text{Yb} \quad \text{THF} \quad \text{HCONMe}_2 \quad \text{r.t., 2 h} \\
\]

Isocyanates also react with the ytterbium ketone dianion, providing the expected amides in good yields (equation 104).86

\[
\text{Ph} = \text{Yb} \quad \text{THF} \quad \text{PhCO}_2\text{NHPh} \quad \text{r.t., 30 min} \\
\text{Ph} + \text{Yb} \quad \text{THF} \quad \text{PhCO}_2\text{NHPh} \quad \text{r.t., 4 h} \\
\text{H}_2\text{O}^+ \quad \text{ii. H}_2\text{O}^+ \\
\]

Finally, nitriles undergo addition with several different diaryl ketone dianions, affording α-hydroxy ketones after hydrolysis of the reaction mixture (equation 105).86 In some cases, deoxygenated ketones appear as minor by-products of the reaction.

1.9.4 REFERENCES

Nonstabilized Carbanion Equivalents

1.10
Lewis Acid Carbonyl Complexation

SOROOSH SHAMBAYATI and STUART L. SCHREIBER
Harvard University, Cambridge, MA, USA

1.10.1 INTRODUCTION
Over 100 years have passed since the appearance of the first report of the formation of crystalline complexes between boron trifluoride and aromatic aldehydes. Since then, Lewis acids have found a prominent role in organic synthesis through their action on carbonyl-containing compounds. They have been used as additives or catalysts in carbonyl addition processes, and in many cases they constitute the essential component of basic carbon–carbon bond forming reactions. Most recently there has been impressive development in the area of asymmetric catalysis by Lewis acids. New chiral reagents possessing near complete asymmetric control are being reported at an increasingly rapid rate. The true origins of the ‘Lewis acid effect’, however, are still poorly understood. Three examples from simple nucleophilic additions to 4-t-butylcyclohexanone (1) are illustrative.

Addition of MeLi to (1) at −78 °C in diethyl ether requires 60 min to reach completion and affords a 65:35 mixture of axial:equatorial alcohols (Figure 1). In the presence of LiClO4, however, the same addition is complete within 5 s and proceeds with higher stereoselectivity to give predominantly the axial alcohol in a 92:8 ratio. Precomplexation of the ketone with the bulky Lewis acid, methylaluminum(2,6-di-t-butyl-4-methylphenoxide) (MAD), on the other hand, affords the equatorial alcohol almost exclusively.

Rationalization, let alone a priori prediction, of these results based on common structural models is not a trivial issue. In order to address such problems one needs a better understanding of the energetics and conformational properties of Lewis acid carbonyl complexes. The aim of this chapter is to survey the lit-
erature that has helped to elucidate the structural consequences of complexation between Lewis acids and a carbonyl moiety. To facilitate the focus and analysis of the large body of available data on this subject, the structural questions of prime interest will be summarized in the following section. The ensuing sections will then draw upon pertinent data in an attempt to explain each particular issue.

1.10.2 STRUCTURAL ISSUES

1.10.2.1 Effects on Rate and Reactivity

Perhaps the best known effect of Lewis acids on the reaction of carbonyl-containing compounds concerns their ability to enhance reactivity. For example, the AlCl₃-catalyzed Diels–Alder reaction of anthracene and maleic anhydride in dichloromethane at room temperature is complete in 90 s, while the uncatalyzed reaction has been estimated to require 4800 h for 95% completion. Such dramatic rate enhancements in Lewis acid promoted reactions are generally rationalized in terms of an increase in the polar character of the carbonyl group. This suggestion has direct implications for the structure of Lewis acid carbonyl complexes. Possible consequences include a longer C=O bond, increased dipole moment and an influence on the conformational preferences of groups proximal to the carbonyl ligand. An examination of the theoretical and experimental results that pertain to these issues may, in turn, shed some light on the origins of rate enhancement.

1.10.2.2 σ- versus π-(η²)-Bonding

In principle, a carbonyl ligand can coordinate to a Lewis acidic metal center either through its lone pair electrons to form a σ-bond or through the carbonyl π-system to afford η²-metallooxirane complexes (Figure 2). A preference for one mode of bonding over the other will not only depend on the nature of the Lewis acid but also on the steric and electronic requirements of the carbonyl ligand. Moreover, different modes of bonding impose different constraints upon the conformation and reactivity of the ligand. For example, η²-bonding necessarily blocks one face of the carbonyl ligand, thereby directing the approach of a reactive reagent to the opposite face. However, a simple rule of face selectivity is not available for the σ-bound carbonyl complex. On the other hand, the conformational biases of substituents syn and anti to the metal (Figure 2; R¹ and R²) in these systems would be quite different than for η²-complexes, where R¹ and R² occupy symmetric volumes of space with respect to an achiral Lewis acid. Furthermore, one might expect a more polar and perhaps more reactive C=O bond for σ-complexes. Therefore, it would be helpful to know if any preference for Lewis acid σ- or π-(η²)-coordination and syn or anti to particular substituents, exists.
1.10.2.3 Conformational Issues

1.10.2.3.1 Conjugated carbonyls: s-cis versus s-trans

Although there are many conformational issues which can influence the stereochemical outcome of the reaction of carbonyls, the central question for most simple α,β-unsaturated carbonyl systems is whether the reactive intermediate adopts an s-cis or s-trans conformation (Figure 3). Since the s-cis and s-trans arrangements expose different faces of an α,β-unsaturated moiety, this issue becomes particularly important in enantioselective additions to these systems. The question can now be posed as to how coordination to a Lewis acid may affect the equilibrium between the s-cis and s-trans arrangements.

\[\text{s-trans} \rightleftharpoons ? \text{s-cis} \]

Figure 3 s-cis versus s-trans

1.10.2.3.2 Nonconjugated carbonyls

Despite the great deal of attention devoted to nucleophilic additions to α-chiral carbonyls, the source of stereoselectivity in these reactions (predicted by Cram’s rules of asymmetric induction) remains largely unresolved. Neither direct structural studies nor correlation of reactant and product stereochemistries have yielded any conclusive support for a single comprehensive model. Similarly, the effect of Lewis acids on these systems is only understood at the level of chelation-controlled additions (vide infra).

Figure 4 Postulated effect of Lewis acids (LA) on the trajectory of nucleophilic attack
It has been suggested that Lewis acids could affect the trajectory of nucleophilic additions to carbonyl electrophiles (Figure 4). For α-chiral carbonyls this change may translate to a more acute angle of attack, and thereby closer proximity of the nucleophile and the center of chirality. This hypothesis is supported by MNDO calculations of the H+/-pivalic aldehyde system, and also by an investigation of nucleophilic additions to chiral thionium ions. Higher levels of diastereoselectivity are observed with larger aryl substituents on the thionium species (Figure 5). Bulky aryl groups can thus be envisioned as playing a role similar to that of a coordinating Lewis acid and increasing the stereoselectivity by reorientation of the trajectory of attack. Still, this proposal does not address the question of the influence of Lewis acids on the inherent conformational preferences of a carbonyl. A structural model of this effect would undoubtedly be of great value for the design of stereospecific reactions of this type, and it may also provide some insight into the origins of Cram selectivity itself.

![Figure 5](image) Diastereoselectivity in nucleophilic additions to chiral thionium ions

1.10.3 THEORETICAL STUDIES

Most of the early theoretical studies of Lewis acid carbonyl interactions focused on alkali metal cations such as Li+ and Na+, partly due to the significance of such interactions in biological systems and partly due to computational limitations. In 1973 some of the first calculations on the formaldehyde/Li+ system were performed. Using both ab initio (SCF-LCAO-MO) and semiempirical (CNDO/2) methods the researchers found that in the ground state the complex possesses C2v symmetry in which Li+ lies on the axis of the carbonyl C=O bond with an O-Li distance of 1.77 Å. Interestingly, the energy of interaction showed a strong preference for the linear geometry of C=O-Li, whereas little out of plane angular dependence was observed (Figure 6). A second study of the same complex, using larger basis sets and a full configuration interaction (CI) analysis, later confirmed these results (linear C=O-Li, C2v symmetry, d[O-Li] = 1.70 Å) and also indicated that the C=O bond length of the complex (1.23 Å) is close to that of isolated formaldehyde at equilibrium. Thus it was argued that structural relaxation of the carbonyl group was not important. However, a Mulliken population analysis revealed a pronounced polarization of the formaldehyde electron density towards oxygen, indicating that complex stabilization is achieved mainly through electrostatic ion-dipole interactions with little covalent character for the O-Li bond.

![Figure 6](image) Relative ease of distortions for the Li+/formaldehyde complex (based on ab initio results of ref. 10)

In 1979 the results of ab initio calculations at the 4-31G and 6-31G level on the same complex as well as a formaldehyde/H+ complex were reported. Structural and energetic comparisons of the two complexes showed that while Li+ prefers a linear geometry for electrostatic ion–dipole bonding, the proton coordinates to the carbonyl through a largely covalent bond, resulting in a bent structure (C2v symmetry)
for the H₂CO—H⁺ complex with a CO—H angle of 124.5°. The energy of the Li⁺/formaldehyde complex was then compared to the energy of Li⁺ complexes of urea, acetone, carbonyl fluoride and carbonic acid. Based on these calculations the order of Li⁺ affinities of Lewis bases with the general formula R₂C=O could be assigned as R = NH₂ > Me > OH > H > F, consistent with intuitive notions of electron-donating or electron-withdrawing abilities of the substituents R.

Complexation of acetone with a sodium cation was investigated through a combination of ab initio and semiempirical calculations. The investigators concluded that, similar to the lithium complexes, Na⁺/acetone adopts a linear geometry, with Na 1.22 Å from the carbonyl oxygen. These results are in full accord with an extensive ab initio study of proton, lithium and sodium affinities of first and second row bases. Both groups, however, also pointed out deficiencies in their theoretical methods which could account for some of the discrepancies with experimentally determined Lewis acid—base bonding energies.

The geometries found for the complexes of formaldehyde with first and second row cations in theoretical studies were analyzed in terms of molecular orbitals. Based on the results of photoelectron spectroscopy, it was argued that the carbonyl group contains two nonequivalent lone pairs; an sp-hybridized orbital contains one pair of electrons along the M axis and a second, higher energy lone pair in a p-like orbital lies perpendicular to the C=O axis (Figure 7).

When the Lewis acid interacts with only one lone pair of the carbonyl a bent geometry is observed, since the second lone pair can be stabilized by acquiring more s-character in an sp²-like orbital (Figure 7b). The linear geometry is favored for Lewis acids with a second vacant orbital that can accommodate additional electron donation from the second p lone pair (Figure 7c). The geometries of a number of Lewis acid/formaldehyde complexes were thus rationalized and it was also noted that these geometric preferences may be weak, since in some cases strong Lewis acid carbonyl interactions were found in structures distorted by as much as 30° from their optimum (bent or linear) geometries.

It has been noted that although the linear geometry is consistently predicted for cationic Lewis acid carbonyl complexes in ab initio calculations, extrapolation of these results to neutral Lewis acid complexes may not be justified. Semiempirical MNDO calculations predicted the bent conformation as the lowest energy structure for neutral Lewis acidic derivatives of beryllium, boron and aluminum complexed with trans-2,3-dimethylcyclopropanone, whereas linear structures were predicted for the cationic complexes of beryllium and aluminum (Table 1).

<table>
<thead>
<tr>
<th>M</th>
<th>Angle (°)</th>
<th>Bent ΔH (kcal mol⁻¹)</th>
<th>Angle (°)</th>
<th>Linear ΔH (kcal mol⁻¹)</th>
<th>ΔΔH</th>
</tr>
</thead>
<tbody>
<tr>
<td>BeH⁺</td>
<td>150.0°</td>
<td>138.7</td>
<td>180.0°</td>
<td>137.1</td>
<td>1.6</td>
</tr>
<tr>
<td>BeH₂</td>
<td>149.8°</td>
<td>-27.04</td>
<td>179.9°</td>
<td>-26.63</td>
<td>0.41</td>
</tr>
<tr>
<td>AlMe₂⁺</td>
<td>136.0°</td>
<td>111.7</td>
<td>179.5°</td>
<td>108.8</td>
<td>2.9</td>
</tr>
<tr>
<td>AlMe₃</td>
<td>138.8°</td>
<td>-52.24</td>
<td>180.0°</td>
<td>-49.49</td>
<td>2.75</td>
</tr>
<tr>
<td>BF₂⁺</td>
<td>133.5°</td>
<td>-11.27</td>
<td>180.0°</td>
<td>-6.85</td>
<td>4.42</td>
</tr>
<tr>
<td>BF₃</td>
<td>133.4°</td>
<td>-270.8</td>
<td>180.0°</td>
<td>-265.6</td>
<td>5.2</td>
</tr>
</tbody>
</table>

In a recent article the question of the effect of Lewis acids on the conformational preferences of α,β-unsaturated carbonyl systems was addressed. Calculations were first conducted on three uncomplexed
Nonstabilized Carbanion Equivalents

α,β-unsaturated carbonyl compounds and the relative energies of the s-cis and s-trans conformations were compared. As can be seen from Table 2,20 while the s-trans conformation is favored for uncomplexed acrolein, both acrylic acid and methyl acrylate prefer the s-cis conformation, although this preference is not strong.

Table 2 Relative Ground State Energies of α,β-Unsaturated Carbonyls

<table>
<thead>
<tr>
<th>Entry</th>
<th>X</th>
<th>Relative energies (kcal mol⁻¹)</th>
<th>Basis set</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>s-trans</td>
<td>s-cis</td>
</tr>
<tr>
<td>1</td>
<td>−H</td>
<td>0.0</td>
<td>1.8</td>
</tr>
<tr>
<td>2</td>
<td>−OH</td>
<td>0.6</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>−OMe</td>
<td>0.7</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Values are for the (Z)-conformations of acrylic acid and methyl acrylate. Barriers to rotation: calculated relative energies for an optimized structure with the τ(C=O=C=O) angle constrained to 90°. Experimentally determined values given in parentheses when available.

Next, complexation with various Lewis acids was studied extensively. Protonation of acrolein, for example, affords a bent complex in which both the C=O and the C=C double bonds are longer by 0.03–0.07 Å. The C=C single bond is comparably (0.06 Å) shorter than in uncomplexed acrolein. Although protonation anti to the C=C bond seems to have little effect on the equilibrium between s-cis and s-trans (compare entries 1 from Tables 2 and 3), syn protonation seems to strongly disfavor the s-cis conformation, presumably due to steric interactions (Table 3; entry 2). Anti coordination is slightly favored for the s-trans conformation but strongly preferred for the s-cis complex. Protonation of acrylic acid and methyl acrylate is more complicated since in addition to the s-cis/s-trans and syn/anti issues, (E)/(Z) conformational preferences of the acid or ester should also be considered. It was found that the (E)/(Z) equilibrium is not strongly influenced by Lewis acid coordination. Here the more stable (Z)-conformer will be assumed in order to focus on the two other issues. Thus, for both protonated (Z)-acrylic acid and protonated (Z)-methyl acrylate the syn, s-trans structure has the lowest energy (Table 3).20 As compared to acrolein, the syn–anti preference is now reversed but the greater s-trans stability is maintained.

Table 3 Conformational Preferences of Protonated α,β-Unsaturated Carbonyls

<table>
<thead>
<tr>
<th>Entry</th>
<th>X</th>
<th>Relative energies (kcal mol⁻¹)</th>
<th>Basis set</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>s-trans</td>
<td>α</td>
</tr>
<tr>
<td>1</td>
<td>−H</td>
<td>0.0</td>
<td>121°</td>
</tr>
<tr>
<td>2</td>
<td>−H</td>
<td>0.4</td>
<td>239°</td>
</tr>
<tr>
<td>3</td>
<td>−OH</td>
<td>0.0</td>
<td>239°</td>
</tr>
<tr>
<td>4</td>
<td>−OMe</td>
<td>5.6</td>
<td>123°</td>
</tr>
</tbody>
</table>

Terms syn and anti refer to the position of the Lewis acid relative to the C=C double bond. Calculated relative energies for the (Z) conformers.

It was noted that a fourth low energy complex for methyl acrylate is structure (7), which is conceptually related to (Z)-acrylic acid by coordination of the Lewis acid Me⁺ syn to the double bond.

At this point, a simple steric argument seems capable of rationalizing these results. Thus, the problem can be viewed in the following manner: protonation occurs on the least-hindered lone pair regardless of
the inherent \(s-cis/s-trans\) preference of the substrate but always with retention of a (Z)-acid or -ester conformer; \(\text{syn}\) to \(H\) for acrolein and \(\text{syn}\) to the double bond for (Z)-methyl acrylate. In the latter case (\(\text{syn}\) to \(\text{C=C}\)) steric interactions between the Lewis acid and the double bond locks the \(s-trans\) conformation, yielding the \((Z)-\text{syn}-s-trans\) structure. All other planar conformations suffer from one or more severe steric interactions, which lead to higher energy structures. Such a ‘gearing effect’ has been proposed before for other Lewis acid carbonyl complexes\(^{110}\) and will be discussed further in light of some experimental results in the ensuing sections.

Two other Lewis acids were also included in these studies. Lithium cation coordination with acrolein gave a linear, \(s-trans\) complex as the most stable structure (Table 4).\(^{20}\) An increase of the \(s-cis-s-trans\) gap by 1.4 kcal mol\(^{-1}\) is now difficult to rationalize on steric grounds since the \(\text{C=O-Li}\) bond is nearly linear. The researchers have suggested that this effect is due to an increase in the electron density on the carbonyl oxygen upon complexation, which in turn would increase ‘nonbonded electron pair–hydrogen repulsion of the alkene termini in the \(s-cis\) conformer’. A similar effect is observed with (Z)-acrylic acid, where the linear \(s-trans\) structure is once again more stable than the \(s-cis\) complex by 1.5 kcal mol\(^{-1}\).

<table>
<thead>
<tr>
<th>Table 4</th>
<th>Conformational Preferences of (\alpha,\beta)-Unsaturated Carbonyls Coordinated to Lithium Cation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry</td>
<td>(X)</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>1</td>
<td>(-H)</td>
</tr>
<tr>
<td>2</td>
<td>(-OH)</td>
</tr>
</tbody>
</table>

*Rotational barrier for isomerization calculated for an optimized structure with \(\pi(C-C=C-O)\) angle constrained to 90°.

The borane complexes of acrylic acid and methyl acrylate were studied next (Table 5).\(^{20}\) The \(\text{syn}, s-trans\) conformers are again preferred. Notably, the steric arguments discussed previously can nicely rationalize these results. Single point calculations on a linearly restricted BH\(_3\) complex \((\alpha = \beta = 180°)\) revealed only a 0.1 kcal mol\(^{-1}\) preference for the \(s-trans\) structure, thereby supporting the notion that, in contrast to the \(\text{Li}^+\) case, the steric gearing effect is dominant in determining the structure here.

<table>
<thead>
<tr>
<th>Table 5</th>
<th>Conformational Preferences of (\alpha,\beta)-Unsaturated Carbonyls Coordinated to Borane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry</td>
<td>(X)</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>1</td>
<td>(-\text{OMe}) ((\text{Syn}))</td>
</tr>
<tr>
<td>2</td>
<td>(-\text{OMe}) ((\text{Anti}))</td>
</tr>
<tr>
<td>3</td>
<td>(-\text{OH}) ((\text{Syn}))</td>
</tr>
</tbody>
</table>
LePage and Wiberg have analyzed the rotational barriers of Lewis acid coordinated aldehydes and ketones. Calculations on formaldehyde complexes of BH$_3$, BF$_3$, AlH$_3$ and AlCl$_3$ revealed a number of interesting effects. A planar \[\tau(R-C-O-M) = 0^\circ \] bent geometry with a C-O-M angle of 120° seems to be optimal for these neutral Lewis acids (Table 6; Figure 8). Small distortions (15°) in the nodal plane, however, can be accommodated fairly readily, with aluminum complexes being more flexible than the complexes of boron (Figure 8).

Table 6 Calculated Relative Energies for the Bent and Linearly Coordinated Complexes of Formaldehyde

<table>
<thead>
<tr>
<th>Entry</th>
<th>M</th>
<th>$M\alpha$</th>
<th>$M\beta$</th>
<th>β</th>
<th>Basis set</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H$^+$</td>
<td>0.0</td>
<td>117.4°</td>
<td>24.2</td>
<td>180°</td>
</tr>
<tr>
<td>2</td>
<td>BH$_3$</td>
<td>0.0</td>
<td>122.5°</td>
<td>10.4</td>
<td>180°</td>
</tr>
<tr>
<td>3</td>
<td>BF$_3$</td>
<td>0.0</td>
<td>122.1°</td>
<td>4.00</td>
<td>180°</td>
</tr>
<tr>
<td>4</td>
<td>AlH$_3$</td>
<td>0.0</td>
<td>125.1°</td>
<td>5.95</td>
<td>180°</td>
</tr>
<tr>
<td>5</td>
<td>AlCl$_3$</td>
<td>0.0</td>
<td>141.2°</td>
<td>4.63</td>
<td>180°</td>
</tr>
</tbody>
</table>

Perpendicular π-bonding is predicted to be energetically even less favorable than the linear mode of coordination in the nodal plane (Figure 9). Once again small distortions are facile, although aluminum seems to be less tolerant of π-bonding than boron.

With propanal, borane (BH$_3$) coordinates through the less-hindered, anti (syn to H) lone pair to yield a complex which is 2.8 kcal mol$^{-1}$ more stable than the syn complex. Surprisingly, the rotational restrictions about the C-C-C-O bond of propanal are somewhat relaxed upon coordination of a Lewis acid (Figure 10).

This phenomenon was rationalized by arguing that the C=O dipole moment is decreased upon Lewis acid complexation, thereby reducing dipole-induced dipole stabilization of the lowest energy (methyl) eclipsed conformer.

In addition to these provocative results several important shortcomings of theoretical methods, even at this level of sophistication, were emphasized. Among other things, the calculated coordination energies and rotational barriers are both strongly basis set and electron correlation dependent. Moreover, there are also many discrepancies with empirical results and no consistent trends in the theoretical disagreements with experiment can be found. The rotational barrier for the BH$_3$/formaldehyde complex was calculated to be 4–6 kcal mol$^{-1}$ lower than the spectroscopically determined value (8–10 kcal mol$^{-1}$). In contrast, the coordination energy of BF$_3$ with dimethyl ether was found to be much larger than the experimental value.
Lewis Acid Carbonyl Complexation

These points prompt a few words of caution regarding the results discussed in this section and some comments on theoretical results in general. In particular, besides considerations of the size and effect of basis sets, one needs to examine the energy dependence on electron correlation. For donor–acceptor complexes, such as Lewis acid–carbonyls, electron correlation seems to be crucial. It is also instructive to consider the dipole moments of various structures in theoretical studies. Assumption of a gas phase environment may overestimate destabilization due to a large dipole, as dipoles can often be stabilized quite effectively in solution. At times the interpretation of theoretical results are the source of trouble and confusion. Thus two different groups propound apparently conflicting and opposite views on the effect of Lewis acids on the carbonyl dipole.

In recent years theoreticians have exhibited a serious interest in some of the central questions of experimental organic chemistry. Unfortunately, at present, due to computational limitations, theory is unable to reliably address systems of great complexity. Larger basis sets and more efficient computing machines would naturally facilitate the examination of larger systems with increasing reliability. Another essential component, however, appears to be sensitivity towards the true origins of the observed effects or the source of disagreement among different theoretical studies or with experimental values. Difficult as they may be to achieve, coherent conceptual frameworks with strong powers of prediction are central to any theory that hopes to explain a complex problem such as Lewis acid carbonyl complexation. Thus from the experimentalist’s viewpoint, a predictive tool that can be readily tested and utilized is invariably more useful than the actual numerical results which may or may not be an accurate reflection of reality.

As a final note to this discussion, one may recognize that, despite their discrepancies and disagreements, the ab initio calculations point to a few general observations. To begin with, ionic and covalently
bound Lewis acid complexes can be regarded as two distinct categories. Ionic complexes (except for that of H+) have a primarily ion–dipole mode of coordination with a preference for a linear or near linear geometry. Slight (up to 15°) geometric distortions of these complexes seem to occur with relative ease and are independent of the direction of bending.

Covalently bound Lewis acids, on the other hand, prefer a planar, bent conformation in the direction of one of the sp²-hybridized carbonyl lone pairs. When the two sites of coordination on the carbonyl are nonequivalent, steric effects appear to determine the coordination geometry. The Lewis acid generally lies syn to the small group. For α,β-unsaturated carbonyls Lewis acid coordination increases the s-trans preference through steric and/or electronic influences. For nonconjugated carbonyls conformational effects on the substituents of the carbonyl group are either negligible or undetectable by theory. As will be shown in the following sections many of these generalizations are manifest in experimental observations.

1.10.4 NMR SPECTROSCOPY

The nature of donor–acceptor complexes has been the subject of various NMR studies conducted as early as the 1960s. Early calorimetric studies showed that boron trihalides are capable of forming donor–acceptor complexes with a number of Lewis bases and the heats of adduct formation for some of these complexes were determined. Gaseous boron trifluoride, for example, was shown to form a complex with ethyl acetate in a highly exothermic reaction (ΔH = 32.9 ± 0.2 kcal mol⁻¹). IR and UV analysis of BF₃ complexes of aromatic aldehydes indicated a σ-complex with a lengthened C=O bond and a highly delocalized π-system. More detailed structural information, however, was acquired only after closer inspection by low temperature ¹H, ¹¹B, ¹³C and ¹⁹F NMR studies.

Initially, it was established that boron trihalides form complexes of 1:1 stoichiometry with ethereal and carbonyl-containing Lewis bases. Alkyl ethers appeared to form stronger complexes than acetone and dimethyl formamide. In addition, dimethyl ether was found to complex more strongly than dimethyl sulfoxide, a trend which is the opposite to that observed with gallium and tin Lewis acids. Low temperature ¹H NMR spectra of BF₃/methyl ketone complexes further revealed that, while BF₃ exchange is rapid at room temperature, separate signals due to free and bound species can be observed at -90 °C. The Lewis acidity of various boron derivatives was correlated with the chemical shift differences between the free and complexed ligand, and the order of decreasing Lewis acidity was established as BBr₃ > BCl₃ > BF₃ > BH₃.

Syn-anti isomerization about the C=O bond of BF₃/diethyl ketone adduct at low temperatures gave the first indication of an asymmetrical, bent structure. At -125 °C two separate signals could be distinguished for the methylene protons α to the carbonyl. Since intermolecular exchange is slow even at -90 °C it was argued that the two sets of signals are due to protons syn and anti to the Lewis acid. A coalescence temperature of -111 °C (Δν = 30 Hz) suggested a barrier of ca. 8 kcal mol⁻¹ for the syn–anti isomerization.

Low temperature (-50 °C) ¹H and ¹⁹F NMR spectra of α- or β-substituted ketones, esters and nitriles complexed to boron trifluoride showed that boron coordinates preferentially at the most basic and least-hindered base when more than one coordination site is present in the ligand. Ordinarily a relative measure of chemical shifts for each type of complex would be derived from the spectra of a number of model complexes. For example, ¹⁹F chemical shifts for BF₃ complexes of ketones (acetone), esters (methyl acetate), nitriles (acetonitrile) and ethers (diethyl ether) were measured as 149 p.p.m., 150 p.p.m., 144 p.p.m. and 156 p.p.m., respectively. Inspection of the resonance frequency and relative intensities of each peak would then reveal the types and ratios of the complexes present in solution.

Methoxyacetoniitrile showed exclusive coordination at the methoxy oxygen while methoxymethyl acetate indicated interactions with BF₃ at both the ether and the carbonyl oxygens. Interestingly, a large difference was observed in the preferred site of coordination between methyl methoxacetate and methoxymethyl acetate (equations 1 and 2). The apparent lower basicity of the ether oxygen in the latter was attributed to the electron-withdrawing effects of the proximal acetate group.
Lewis Acid Carbonyl Complexation

\[
\text{BF}_3\text{MeOCH}_2\text{CH}_2\text{COO} \xrightarrow{15:85} \text{BF}_3\text{OCOO}\text{Me} \quad T = -100^\circ \text{C}
\]

The BF\(_3\)/2-methoxyethyl acetate system showed a marked temperature dependence. Complexation at the carbonyl oxygen is dominant at low temperature (63% carbonyl complex at \(-105^\circ \text{C}\)) but a shift to the methoxy base is observed upon warming to \(-60^\circ \text{C}\) (61% ether complex).

A systematic study of cycloalkanones established the order of their basicity towards boron trifluoride.\(^2\) It was concluded that steric effects control the extent of complexation. For simple cycloalkanones C\(_n\) (where \(n\) depicts the size of the ring) the basicities were shown to decrease in the order C\(_8\) > C\(_5\) > C\(_7\) > C\(_6\) = C\(_9\) > C\(_{10}\) > C\(_4\).

NMR spectra of various carbonyl-containing steroids were investigated.\(^3\) Here, intermolecular exchange was slow even at 0 °C. In the presence of hydroxy or ether functionality little or no complexation at the carbonyl sites was observed.\(^4\) For BF\(_3\)/androstene-3,17-dione (Figure 11a) complexation occurred solely on the enone carbonyl of the \(\alpha\)-ring, in contrast to 5\(\beta\)-androstane-3,17-dione (Figure 11b), where the carbonyls of the \(\alpha\)- and the \(\delta\)-ring were complexed in a 64:36 ratio.\(^3\)

![Figure 11 Complexation of steroids to boron trifluoride](image)

In the same study, 2-cyclohexen-1-one was studied as a model enone. The \(^{13}\text{C}\) NMR spectrum at \(-85^\circ \text{C}\) showed two sets of signals for both the C-\(\alpha\) and C-\(\beta\) carbons of the complexed ligand, presumably due to slow syn-anti isomerization of BF\(_3\). However, it was not determined which conformer predominates or what the barrier to isomerization might be.

\(^1\text{H}\) and \(^{13}\text{C}\) NMR studies of cyclic and acyclic BF\(_3\)/ketone complexes clearly demonstrated the unsymmetrical, bent nature of their structures and suggested a barrier of 8–10 kcal mol\(^{-1}\) for syn-anti isomerization about the carbonyl group of simple alkyl ketones.\(^5\)–\(^7\) Cyclopentanone, for example, displayed two separate sets of signals for the methylene groups syn and anti to BF\(_3\) at \(-100^\circ \text{C}\) with a coalescence temperature of \(-64^\circ \text{C}\) (\(\Delta G = 10.3\) kcal mol\(^{-1}\)). An interesting comparison can be made between the complexes of acetone (8) and ethyl methyl ketone (9).\(^5\) Complexation of acetone at \(-30^\circ \text{C}\) resulted in a slight shift (0.1 p.p.m.) of the \(\alpha\)-carbon resonance, while for ethyl methyl ketone the two \(\alpha\)-carbons showed a much larger shift (ca. 2 p.p.m.), one upfield and the other downfield from their original frequencies (Figure 12).\(^5\)

![Figure 12 Selected \(^{13}\text{C}\) chemical shifts of BF\(_3\)-coordinated ketones. Numbers in parentheses depict the change in chemical shifts from those of the free ligand in p.p.m.](image)

These results are consistent with a single preferred conformation for (9) with slow syn-anti exchange and probably an averaging effect for the rapidly isomerizing acetone complex. It is noteworthy that the
relatively small difference in the steric bulk of the methyl and ethyl substituents can affect the syn–anti equilibrium.

For simple cyclic ketones (C₆) the barrier for syn–anti isomerization of BF₃ was shown to decrease in the order C₅ > C₇ = C₆ > C₄, a trend which closely follows the order of their basicities towards BF₃ (vide supra).

In contrast to boron-centered Lewis acids, tin and titanium derivatives prefer a 1:2 (acid:base) stoichiometry in complexation with carbonyls.¹³C and ¹H NMR spectra of an equimolar solution of SnCl₄ and 4-t-butylbenzaldehyde showed signals only for free ligand and a 1:2 (acid:base) complex over a wide temperature range. Only with excesses of SnCl₄ was any 1:1 adduct observed and even in the presence of 10 equiv. of Lewis acid, only 25% of the 1:1 complex could be detected. Intermolecular exchange in this case was shown to be slow below -40 °C and no syn–anti isomerization could be detected.

Similar observations were made in a study of TiCl₄/carbonyl complexes but over a smaller temperature range and to a more limited extent.¹⁹–²¹ Thus, ¹H NMR studies showed that TiCl₄ forms 1:2 adducts with ketones, esters, ethers and nitriles. Ethers and esters were once again stronger ligands than ketones.³⁸ TiCl₄ has also been used as a diagnostic shift reagent for NMR studies of β-lactams and several α,β-unsaturated carboxyls.³⁹–⁴¹ Both functionalities form strong complexes (as deduced from the changes in ¹H and ¹³C chemical shifts) but more detailed structural information has not been obtained.

The structure of carbonyls complexed to lanthanide shift reagents [LSR, e.g. Eu(fod)₃] has been the subject of some debate in the literature.⁴²–⁴⁵ The two prevailing models for the structure of these complexes are known as the one-site and the two-site models, simply referring to the linear and bent geometries of coordination, respectively. The position of the lanthanide Lewis acid is generally determined by comparing the observed induced shifts with calculated values for randomly generated structures followed by a search for the best fit. The choice between a linear geometry and a ‘time-averaged geometry’ of two bent structures may be a difficult one, since the corresponding calculated values are probably quite similar. Although crystallographic studies of LSR complexes show a bent geometry,⁴⁷ strong spectroscopic evidence for the linear, one-site model has also been obtained.⁴⁴–⁴⁶ Both models, however, agree that the location of the Lewis acid is strongly affected by the steric environment of the carbonyl group, and also that in line with ab initio predictions, distortions away from the lowest energy geometry appear facile.

NMR spectroscopy of Lewis acids complexed with α,β-unsaturated carboxyls has shed light on their structure and conformational preferences. Low temperature ¹H and ¹³C NMR spectra of BF₃/2-cyclohexenone indicated slow exchange at -80 °C.⁴⁸ A mixture of syn and anti complexes was detected but the anti preference seemed to increase with increasing bulk at the α-carbon.

¹H and ¹³C NMR of a wide range of Lewis acids complexed with crotonaldehyde, tiglic aldehyde, 3-pentenone and methyl crotonate were investigated.⁴⁹ Correlation of ¹H and ¹³C shifts at -20 °C consistently showed an anti, s-trans conformation for crotonaldehyde complexed with 12 different Lewis acids. Notably, ¹³C NMR shifts suggested significant decrease of electron density on C-1 and C-3 but an increase of charge on C-2. This observation may be the result of a greater contribution from the enol resonance structure of the complex (Figure 13).

![Figure 13 Enol resonance structure of BF₃/enal complexes](image)

The linear correlation between the changes in chemical shifts (Δδ) of different protons for complexed and uncomplexed crotonaldehyde has a somewhat different character for α,β-unsaturated ketones and esters. Conformational isomerization, for example, was found to be rapid for enones (2-cyclohexenone, 2-pentenone) even at low temperatures, although it was evident that the syn conformation, in which the Lewis acid and H-2 are in close proximity, is one of the low energy conformers. The change in the resonance frequency of H-2 was attributed to ‘through-space deshielding’ due to the anisotropy of the Lewis acid. Complexes of methyl crotonate provided further evidence for the predominance of the syn conformation. Correlation of the changes in chemical shifts of the H-2 resonances of this system with those of the crotonaldehyde complexes suggested through-space interactions of the Lewis acid with H-2, consistent with an abundance of conformer (10).

Finally, a scale of Lewis acidity based on the induced changes in chemical shifts was established (Table 7). Of special relevance for synthetic applications may be the relative powers of BF₃ and TiCl₄.
These results suggest that the mildness of BF$_3$/Et$_2$O (relative to TiCl$_4$) may simply be due to the low effective concentrations of free Lewis acid, since uncomplexed BF$_3$ seems to be a much stronger Lewis acid. Furthermore, in cases where a second potential site of coordination (e.g. an ether functionality) is present in the ligand, the effective concentration of BF$_3$ may be even lower.

Table 7 Relative Lewis Acidities as determined by 1H NMR Spectroscopy.a

<table>
<thead>
<tr>
<th>Lewis acid</th>
<th>Relative power</th>
<th>Lewis acid</th>
<th>Relative power</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBr$_3$</td>
<td>1.00 ± 0.005</td>
<td>EtAlCl$_2$</td>
<td>0.77</td>
</tr>
<tr>
<td>BC$_2$I$_3$</td>
<td>0.93 ± 0.020</td>
<td>TiCl$_4$</td>
<td>0.66 ± 0.030</td>
</tr>
<tr>
<td>SbCl$_5$</td>
<td>0.85 ± 0.030</td>
<td>Et$_2$AlCl</td>
<td>0.59 ± 0.030</td>
</tr>
<tr>
<td>AlCl$_3$</td>
<td>0.82</td>
<td>SnCl$_4$</td>
<td>0.52 ± 0.040</td>
</tr>
<tr>
<td>BF$_3$</td>
<td>0.77 ± 0.020</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aRelative power refers to the induced Δδ-values of the H-3 resonances of various α,β-unsaturated carbonyl bases.

Lewis acids that possess two empty sites of coordination are capable of imposing conformational constraints on a carbonyl ligand either by forming 2:1 complexes or via chelation when a second basic site is present in the ligand. Despite the popularity of the ‘chelation-control’ model since its original proposal in 1952 by Cram and coworkers,20 rigorous and direct experimental evidence for chelation in α- and β-alkoxycarbonyls was only obtained recently from variable temperature 1H and 13C NMR.$^{51-54}$

NMR titration experiments with 2-methoxycyclohexanone (11; equation 3) and TiCl$_4$ at 23 °C indicated the formation of a conformationally rigid 1:1 adduct, in which both the carbonyl carbon and the carbon bearing the methoxy group had lower field chemical shifts with respect to the free ligand.51,52 The reaction of MeTiCl$_3$ and 2-benzyloxy-3-pentanone was monitored by 13C NMR spectroscopy (equation 4). At −45 °C two new sets of carbonyl signals (downfield from those of the free ligand) appeared immediately upon addition of MeTiCl$_3$. Additionally, broadening and an upfield shift of the titanium-bound
methyl group indicated formation of an octahedral complex. These signals were assigned to the two diastereomeric structures (14) and (15), in which the methyl group occupies a meridional position cis or trans to the carbonyl ligand. Structures with axially disposed methyl substituents were discarded, based on precedence from previous NMR and crystallographic studies. Kinetics and crossover experiments also showed that product formation is due to bimolecular rather than intramolecular methyl transfer.53

β-Alkoxy carbonyls can also form stable and conformationally rigid chelates. Spectroscopic evidence for these structures was provided by a study of titanium-, tin- and magnesium-derived Lewis acids and β-alkoxy aldehydes (16) and (17).54 Variable temperature (−80 °C to −20 °C) 13C and 1H NMR spectra showed that (16) can form conformationally rigid 1:1 adducts with TiCl4, SnCl4 and MgBr2/Et2O.

The splitting pattern and coupling constants for the C-2 methine hydrogen ($J_{ax-eq} = 9.7$ Hz, $J_{ax-ax} = 3.5$ Hz) further indicated its pseudo-axial disposition, and structure (18) was proposed for the TiCl4 complex (equation 5).

Aldehyde (17) behaved somewhat differently (equation 6). In this case, the splitting pattern for the C-3 methine hydrogen suggested a pseudo-equatorial location in the TiCl4 complex, but no discreet, stable chelate could be detected with SnCl4 even at −93 °C. The preference for structure (19) with an axial methyl group was rationalized based on the observation that the alternative conformation (20) would be disfavored due to an A13-like interaction between the equatorial methyl group and the benzyl protecting group. The benzyl group, in turn, should be locked in its conformation due to steric interactions with the chlorine ligands of the Lewis acid.

Further support for this hypothesis was obtained by studying systematic changes in the steric and electronic requirements of the oxygen-protecting group.55 The O-methyl derivative (21a), for example, was shown to form a rigid chelate with TiCl4, in which the C-3 methyl substituent is equatorially ($J_{ax-ax} = 10$ Hz, $J_{ax-eq} = 1$ Hz) disposed (equation 7). Apparently, the size of the oxygen-protecting group in (22) is

(21a) $R = n$-hexyl, $P = $ Me
(21b) $R = n$-hexyl, $P = $ Et
(22)
reduced to the extent that an equatorial substituent can now be accommodated. To appreciate the delicate balance of various influential factors here, it can be noted that in the O-ethylated complex (21b) the C-3 alkyl group is once again forced to adopt an axial disposition (cf. 19).

Yet another interesting observation was made in the study of β-siloxy aldehydes.¹⁶¹H and ¹³C NMR spectra of silyl ether (23; equation 8) showed only 1:2 (acid:base) adduct formation and no evidence for chelation over a wide range of concentration and temperature (-80 °C to -20 °C). The researchers proposed that the reason for lack of chelation with silicon protecting groups may be electronic in nature: delocalization of the oxygen lone pair electrons into empty silicon d-orbitals could reduce oxygen basicity. Ab initio calculations on a number of alcohols, ethers and silyl ethers supported this proposal by indicating a large Si—O—C bond angle (131°), which may result from Si—O π-interactions, thereby ascribing double bond character to the Si—O bond.⁵⁷ A search of the Cambridge Structural Database (CSD) for the silyl ether [Si—O—C (sp³)] substructure indicated a mean value of 126 ± 9 °C for the Si—O—C bond angle and 1.65 ± 0.05 Å for the Si—O bond length in the solid state.⁵⁸ Moreover, the Si—O bond length shows a linear decrease with increasing Si—O—C bond angle (Figure 14), suggesting that the Si—O—C bond angle may be a valid measure of the Si—O double bond character. No such correlation was found between the Si—O—C angle and the C—O bond length (Figure 15).

From this discussion it is quite clear that NMR spectroscopy is one of today’s most powerful tools in the pursuit of structural information. Not only can NMR spectroscopy provide accurate and easily accessible structural data regarding a large variety of chemical species, but its ability to reveal energetic and solution dynamics data is unmatched even by X-ray crystallography.⁵⁹ Detection of Lewis acid carbonyl complexes by these methods has produced several noteworthy results. It is quite evident that Lewis acids form strong and stable complexes with a variety of oxygen bases. The order of Lewis basicity of some of the most common oxygen-containing functional groups towards Lewis acids has been established. Thermodynamically, ethers seem to be stronger bases than carbonyls, although kinetic basicities of these groups have not been measured. Carbonyl-containing compounds listed in the order of reducing basicity towards common Lewis acids are amides > esters > enones > ketones > aldehydes. Effective basicity seems to be dependent on both electronic and steric effects. Thus a sterically congested ester may
coordinate more weakly than an unhindered aldehyde. An order of Lewis acidity towards carbonyl bases has also been deduced from NMR spectroscopy (Table 7), which may prove helpful in fine-tuning the reactivity of Lewis acidic catalysts.

Most of the available data point to a bent, planar conformation for Lewis acid carbonyl complexes. Syn-anti isomerization seems to be fast at room temperature on the NMR timescale but at low temperature individual isomers can be observed. The barrier to isomerization is estimated as 8–10 kcal mol⁻¹, but the mechanism of this process (i.e. through a parallel or perpendicular arrangement) is unresolved. The syn-anti equilibrium is quite sensitive towards the relative size of the carbonyl substituents and the Lewis acid prefers to lie syn to the smaller substituent.

In agreement with ab initio predictions, Lewis acid complexation with α,β-unsaturated carbonyls seems to encourage adoption of the s-trans conformation. In the complexes of conjugated esters and ketones the gearing effect discussed previously may be responsible for the abundance of the (Z)-syn-s-trans conformation.

Strong evidence for Lewis acid chelation with bidentate bases has been gathered. Subtle and intricate factors seem to contribute to the overall conformation of the chelated complex but the importance of protecting groups for the alkoxy ligands should be emphasized. Silicon protecting groups reduce oxygen basicity probably through a combination of steric and electronic effects and thereby disfavor chelation. Alkyl ethers, on the other hand, are strong chelators, but small differences in the size of the protecting group may result in large differences in the overall conformation of the Lewis acid chelate.

There are also a few interesting topics which have not yet been addressed. The question of the conformational preferences of α-chiral aldehydes upon Lewis acid complexation is among the most important issues. Theoretical predictions imply that the small magnitude of the differences in energy may prevent detection of individual conformers even at very low temperatures. However, it is not inconceivable that through the proper choice of Lewis acid and design of an appropriate carbonyl ligand one may exaggerate the energetic differences such that detection becomes possible.

Stereo electronic effects of various remote substituents on the basicity of the carbonyl is yet another intriguing question. Electronic effects of remote substituents have been postulated to be responsible for stereoselective additions to carbonyls in rigid adamantaneone systems. If present, such stereoelectronic effects would similarly be expected to bias the energetics and structural features of Lewis acid complexation.

Finally, the mechanism of syn-anti isomerization remains elusive. Is π-bonding truly higher in energy than the linear, planar arrangement as predicted by theory? The answers to these questions will undoubtedly help to clarify our emerging view of the interactions of the carbonyl group with Lewis acids.
1.10.5 X-RAY CRYSTALLOGRAPHY

There are two distinct approaches to the analysis of X-ray structural data. In one approach a detailed consideration of individual angles and distances in single crystal structures is used to attain insights into the properties and reactivity patterns of a particular compound or class of compounds. On the other hand, a statistical analysis of a large number of crystal structures that share a common structural feature can be used to extract generalizations regarding particular types of interactions or molecular properties. Clearly, the latter approach is more useful and more reliable in deriving a general sense of a bond length or bond angle, while a detailed analysis is preferred when various factors which may contribute to the final structure of a complex (especially those with unusual structures) are to be determined. Since both methods have their merits, a combination of the two has been adopted throughout this section.

Such a combination was used in connection with a study of the crystal structure of the LiBr/acetone complex. In this dimeric complex (Figure 16) each lithium ion is coordinated by two molecules of acetone through the carbonyl lone pair electrons with a bent, planar geometry in a tetrahedral environment. The Li—O bond length is measured as 2.0 Å with an Li—O—C angle of 145°. Although the observed Li—O distance is very close to various theoretical predictions (vide supra) the nonlinear coordination geometry disagrees with ab initio calculations. To probe the source of this discrepancy and to determine the true low energy conformation of alkali metal/carbonyl complexes the researchers conducted a general search of the Cambridge Structural Database (CSD). Of the nine crystal structures that were analyzed in this study, six contained Li⁺, two Na⁺ and one K⁺ as the Lewis acid bound to the carbonyl ligands. The coordination angle for Li⁺ was consistently found to be bent (120°—156.3°) but large distortions from planarity (up to 55°) seemed to occur randomly. The Li—O bond distance showed no linear dependence on the Li—O—C—X dihedral angle.

Figure 16 Crystal structure of LiBr*(acetone)₂ complex

The crystal structures of Na⁺ complexes, however, showed that linear and bent geometries are equally accessible and bending out of the plane of the carbonyl was once again observed (Figure 17).62

Figure 17 Linear complexation of a Na⁺/acetone complex

The workers concluded that the potential energy surface for carbonyl coordination to alkali metals is likely to be fairly flat with respect to changes in the M—O—C angle and the M—O—C—X dihedral angle. This proposal would also account for the discrepancy between theory and the experimental results regarding the exact structure of the lowest energy species.

A more recent search of the CSD for alkali metal/carbonyl crystal structures also confirmed these results.63 The average Li—O bond length and the Li—O—C bond angle were found to be 1.99 ± 0.07 Å
and \(39 \pm 3^\circ\), respectively. Of the 23 examples found, 9 exhibited coordination by more than \(10^\circ\) out of the plane of the carbonyl group.

Thus, cationic alkali metal Lewis acids do not exhibit any strong directional preferences in coordination to carbonyls.\(^6^4\) In particular, bending towards the \(\pi\)-cloud of the carbonyl with no significant lengthening of the \(M-O\) bond is commonly observed. Coordination seems to occur from the direction that best satisfies the cation's electron demand and minimizes steric interactions. These, in turn, depend on the coordination number of the cation, the relative size and electronic properties of the ligands, and, in the solid state, on crystal-packing forces. It is, therefore, not at all surprising that gas phase calculations, which assume a 1:1 stoichiometry and necessarily ignore packing forces, predict different low energy structures, since under those conditions the linear geometry might very well be favored. What theory would predict as the lowest energy conformation of a multicoordinated, alkali metal/carbonyl complex is an interesting question which, at present, remains unanswered.

Finally, the biological relevance and importance of metal cation/carbonyl interactions, although beyond the scope of the present discussion, should be noted. Such interactions may play a significant role in determining the structures and conformations of metal-binding peptides or metalloproteins. Two provocative crystal structures of \(Li^+\) bound to the cyclic decapeptides antamanide and perhydroantamanide have been reported.\(^6^5\) In the former, lithium was found to be pentacoordinated to four carbonyl oxygens and the nitrogen atom of an acetonitrile solvent molecule in a pseudo square pyramidal arrangement (Figure 18).\(^6^5\) In this structure, the \(Li-O\) bond lengths and \(Li-O-C\) bond angles are similar to the values discussed previously and are consistent with the principles of the foregoing discussion.

Relative to alkali metals, neutral Lewis acids seem to perform much more consistently. Crystal structure of the \(BF_3/benzaldehyde\) complex may serve as a representative example (Figure 19).\(^6^7\) Here the Lewis acid is placed 1.59 \(\AA\) from the carbonyl oxygen, along the direction of the oxygen lone pair and anti to the larger phenyl substituent.\(^6^8\)

Although crystal structures of other bimolecular complexes of carbonyls with boronic Lewis acids have not been reported, a number of intramolecular chelates have been detected in the solid state.\(^6^9\) In all these cases boron is found to lie in the direction of the carbonyl lone pair with no more than \(11^\circ\) distortion away from the best plane of the carbonyl group. The average \(B-O\) bond length is 1.581 \(\pm 0.019\) \(\AA\) and the \(B-O-C\) angle lies between 112\(^\circ\) and 119\(^\circ\).

A search of the CSD files for the \(Al-O=C\) substructure revealed 30 such interactions with Lewis acidic aluminum atoms from 23 crystal structures.\(^7^2\) Mean values for the \(Al-O\) distances and \(Al-O-C\) bond angles were found to be 1.88 \(\pm 0.09\) \(\AA\) and 136 \(\pm 4^\circ\), respectively. Aluminum was found to lie within \(\pm 8^\circ\) of the carbonyl plane where \(\theta\) in Figure 20 had a mean value of \(83 \pm 1^\circ\).
The crystal structure of the AlCl₃/tetramethylurea (AlCl₃/TMU) complex shows a 1:1 adduct, in which aluminum binds to the carbonyl lone pair electrons at an angle of 132.5° and at a distance of 1.78 Å (Figure 21). The C—O bond length (1.239 Å) is approximately 0.06 Å longer than that of unbound TMU and 0.03 Å longer than in the corresponding Me₂SnCl₂/TMU complex. The Lewis acid is once again co-planar with the carbonyl, although the dimethylamino group syn to aluminum is twisted out of conjugation to avoid steric interactions.

Based on statistical analyses it may be reasonable to propose that this structure reflects the idealized or low energy mode of coordination to carbonyls for aluminum-centered Lewis acids. It would be interesting to see how distortions away from such an arrangement may come about. Imposition of steric congestion through bulky substituents is one way to address this question. The crystal structure of (2,6-di-t-butyl-4-methyl)phenoxydiethylaluminum/methyl toluate was recently reported (Figure 22). In this structure a pseudo-tetrahedral aluminum is positioned 1.89 Å from the carbonyl ligand. The Al—O—C angle of 145.6° is on the more linear end of the Al—O—C angle spectrum, but, more interestingly, the Al—O—C—C torsion angle (49.9°) shows considerable bending towards the π-plane. Clearly, this distortion from the 'idealized' structure is a result of the unusually bulky phenoxyide ligand on the Lewis acid, coupled with the fact that in (Z)-aromatic esters both sp²-lone pairs are fairly hindered. Notice that other available mechanisms for relief of steric strain were not employed. Either twisting of the
phenyl substituent or alteration of an idealized (Z)-ester conformation could have accommodated a more planar Lewis acid complex, but neither occurs to any considerable extent \[\tau(O-C-O-O) = 4.1^\circ, \tau(O=C=C=C) = 12.1^\circ\]. Furthermore, a linear Lewis acid complex would also avoid steric interactions with the carbonyl substituents but this mode of coordination seems to be excluded as well. These results suggest that the energetic barrier for out-of-plane bending of the Lewis acid is less steep and probably lower than the barrier for either \((E)/(Z)\) ester isomerization, rotation about the phenyl-carbonyl C—C bond or in-plane distortion to a linear structure. The latter proposition is in sharp contrast to theoretical predictions.

When a Lewis acid possesses two empty coordination sites, another degree of complexity is added to the structural issues discussed above. Titanium(IV) Lewis acids, for example, show a strong preference for a six-coordinate, octahedral arrangement. Thus, the acid:carbonyl stoichiometry for these complexes is often 1:2 or, when only a single equivalent of the carbonyl base is present, dimeric structures with bridging ligands are observed. The crystalline 1:1 adduct of TiCl\(_4\) and ethyl acetate, for example, contains dimeric units of two octahedral titaniums with bridging chlorine atoms (Figure 23).\(^75\) The 2.03 Å long Ti—O bond is almost coplanar with the carbonyl group \[\tau(Ti—O=C=C) = 2.86^\circ\] and the Ti—O—C angle is measured as 152°.
These values agree well with the average Ti—O=C bond lengths and bond angles derived from searches of the CSD files (Ti—O mean = 2.14 ± 0.07 Å), although the Ti—O=C angle is on the wider side of the observed range (Ti—O=C mean = 125 ± 12°). Meanwhile, the (Z)-conformation of the ester is retained [τ(O=C—O=C) = 2.6°] by coordinating the Lewis acid syn to the methyl substituent.

In line with the behavior of aluminum-centered Lewis acids, deviations from the ‘idealized’ conformation are observed when steric congestion is imposed on the structure. This point is illustrated in the crystal structure of the TiCl₄/ethyl anisate complex (Figure 24). Although at first glance the main features of this complex (dimeric complex, octahedral titanium, etc.) are very similar to those of the TiCl₄/ethyl acetate structure, out-of-plane bonding to the carbonyl clearly distinguishes the two structures. The Ti—O=C—C dihedral angle is 45.7° and the Ti—O=C angle has now opened up to 168.7°. The (Z)-conformation of the ester is still intact [τ(O=C—O=C) = 1.4°] and the Lewis acid is bound more or less syn to the phenyl substituent, which, in turn, is twisted out of conjugation and away from the Lewis acid by 13.0°. These structural features are very similar to those of the bulky aluminum Lewis acid complex discussed previously and one may expect them to be quite general in similar systems. Interestingly, distortions from the ‘idealized’ structures are more prominent for the titanium complex, which may suggest that, in the dimeric form, TiCl₄ is in fact even larger than the aryloxyaluminum reagent, or that π-distortion occurs more readily for Ti than for Al.

Extreme out-of-plane bonding is observed in the crystalline complex of TiCl₄ and acryloylmethyl lactate (Figure 25). In this structure Ti is bound by two ester carbonyls in a seven-membered ring chelate. Both carbonyls are π-bonded with τ(Ti—O(1)=C—C) = 63.6° and τ(Ti—O(2)=C—C) = 48.1°. Both esters, however, remain very close to planarity (τ₁ = 8.8°, τ₂ = 4.1°) and in the preferred (Z)-conformation. Furthermore, due to the presence of a chelate ring the Lewis acid is anti to the acrylate double bond and the enoate adopts an s-cis geometry. It is difficult to rationalize π-bonding in this case since direct steric interactions appear to be unimportant. Moreover, π-bonding cannot be the result of chelation since crystal structures of TiCl₄ chelated by acetic anhydride or 3,3-dimethyl-2,4-pentanedione show no evidence for π-bonding. Even the seven-membered ring diester chelate of TiCl₄ with diethyl phthalate has the Lewis acid coplanar with the carbonyl ligands (Figure 26). Another noticeable feature of the chelated structures is that they are all monomeric, probably due to the ability of the bidentate ligands to satisfy titanium’s desire for hexacoordination and octahedral geometry.

In the previous section it was noted that in solution tin-derived Lewis acids, like titanium, prefer to form 1:2 acid:carbonyl or 1:1 chelated adducts. Consistent with these findings, the crystal structure of
SnCl₄/4-t-butylbenzaldehyde shows a 1:2 stoichiometry with two nonequivalent aromatic aldehydes, cis to one another around the octahedral tin atom (Figure 27).³⁸

Similarly to the BF₃/benzenaldehyde complex, tin lies within the carbonyl plane with respect to both aldehydes (τ₁ = 2°, τ₂ = 4°), in the direction of sp²-hybridized lone pairs (Sn—O(1)—C(1) = 128°, Sn—O(2)—C(2) = 126.2°) and anti to the aromatic ring.
These measurements and the Sn—O bond lengths (2.23 Å) are close to the average values of tin-carbonyl bond angles and bond lengths found in the CSD files (Sn—O = 2.3 ± 0.1 Å; Sn—O—C = 127 ± 10°). However, the 1:2 stoichiometry and the cis relationship of the carbonyl ligands are not universal. Only slight alterations in the nature of the Lewis acid or its ligands are necessary to alter this arrangement. For example, an X-ray analysis of Ph₂SnCl₂/p-dimethylaminobenzaldehyde shows a monomeric 1:1 complex with a pentacoordinated, trigonal bipyramidal tin atom (Figure 28).83

Figure 28 Crystal structure of Ph₂Sn₂/p-NMe₂C₆H₄CHO complex

Although neither the Sn—O bond length (2.3 Å) nor the bond angles [Sn—O—C = 121°, \(\tau(Sn—O—C—O) = 4° \)] nor the anti geometry of coordination have changed significantly compared to the SnCl₄ complex, the environment about the Sn atom is clearly different. It is likely that these changes are caused by the substitution of chlorines for aryl groups on the Lewis acid. Thus, crystal structures of Ph₃SnCl/tetramethylurea (TMU),84 Me₂SnCl₂/TMU,85 Me₂SnCl/tribenzyloxyphosphorylalkylacetone86 and Me₂SnCl₂/salicylaldehyde87 all feature pentacoordinated, trigonal bipyramidal 1:1 adducts, while SnX₄·2L (X = Cl, Br, I; L = urea or thiourea) complexes contain cis-octahedral tin centers.88 The cis and trans stereochemistry of the octahedral complexes seems to depend on the size and the basicity of the base, as well as the nature of the Lewis acid. Me₂SnCl₂/DMU85 and SnCl₄/ethyl cinnamate89 are both trans-octahedral 1:2 complexes. The latter complex is particularly relevant to the discussion of the conformational preferences of \(\alpha,\beta \)-unsaturated carbonyl complexes (Figure 29).89 Here the ligand adopts a (Z)-s-trans conformation with tin coordinated syn to the double bond. The Sn—O—C—C dihedral angle of 21° indicates some out-of-plane bonding, although not as much as in the titanium complexes.

Figure 29 Crystal structure of SnCl₄/ethyl cinnamate complex
Crystal structures of chelated tin Lewis acids have also been obtained. Recently, X-ray analysis of two five-membered chelates of SnCl₄ were reported. SnCl₄ complexes of 2-benzylolxy-3-pentanone and methoxyacetophenone are both 1:1 monomeric chelates with distorted octahedral geometry (Figure 30). In the former complex, tin is apparently coplanar with the carbonyl plane (10° puckering of the stannacycle) at a distance of 2.184(3) Å away from the carbonyl oxygen. More importantly, the ether oxygen is planar and seems to coordinate to the Lewis acid through an sp²-like lone pair. This point lends credence to the assumption of A¹⁻-like interactions between the oxygen-protecting group and an α-substituent, as discussed in the last section. It should also be noted that coordination along the direction of a trigonal lone pair of ether oxygen atoms is not altogether unexpected and is, in fact, well documented for other Lewis acids such as lithium cation.

Figure 30 Crystal structures of two SnCl₄ chelates

Methoxyacetophenone chelates SnCl₄ in much the same way. There are, however, two distinct conformations about the ether oxygen in these crystals. In one conformer, the ether group is planar with sp²-like donation to the Lewis acid, while in the second conformer the ether oxygen is better described as sp³-hybridized and pseudo-tetrahedral.

In summary, crystallographic studies have provided a wealth of structural information regarding carbonyl complexation of various Lewis acids. More specifically, it has been shown that alkali metal cations do not show a strong directional preference for binding to carbonyls and for these complexes coordination numbers and coordination geometries vary greatly. Boron, aluminum, titanium and tin Lewis acids all accept electron density from sp²-lone pairs of a carbonyl ligand at ca. 130–140°, but in the presence of steric interactions they easily distort from their optimal geometry. For aluminum, titanium and tin complexes there is fairly strong evidence that, contrary to theoretical predictions, these distortions are invariably out of plane, towards the π-cloud of the carbonyl group rather than the linear, in-plane geometry. This may also suggest a mechanism for syn-anti isomerization of the Lewis acid, although this point is less clear.
The stoichiometry of complexation is ordinarily 1:1 (acid:carbonyl) for boron- and aluminum-centered Lewis acids, which give pseudo-tetrahedral complexes, and 1:2 for octahedral TiIV complexes. Tin(IV)-derived Lewis acids can form either 1:2 octahedral or 1:1 trigonal bipyramidal complexes, depending on the nature of their ligands and on the carbonyl base.

Lewis acids prefer to lie syn to the smaller substituent of the carbonyl, e.g. syn to H for aldehydes, anti to =OR for simple alkyl esters. In α,β-unsaturated systems, Lewis acid coordination syn to the double bond favors the s-trans conformation, but in two crystal structures, where coordination anti to the alkene occurs, s-cis complexes are observed.78,111 Finally, chelation with titanium and tin occurs readily and yields stable, crystalline complexes.

Some of the shortcomings and difficulties encountered in the attainment of structural data from crystalline compounds should also be noted here. The single most important difficulty in X-ray crystallographic analyses is the task of obtaining suitable, X-ray diffracting crystals. This task is made even more formidable for the highly reactive and often unstable Lewis acid carbonyl complexes. Most of the crystal structures discussed here were obtained by crystal growth and data collection at low temperatures, under inert atmospheres. Once the X-ray diffraction data are available, care should be taken to avoid overinterpretation of single structures and invalid generalizations. In this section, statistical analyses of a large number of crystal structures have been used to distinguish the ordinary from the unusual. In unusual systems, crystal-packing forces may be the cause of deviations from the norm, and it is always important to take this factor into consideration. Lastly, it is worth noting that crystal structures represent static single point conformations and their relevance to dynamic chemical reactions is not clear. Nevertheless, in the past chemical dynamics have been cleverly inferred from crystallographic data,59 although performing such a task for the case at hand would require a very serious and systematic effort.

1.10.6 TRANSITION METALS AS LEWIS ACIDS

Despite the focus of this chapter on the most commonly utilized Lewis acids in organic synthesis, a much larger body of data regarding the structure of donor/acceptor complexes of transition metals with carbonyls exists. Although a comprehensive treatment of this subject is beyond the scope of the present discussion, it is nonetheless worthwhile to consider the structural features of some of these complexes briefly, since many demonstrate novel and unusual ways of interacting with the carbonyl group.92

To begin with, one can consider those high valent transition metals that seem to behave analogously to the Lewis acids discussed thus far. The crystal structure of a cationic iridium complex [IrH\textsubscript{2}(Me\textsubscript{2}CO)\textsubscript{2}PPh\textsubscript{3}]BF\textsubscript{4} shows cis coordination of two acetone ligands to an octahedral iridium atom (Figure 31).93 Iridium is coordinated to the lone pairs of the acetone ligands, coplanar with the carbonyl at an Ir-O=C angle of 133.1° for one acetone ligand and 134.9° for the other. Aside from the interest in this complex due to its role as an active dehydrogenation catalyst,94 one can also regard it as an effective Lewis acid towards acetone, since it seems to possess all the necessary structural characteristics.

![Figure 31 Crystal structure of [IrH\textsubscript{2}(Me\textsubscript{2}CO)\textsubscript{2}PPh\textsubscript{3}]BF\textsubscript{4}](image)

Dicarbonylcyclopentadienyliron cation (Fp+) is another reactive Lewis acid. This 16-electron complex is known to coordinate ethers, nitriles and various carbonyl-containing compounds quite effectively and with 1:1 stoichiometry. The resultant 18-electron complexes are often stable, crystalline compounds and
the crystal structures of a few of them have been solved. X-ray analysis of Fp(cyclohexenone)BF₄, for instance, shows iron σ-bonded in the plane of the carbonyl \([\tau(\text{Fe}---\text{O}---\text{C}---\text{C}) = 3.7(9)'] \) at 132.81(4)' (Figure 32). Interestingly, iron is coordinated \(\text{syn} \) to the double bond, which could be explained by steric or electronic arguments. Sterically, coordination next to the smaller methine, as opposed to the methylene, \(\alpha \) to the carbonyl should be favored. A similar preference may be expected if the enone moiety is envisioned in an enol ether resonance structure (Figure 33). Thus, the known preference of enol ethers to adopt a \((Z) \)-conformation may be extended to this case to explain the observed result. The latter, electronic argument, however, does not appear to override steric factors in an aldehyde complex. Preliminary results from a crystal structure of Fp(cinnamaldehyde)PF₆ indicate metal coordination \(\text{cis} \) to the aldehydic hydrogen and \(\text{trans} \) to the enal double bond.

![Figure 32 Crystal structure of Fp(cyclohexenone)PF₆](image)

![Figure 33 Analogy between \(\text{syn/anti} \) Lewis acid complexes and \((E)/(Z) \) enol ethers](image)

Fp(4-methoxy-3-butenone)BF₄ also shows coordination \(\text{syn} \) to the double bond, \(s\text{-trans} \) geometry and no evidence for \(\pi \)-bonding (Figure 34; \(\tau(\text{Fe}---\text{O}---\text{C}---\text{O}) = 0(1)\)). Fp(tropone)BF₄ is yet another complex whose crystal structure has been solved. In this case, the complex is particularly stable due to
Lewis Acid Carbonyl Complexation

the high basicity of the tropone ligand and the crystal shows very similar structural features to other Fp(carbonyl) complexes.

A tungsten-derived Lewis acid, [(Me₃P)(CO)₃(NO)W]⁺SbF₆⁻, was recently reported to catalyze diene polymerization and Diels–Alder reactions. A crystal structure of the acrolein-bound complex (Figure 35) shows tungsten σ-coordinated [τ(W—O=C=O) = 180°], syn to hydrogen, at an angle of 137.1°. In line with ab initio predictions, acrolein adopts an s-trans conformation, despite the absence of any obvious steric interactions in the s-cis conformer. It is apparent from this crystal structure that the tungsten complex behaves in a similar fashion to classical Lewis acids, and its structure can be predicted based on the same principles.

![Figure 35 Crystal structure of (Me₃P)(CO)₃(NO)WFSbF₆⁻](image)

The cationic complex [([η⁵-C₅H₅]Re(NO)(PPh₃))⁺ (Z)] is capable of binding carbonyls either η², through the π-system, or by σ-bonding through the lone pair electrons. Crystal structures of Z(phenylacetaldehyde) and Z(acetophenone) clearly show the two different modes of complexation (Figure 36).

![Figure 36 η²- and σ-bonding for Cp(Ph₃P)(CO)Re⁺](image)

The authors attributed the difference in binding to increased steric bulk and lower π-acidity of ketones as compared to aldehydes. No crystal structures of Fp⁺/aldehyde complexes are available in order to determine whether Fp⁺ has a similar 'amphichelic' binding property but (Ph₃P)(CO)₂Fe⁰ binds cinnamaldehyde in an η⁴ fashion. Additionally, it is worth noting that both of the rhenium complexes shown here are chiral and it has been shown that in the enantiomerically pure form, they undergo nucleophilic additions to the carbonyls with high enantioselectivities. Finally, the significance of the phenylacetaldehyde crystal structure should not escape attention. This is the first crystal structure of a nonchelated,
Nonstabilized Carbanion Equivalents

α-substituted Lewis acid/aldehyde complex. Despite the unusual η²-bonding in this complex there may be direct implications for the conformational preferences of Lewis acid/α-chiral aldehyde complexes. Remarkably, the phenyl ring lies nearly perpendicular to the plane of the carbonyl at a dihedral angle of \(\tau(C-C-C-O) = 94^\circ\), which is reminiscent of the Felkin-Anh proposal for the reactive conformation of α-substituted carbonyl systems. However, it also seems reasonable to argue that the phenyl group occupies the sterically least congested area of space, and that the observed conformation is merely an artifact of the steric requirements of this particular complex, rather than a general, electronic phenomenon.

η²-Bonding appears to occur with electron rich metals and electron deficient carbonyls. This combination allows for better back-bonding from the metal to the carbonyl \(\pi^*-\)orbital and disfavors competitive σ-coordination by lowering the carbonyl lone pair basicity. Hexafluoroacetone, for example, is η²-bound to Ir(Ph3P)2(CO)Cl103 (cf. ref. 93), and electron rich Ni° complexes show \(\pi\)-bonding to both aldehydes104 and ketones. The crystal structure of (TMEDA)Ni(C2H4)(H2CO), for example, shows formaldehyde bound in a metallocoxirane structure in which the C—O bond has lengthened to 1.311 Å (Figure 37). Additionally, a molybdenoxirane Lewis acid bound to benzaldehyde shows η²-\(\pi\)-bonding and a C—O bond length of 1.333 Å.107 Acetone bound to pentamineosmium(II) (C—O = 1.322 Å) has also been detected in the solid state and \(\pi\)-bonding is observed in this case as well.108

Finally, carbonyls can bind two metals at once. The crystal structure of a bridging (μ), η²-bound acet-aldehyde complex, for example, shows the carbonyl coordinated to two molybdenum atoms (Figure 38).109 It appears that in this structure the carbonyl utilizes its \(\pi\) as well as its lone pair electrons to bond to the two metal centers. Conceptually one can think of this molybdenum complex as a bidentate Lewis acid that chelates the carbonyl group.

In conclusion, it can be noted that high valent transition metals seem perfectly capable of serving as effective Lewis acids. Many of the systems discussed here exhibit exceptional robustness, stability and a propensity to form crystalline complexes. This would facilitate the task of crystallization and structural analysis, and one can imagine that transition metal complexes can be used as structural probes of Lewis acid/carbonyl interactions. In this vein, the first glimpse of the origins of Cram selectivity in α-chiral aldehydes may have been obtained from the crystal structure of a rhenium aldehyde complex. Lastly, the
variety of ligands and metals that can be exploited in this field provide a useful handle for the custom design of Lewis acidic reagents. These constructs may also benefit from the large body of structural (especially crystallographic) data that is available for transition metal complexes.

1.10.7 STRUCTURAL MODELS FOR LEWIS ACID MEDIATED REACTIONS

A significant aim of the structural theory of organic chemistry is to acquire the ability to predict the behavior of molecules of known chemical structure. Ideally, one would be able to predict such 'structure-reactivity' relationships based on the principles of quantum mechanics, but such an accomplishment is, at present, not possible. The shortcomings of modern theoretical chemistry in performing a reliable analysis of complex organic molecules have already been mentioned. An even greater hurdle, however, may lie still further ahead in answering the question of chemical selectivity. Thus, even if one were to predict the structure and energy of a molecular system correctly, to choose between a large number of available reaction paths and to predict the lowest lying transition state remain very difficult tasks indeed.

As a corollary, reliable prediction of the structure of Lewis acid carbonyl complexes is by no means a solution to the problem of predicting their reactivity. To address the latter problem one needs to correlate the structural information with the observed patterns of reactivity and vice versa.

In this section the stereochemical implications of the structural knowledge gained in the previous sections will be discussed briefly. In some cases, this knowledge has resulted in the confirmation and/or development of various transition state models. In other instances, where compounds of known structure behave contrary to the predictions of structural theory, it has revealed inadequacies in, and limitations of, a model or collection of models.

1.10.7.1 Additions to α,β-Unsaturated Carbonyls

Asymmetric Diels–Alder reactions have been the subject of some of the more thorough mechanistic studies. Fairly reliable structural models for predicting the outcome of these reactions exist. In a review of the subject, it has been suggested that the stereochemical course of the reaction of a variety of chiral acrylates could be consistently predicted based on two models (Figures 39 and 40). Model A positions the complex in a (Z)-syn-s-trans conformation and presumes attack from the least-hindered face of the double bond. This model is consistent with almost all of the structural data for systems of this type (e.g. SnCl₄/ethyl cinnamate X-ray diffraction study). Contrapuntally, the large number of experimental observations that can be explained by this model support the assumption that the crystal structure conformation (26) is relevant to the course of these reactions.

![Figure 39 Model A for Lewis acid mediated Diels–Alder reactions](image-url)
Model B describes the case in which a chelating group is present in the dienophile, as shown in Figure 40. In contrast to model A, the Lewis acid complex is now anti-s-cis, although the (Z)-ester conformation is still intact. The s-cis conformation is also observed in two crystal structures of chelated complexes, although one of these (cf. Figure 25) is somewhat unusual. A similar model was proposed in describing the asymmetric Diels–Alder reaction of chiral α,β-unsaturated N-acyloxazolidinones (31). The researchers noted that the reaction stoichiometry and the nature of the Lewis acid are crucial in obtaining high levels of diastereoselection (Table 8). In particular, stoichiometric amounts of chelating Lewis acids (i.e. SnCl4, TiCl4, ZrCl4) resulted in increased stereoselectivities relative to Lewis acids with only a single coordination site (i.e. AlCl3, EtAlCl3, Et2AlCl). The most diastereoselective reactions, however, were observed when a slight excess (1.4 equiv.) of Et2AlCl was used. These results were interpreted in terms of the action of the ionic species Et2Al+(EtNC12-) as the effective Lewis acid. Faster reaction rates, improved endo selectivity and Lewis acid concentration studies were all consistent with this interpretation and structure (34) was proposed as a transition state model. In support of this hypothesis, the researchers have pointed to

![Table 8](image)

<table>
<thead>
<tr>
<th>Lewis acid (equiv.)</th>
<th>Temperature (°C)</th>
<th>Time (h)</th>
<th>Conversion (%)</th>
<th>(32):(33)</th>
<th>Σ(endo):Σ(exo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SnCl4 (1.1)</td>
<td>-78</td>
<td>2</td>
<td>70</td>
<td>3.1:1</td>
<td>14.9:1</td>
</tr>
<tr>
<td>TiCl4 (1.1)</td>
<td>-78</td>
<td>3</td>
<td>100</td>
<td>2.7:1</td>
<td>9.9:1</td>
</tr>
<tr>
<td>ZrCl4 (1.4)</td>
<td>-78</td>
<td>3</td>
<td>100</td>
<td>7.2:1</td>
<td>99:1</td>
</tr>
<tr>
<td>AlCl3 (1.0)</td>
<td>-78</td>
<td>3</td>
<td>60</td>
<td>1.5:1</td>
<td>4.2:1</td>
</tr>
<tr>
<td>EtAlCl2 (1.1)</td>
<td>-78</td>
<td>3</td>
<td>50</td>
<td>1.7:1</td>
<td>11:1</td>
</tr>
<tr>
<td>Et2AlCl (0.8)</td>
<td>0</td>
<td>6</td>
<td>100</td>
<td>6.5:1</td>
<td>15:1</td>
</tr>
<tr>
<td>Et2AlCl (1.4)</td>
<td>-78</td>
<td>2.5</td>
<td>100</td>
<td>17:1</td>
<td>50:1</td>
</tr>
</tbody>
</table>
work on the complexation of dialkylaluminum chlorides and amine bases, where similar phenomena were observed.115

![Complexation structure](image)

Some of the Lewis acid catalyzed Michael additions to α,β-unsaturated carbonyls can also be rationalized based on these models. For example, BF\textsubscript{3}-mediated additions of organocopper reagents to chiral α,β-unsaturated esters such as (−)-8-phenylmenthyl crotonate (35) occur with high levels of diastereoselectivity.116–118 The product stereochemistries for these reactions could be predicted by assuming the reactive conformation (36), which follows the basic structural tenets of model A (Figure 41).117

![Addition reaction](image)

Figure 41 BF\textsubscript{3}-mediated asymmetric Michael additions to chiral crotonates

The inventors of the chiral catalyst (38) for asymmetric 1,4-additions to α,β-unsaturated ketones119 have proposed the transition structure depicted in (40) as a possible model for the Lewis acid catalyzed 1,4-addition to cyclohexenone (Figure 42).120

![Transition structure](image)

Figure 42 A model for catalytic asymmetric 1, 4-addition to cyclohexenone
This model is consistent with the conformation found in the structure of Fp(cyclohexenone)BF₄95,97 and the similarities can be seen in Figure 42.119,120 Notice that the assumption that Lewis acid (Li+) coordination occurs \textit{syn} to the double bond is essential for mediation of attack on the \textit{re} face of the double bond. \textit{Anti} coordination (if all else is retained) would result in \textit{si} face addition.

Catalytic asymmetric induction in Diels–Alder reactions is somewhat more difficult to analyze based on these models. The chiral Lewis acids shown in Figure 43 all promote asymmetric Diels–Alder cycloaddition with variable degrees of enantioselectivity.121–128

\textbf{Figure 43} Chiral catalysts for asymmetric Diels–Alder reactions

Construction of useful structural models for these reactions, however, would require not only a full structural characterization of the Lewis acid, but also knowledge of the preferred conformation of the chiral ligands. In many cases the catalysts are generated \textit{in situ} and the stoichiometry or the aggregation state of the Lewis acid are not well defined. The latter point is particularly important since both titanium and aluminum alkoxides are known to form dimeric or polymeric species.129

The well-characterized aluminum Lewis acid (52) has been reported to catalyze hetero Diels–Alder reactions of aldehydes with high enantioselectivity (Figure 44).130

The model proposed for the reaction of simple aromatic aldehydes (54) places the Lewis acid \textit{syn} to the aldehydic hydrogen, consistent with the frequent observation of this preference in crystal structures of Lewis acid–aldehyde complexes (cf. Figures 19, 27 and 28).

Chiral lanthanide shift reagents (LSR) also promote asymmetric hetero Diels–Alder reactions (Figure 45).131–134 Lack of rigorous structural information regarding LSR/carbonyl interactions, however, does not allow meaningful speculation on the source of chirality transfer.

In addition, chiral dienes seem to exhibit a curious behavior in the presence of chiral LSRs (Table 9).131–134 Diastereoselection is highest when a ‘mismatched’ diene/catalyst pair is used. The researchers have proposed a novel ‘interactivity’ between the catalyst and the chiral auxiliary, the nature of which is at this point unclear.

1.10.7.2 Additions to Nonconjugated Carbonyls

The design of novel Lewis acidic reagents for additions to nonconjugated carbonyls, based on structural information, has attracted much attention in recent years. An excellent overview of this subject has recently appeared, in which the mechanistic aspects of and various models for carbonyl addition processes are highlighted.135 In particular, attention was directed towards the \textit{ab initio} treatment of solvation effects in additions to the carbonyl group.136,137 These calculations indicated that in the addition of water
Lewis Acid Carbonyl Complexation

Lewis acid R Product ee (%)

Eu(fod)₃ (-)-Methyl D-Pyranose 10
(+)-Eu(hfc)₃ Bu¹ L-Pyranose 42
(+)-Eu(hfc)₃ (+)-Methyl L-Pyranose 18
(-)-Eu(hfc)₃ (-)-Methyl L-Pyranose 86

or ammonia to formaldehyde, the intermediacy of a molecule of water in a six-membered transition state can considerably lower the transition energy, relative to a four-membered transition state (Figure 46).¹³⁵⁻¹³⁷

This seemingly simple result may have far reaching consequences. For example, it may help to explain the effect of added lithium salts in nucleophilic additions to cyclohexanones as discussed earlier in this chapter. Thus, model (63) shown in Figure 47²¹³⁵⁻¹³⁷ can explain the enhancement of rate and may also be relevant to the origins of stereoselectivity in this reaction. Of course, the exact location of the lithium atom and the aggregation state of the adding nucleophile are subject to speculation, since for lithium these parameters seem to be highly variable.
Nonstabilized Carbanion Equivalents

\[
\begin{align*}
\text{H} & \quad \text{H} \quad \text{H} \\
\text{H} & \quad \text{X} & \quad \text{H} \\
\text{H} & \quad \text{O} & \quad \text{H} \\
\end{align*}
\]

\(\xrightarrow{\text{H}_2\text{O}} \)

\[
\begin{align*}
\text{H} & \quad \text{H} \quad \text{H} \quad \text{H} \\
\text{H} & \quad \text{X} & \quad \text{H} & \quad \text{O} \\
\text{H} & \quad \text{O} & \quad \text{H} \\
\end{align*}
\]

\(\Delta E > -40 \text{ kcal mol}^{-1} \)

Figure 46 Four-membered versus six-membered transition states; role of a bridging catalyst

\[
\begin{align*}
\text{Bu}^1 & \quad \text{Me} \\
\text{S} & \quad \text{solvent} \\
\text{S} & \quad \text{Li} & \quad \text{X} \\
\end{align*}
\]

\(\xrightarrow{\text{MeLi, LiClO}_4} \)

\[
\begin{align*}
\text{O} & \quad \text{Me} \\
\text{Bu}^1 & \quad \text{Bu}^1 \\
\end{align*}
\]

Figure 47 A model for LiClO₄-mediated addition of MeLi to 4-\(\tau \)-butylcyclohexanone

It may be recalled that an opposite stereochemical result is obtained by employing the bulky aluminum reagents MAD and MAT. This observation has been explained by invoking out-of-plane complexation of the Lewis acid in a direction which would prevent equatorial attack (Figure 48). The X-ray crystal structure of methyl toluate complexed with a bulky aluminum Lewis acid is fully consistent with this model. However, it is worth mentioning that a six-membered transition state, perhaps involving [Me₂(ArO)Al]⁺Li⁺, has not been considered as an alternative mechanism.

\[
\begin{align*}
\text{Bu}^1 & \quad \text{Al} \\
\text{Me} & \quad \text{O} \\
\end{align*}
\]

\(\xrightarrow{\text{MAD, MeLi}} \)

\[
\begin{align*}
\text{Bu}^1 & \quad \text{Bu}^1 \\
\text{Me} & \quad \text{OH} \\
\end{align*}
\]

Figure 48 A model for MAD-mediated addition of MeLi to 4-\(\tau \)-butylcyclohexanone

It is more difficult to account for the remarkable anti-Cram selectivity observed in the MAT-mediated nucleophilic additions to \(\alpha \)-chiral aldehydes, although out of plane coordination may play an important role (Figure 49).
Chiral Lewis acidic catalysts derived from β-amino alcohols constitute a major field of recent development. These reagents have been used for enantioselective reduction of ketones and for dialkylzinc additions to aldehydes.

\[
\begin{align*}
\text{Ketone} & \quad \rightarrow \quad \text{Reduction Product} \\
\text{(68)} & \quad \text{(69; Cram)} + \quad \text{(70; anti-Cram)}
\end{align*}
\]

Figure 49: Anti-Cram addition of MeMgBr to α-phenylpropanal mediated by the bulky aluminum Lewis acid MAT.

The isolation and characterization of the reagent derived from the reaction of β-amino alcohols and borane accompanied the first report of a truly catalytic procedure for the enantioselective reduction of ketones. A representative example is shown in Figure 50. Based on 1H and 11B NMR spectroscopy, a six-membered, boat-like transition state model (73) was postulated.

Figure 50: Catalytic asymmetric reduction of ketones.

In this model the sense of asymmetric induction is controlled by two principle factors: (i) coordination of borane on the least-hindered face of the bicyclic ring system; and (ii) coordination of the Lewis acid \textit{syn} to the small group (R\textsubscript{s}). The latter point is in good agreement with the structural data that has been presented in this chapter, and is further supported by results from the asymmetric reduction of oxime ethers (Figure 51).

A very similar model can be invoked to explain the results of catalytic enantioselective dialkylzinc additions to aldehydes. The catalysts used in these reactions are invariably lithium- or zinc-centered Lewis acids. The transition structure shown in Figure 52 has been put forward by several groups and predicts the stereochemical outcome of many systems of this general type (83–89; Figure 53) quite nicely. In this model a dialkylzinc molecule is coordinated to a basic site (X) on the least-hindered face of the catalyst. The Lewis acidic metal can then deliver a molecule of aldehyde by coordination \textit{syn} to the aldehydic hydrogen. The assumption of a boat transition state can be justified by invoking Zn–O interactions along the reaction path and comparison with various zinc–alkoxide crystal structures (e.g. MeZnOMe).
Figure 51 Asymmetric reduction of oxime ethers

Figure 52 A model for catalytic asymmetric dialkylzinc additions to aldehydes
Two interesting features of these models include the presence of an acid/base pair for organization of a well-defined six-membered transition state, and the role of the asymmetry adjacent to the basic group (X), which determines the face selectivity of the reaction. Note that for some catalysts (i.e. 85 and 87) the ‘least-hindered’ site of coordination is not necessarily the convex face of a polycyclic system.

Lastly, the similarities between (73) and (82) suggest that these catalysts may be used interchangeably for reductions and dialkylzinc additions. Furthermore, the choice of small and large groups may not always be obvious. For example, in simple α,β-unsaturated ketones or in 1-chloroacetophenone the large group is not well defined. Enone (90) is reduced to the (R)-allylic alcohol upon treatment with one equivalent of borane and a catalytic amount of (91; Figure 54). Assuming that (73) is a valid transition structure, this result would suggest that the Lewis acid coordinates anti to the enone double bond, which, in light of the structural data, is somewhat surprising.

Figure 53 Chiral catalysts for asymmetric dialkylzinc additions to carbonyls

Figure 54 Catalytic asymmetric reduction of enones
In this particular substrate one should also consider other potential sites of coordination for boron, such as the ester or the lactone carbonyl, which may be considered more basic than the carbonyl of the ketone.

Recent reports by two groups propose two new and entirely different models for similar catalytic dialkylzinc additions. One of these assumes a pentavalent, pseudotrigonal bipyramidal zinc catalyst and the other purports transfer of the alkyl group from the carbonyl-bearing metal (Figure 55).

Structural evidence for these models has been gathered from X-ray crystal structures and, in the case of (94), from crossover experiments. Use of two different dialkylzinc reagents for the generation of the catalyst and the nucleophile gave a statistical mixture of possible products. This result is in contrast to the findings of another who found no crossover in a very similar system. It is interesting to note that model (94) essentially represents metal coordination to the \(\pi \)-face of the carbonyl as opposed to \(\sigma \)-bonding in all other models. Clearly, more mechanistic details are needed in order to identify the true mechanism of these reactions. This problem, however, is a good demonstration of a case where the validity of several plausible models cannot be discerned despite the availability of crystallographic and spectroscopic data.

The aldol reactions of isocyanoacetates and a variety of aldehydes proceeds with very high levels of asymmetric induction under the influence of catalytic amounts of a chiral Au\(^{I} \) complex (Figure 56). This remarkable transformation provokes speculation regarding the possible mechanism of catalysis and provides a challenge to model-building exercises. Although a crystal structure of an Au\(^{I} \)/carbonyl complex is not presently available, one may draw analogies with the isoelectronic, square planar Ni\(^{II}/\eta^{2}\)-benzaldehyde complex (Figure 56). Note that both the nickel and the gold compounds can be formally viewed as \(\delta^{2}\)-transition metal complexes with a preference for the square planar geometry. Accordingly, one may expect Au\(^{I} \) Lewis acids to form \(\eta^{2}\)-square planar complexes with carbonyls, although the presence of other bases (i.e. isocyanate, tertiary amines) may completely alter this bias. Thus, it should be emphasized that the proposed transition structure (95) is highly speculative and neither the orientation of the aldehyde nor the role and structure of the diamine linker can be predicted reliably.

1.10.8 CONCLUSIONS

Interactions of the carbonyl group with Lewis acids are colorful and varied, but by no means unpredictable. The structural information gathered in this chapter points, fairly consistently, to the same set of principles. 'Rules of complexation' such as coordination \(\text{syn} \) to the small substituent, \(s\text{-trans} \) preference due to gearing effects and distortions towards the \(\pi \)-cloud in response to steric strain are among these principles. Section 1.10.7 illustrated a few examples of how the predictive power of such structural rules have been applied to the design of novel and highly selective Lewis acidic catalysts.

In the context of future prospects in catalysis, transition metal complexes seem to provide a particularly diverse source of useful Lewis acids. Although the structural features of these complexes were not discussed extensively in this chapter, \(\eta^{2}\)-bonding seems unique to these complexes and warrants further exploration.

For the design of new reagents one would also like to understand the conformational changes of the carbonyl group upon complexation. The \(s\text{-trans} \) effect on unsaturated carbonyls is a clear example of such effects. More subtle, and perhaps more interesting, are the conformational consequences of Lewis
acid complexation for nonconjugated carbonyls. The relevance of these issues to the topic of chelation-controlled additions was discussed at length. Similar effects for nonchelating carbonyls, however, are completely unresolved, but one may hope to generate a coherent set of rules in these systems as well. Impressive achievements of the past and worthy rewards of the future provide a strong incentive to pursue this and other structural problems of Lewis acid–carbonyl complexation with vigor and optimism.

ACKNOWLEDGMENT

We thank Ms. Sally Jalbert for invaluable help with the preparation of this manuscript. Many helpful suggestions from Dr. Neville Anthony and Mr. Kurtis Macferrin are gratefully acknowledged.

1.0.9 REFERENCES

5. There are two different views on the effect of Lewis acids on the dipole moment of the carbonyl. For an interesting discussion see ref. 21.
322

Nonstabilized Carbanion Equivalents

22. See refs. 13 and 21.

62. S. Shambayati, unpublished results.

67. Heteronuclear NOE experiments provided evidence for the anti geometry in solution. Enhancement at the aldehydic (but not the phenyl) proton absorption was observed upon irradiation of the fluorine atoms, see ref. 67.

For an extensive discussion of this subject cf. ref. 84.

Nonstabilized Carbanion Equivalents

1.11
Lewis Acid Promoted Addition
Reactions of Organometallic Compounds

MASAHIKO YAMAGUCHI
Tohoku University, Sendai, Japan

1.11.1 INTRODUCTION

The importance of the Lewis acidic nature of organometals in addition reactions to C=X bonds (X = heteroatom) has been well documented. The complexation of organometallic compounds with C=X bonds is considered to be the origin of the promotion of the addition reactions and the generation of chemo-, regio- or stereo-selectivities. The complexation phenomena are discussed in detail in Chapter 1.10, of this volume. In reactions of simple organometals such as alkyl-magnesiums or -aluminums, a single organometallic species undertakes both of the tasks involved in the C-C bond formation process: complexation and nucleophilic attack. For example, reaction of benzophenone with Me₃Al in a 1:1 ratio is reported to give a monomeric 1:1 complex at room temperature, which decomposes to dimethylaluminum 1,1-diphenylethoxide at 80 °C (equation 1).²

\[\text{Ph} \overset{\text{O}}{\text{Ph}} + \text{Me}_3\text{Al} \rightarrow \text{Ph} \overset{\text{O} \cdot \text{Me}_3\text{Al}}{\text{Ph}} \rightarrow \text{Ph} \overset{\text{OAlMe}_2}{\text{Ph}} \] (1)

In recent years, a new type of addition reaction to C=X bonds is emerging in organic synthesis which utilizes a binary reagent system composed of a nucleophilic organometal and a Lewis acid. In contrast to the addition of simple organometals mentioned above, this new methodology assigns the task of the nucleophilic attack and the complexation to the two separate reagents. Consequently, the selection of an appropriate Lewis acid allows a modification of the nature of the C=X bonds through complexation,
Nonstabilized Carbanion Equivalents

which dramatically enhances the rate of organometal addition reactions, increases the yields, changes the regio- or stereo-selectivities and allows chemoselective reactions to be conducted in complex molecules possessing other sensitive functional groups. It should also be noted that the complexation of a Lewis acid with an organometal can modify the nature of the nucleophiles, for example by the ate complex formation, which offers another advantage of these reagent systems. The development of the binary reagents, especially that of effective Lewis acids, is one of the hot topics in contemporary organic synthesis. The synthetic aspects of these useful reagent systems will be reviewed here.

The addition reactions can be divided into two categories depending on the nature of the nucleophilic organometals employed: (i) the Lewis acid promoted addition reactions of relatively unreactive organometals such as alkyl-silanes, -stannanes, etc., where, although the reagents are stable and storable, they turn to highly reactive species in the presence of appropriate Lewis acids; and (ii) the Lewis acid promoted addition reactions of reactive organometals such as alkyl-lithiums, -mannesiums, etc., where, although the reagents themselves are generally capable of reaction with the electrophiles, the presence of the Lewis acids results in the variation of the reaction course. The present review deals with both of these categories with some emphasis on the latter.

Although these methodologies have proved to be quite useful in organic synthesis, the precise mechanisms are still not known in many cases because of the lack of mechanistic studies. The following can be presented as the candidates in the reaction of an \(R-ML^\text{n} \) system, in which \(R-ML^\text{n} \) represents the nucleophilic organometals and \(ML^\text{m} \) the Lewis acids: (i) the original organometallic compound \(R-ML^\text{n} \) attacks a \(C-X \) bond activated by a Lewis acid \(ML^\text{m} \); (ii) the ate complex \(ML^\text{n}+[RML]^- \) generated from \(R-ML^\text{n} \) and \(ML^\text{m} \) (equation 2), adds to a \(C=X \) bond; or (iii) a new organometallic species \(R-M'L^\text{m} \) formed by the transmetalation, which produces another Lewis acid \(ML^\text{n}+ \) (equation 3), reacts with a \(C=X \) bond.

\[
\begin{align*}
RML_n + ML_m & \rightarrow ML^n_+ \left[RML_m^-\right]^{-} \quad \text{(2)} \\
RML_n + ML_m & \rightarrow RML_{m-1} + ML_{m+1} \quad \text{(3)}
\end{align*}
\]

This chapter focuses the attention on the reactions of nonstabilized carbanionic compounds such as alkyl, vinyl, aryl, alkynyl metals, etc., and the chemistry of the stabilized system, i.e. allylic, propargylic or oxaallylic carbanions is presented in Volume 2 of this series. Electrophiles with \(C=X \) bonds which are discussed include aldehydes, ketones, epoxides, aziridines, acetals, orthoesters and imines, all of which turn into highly reactive electrophiles in the presence of Lewis acids.

1.11.2 LEWIS ACID PROMOTED REACTIONS OF ALDEHYDES AND KETONES

1.11.2.1 Control of the Reactivity

A classic example of a Lewis acid promoted addition reaction is that of organocadmiums to aldehydes or ketones.\(^3,4\) Despite the conventional use of the alkylcadmiums in the ketone synthesis from acid halides, organocadmium compounds add rapidly and efficiently to simple carbonyl compounds, provided that \emph{in situ} reagents prepared from Grignard reagents and cadmium halides are employed.\(^5,6\) Pure dialkylcadmiums show almost no reactivity towards ketones. However, addition of magnesium halides greatly increases the reactivity. These phenomena have been interpreted in terms of a prior complexation of the carbonyl group with \(MgX_2 \), followed by an attack of \(R_2Cd \) on the resultant complex. Magnesium halides promote addition reactions far more effectively than zinc, cadmium, lithium or aluminum salts (equation 4).\(^7\)

\[
\begin{align*}
R_2Cd+MgX_2 & \rightarrow R'OH \\
R & = \text{Me} & R' & = n-C_6H_{13} & 60\% \\
R & = \text{Me} & R' & = \text{Ph} & 60\% \\
R & = \text{Ph} & R' & = \text{Me} & 55\% \\
R & = \text{Ph} & R' & = \text{Bu}'' & 65\%
\end{align*}
\]

Organozinc reagents behave similarly. Reagents prepared \emph{in situ} from Grignard reagents and \(ZnBr_2 \), or reconstituted reagents from distilled \(R_2Zn \) and \(MgBr_2 \) react smoothly with aldehydes and ketones (equa-
Lewis Acid Promoted Addition Reactions of Organometallic Compounds

TiCl₄-promoted addition reaction of alkylzincs has also been developed. It is carried out by adding R₂Zn to a solution of the carbonyl component and TiCl₄. Another procedure, the addition of carbonyl compounds to a solution of R₂Zn and TiCl₄, is reported to be less effective (equation 6).¹⁰

\[R = Et \quad R' = Bu \quad 70\% \]
\[R = Et \quad R' = Et \quad 70\% \]
\[R = Ph \quad R' = Et \quad 70\% \]
\[R = Ph \quad R' = Bu \quad 50\% \]

(5)

\[\text{R=Et} \quad \text{R'=Bu} \quad 70\% \]
\[\text{R=Et} \quad \text{R'=Et} \quad 70\% \]
\[\text{R=Ph} \quad \text{R'=Et} \quad 70\% \]
\[\text{R=Ph} \quad \text{R'=Bu} \quad 50\% \]

(6)

\[\text{TMS-Cl or TMS-I, formed in situ, works as the promoter in addition reactions of zinc homoenolates (β-metallocarboxyl compounds), generated from 1-alkoxy-1-siloxytetrahydrofuran and ZnX₂ (equation 7). No reaction takes place with the purified zinc homoenolates. In contrast, titanium homoenolates are reactive enough to add to aldehydes in the absence of the Lewis acid promoter.}¹¹ \text{Related reactions of zinc esters with aldehydes in the presence of (PrO)₃TiCl have been reported (equation 8).}¹² \]

(7)

(8)

Organic synthesis utilizing the Group IVB organometals has been a growing field in the past decade.¹³ Various organo-silanes or -stannanes with activated carbon-metal bonds can be used in addition reactions to ketones and aldehydes. Although certain organostannanes add to carbonyls in the absence of the Lewis acid, the presence of the promoters dramatically enhances the rate and allows the reaction to be conducted under mild conditions. In the presence of TiCl₄, SnCl₄, AlCl₃, BF₃·OEt₂, TMSOTf, Me₃O⁺ BF₄⁻, TrClO₄, etc., allylation of aldehydes with allyl-silanes or -stannanes proceeds smoothly, and homoallylic alcohols are obtained in high yields.¹⁴,¹⁵ The Lewis acid promoted aldol reactions of silyl enol ethers are reviewed in Scheme 1.¹⁶
Organo-silanes and -stannanes possessing \(sp \) carbon-metal bonds also add to carbonyls in the presence of Lewis acids. Alkynylation with silyl- and stannyl-alkynes is promoted by \(\text{AlCl}_3 \) or \(\text{ZnCl}_2 \) (equations 9 and 10).\(^\text{17-19} \) Notably, the reaction of 1,3-bis(trimethylsilyl)-1-propyne with chloral affords alkylic alcohol instead of allenic alcohol, showing the preferential cleavage of \(sp \) C—Si bonds (equation 11).\(^\text{17} \)

\[
\begin{align*}
\text{O} \quad &+ \quad \text{Me}_3\text{Si} \equiv \text{SiMe}_3 \\
&\xrightarrow{\text{AlCl}_3} \\
&\text{R} \equiv \text{SiMe}_3 \\
\end{align*}
\]

\(R = \text{Et}, 67\%; \ R = \text{Pr}^t, 51\%; \ R = \text{n-C}_4\text{H}_{17}, 46\% \)

\[
\begin{align*}
\text{O} \quad &+ \quad \text{Bu}_3\text{Sn} \equiv \text{Ph} \\
&\xrightarrow{\text{ZnCl}_2} \\
\end{align*}
\]

Trialkysilyl cyanides, which also possess \(sp \) C—Si bonds, react with carbonyls.\(^\text{20} \) \(\text{ZnI}_2, \text{AlCl}_3, \text{TMSOTf}, \text{LnCl}_3 (\text{Ln} = \text{La, Ce, Sm}), \text{etc.} \) are employed as the promoter, and cyanohydrin silyl ethers are obtained in high yields even from hindered ketones (equation 12). The products are converted to various synthetically important intermediates such as cyanohydrins, \(\alpha,\beta \)-unsaturated nitriles or amino alcohols.

\[
\begin{align*}
\text{O} \quad &+ \quad \text{R}_2\text{SiCN} \\
&\xrightarrow{\text{Lewis acid}} \\
&\text{OSiR}_3 \\
\end{align*}
\]

Other organo-silanes and -stannanes are relatively inert, and addition reactions to aldehydes or ketones have been quite limited. However, there seems to be no reason why these organometals should not find applications in the future through the development of appropriate promoters. Actually, several examples appear in the literature. Aryl- or vinyl-silanes, which possess \(sp^2 \) C—Si bonds, add to chloral in the presence of \(\text{AlCl}_3 \) (Scheme 2).\(^\text{17} \) The intramolecular addition reactions of alkylstannanes to ketones proceed with \(\text{TiCl}_4 \) (equations 13 and 14).\(^\text{28,29} \)

\[
\begin{align*}
\text{SiMe}_3 \equiv \text{CCl}_3 \quad &+ \quad \text{Me}_3\text{Si} \equiv \text{SiMe}_3 \\
&\xrightarrow{\text{AlCl}_3, 80\%} \\
&\text{CCl}_3\text{CHO} \\
&\xrightarrow{\text{PhSiMe}_3, \text{AlCl}_3} \\
&\text{OSiMe}_3 \\
\end{align*}
\]

\(\text{Scheme 2} \)

\[
\begin{align*}
\text{O} \quad &+ \quad \text{n-C}_6\text{H}_{13} \equiv \text{SnMe}_3 \\
&\xrightarrow{\text{TiCl}_4, 70\%} \\
&\text{n-C}_6\text{H}_{13} \equiv \text{OH} \\
\end{align*}
\]

\[
\begin{align*}
\text{O} \quad &+ \quad \text{SnMe}_3 \\
&\xrightarrow{\text{TiCl}_4} \\
&\text{OR} \\
&\xrightarrow{63\%} \\
&\text{Cl} \\
\end{align*}
\]
In contrast to the inertness of alkyl-silanes and -stannanes, alkylplumbanes in the presence of TiCl₄ add to aldehydes. The effectiveness of BF₃ as the promoter eliminates the possibility of organotitanium species occurring as intermediates. Addition of R₂Pb to a mixture of an aldehyde and TiCl₄ is important, as clean reaction does not occur when the order of addition is reversed, i.e. addition of the aldehyde to a mixture of R₂Pb and TiCl₄. As the reagent reacts only with aldehydes and not with ketones, octanal can be butylated selectively in the presence of 2-octanone (equation 15).

\[R' = \text{Ph} \quad 96\% \\
R' = n-C₆H₁₃ \quad 98\% \\
R' = n-C₇H₁₅ \quad 88\% \\
R' = \quad 84\% \]

Alkylcoppers (RCu) were shown to add to aldehydes in the presence of BF₃·OEt₂ (equation 16).

Organolithiums are widely used nucleophiles in organic synthesis, and normally add to aldehydes and ketones smoothly. However, they sometimes fail to react for such reasons as the presence of sensitive functionalities, the deprotonation side reactions, steric hindrance, etc. One of the popular modifications of the alkyllithium reactions is the addition of magnesium salts. The coupling reaction of lithiated sulfones with enolizable aldehydes or ketones gives a low yield of β-hydroxy sulfones because of the deprotonation. The process is greatly improved by the presence of MgBr₂ (Scheme 3). The reaction is successfully employed in the total synthesis of zincomphorin (equation 17). A vinyllithium–MgBr₂ complex is used instead of vinyllithium in the synthesis of (-)-vertinolide (equation 18).

Lithium salts are also effective for promoting the organolithium or magnesium addition reactions. LiClO₄ was found to enhance the rate of MeLi or Me₂Mg addition to 4-r-butylcyclohexanone. Another example is shown in the reaction of 2-acetylpyridine with alkylolithiums, where added LiBr raises the yields of the adducts. This phenomenon is explained by the coordination of LiX to the carbonyl oxygen prior to the C–C bond formation.

Recently, BF₃ has also been found to be an effective promoter of organolithium reactions. At low temperatures, various organolithiums are able to coexist with the Lewis acid in solution without provoking transmetalation, which would give unreactive alkylboranes. Addition of lithiated sulfones to the enolizable aldehydes is carried out in the presence of BF₃·OEt₂ at -78 °C (Scheme 4). BF₃·OEt₂ promotes the reaction of the sterically demanding vinyllithium reagents with aldehydes (equation 19).

RLi·BF₃ reagents are finding wide use in organic synthesis, and further examples are shown in the following sections.
The complex reagents of organo-lithiums and -magnesiums with transition metal halides (TiCl₄, CrCl₃, UCl₄, MnI₂, CeCl₃, VCl₃, etc.) have been developed. Although the actual reacting species or the effect of the Lewis acids is not fully clear, they provide unique and useful methodologies in organic synthesis.

The chemistry of organotitanium reagents has been explored by Reetz, Weidmann and Seebach. The MeLi-TiCl₄ system provides a nonbasic reagent which reacts chemo- and stereo-selectively. Nitro,
Lewis Acid Promoted Addition Reactions of Organometallic Compounds

\[
\begin{align*}
\text{RCHO} + \text{R}^3\text{SiLi} & \rightarrow \text{R}^3\text{Si} + \text{HO} \\
\text{BF}_3\text{OEt}_2 & \\
\text{R} = \text{Ph}, 47\%; \text{R} = \text{ }, 40\%; \text{R} = \text{ }, 60\%
\end{align*}
\]

cyano or ester groups do not interfere with the carbonyl addition. The reaction proceeds smoothly with enolizable ketones without proton abstraction (Scheme 5).

\[
\begin{align*}
\text{X-CHO} & \rightarrow \text{X-H} \\
\text{X} = \text{CO}, 83\%; \text{X} = \text{CN}, 86\%; \text{X} = \text{NO}, 85\%
\end{align*}
\]

Organochromium reagents generated from alkyl-lithiums or -magnesiums and CrCl\textsubscript{3} react with aldehydes selectively in the presence of ketones (equation 20).

\[
\begin{align*}
\text{RLi-UC} & \rightarrow \text{X-CHO} \\
\text{MeLi, TiCl}_4 & \\
\text{X} = \text{CO}, 83\%; \text{X} = \text{CN}, 86\%; \text{X} = \text{NO}, 85\%
\end{align*}
\]

Organometallic compounds react with aldehydes at \(-50 \degree C\), while ketone addition occurs only at higher temperatures (Scheme 6).
Nonstabilized Carbanion Equivalents

\[
\text{R} = \text{Bu}^\text{n}, 90\%; \text{R} = \text{Ph}, 86\%; \text{R} = \text{Pr}^\text{aC} = \text{C}, 82\%; \text{R} = \text{h}, 68\%
\]

Scheme 6

RLi–CeCl₃ is an effective alkylating reagent for easily enolizable ketones, which give very low yields of the adducts with alkyl-lithiums or -magnesiums. Selective 1,2-addition reactions with α,β-unsaturated ketones can be conducted with the cerium reagents (Scheme 7).

Scheme 7

The reactions of RLi–VCl₃ or RMgX–VCl₃ with aldehydes result in oxidative carbon–carbon bond formation, affording ketones. Since a lithium alkoxide is converted to a ketone in the presence of VCl₃, the vanadium(III) species is considered to work as an oxidant (Scheme 8).
1.11.2.2 Control of the Stereoselectivity

The stereochemistry of organometal additions to cyclic ketones has been extensively studied using various alkyl metals. The results are used to gain knowledge concerning the solution state of the particular organometals and to explore the driving force behind the steric course of the addition.

Addition to cyclohexanones is considered to be influenced by two factors: (i) the steric interaction of the incoming groups with 3,5-axial substituents; and (ii) the torsional strain of the incoming groups with 2,6-axial substituents. Steric strain hinders axial attack, whereas torsional strain hinders equatorial attack. The actual stereochemistry of the addition depends upon which factor is greater in a particular case. The production of the desired isomer in high stereoselectivity is required from the synthetic point of view.

In a large number of studies on the addition reactions to 4-tert-butylcyclohexanone, acceptably high selectivities have been attained with only a limited number of methods. Selective equatorial attack is obtained with bulky nucleophiles, since steric interactions of the incoming bulky reagents with 3,5-axial hydrogens outweigh torsional effects. For example, Bu'MgBr gives the axial alcohol exclusively. Similarly, MeTi(OPr')₃, which possesses bulky ligands, is superior to MeLi for equatorial attack.

The use of organometal-Lewis acid complex reagents is quite effective in controlling the axial–equatorial problem, since the reaction course can be modified by the Lewis acid complexation to carbonyl oxygen. Although MeLi showed a low selectivity in the addition to 4-tert-butylocyclohexanone, the presence of an appropriate Lewis acid dramatically enhances either equatorial or axial attack. The MeLi-Me₂CuLi reagent shows a high tendency to deliver a methyl moiety from an equatorial site. A high equatorial selectivity as well as a considerable rate enhancement is also observed with the MeLi-LiClO₄ reagent, and the results are interpreted as the complexation of Li⁺ to carbonyl followed by the addition of MeLi (Figure 1).

Axial attack has been rather difficult to attain. The treatment of the ketone with 3 equiv. of Me₃Al has been known to give equatorial alcohol predominantly, although low selectivity was obtained using 1 equiv. of reagent. Methylation of the Me₃Al-complexed carbonyl was suggested. This methodology, however, was not applicable to ethyl- or butyl-aluminum because of the competitive carbonyl reduction.

A selective axial attack is achieved by employing bulky organoaluminum ligands; methylaluminum bis(2,6-di-tert-butyl-4-methylphenoxide) (MAD) or methylaluminum bis(2,4,6-tri-tert-butylphenoxide) (MAT). Treatment of carbonyl compounds with the aluminum reagents prior to alkyllithium or Grignard addition gives equatorial alcohols in high selectivities. Various alkyl groups can be introduced by this reaction (Figure 1). Since addition of ketones to a mixture of MeLi and MAD resulted in low selectivity, the possibility of the ate complex Li⁺ [Me.MAD]⁻ as the reactive intermediate was excluded. Preferential formation of the sterically favored isomer (1b) rather than the alternative (1a) was suggested for the transition state (Figure 2).

Similar tendencies are observed with other cyclic ketones. With 2- or 3-methylcyclohexanone, MeLi-LiX (X = CuMe₂, ClO₄) or MeTi(OPr')₃ favors equatorial attack, whereas Me₃Al (3 equiv.), MeLi-MAT, or MeLi-MAD attacks from the axial site (Figure 3).

In relation to the synthesis of chain molecules with a series of asymmetric centers, macrolides or polyether antibiotics, asymmetric induction in the addition reactions of organometals to chiral aldehydes...
Nonstabilized Carbanion Equivalents

![Chemical structures](image)

Figure 2

![Chemical structures](image)

Figure 3

has been extensively studied. In the following part, Cram/anti-Cram selectivity, and the chelation/nonchelation problem is discussed.

Addition to chiral aldehydes which have no additional functional group capable of interacting with metal species is governed by electronic and/or steric factors. Of several mechanistic rationalizations provided since Cram, the Felkin model best agrees with the prediction based on ab initio calculations. In this model, M and S represent medium and small groups, respectively, attached to the chiral α-carbon, and L represents either the largest group or the group whose bond to the α-carbon provides the greatest σ*-π* overlap with the carbonyl π* orbital. A nucleophile approaches from the opposite side of the L group (Figure 4). Although the selectivity of this type of reaction had not previously been very high, the Lewis acid promoted addition methodologies succeeded in attaining high Cram selectivities, or even anti-Cram selectivities (equations 21 and 22).

MeLi-TiCl₄ or PbEt₄-TiCl₄ reagents show high Cram selectivities in addition reactions to 2-phenylpropanal. An explanation was presented by Heathcock for the selectivities achieved by the Lewis acid promoted additions compared to simple organometal additions. In the latter cases, a trajectory is followed that brings the nucleophiles closer to H rather than to R*, and asymmetry in R* is transferred.

![Chemical structures](image)

Figure 4
Lewis Acid Promoted Addition Reactions of Organometallic Compounds 335

\[
\begin{align*}
\text{PhCHO} + R^- & \rightarrow \text{PhCHO} \\
\text{MeTi(OPr')}_3 & : 93:7 \\
\text{MeLi-TiCl}_4 & : 90:10 \\
\text{PbEt}_4-TiCl_4 & : 93:7 \\
\text{MeLi-K[2.2.1]} & : 9:1 \\
\text{Bu}_2CuCNLi_2-15\text{-crown-5-BF}_3 & : 8-10:1 \\
\end{align*}
\]

(21)

\[
\begin{align*}
\text{PhCHO} + R^- & \rightarrow \text{PhCHO} \\
\text{MeMgI-MAT} & : 93:7 \\
\text{EtMgBr-MAT} & : 87:13 \\
\text{Bu}_2CuLi-K[2.1] & : 5:1 \\
\end{align*}
\]

(22)

imperfectly. When a Lewis acid coordinates with an aldehyde occupying the position \textit{syn} to H,63 the nucleophile may be forced to approach the carbonyl plane in a perpendicular fashion, resulting in greater stereoselectivity (Figure 5).64

\[\text{Nu} \quad \text{Nu} \]
\[\text{R}^* \quad \text{Y} \]
\[+ \quad \text{BF}_3 \]

Figure 5

The presence of crown ethers was found to enhance the Cram selectivity. The MeLi/18-crown-6 reagent system shows a similar level of selectivity to the above reagents, and BuLi/15-crown-5 and allyl-lithium/18-crown-6 add to 2-phenylpropanal in Cram fashion almost exclusively.65 Since a bulky reagent MeTi(OPr')\textsubscript{3} also exhibits a high Cram selectivity,57 the bulkiness of the RLi-crown ether reagent might be one of the important factors which control the selectivity. Interestingly, R\textsubscript{2}CuCNLi\textsubscript{2}-crown ether-BF\textsubscript{3} reagent also shows Cram selectivity.66

Stannyalkynes in the presence of TiCl\textsubscript{4} react with a steroidal aldehyde in a highly Cram selective manner. The use of lithium derivatives gives 1:1 mixtures of two diastereomers (equation 23).67

Recently it has been reported that the addition of Grignard reagents to MAT or MAD complexed aldehydes results in anti-Cram products in high stereoselectivities. Formation of a sterically least hindered complex and subsequent attack of the organometal from the opposite site to the bulky ligand is suggested by Yamamoto (Figure 6).60,61 The R\textsubscript{2}CuLi-crown ether system is also reported to show anti-Cram selectivities. An electron transfer mechanism has been suggested for this reaction.65

Although the stereochemistry of the organometal addition reactions to carbonyls with \(\alpha\)-alkyl (typically \(\alpha\)-methyl) substituents is explained mostly by the Felkin–Ahn model, different phenomena are observed with \(\alpha\)-alkoxy- or \(\alpha\)-hydroxy-carbonyls, which make the opposite \(\pi\)-face sterically more
accessible. In such cases, Cram’s cyclic model pertains, which assumes a chelation of the metal species between the carbonyl oxygen and the α-oxygen atom (chelation control).

Systematic studies on the chelation-controlled additions were carried out, varying the type of alkoxy group, the carbon nucleophile, the solvent and the temperature. It was found that α-alkoxy ketones react highly stereoselectively with Grignard reagents in THF (equation 24). Alkyllithiums were not effective. The generalization was made use of in the synthesis of the polyether antibiotic monensin.

The high levels of 1,2-asymmetric induction observed with ketones did not extend to aldehydes. However, Asami and coworkers achieved it by pretreating α-alkoxy aldehydes with ZnBr₂. The reaction is used in the synthesis of exo-(+)-brevicomin and L-rhodinose (Scheme 9). Chelation-controlled addition of a Lewis acidic reagent Me₃TiCl₃ is and a chelation intermediate is actually detected by low temperature NMR techniques (equation 25). A ‘tied-up’ method, which involves the precomplexation of α-alkoxy aldehydes with a Lewis acid and addition of soft C-nucleophiles, shows a high level of asymmetric induction. SnCl₄ and TiCl₄, capable of forming six-coordinate octahedral complexes, are well suited. R₂Zn, TMS-CN, allylsilanes or silyl enol ethers are employed as the nucleophiles (equation 26).

In order to obtain the other isomer in addition reactions to α-alkoxy aldehydes, reagents incapable of chelation must be used, and electronic and/or steric factors relied upon (nonchelation control). Treatment of α-alkoxy aldehydes with an excess of gaseous BF₃ followed by silyl enol ethers results in the nonchelation-controlled adducts. Formation of a rigid conformation due to electronic repulsion is expected (equation 27). BF₃·OEt₂ is reported to be considerably less efficient. The use of RTi(OPr)₃, which...
Lewis Acid Promoted Addition Reactions of Organometallic Compounds

\[
\begin{align*}
\text{CHO} & \quad \xrightarrow{\text{RMgBr, ZnBr}_2} \quad \text{OH} \\
\text{O} & \quad \text{Bn} & & \text{Bn} \\
\text{CHO} & \quad \text{MeMgBr, ZnBr}_2 & \quad \text{OH} \\
\text{O} & \quad \text{Bn} & & \text{Bn} \\
\text{CHO} & \quad + & \quad \text{MgBr} & \quad \text{ZnBr}_2 & \quad \text{OH} \\
\text{O} & \quad \text{Bn} & & \text{Bn} \\
\end{align*}
\]

\[
\text{R = Me} \quad \text{29:1} \\
\text{R = Bu}^n \quad \text{71:1} \\
\text{R = Ph} \quad \text{>30:1}
\]

\[
\begin{align*}
\text{BnO} & \quad \text{CHO} & \quad \text{MeTiCl}_3 & \quad \xrightarrow{} & \quad \text{BnO} & \quad \text{OH} & \quad \text{BnO} & \quad \text{OH} \\
\text{CHO} & \quad \text{TiCl}_4 & \quad \text{RM} & \quad \xrightarrow{} & \quad \text{BnO} & \quad \text{R} & \quad \text{BnO} & \quad \text{R} \\
\text{CHO} & \quad \text{Bu}_n^2\text{Zn} & \quad \text{Me}_3\text{SiCN} & \quad \text{SiMe}_3 & \quad \text{O} & \quad \text{SiMe}_3 & \quad \text{Ph} \quad \xrightarrow{} & \quad \text{BnO} & \quad \text{R} & \quad \text{BnO} & \quad \text{R} \\
\text{CHO} & \quad 90 : & \quad 10 \\
\text{CHO} & \quad 80 : & \quad 20 \\
\text{CHO} & \quad 93 : & \quad 7 \\
\text{CHO} & \quad 96 : & \quad 4 \\
\end{align*}
\]

are weakly Lewis acidic and incapable of chelation, provides another method for nonchelation-controlled addition (equation 28).\(^{57}\)

Novel nonchelation phenomena are observed with a steroidal \(\alpha\)-hydroxy aldehyde. The reaction of a lithium or magnesium alkynide with the aldehyde gives the \((20R,22R)\)-diastereomer predominantly, the formation of which was explained by Cram's cyclic model. When BF\(_3\)OEt\(_2\) is added to the lithium alkynide prior to the addition of the aldehyde, the stereoselectivity is inverted, and the \((20R,22S)\)-isomer is obtained as the principal product. Transformation of \(\alpha\)-alkoxy aldehyde to the boron 'ate' complex is suggested. Other Lewis acids, such as B(OMe)\(_3\), AlCl\(_3\), etc., are less effective (equation 29).\(^{80}\)

Organometal addition reactions to \(\alpha,\beta\)-dihydroxy aldehyde derivatives have been extensively studied in relation to the stereoselective synthesis of sugar derivatives. Protecting groups play an important role in the chelation/nonchelation problem. With a benzyl protecting group at the \(\alpha\)-oxygen, similar behavior to simple \(\alpha\)-alkoxy aldehydes is observed. TiCl\(_4\)- or SnCl\(_4\)-promoted reactions of organo-silanes, -plum-
Nonstabilized Carbanion Equivalents

\[
\text{CHO} \quad \text{BF}_3 \rightarrow \quad \text{BnO} \\
\]

\[
\text{Nu} = \text{CH}_2\text{COBu}^1, 90:10; \text{Nu} = \text{CMe}_2\text{CO}_2\text{Me}, 84:16
\]

\[
\text{CHO} \quad \text{MeTi(OPr)}_3 \rightarrow \quad \text{BnO} + \text{BnO} \\
\]

92:8

\[
\text{CHO} + \text{Li} \rightarrow \quad \text{BnO} \\
\]

BF\text{\textsubscript{3}}OEt\text{\textsubscript{2}} 40% (s)

(S) only at C-22

banes or -zincs give chelation-controlled addition products, while BF\textsubscript{3} reverses the selectivity. Bulky RTi(OPr\textsubscript{3})\textsubscript{3} also shows nonchelation selectivities (Scheme 10).81-83 RCu-MgBr\textsubscript{2} reagents are reported to be superior to RLi or RMgX in conducting chelation-controlled addition to an \(\alpha,\beta\)-dibenzylxyloxyl aldehyde (equation 30).83

\[
\text{Bu}^\text{t}\text{Me}_2\text{SiO}-\text{CHO} \quad \text{RM/Lewis acid} \rightarrow \quad \text{Bu}^\text{t}\text{Me}_2\text{SiO} + \text{Bu}^\text{t}\text{Me}_2\text{SiO} \\
\]

\[
\text{Me}_2\text{Zn/TiCl}_4 \quad 96 : 4 \\
\text{Me}_3\text{SiCN/SnCl}_4 \quad 85 : 15
\]

\[
\text{CHO} \quad \text{MeTi(OPr)}_3 \rightarrow \quad \text{R} + \text{R} \\
\]

<7:93

\[
\text{Bu}^\text{t}\text{Me}_2\text{SiO}-\text{CHO} \quad \text{SiMe}_2\text{Bu}^1, \text{Bn} \rightarrow \quad \text{Bu}^\text{t}\text{Me}_2\text{SiO} + \text{Bu}^\text{t}\text{Me}_2\text{SiO} \\
\]

19:81

\[
\text{CHO} \quad \text{RCu+MgBr}_2 \rightarrow \quad \text{BnO} + \text{BnO} \\
\]

>93:7

Scheme 10
In contrast to the α-alkoxy aldehydes, acetonide-protected α,β-dihydroxy aldehydes generally exhibit nonchelation selectivities in simple organometal addition reactions and the Lewis acid promoted reactions. The presence of ZnX₂ was found to enhance the selectivity of furyllithium addition to acetonide aldehydes (Scheme 11). ZnX₂ is more efficient than SnCl₄ or MgBr₂. Notably, ZnX₂ enhances both nonchelation and chelation selectivity, depending on the protecting groups (cf. Scheme 9). The reaction is employed in the synthesis of the rare sugars L-tagatose and D-ribulose. These peculiarities of acetonide aldehydes are explained by the inhibition of chelation formation, since a Felkin–Ahn type transition state predominates as a consequence of: (i) the significant ring strain which develops in the chelate structure; (ii) the depressed donor abilities of the acetonide oxygen due to inductive electron withdrawal; and (iii) the steric inhibition to chelate formation due to nonbonded interaction between the metal ligands and the acetonide methyl group. Another explanation has been made which attributes the selectivity to a chelation between the β-oxygen and the carbonyl oxygen (Scheme 11).

An exception to the general rule regarding nonchelation stereoselectivities of acetonide aldehydes has been published. RÇu.MgBr₂ in THF adds to 2,3-O-isopropylideneglyceraldehyde to give chelation products. In ether the reagent shows almost no selectivity (equation 31).

Addition of organometallic compounds to α,β-epoxy aldehydes gives predominantly nonchelation-controlled adducts. Grignard reagents or allylstannanes in the presence of BF₃.OEt₂ give good results (equation 32).
A high level of 1,3-asymmetric induction was achieved by the assistance of a Lewis acid. Complexation of a β-alkoxy aldehyde with TiCl₄ followed by addition of Bu₂Zn, allylsilane or silyl enol ethers at -78 °C results in chelation-controlled products in >85% selectivities (Scheme 12).⁷⁷,⁷⁹ Even a considerable level of 1,4-asymmetric induction is observed with the Me₂Zn-TiCl₄ system (equation 33).⁷⁴

Erythro/threo selectivity in the reactions of crotyl-type organometals with aldehydes (simple diastereoselectivity) is markedly influenced by the presence of a Lewis acid. Crotyltitanium reagents react with aldehydes to afford _threo_ adducts preferentially,⁹⁰ while _erythro_ isomers are obtained in high selectivity by the addition of the organometal to a mixture of an aldehyde and BF₃·OEt₂.⁹¹ A pericyclic transition state is assumed for the former, and an open-chain transition state, in which the nucleophile attacks the BF₃-complexed aldehyde, is suggested for the latter (Scheme 13). A similar reversal of the diastereoselectivity was reported in the reactions of crotyl CuI, Cd, HgI₂, TlI, ZrCp₂Cl and VCP₂Cl.⁹² The mechanistic aspects of the Lewis acid promoted addition reactions of allyl-stannanes or -silanes have been studied in detail.⁹³ Configurationally defined α-alkoxy lithium is readily accessible from the corresponding organostannanes, and the addition to aldehydes has been examined. _syn_1,2-Diol derivatives are obtained predominantly in the presence of MgBr₂. Enantiofacial discrimination is considered to result
Lewis Acid Promoted Addition Reactions of Organometallic Compounds

\[
\text{Scheme 13}
\]

from the unfavorable interaction which is absent in the transition state (2a), although the stereoregulating effect of the metal salt remains unclear (Scheme 14).\(^4\)

\[
\text{Scheme 14}
\]

Although lithiated 1,2,3,4-tetrahydroisoquinoline reacts with aldehydes with little diastereoselectivity, the presence of MgBr\(_2\) dramatically enhances the selectivity. \(l\)-Isomers are obtained from 2-pivaloyl-1,2,3,4-tetrahydroisoquinoline in \(\geq 97\%\) \(\text{de}\), and a \(u\)-isomer predominantly from a formamidine.\(^5\) In the latter case, an organomagnesium reagent (3) formed by transmetalation was shown to be the reactive intermediate (Scheme 15).\(^6\)

Stereoselectivity in the addition of \(\alpha\)-lithiated \((R)\)-methyl-p-tolyl sulfoxide to aromatic aldehydes is enhanced from 1:1 to 4:1 by the presence of ZnCl\(_2\) (equation 34).\(^7\)

Chiral organotitanium reagents generated from aryl Grignards transfer aryl groups to aromatic aldehydes with high enantiofacial selectivity. The use of aryllithium resulted in lower selectivity indicating the important role of MgX\(_2\) in the asymmetric induction (equation 35).\(^8\)

Tomioka found that, by the pretreatment of benzaldehyde with 2,4,6-Me\(_3\)C\(_6\)H\(_2\)OAlCl\(_2\), the enantiofacial addition reaction of an RMgBr–chiral diamine complex led to carbinols with considerably higher optical purities. Steric modification of the benzaldehyde carbonyl by the complexation of the aluminum...
Nonstabilized Carbanion Equivalents

![Scheme 15]

Scheme 15

1.1.3 LEWIS ACID PROMOTED REACTIONS OF EPOXIDES

Although nucleophilic ring opening of epoxides with organometals is a well-documented technology in organic synthesis, the reaction sometimes fails to occur due to the unreactiveness and the facile
isomerization of the electrophile. The presence of an appropriate Lewis acid, notably BF$_3$, greatly promotes the C—C bond cleavage.

Alkynylation of oxiranes or oxetanes with lithium alkynides is effectively carried out in the presence of BF$_3$·OEt$_2$ at -78 °C. The use of BF$_3$ gives better results than TiCl$_4$, SnCl$_4$ or AlCl$_3$. The reaction takes place stereospecifically with anti opening, and the attack generally occurs at the less hindered site. Several functional groups such as halogens, acetals or certain esters survive the reaction conditions (Scheme 16).

A novel regioselectivity is observed with trans-2,3-epoxy alcohols. The C-1 attack of 1,2-epoxy alcohol formed by the Payne rearrangement proceeds predominantly, and anti-β-γ-dihydroxyalkynes are obtained stereospecifically (equation 37). The reaction is employed in the synthesis of a pheromone, erythro-6-acetoxyhexadecan-5-olide.

![Scheme 16](image)

The mechanistic aspects of this Lewis acid promoted reaction have been examined by low temperature NMR studies, and reaction of the lithium alkynides with the Lewis acid activated epoxides is indicated. The order of the addition of the reagents does not affect the product yields provided that the reaction is carried out at -78 °C; addition of BF$_3$·OEt$_2$ to a mixture of an epoxide and an alkynide or addition of an epoxide to a mixture of an alkynide and BF$_3$·OEt$_2$ are both possible. The transmetalation between RLi and BF$_3$ which produces unreactive organoboron compounds is shown to be very slow at this temperature.

The alkynylation reactions have been applied to polyfunctionalized molecules (Scheme 17) and have proved to be quite useful in natural product synthesis.

The use of Me$_3$Ga allows a catalytic mode of the reaction to be carried out (equation 38).

Related syntheses using a variety of organolithium compounds have also been developed. Alkyl-, vinyl- or phenyllithiums in the presence of BF$_3$·OEt$_2$ give the oxirane and oxetane opening products in high yields (equation 39). Enolate-type nucleophiles can also be employed for this purpose (Scheme 18).

The reaction rates of organocopper and cuprate reagents with less reactive epoxides are enhanced by the presence of BF$_3$·OEt$_2$. R$_2$CuCNLi—BF$_3$ reagents are especially effective, and even mesitylation or t-butylation of cyclohexene oxide can be carried out in high yields. Similar stereo- and regio-chemical features with RLi—BF$_3$ reagents — anti opening and attack at the less hindered site — are observed. The order of the addition of reagents again does not affect the yields of the products. The cleavage of sterically hindered epoxysilanes was carried out with the cuprate—BF$_3$ reagent, and applied to the synthesis of pheromones (Scheme 19). Aziridines are cleaved effectively with R$_2$CuLi in the presence of BF$_3$·OEt$_2$ (equation 40).

A novel stereoselectivity is observed in the Lewis acid mediated S$_N$2'-type reactions of an epoxy-cycloalkene and methylating reagents. Syn attack occurs with MeLi—LiClO$_4$ in high selectivity, and exclusive anti attack with MeCu—Me$_3$Al. Chelation of MeLi to the epoxide or to the epoxy—LiClO$_4$ complex is suggested for the former, while attack of MeCu on the Me$_3$Al-coordinated epoxide from the less hindered site is presumed for the latter. The use of MeLi gives a mixture of several compounds (Scheme 20).

Lewis acid promoted ring opening of oxiranes with organo-silanes or -stannanes is reported. TMS-CN cleaves the C—O bond in the presence of AlCl$_3$, Et$_2$AlCl, Ti(OPr)$_4$, or LnX$_3$, and β-hydroxy-
Nonstabilized Carbanion Equivalents

$$\text{O} + \text{Li} + \text{Et} \rightarrow \text{MeO} + \text{Et}$$

$$\text{OBz} + \text{Li} + \text{Pr}^{3}\text{SiO} \rightarrow \text{MeO} + \text{Pr}^{3}\text{SiO}$$

$$\text{TsO} + \text{Et} \rightarrow \text{Et}$$

Scheme 17

$$\text{O} + \text{R} + \text{Li} \rightarrow \text{R}$$

$$\text{OSiPh}_{2}\text{Me} \rightarrow \text{R}$$

$$R = \text{Bu}^{t}, 95\%; R = \text{Ph}, 85\%; R = \text{CH}═\text{C(Me)}\text{OEt}, 99\%$$
Lewis Acid Promoted Addition Reactions of Organometallic Compounds

Lewis Acid Promoted Addition Reactions of Organometallic Compounds

nitriles are obtained. With aluminum catalysts, propylene oxide is cyanated at the less hindered site, while attack at the more hindered site proceeds with isobutene oxide. Apparently, the cationic nature of the Lewis acid coordinated epoxide plays an important role in the latter case (Scheme 21). Ti(OPr')₄ promotes the reaction of TMS-CN or KCN with 2,3-epoxy alcohols, C-3 attack predominating over C-2 attack (equation 41). Organostannanes with unactivated C—Sn bonds alkylate epoxides intramolecularly in the presence of TiCl₄, and cyclopropyl alcohols are obtained (Scheme 22).

1.1.4 LEWIS ACID PROMOTED REACTIONS OF ACETALS

Acetals are quite unreactive towards simple organometallic compounds and have been employed as a convenient protecting group. However, they turn into highly reactive species in the presence of Lewis
Acids. Aldol reactions with silyl enol ethers16 and allylations with allylsilanes,14 which utilize stabilized carbanionic species, have been extensively investigated in the past decade.

In recent years, nonstabilized carbanions have also been used in this type of reaction. The earliest example is the combination of an organomagnesium compound and TiCl\textsubscript{4} developed by Mukaiyama. Alkyl Grignard reagents react with \(\alpha,\beta\)-unsaturated acetals activated by TiCl\textsubscript{4} at the \(\alpha\)-position to give allylic ethers (equation 42). PhMgBr, on the other hand, gives \(\gamma\)-addition products.125 Although normal alkyl acetals of aromatic and aliphatic aldehydes are unreactive towards RMgX–TiCl\textsubscript{4}, reactive acetals give the corresponding products. For example, 2-alkyltetrahydropyrans are synthesized from 2-(2,4-dichlorophenoxy)tetrahydropyran (equation 43).126,127 Reactions of RMgBr–BF\textsubscript{3} with \(N,O\)-acetals have also been reported, which give amines by the preferential cleavage of the C—O bond (equation 44).128
Lewis Acid Promoted Addition Reactions of Organometallic Compounds

Organolithium compounds also react with acetics or orthoesters in the presence of BF3·OEt2. Dialkoxymethylations of lithiun enolates with triethyl orthoformate are carried out by adding BF3·OEt2 to the mixture (equation 45). Prior mixture of an enolate and the Lewis acid results in a drastic decrease of the product yield. Lithiun enolates are generated from silyl enol ethers and MeLi, and C—C bond formation proceeds regiospecifically with respect to the enolates. The condensation is applicable to a fully substituted enolate.129 Butenolide anions add to acetics or orthoesters pretreated with BF3·OEt2 at the C-5 position (equation 46).130

The association of BF3 with organocopper and cuprate reagents greatly increases the reactivity towards acetics (equation 47). The reaction can be carried out by either of the following procedures with the same experimental results: (i) copper reagents are premixed with BF3·OEt2 at −78 °C and the electrophile is added, or (ii) copper reagents are premixed with the electrophile and BF3·OEt2 is added. These procedures can also be applied to α,β-unsaturated acetics, giving allylic ethers. In the case of tetrahydropyranyl acetal, ring-opening products are obtained exclusively, in contrast to the reaction of RMgX—TiCl4, which gives 2-alkyltetrahydropyrans (cf. equation 43). Orthoesters are more susceptible to the Lewis acid promoted reactions.131

In the presence of a Lewis acid such as SnCl2, BF3·OEt2,132–134 or TiCl4,135 TMS-CN reacts with ace- tals to give cyanohydrin ethers. D-Ribofuranosyl cyanide, an important intermediate of C-nucleoside synthesis, is prepared from a furanosyl acetate (Scheme 23).133

Acetics prepared from chiral diols and carbonyl compounds serve as a chiral synthetic equivalent of aldehydes or ketones. 1,3-Dioxanes synthesized from chiral 2,4-pentanediols are especially useful, and high asymmetric inductions are observed in the Lewis acid promoted reactions of a variety of organometallic compounds. After the removal of the chiral auxiliary by the oxidation and β-elimination procedures, optically active alcohols are obtained. Optically active propargylic alcohols and cyanohydrins are synthesized from organosilane compounds, TMS-C≡CR or TMS-CN in the presence of TiCl4 (Scheme 24).136–138 Reactive organometals such as alkyl-lithiums, -magnesiums or -coppers also react with chiral
Nonstabilized Carbanion Equivalents

Scheme 23

Scheme 24

acetals activated by TiCl4 or BF3 (Scheme 25). An S_N2-like transition state, which relieves 1,3-diaxial interaction between hydrogen and the axial methyl group by a lengthening of a C⁻O bond, has been proposed by Johnson for the interpretation of the highly asymmetric induction (Figure 7).

Scheme 25
1.11.5 LEWIS ACID PROMOTED REACTIONS OF IMINES

Compared with aldehydes and ketones, aldimines and ketimines are less reactive towards nucleophilic addition. Furthermore, imine additions are subject to steric constraints, and rapid deprotonation proceeds with imines bearing α-hydrogen atoms. The Lewis acid promoted addition methodology has provided a solution to these problems.

In the presence of MgX_2, organo-cadmium and -zinc compounds add smoothly to imines derived from aromatic aldehydes and arylamines. Yields are very low with isolated alkyl-cadmiums or -zincs which lack a Lewis acid promoter (equation 48).$^{143-145}$

A catalytic amount of Lewis acid, such as ZnI_2, AlCl_3, TiCl_4, Al(OPr)_3, Al(acac)_3, etc., promotes the addition reactions of TMS-CN to imines and oximes, giving N-TMS-α-aminonitriles.146,147 The product is a useful precursor of α-aminonitriles, α-aminooamides or α-amino acids. Cyanosilylation of (−)-N-alkylidene-(1-methylbenzyl)amines catalyzed by ZnCl_2 affords α-aminonitriles in 57–69% de. The use of ZnCl_2 gives better results than AlCl_3 or Al(OPr)_3 (Scheme 26).148 It is also noted that the optical purities of the adducts obtained by the Lewis acid promoted reaction are much higher than those attained by the simple addition of hydrogen cyanide to imines.

$$\begin{align*}
\text{Ar} & \equiv \text{NAr'} \\
\text{Et}_2\text{Cd, MgBr}_2 & \quad \text{or Et}_2\text{Zn, MgBr}_2 \\
\text{Et} & \quad \text{NHAr'} \\
\end{align*}$$

Scheme 26

In the presence of ZnBr_2, nonchelation controlled addition of lithiated N,N-dimethylacetamide to 2,3-O-cyclohexylidene-4-deoxy-1-throse benzylimine proceeds in high stereoselectivity. The absence of the Lewis acid results in a slight preference for the other isomer. The product is used in the synthesis of L-daunosamine (equation 49).149
Nonstabilized Carbanion Equivalents

3-Thiazolines activated with an equivalent of BF₃ readily react with a wide range of organometals, giving trans-4,5-disubstituted thiazoles stereoselectively. Alkylolithiums, Grignard reagents, lithium alkynides, nitronates, ester and ketone enolates have been employed as the nucleophile. Stereocntrolled construction of three contiguous asymmetric centers is performed with a lithiated isothiocyanatoacetate, and the product is successfully transformed to (+)-biotin (Scheme 27).¹⁵⁰,¹⁵¹

RCu, prepared from alkylmagnesiums and CuI, reacts with aldimines in the presence of BF₃·OEt₂. Grignard or copper(I) reagents do not give the addition product at all, and the starting imines are recovered. Interestingly, preparation of an RCu–BF₃ complex prior to the C–C bond formation reaction is necessary, and the addition of RCu to a mixture of an imine and BF₃·OEt₂ results in low yield. R₂CuM–BF₃ (M = Li or Mg) are effective for more hindered aldimines.¹⁵² Lithium alkynide–BF₃ reagents also add to aldimines at −78 °C, and aminoalkynes are obtained in good yields. Again the presence of the Lewis acid is reported to be essential (Scheme 28).¹⁵³

Perfluoroalkyllithiums, generated from perfluoroalkyl iodide and MeLi, add to imines pretreated with BF₃·OEt₂. Since the addition of an imine to a mixture of C₆F₁₃Li and BF₃·OEt₂ results in the recovery of the starting material, activation of the imine, rather than an ate complex formation, is suggested as the role of the Lewis acid. In the presence of BF₃·OEt₂, an imine is more reactive than the carbonyl of methyl benzoate towards the addition of C₆F₁₃Li. A high Cram-type asymmetric induction is observed in the addition of C₆F₁₃Li to 2-phenylpropanal imine (Scheme 29).¹⁵⁴ The reaction of the dianion of (4-phenylsulfonyl)butanoic acid with imines activated by BF₃·OEt₂ has also been reported (equation 50).¹⁵⁵
Lewis Acid Promoted Addition Reactions of Organometallic Compounds

Scheme 29

1.11.6 REFERENCES

352

Nonstabilized Carbanion Equivalents

Lewis Acid Promoted Addition Reactions of Organometallic Compounds

1.12
Nucleophilic Addition to Imines and Imine Derivatives

ROBERT A. VOLKMANN
Pfizer Central Research, Groton, CT, USA

1.12.1 SCOPE

1.12.2 INTRODUCTION
 1.12.2.1 Azomethine Reactivity
 1.12.2.2 Deprotonation of Azomethines
 1.12.2.3 Stereochemical Control in Azomethine Additions

1.12.3 ORGANOMETALLIC ADDITIONS TO IMINES
 1.12.3.1 Nonenolizable Imines
 1.12.3.2 Enolizable Imines
 1.12.3.3 Stereochemical Control
 1.12.3.4 Cyclic Imines
 1.12.3.5 Chiral Chromium Complexes

1.12.4 ORGANOMETALLIC ADDITIONS TO IMINIUM SALTS
 1.12.4.1 Background
 1.12.4.2 Preformed Iminium Salts
 1.12.4.3 Iminium Salts Generated In Situ

1.12.5 ORGANOMETALLIC ADDITIONS TO N-ACYLIMINES AND N-ACYLIMINIUM SALTS
 1.12.5.1 Background
 1.12.5.2 α-Amidodalkylation Reactions Involving Substituted Azetidin-2-ones
 1.12.5.3 N-Acylimines/N-Acyliminium Salts

1.12.6 ORGANOMETALLIC ADDITIONS TO HYDRAZONES
 1.12.6.1 Tosylhydrazones
 1.12.6.2 Chiral N,N-Dialkylhydrazones
 1.12.6.3 SAMP (RAMP) Hydrazones
 1.12.6.4 α-Alkoxyaldehyde Dimethylhydrazones

1.12.7 ORGANOMETALLIC ADDITIONS TO AZADIENES
 1.12.7.1 Chiral α,β-Unsaturated Aldimines
 1.12.7.2 2-Azadienes
 1.12.7.3 Aromatic Aldimines

1.12.8 ORGANOMETALLIC ADDITIONS TO OXIMES AND OXIME ETHERS
 1.12.8.1 Aldoxime Ethers/BF$_3$-Activated Oxime Ethers
 1.12.8.2 Ketonoximes/Ketoxime Derivatives

1.12.9 ORGANOMETALLIC ADDITIONS TO S-ARYL SULFENIMINES

1.12.10 ORGANOMETALLIC ADDITIONS TO SULFONIMINES

1.12.11 ORGANOMETALLIC ADDITIONS TO N-TRIMETHYLSILYLIMINES
1.12.1 SCOPE

Synthetic and biological interest in highly functionalized acyclic and cyclic amines has contributed to the wealth of experimental methodology developed for the addition of carbanions to the carbon–nitrogen double bond of imines/imine derivatives (azomethines). While a variety of practical methods exist for the enantio- and stereo-selective syntheses of substituted alcohols from aldehyde and ketone precursors, related imine additions have inherent structural limitations. Nonetheless imines, by virtue of nitrogen substitution, add a synthetic dimension not available to ketones. In addition, improved procedures for the preparation and activation of imines/imine derivatives have increased the scope of the imine addition reaction.

This chapter will attempt to provide a comprehensive picture of nonstabilized carbanion additions to the carbon–nitrogen double bond of imines/imine derivatives. Included are organometallic condensations with cyclic and acyclic azomethines [including N-(trimethylsilyl)imines, sulfenimines and sulfonimines], iminium salts, N-acylimines (N-acyliminium salts), hydrazones, oximes and nitrones (Scheme 1). While 1,4-additions to azadienes (including α,β-unsaturated and aromatic aldimes) are presented, the addition of organometallic reagents to the carbon–nitrogen bond of aromatic compounds (i.e. pyridines and quinolines) is not. Because the structural features of each imine derivative (class) are uniquely responsible for the chemistry of azomethines, this chapter is organized by imine structure. In concert with the theme of ‘Comprehensive Organic Synthesis,’ recent scientific contributions, particularly those involved in the control of stereochemistry, are highlighted. Essential background for each class of azomethines is provided. For an extensive evaluation of areas, the reader is urged to also consult appropriate review articles.

1.12.2 INTRODUCTION

The inability of certain nucleophiles to add to the carbon–nitrogen double bond of imines/imine derivatives, coupled with the propensity of basic reagents to preferentially abstract protons α to the imine double bond, has limited the utility of the group in synthetic organic chemistry. While unique solutions exist for individual reactions, they are at best only applicable to a particular structural class of azomethines. Since structurally diverse imine derivatives have been utilized for the preparation of highly functionalized amines, an overview of some of the structural features of azomethines and nonstabilized
carbanions responsible for (i) azomethine reactivity, (ii) proton abstraction, and (iii) stereochemical control in azomethine additions is included.

1.12.2.1 Azomethine Reactivity

A systematic evaluation of the relationship between azomethine structure and reactivity with nonstabilized carbanions has not been reported. Some imines/imine derivatives are inert to nucleophilic addition. The electrophilicity of imines can, however, be increased by N-alkylation to form highly reactive iminium salts, by N-oxidation to form reactive nitrones, or by N-acylation or N-sulfonylation to form reactive acylimines and sulfonimines. Sulfonimines and nitrones condense with organometallic reagents to generate sulfonamide and hydroxylamine products. 'Activated' imines need not be isolated, as the *in situ* preparation of acylimines, iminium and acyliminium salts can be employed for the generation of substituted amines (amine derivatives). These activating groups, however, do not provide a general solution to this fundamental problem of imine reactivity, since they are in certain cases not easily removed. For this reason, Lewis acid activation with BF₃·OEt₂ and the *in situ* formation of iminium salts with TMS-OTf have been recently employed in amine synthesis.

1.12.2.2 Deprotonation of Azomethines

While the abstraction of protons adjacent to the carbon–nitrogen double bond of imines/imine derivatives has been utilized for the regioselective generation of azaallyl anions (which are useful in asymmetric ketone synthesis), it competes with and often prevents the addition of nucleophiles to imines. For this reason, imine additions often involve azomethines (*e.g.* benzylidineanilines) which are not capable of enolization. Many potentially useful additions, however, involve substrates capable of proton abstraction. By avoiding in certain instances some of the structural features of imines/imine derivatives and the reaction conditions responsible for proton abstraction, products resulting from this serious side reaction can be minimized.

The regioselectivity of imine deprotonations¹ is considerably more complicated than similar ketone deprotonations,² and can be influenced by imine geometry, nitrogen substitution, steric accessibility of α-hydrogen atoms and the deprotonation conditions (base, solvent) employed. Chelation-directed proton abstraction is implicated for metallated oximes and tosylhydrazones. For example, organometallic-mediated deprotonation of oximes (1) occurs with syn selectivity³ (*syn* to the nitrogen alkoxide group) and provides a regioselective route to reactive azirines.⁴ Likewise, the failure of aliphatic aldehyde tosylhydrazones (2; *E*-configuration) to form dianions at low temperatures is consistent with the strong preference for proton abstraction *syn* to the NSO₂Ar moiety and is presumably responsible for the susceptibility of (2) to nucleophilic addition.⁵ Proton abstraction of ketone dimethylhydrazones and ketimines can lead to isomeric azaallyl anions. Ketone dimethylhydrazones generally deprotonate on the less-substituted α-carbon, regardless of the C≡N geometry.⁶ Alkylithium-mediated deprotonation of ketimines, however, generally occurs *anti* to the nitrogen substituent.⁷ For example, Bu₂Li (THF) treatment of 2-methylcyclohexanone-derived *N*,*N*-dimethylhydrazone (3) and *N*-cyclohexylimine (4) followed by the addition of benzyl chloride results in *syn* (100:0) and *anti* (87:13) α-alkylation, respectively.

Regardless of the kinetic regioselectivity, Fraser, Houk and coworkers⁸ have demonstrated that the nitrogen substituents of most metallated (lithio) aldehyde- and ketone-derived azomethines prefer the (Z)-orientation (Scheme 2). This thermodynamic preference is postulated to result from a minimization of dipole–dipole (electrostatic) interaction between nitrogen lone pair electrons and the carbanion.

![Diagram](image-url)
Nonstabilized Carbanion Equivalents

On the other hand, endocyclic ketimines such as 2-alkyl-1-pyrroline (5) have a thermodynamic bias for the (E)-azaallyl anion (which is postulated to result from excessive angle strain of the (Z)-azaallyl anion). This result suggests that by judicious selection of nucleophiles, proton abstraction might be minimal in additions to endocyclic aldimines which are devoid of 2-alkyl substitution, such as 1-pyrroline (6).

Highly basic (organolithium) reagents are employed for the abstractions of protons adjacent to the carbon–nitrogen double bond of imines/imine derivatives. To minimize proton abstractions in nucleophilic additions, less basic reagents (many of which are outside the scope of this chapter) such as allylboranes, allylboronates, allyl Grignards, allylzincs, allylstannanes, alkylcoppers, alkylcuprates, organocerium reagents and metal enolates (Li, B, Al, Zr, Sn, Zn) are used.

1.12.2.3 Stereochemical Control in Azomethine Additions

The design of practical methods for effectively controlling product stereochemistry in nucleophilic additions remains an important challenge in synthetic organic chemistry. The addition of carbon nucleophiles to aldehydes and ketones possessing an adjacent asymmetric center has been extensively investigated. Two strategies for controlling product stereochemistry, which generally lead to opposite diastereofacial selectivity, have emerged: (i) chelation control, in which Lewis acid reagents form intermediate chelates, rendering one face of the carbonyl moiety more accessible for nucleophilic addition (Cram’s cyclic model, Figure 1a); and (ii) nonchelation control, in which the addition of reagents to substrates incapable of internal chelation is governed by steric and/or electronic factors. The bias for addition from a diastereotopic face in nonchelation-controlled additions was predicted empirically by Cram and is supported by the Cornforth and Felkin–Ahn models shown in Figures 1b and 1c.
The relevance of these models for the addition of carbon nucleophiles to structurally similar acyclic imine/imine derivatives has not been adequately tested. Products which are consistent with chelation control are obtained in the addition of organolithium reagents to dimethylhydrazones (7) of \(\alpha \)-alkoxyacetaldehydes.\(^{11}\) In contrast to allylorganometallic and ester enolate additions,\(^{9}\) only a few examples suggestive of nonchelation (Felkin–Ahn) control in the additions of nonstabilized organometallic reagents to chiral aldimines have been reported.\(^{12,13}\) The paucity of any in depth systematic investigations examining the additions of nonstabilized carbanions to aldimines/aldimine derivatives containing an adjacent asymmetric center is not surprising. The propensity of acyclic imines to isomerize, the presence in these derivatives of other heteroatoms which are capable of chelation (e.g. hydrazones), and poor imine reactivity all contribute to the complexity of the problem.

A major synthetic effort, however, has been focused on asymmetric induction resulting from the addition of organometallic reagents to aldimines/aldimine derivatives derived from chiral amines/hydrazines. A variety of chiral aldimines (8),\(^{14}\) nitrones (9)\(^{15}\) and hydrazones (10)\(^{16-18}\) (all of which contain as part of the chiral auxiliary a terminal alcohol, ether or ester moiety capable of chelation) have been examined. High diastereoselectivity can be obtained in these additions and, while the intimate mechanistic details which account for the stereoselectivity are not known, mechanisms involving: (i) chelation control (Figure 2a); and (ii) chelation-mediated delivery of the organometallic reagent (Figure 2b) have been suggested. The susceptibility of nitrogen–oxygen, nitrogen–nitrogen and nitrogen–aryl alkyl bonds within the addition products to reductive cleavage contributes to their value for the enantioselective synthesis of amines.

![Figure 2](image-url)
(a) Chelation control, e.g. nitrones; (b) Organometallic delivery, e.g. aldimines

The 1,4-addition of organometallic reagents to \(\alpha,\beta \)-unsaturated aldimines (11)\(^{19}\) and aromatic aldimines (12)\(^{20}\) resembles additions to oxazolines (13)\(^{21}\) and (14),\(^{22}\) and provides a valuable method for generating a remote stereocenter (1,5-asymmetric induction). Other strategies have been employed for controlling azomethine diastereofacial selectivity. For example, organometallic treatment of chiral chromium complexes (15)\(^{23}\) of \(N \)-arylaldimines leads to high stereoselectivity (presumably a result of steric control). Further investigations are required to assess the value of the chromium tricarbonyl complexes in asymmetric amine synthesis.

By constructing rigid endocyclic imines/imine derivatives (either isolated or generated \textit{in situ}) some of the problems associated with acyclic stereocontrol can be avoided. The addition of organometallic reagents to 3-thiazolines (16)\(^{24}\) or the putative piperidine intermediate (17)\(^{25}\) provides excellent stereocontrol.

In summary, notable advances have been made in controlling stereoselectivity resulting from the addition of nonstabilized carbanions to chiral imine/imine derivatives. Unfortunately our level of mechanistic understanding in these additions is unsatisfactory. While additions involving chiral nitrones, hydrazones and some cyclic imines have been evaluated in reasonable detail, few systematic studies of other aldimine/aldimine derivatives are available.
1.12.3 ORGANOMETALLIC ADDITIONS TO IMINES

The addition of organometallic agents to aldmines and ketimines provides a useful route to substituted amines, although this reaction is sensitive to imine/organometallic substitution. Along with addition, competitive enolization, reduction and bimolecular reduction (coupling) reactions are also possible.

1.12.3.1 Nonenolizable Imines

Addition to imines derived from aryl aldehydes has been investigated extensively and has been reviewed.26 The addition of Schiff base (18) to excess Grignard reagent (2 equiv.) provides a route to secondary amines (19; equation 1). As the size of R and branching of R' increases, addition yields decrease (entries 1–3, Table 1),12,27,28 and reduction products such as (20) are often generated.

Table 1 The Reaction of Organometallic Reagents with Azomethine (18)

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>R'M (Et₂O)</th>
<th>Yield</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me</td>
<td>MeMgI, Δ</td>
<td>72%</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>Bu¹</td>
<td>MeMgI, Δ</td>
<td>—</td>
<td>28</td>
</tr>
<tr>
<td>3</td>
<td>Bu</td>
<td>PrMgI, Δ</td>
<td>—</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>Bu¹</td>
<td>2C₆F₁₃Li(BF₃), -78 °C</td>
<td>68%</td>
<td>12</td>
</tr>
</tbody>
</table>
Nucleophilic Addition to Imines and Imine Derivatives

In reactions with N-benzylidineaniline (PhCH=NPh), the addition of MgBr$_2$ (2 equiv.) to solutions of EtMgBr, Et$_2$Cd and Et$_2$Zn, or, in the case of Et$_2$Mg, lowering the solvent basicity (DME and Et$_2$O preferred over THF) results in dramatic yield improvements.29 In the absence of other metal salts, Grignard addition yields increase if a 1:2 ratio of Schiff base to organometallic agent is employed.30

The effect of phenyl substitution on the rate of Grignard addition to N-benzylidineaniline has been examined. The reaction rate in ether for ethylmagnesium bromide conforms to \(r = k[R_1'Mg.MgX_2][\text{Schiff base}] \). A four-centered reaction mechanism (Scheme 3) has been suggested.30

\[
\begin{array}{c}
\text{Ar} - N\text{Ar}^1 \rightleftharpoons \begin{array}{c}
\begin{array}{c}
\text{Ar} \quad \text{N} \quad \text{Ar}^1 \\
\end{array} \\
\begin{array}{c}
\text{R}^1 \quad \text{Mg} \\
\end{array} \\
\begin{array}{c}
\text{R}^1 \quad \text{MgX}_2 \\
\end{array}
\end{array} \]

Scheme 3

In certain cases, Grignard reagents do not add to azomethines, but organolithium compounds (alone28,31 or in the presence of BF$_3$-OEt$_2$)12 have been reported to add to many of these Schiff bases (entry 4, Table 1).

The addition of organometallic agents to N-methylenamines (22) has been utilized for the generation of unsymmetrical secondary amines. Even though these formaldehyde imines rapidly trimerize to yield 1,3,5-trialkylhexahydro-1,3,5-triazines (24), they can be generated in situ and treated with organolithium and Grignard reagents to provide secondary amines (23; Scheme 4). N-(Alkoxy)methyl)aryl-32a N-alkyl-N-(alkyliothiomethyl)-, 32b N-(cyanomethyl)-, 33 and N-(aminomethyl)-amines (21) have been utilized for the preparation of formaldehyde imines (22). Primary, secondary, tertiary, aryl and alkenyl organometallic agents (a minimum of 2 equivalents is required) have been condensed with N-methylenamine precursors.

\[
\begin{array}{c}
X \quad \text{NHR} \\
\end{array} \rightleftharpoons \begin{array}{c}
\text{H}_2\text{C} = \text{NR} \\
\end{array} \rightleftharpoons \begin{array}{c}
\text{R}^1 \quad \text{NHR} \\
\end{array} \\
\text{X} = \text{OR}^2 \; (\text{R}^2 \neq \text{alkyl}), \text{CN}, \text{NR}^2_2, \text{SR}^2 \\
\]

Scheme 4

1.12.3.2 Enolizable Imines

The addition of organometallic reagents to imines derived from enolizable aldehydes and ketones is more problematic. In general, these aldazines and ketazines are inert to alkyl Grignards and in their presence will undergo complete enolization (syn to the N-substituent) in refluxing THF. On the other hand, aryl- and alkyl-lithiums condense with enolizable aldazines in low/moderate yields (~30–60%). 31 However, the reaction is not general; lithium alkynes35b and alkylthiylithiums12 that are not stable above ~78 °C often do not add. Ketazines containing α-hydrogen atoms are resistant to organometallic addition. Sakurai and coworkers7 have treated these ketazines with organolithium reagents to regioslectively generate substituted α-lithiated imines (deprotonation occurs preferentially anti to the N-substituent).

Activation of the C=N moiety by the addition of BF$_3$-OEt$_2$ has increased the scope of organometallic additions (Table 2). Akiba and coworkers35b have shown that lithium alkynes treated with BF$_3$-OEt$_2$ add to substituted aldazines (entry 1, Table 2).12,13,35 BF$_3$ complexes of organocopper and dialkylcuprate reagents provide good yields of addition products. Dialkylcuprates are preferred in the condensation of branched aldazines (entry 2, Table 2).35a
Table 2 The Addition of Organometallic Reagents to Activated Imines Containing \(\alpha \)-Hydrogen Atoms

<table>
<thead>
<tr>
<th>Entry</th>
<th>Organometallic</th>
<th>Imine</th>
<th>Product</th>
<th>Yield (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 LiC(=C(CH_2)_3Me)/BF(_3)OEt/THF</td>
<td>Ph((CH_2)_2CH=NPr(^i))</td>
<td>Ph-(\text{NHP}^i)-</td>
<td>82</td>
<td>35b</td>
</tr>
<tr>
<td>2</td>
<td>Bu(_2)CuLi+BF(_3)/THF</td>
<td>Me(_2)CHCH=N((CH_2)_2Ph)</td>
<td>Bu-(\text{NHP}^a)- Ph</td>
<td>63</td>
<td>35a</td>
</tr>
<tr>
<td>3</td>
<td>C(6)F({13})Li/MeLi/BF(_3)/Et(_2)O</td>
<td>Me(Ph)C=NPr(^a)</td>
<td>C(6)F({13})-Ph (\text{NHP}^a)-</td>
<td>84</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>C(6)F({13})Li/MeLi/BF(_3)/Et(_2)O</td>
<td>Me(Ph)CHC=NPr(^a)</td>
<td>(25:1)</td>
<td>81</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>Bu(_2)CuLi+BF(_3)</td>
<td>Me(Ph)CHC=NPr(^a)</td>
<td>NA</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

While Lewis acid activation has not provided a general solution for ketimine additions, isolated examples such as the condensation of perfluoroalkyllithiums with imines derived from acetophenone (entry 3, Table 2) have been reported.\(^{12}\)

1.12.3.3 Stereochemical Control

Asymmetric induction is not high in the addition of organometallic agents to chiral aldehydes whose substituents have no chelating ability (such as 2-phenylpropanal). Although few examples involving non-stabilized carbanions to chiral aldimes have been reported, the presence of a stereogenic center adjacent to the aldime can provide good diastereoselectivity; e.g. 60:40 \textit{versus} 84:16, Cram/anti-Cram selectivity for 2-phenylpropanal \textit{versus} its corresponding \(N\)-propylaldimine (25; equation 2) in the addition of allyl Grignard.\(^{13}\) In the case of dialkycuprate and perfluoroalkyllithium additions, BF\(_3\) is required. Again good Cram/anti-Cram (Felkin–Ahn) selectivity is obtained (entries 4 and 5, Table 2).\(^{12,13}\) Chelation/non-chelation control in the addition of stabilized allyl (crotyl) organometallics to chiral aldimes has been reviewed.\(^{9b}\)
Fiaud and Kagan37 examined the addition of organometallic agents to \(N \)-substituted imines of (-)-menthyl glyoxylates with the intention of producing substituted amino acids. Grignard condensations with \(N \)-[\((S)-\alpha\)-methylbenzyl]iminoacetate (27) produced, in modest yields, varying amounts of secondary and tertiary amines (28) and (29), demonstrating the molecules' ambient electrophilicity (equation 3). While the problem of regiochemical control (29 \textit{versus} 28) can be solved by the use of organocadmium agents, stereochemical control in the production of (29) is modest (\(de = 40-50\% \)). The menthyl ester moiety is the major stereochemical determinant, as replacement of the \(N \)-[\((S)-\alpha\)-methylbenzyl] substituent with the corresponding \((R)\)-isomer had little effect on reaction diastereoselectivity (for \(R^1 = Pr^t, 40 \text{ \textrm{versus} 41\% \, ee} \)).

Diastereoselectivity produced by 1,3-asymmetric induction in the reaction of \((S)\)-valinol-derived imines with organometallic agents can be high. Takahashi, Suzuki and coworkers (equation 4) have examined the condensation of chiral azomethines (8), which are reported to exist exclusively as the \((E)\)-isomer, with organolithium and Grignard reagents (24 equiv.).

\begin{equation}
\begin{array}{c}
\text{Ph} \\
\text{H} \\
\text{R'} \\
\text{H} \\
\text{Pr}^t \\
\text{R} \\
\text{N} \\
\text{OR} \\
\end{array}
\end{equation}

\begin{equation}
\begin{array}{c}
\text{Ph} \\
\text{H} \\
\text{R} \\
\text{N} \\
\text{OR} \\
\end{array}
\end{equation}

\begin{equation}
\begin{array}{c}
\text{Ph} \\
\text{H} \\
\text{R'} \\
\text{H} \\
\text{Pr}^t \\
\text{R} \\
\text{N} \\
\text{OR} \\
\end{array}
\end{equation}

\begin{equation}
\begin{array}{c}
\text{Ph} \\
\text{H} \\
\text{R} \\
\text{N} \\
\text{OR} \\
\end{array}
\end{equation}

Addition occurs predominantly from the \textit{si}-face of Figure 3 and is consistent with an alkoxy-mediated delivery of the organometallic agent. The size of substituent \(R^1 \) at the resident stereogenic center of Figure 3 is a key stereochemical determinant of the diastereoselectivity (\(R^1 = Pr^t, Bu^t \) and \(Bu^t \) are superior to \(R^1 = Me; \) entries 1 and 2, Table 3). Conversion of the alcohol functionality to the corresponding methyl ether has little effect on the stereochemical course of the addition (entries 3, 4, 6 and 7, Table 3). By appropriate selection of azomethine and organometallic agent, both diastereomeric amines can be obtained (entries 1 and 5, Table 3).

\begin{table}[h]
\centering
\caption{The Reaction of Organometallic Reagents with Chiral Aldimines (8)}
\begin{tabular}{cccccccc}
\hline
Entry & \(R \) & \(R^1 \) & \(R^2 \) & \(R^3M \) & Overall yield (\%) & (30) (\%) & (31) (\%) & Ref. \\
\hline
1 & Ph & \(Pr^t \) & H & PhCH\textsubscript{2}MgCl/THF & 73 & >98 & — & 14a \\
2 & Ph & Me & H & PhCH\textsubscript{2}MgCl/THF & 53 & 78 & 22 & 14b \\
3 & Ph & \(Pr^t \) & H & EtMgBr/Et\textsubscript{2}O & 63 & 78 & 22 & 14e \\
4 & Ph & \(Pr^t \) & Me & EtMgBr/Et\textsubscript{2}O & 81 & 91 & 9 & 14e \\
5 & CH\textsubscript{3}Ph & \(Pr^t \) & H & PhLi/Et\textsubscript{2}O & 35 & >98 & — & 14a \\
6 & Et & \(Pr^t \) & H & PhLi/Et\textsubscript{2}O & 68 & >97 & — & 14e \\
7 & Et & Pr & Me & PhLi/Et\textsubscript{2}O & 60 & 95 & 5 & 14e \\
\hline
\end{tabular}
\end{table}
1.12.3.4 Cyclic Imines

Cyclic imines, such as 1-pyrroline (6) and Δ¹-piperidine (32), which are prone to trimerization, can be prepared from N-halopyrrolidine and N-halopiperidine respectively and treated in situ with organolithium reagents to provide 2-alkylated and 2-arylated pyrrolidines and piperidines in modest yield. Corey et al. treated substituted piperidine (17) generated in this fashion with N-pentyllithium to establish the stereochemistry of the remote pentyl side chain of perhydrohistrionicotoxin (33), as condensation occurred from the more accessible re-face of the imine π-system of (17).

Difficulties in generating highly functionalized alicyclic imines have limited their synthetic utility. In situ generation of piperidines from highly substituted α-aminonitriles has been employed in the Grignard-mediated conversion of the 1-α-cyano-1-deoxynojirimycin derivative (34) to the 1-α-substituted amine (35; equation 5).

Substituted 3-thiazolines (16) are stable and easily prepared, but are inert to organometallic addition. Activation of (16) with BF₃·OEt₂ followed by organometallic addition (R¹MgX, R¹Li) provides trans-4,5-disubstituted thiazolidines (36) (masked 2-aminothiols) in which R¹ = aryl, alkyl or alkynyl (equation 6).

The addition of organolithium agents to bicyclic imines such as (37) provides modest yields of alkylated product (38; equation 7). These condensations have been reviewed.

1.12.3.5 Chiral Chromium Complexes

Solladie-Cavallo and Tsamo (equation 8) have investigated the addition of Grignard reagents to chiral chromium tricarbonyl complexes of diarylimines (15). Results of these additions are shown in Table 4. While the absolute stereochemistry of the product(s) (39) formed has not been determined, the results
demonstrate that high diastereoselectivity can be obtained in the addition of benzyl Grignards to azomethine (15), in which ring A is ortho substituted (entries 4–6, Table 4).

Table 4 Addition of Grignard Reagents to Chiral Chromium Tricarbonyl Complexes of Diarylimines (15)

<table>
<thead>
<tr>
<th>Entry</th>
<th>RMgX</th>
<th>R¹</th>
<th>R²</th>
<th>R³</th>
<th>Diastereomeric ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MeMgI</td>
<td>H</td>
<td>Me</td>
<td>H</td>
<td>67:33</td>
</tr>
<tr>
<td>2</td>
<td>MeMgI</td>
<td>Me</td>
<td>Me</td>
<td>H</td>
<td>67:33</td>
</tr>
<tr>
<td>3</td>
<td>MeMgI</td>
<td>Me</td>
<td>Ph</td>
<td>H</td>
<td>66:34</td>
</tr>
<tr>
<td>4</td>
<td>PhCH₂MgCl</td>
<td>Me</td>
<td>Me</td>
<td>H</td>
<td>100:0</td>
</tr>
<tr>
<td>5</td>
<td>PhCH₂MgCl</td>
<td>OM</td>
<td>Me</td>
<td>H</td>
<td>100:0</td>
</tr>
<tr>
<td>6</td>
<td>PhCH₂MgCl</td>
<td>Cl</td>
<td>Me</td>
<td>H</td>
<td>100:0</td>
</tr>
<tr>
<td>7</td>
<td>PhCH₂MgCl</td>
<td>Me</td>
<td>H</td>
<td>Me</td>
<td>57:43</td>
</tr>
</tbody>
</table>

*Determined by 'H NMR (250 MHz).

The diastereoselectivity has been rationalized by the authors with the transition state model shown in Figure 4a, in which the Cr(CO)₃ moiety is situated in the plane of the azomethine group (σ₁) and approach of the Grignard occurs nearly orthogonal to this plane. The facial selectivity is postulated to arise from interactions of the incoming Grignard reagent and the substituents on ring A. Determination of the absolute configuration of the product(s) (39) should probe the relevance of this model since organometallic addition to (15) in which Cr(CO)₃ is orthogonal to the plane of the azomethine group (Figure 4b) would generate the opposite diastereomer.

![Figure 4](image)

Alkyllithium addition to the (η⁶-arene) dicarbonylchromium imine chelates has been examined. Treatment of optically pure chelate (41) with methylolithium provides amine (42) with an enantiomeric excess of 94% (Scheme 5). No diastereoselectivity was reported for alkyllithium additions to (arene)tricarbonylchromium complex (40). In the absence of additional examples, the generality of this chromium chelate methodology for asymmetric amine synthesis cannot be assessed.

1.12.4 ORGANOMETALLIC ADDITIONS TO IMINIUM SALTS

1.12.4.1 Background

While the addition of organometallic reagents to acyclic or cyclic imines (43) is often compromised by poor imine reactivity, these reagents readily condense with structurally diverse, more electrophilic iminium salts (44), bearing a positive charge on the nitrogen atom, to provide substituted tertiary amines (45; Scheme 6). A review of the literature describing additions to cyclic iminium salts prior to 1966 is avail-
Nonstabilized Carbanion Equivalents

More recent reviews (up to 1976) summarize the addition of organometallic reagents to iminium salts derived from aliphatic, aromatic or heteroaromatic aldehydes as well as from aromatic or aliphatic ketones.

Preformed iminium salts have been used extensively in organic synthesis. The facility of the condensation is a function of iminium salt substitution. Treatment of formaldehyde-derived N,N-dimethyl(methylene)ammonium halides (or trifluoroacetates) with Grignard and lithium reagents results in the high yield formation of dimethylaminomethyl-containing compounds. Subsequent oxidation or alkylation of these products has been employed to generate terminal alkenes. As expected, addition yields are modest for the more-hindered iminium salts derived from other aldehydes and are somewhat lower for those derived from cyclic ketones.

Addition to cyclic iminium salts has been utilized in alkaloid synthesis. A zinc-promoted reductive coupling reaction of iminium salts and alkyl halides has been reported by Shono et al. Evidence delineating the mechanistic course (organozinc addition or electron transfer reaction) of the addition has not been established. In contrast to organolithium or Grignard additions, aromatic halogen and alkoxycarbonyl substituents are compatible with this methodology. The intramolecular version of this reaction has been employed for the synthesis of tricyclic amines.

The quaternization of imines to form more reactive iminium salts has had limited synthetic utility since the activating substituents are often not easily removed. For this reason Lewis acids have been utilized to activate imines. MacLean and coworkers have also addressed this problem and found that silylation of 3,4-dihydroisoquinolines and 3,4-dihydro-β-carbolines with trimethylsilyl triflate (TMS-OTf) provides a reactive, yet labile, silyl iminium salt which undergoes nucleophilic addition (Scheme 9). With this procedure, 3,4-dihydro-6,7-dialkoxysquoinolone was converted to amidine in 98% yield. In the absence of TMS-OTf no addition occurred.

While 2-substituted-4,4,6-trimethyl-5,6-dihydro-1,3-oxazines 2-substituted-4,4-dimethyl-2-oxazolines and 1-benzyl-2-alkyl-4,5-dihydropyrimidazoles are inert to organometallic addition, their corresponding methiodide salts are reactive and have been utilized for the synthesis of ketones;
Scheme 10). The use of this methodology in ketone synthesis is not widespread, given the lack of availability of these salts and the sensitivity of this reaction to substrate/organometallic substitutions.

Addition to vinylogous iminium salts has also been explored. Moriya et al.53 have examined the addition of nucleophiles to 3-(1-pyrrolidinylmethylene)-3H-indolium salt (61) in the synthesis of 3-(1-dialkylamino)alkyl-1H-indoles (62; equation 10).

Similarly, Gupton et al.54 have shown that acyclic amidinium salts (63) and vinylogous amidines (65) are reactive and can be utilized for the synthesis of structurally diverse aldehydes (Scheme 11).

In addition, functionalized piperidines (68) have been generated by the addition of organometallic reagents to 5,6-dihydropyridinium salts (67; equation 11).55

1.12.4.3 Iminium Salts Generated In Situ

Difficulties associated with the preparation and purification of anhydrous, soluble iminium salts (44) suitable for organometallic additions can in certain instances be avoided by an in situ generation of these reactive molecules.56 N,N-(Disubstituted)aminomethyl ethers (or acetates) (69), sulfides (70) and nitriles (71) are frequently utilized in the generation of these salts. In addition, N,N-(disubstituted)aminomethylamides (72), -sulfonates (73) and halides (74) have been employed (Scheme 12).
The reaction of \(N,N\)-disubstituted)aminomethyl ethers (69) with Grignard reagents has been extensively investigated\(^{26}\) and provides good yields of substituted tertiary amines. Representative examples are shown in Table 5. Acyclic\(^{57}\) as well as cyclic\(^{58}\) ethers (entries 1 and 2, Table 5) have been studied. Grignard treatment of bis(alkoxymethyl)amines (entry 3, Table 5)\(^{59}\) and dialkylformamide acetals (entry 4, Table 5)\(^{60}\) results in the displacement of both alkoxy substituents. In addition, \(\beta,\gamma\)-unsaturated-\(\alpha\)-amino esters can be easily accessed by organozinc (RD) addition to alkoxy(dialkylamino)acetates (entry 5, Table 5).\(^{61}\)

The propensity of formaldehyde imines (22) to trimerize to give hexahydro-1,3,5-triazines (24) has limited their synthetic utility. Sekiya and coworkers\(^{62}\) and Bestmann et al.\(^{63}\) have shown that \(N,N\)-bis(trimethylsilyl)methoxymethylamine (75) is a useful synthetic equivalent of formaldehyde imine. Treatment
of aryl, heteroaryl, primary and secondary alkyl Grignards (organolithium reagents can also be used but require the addition of MgBr₂) with (75) generates in good yield N,N-bis(trimethylsilyl)amines (76), which can be readily desilylated to generate primary amines (77; Scheme 13).

α-Amino ethers need not be isolated in the synthesis of tertiary amines. α-Substituted phenethylamines (81), for example, have been generated in good yield from aldehydes and benzylmagnesium chloride using titanium amide complexes. The intermediacy of a titanium amide tetraisopropoxide ate complex (79) which can condense with aldehydes to form the reactive titanium complex (80), has been proposed (Scheme 14).
Nonstabilized Carbanion Equivalents

Scheme 13

\[
\begin{align*}
\text{Me}_3\text{Si} \overset{\text{OMe}}{\text{N}} \overset{\text{RLi}}{\text{Me}_3\text{Si}} \overset{\text{MeOH}}{\text{R}} \overset{\text{N-H}}{\text{R}}
\end{align*}
\]

Scheme 14

In addition, amine N-oxides (82) can be treated with trialkylsilyl triflates to generate, after methyl- lithium treatment, \(\alpha\)-siloxyamines (83) which, when allowed to react with Grignard reagents (or trialkyl- aluminum), generate tertiary amines (84) in modest yields (Scheme 15).65

\[
\text{Me}_3\text{Si} \overset{\text{OMe}}{\text{N}} \overset{i, \text{Bu}^1\text{Me}_2\text{SiOTf, CH}_2\text{Cl}_2}{\text{Me}_3\text{Si}} \overset{\text{MeLi/THF}}{\text{MgCl}} \overset{\text{EtO, }-20 \degree \text{C, 20 min}}{\text{MeO}} \overset{\text{MeO}}{\text{Et}} \overset{\text{MeEt}}{\text{R}} \overset{\text{Li}^+}{\text{N}} \overset{\text{Et}^2\text{N}^+\text{(OPr)}_2}{\text{Et}^2\text{O}} \overset{\text{Li}^+}{\text{MeEt}} \overset{\text{RCO}}{\text{MeEt}} \overset{\text{MeEt}}{\text{R}} \overset{\text{MeEt}}{\text{Et}}
\]

Scheme 15

O'Donnell et al.66 have examined benzophenone-derived glycine acetate (85) as a glycine cation equivalent. Higher order mixed cuprates \([\text{R}_2\text{Cu}(\text{CN})\text{Li}_2]\) react with (85) to afford alkylated Schiff base (86) in moderate yields. The reaction is sensitive to reaction conditions and reduction competes with organometallic addition. Hydrolysis of (86) provides access to aryl- or alkyl-substituted amino acids (87; Scheme 16).

\[
\begin{align*}
\text{Ph} \overset{\text{N}}{\text{N}} \overset{\text{CO}_2\text{Et}}{\text{R}} \overset{\text{R}_2\text{Cu}(\text{CN})\text{Li}}{\text{THF, } \leq 5 \degree \text{C}} \overset{\text{H}_2\text{N}}{\text{R}} \overset{\text{N}}{\text{N}} \overset{\text{CO}_2\text{H}}{\text{R}}
\end{align*}
\]

Scheme 16

\(N\)-(Arylthiomethyl)amines, which are easily prepared and reportedly have better shelf stability67 than the corresponding \(N\)-(alkoxymethyl)amines,66 have also been utilized to prepare tertiary amines. Alkenyl cuprate addition to \(N,N\)-diethylphenylthiomethylamine produces allylic amines in high yield (entry 1, Table 6).68 Both alkenyl groups of the cuprate react. \(S\)-(Dialkylaminomethyl) dithiocarbamates (entry 2, Table 6),69 sulfonates (entry 3, Table 6)70 and amides71 also generate iminium salts \(\text{in situ}\). Of a variety of amides examined, imides such as dialkylaminomethyl-succinimides (entry 4, Table 6)71 and -phthalimides provide the best overall yields. Organolithium reagents are rarely utilized in aminomethylation reactions. However, \(N\)-chloromethylamines condense readily with lithiated anisole derivatives (entry 5, Table 6).72

The condensation of Grignard reagents with \(N,N\)-(disubstituted)aminomethylnitrides has been widely studied.56 The reaction can accommodate hindered \(\alpha\)-aminonitriles as exemplified by the condensation of phenyl Grignard with 1-piperidinocyclohexane carbonitrile to afford phencyclidine (entry 6, Table
Table 6 Addition of Organometallic Reagents to Iminium Salts Generated In Situ

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Organometallic reagent/conditions</th>
<th>Product</th>
<th>Yield (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PhS→NEt₂</td>
<td>CuLi (C₇H₁₅)(H)₂ → THF/40 °C to r.t./3 h</td>
<td>H₂H</td>
<td>95</td>
<td>68</td>
</tr>
<tr>
<td>2</td>
<td>PhMgBr, Et₂O</td>
<td>NaO₃S OMe (C₇H₁₅)THF/4°C to r.t./3 h</td>
<td>PhN</td>
<td>81</td>
<td>69</td>
</tr>
<tr>
<td>3</td>
<td>PhCH₂CH₂MgBr, Et₂O</td>
<td>NaO₃S OMe (C₇H₁₅)THF/4°C to r.t./3 h</td>
<td>PhN</td>
<td>80</td>
<td>71</td>
</tr>
<tr>
<td>4</td>
<td>PhCH₂CH₂MgBr, Et₂O</td>
<td>NaO₃S OMe (C₇H₁₅)THF/4°C to r.t./3 h</td>
<td>PhN</td>
<td>82</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>PhCH₂CH₂MgBr, Et₂O</td>
<td>NaO₃S OMe (C₇H₁₅)THF/4°C to r.t./3 h</td>
<td>PhN</td>
<td>54</td>
<td>73</td>
</tr>
</tbody>
</table>

6). In general, Grignards add to the α-carbon atom, while alkyllithiums add to the nitrile carbon atom of N,N-(disubstituted)aminomethylnitriles. If the α-aminonitrile has an active hydrogen atom on nitrogen, both Grignards and organolithium reagents add to the α-carbon atom. On the other hand, if the aminonitriles have an acetyl group on the amine nitrogen atom, both reagents condense with the nitrile moiety.

1.12.5 ORGANOMETALLIC ADDITIONS TO N-ACYLIMINES AND N-ACYLIMINIUM SALTS

1.12.5.1 Background

The α-amidoalkylation reaction, which involves the addition of carbon nucleophiles (primarily aromatic rings, alkenes, cyanides, isocyanides, alkynes, organometallic and active methylene-containing compounds) to substituted amides (89) where X is a leaving group (Scheme 17), has been extensively reviewed. A variety of organometallic condensations have since been reported which extend the scope of this reaction. The reactive intermediates in these reactions are considered to be N-acylimines (88) or N-acyliminium salts (90). Direct displacement of the α-haloalkylamide precursors (89; X = halogen) cannot in certain cases be discounted.

A comprehensive kinetic study examining the reactivity of N-acylimines/N-acyliminium salts versus imines/iminium salts has not, to date, been published. Spectral data (13C NMR), however, would suggest...
that N-acyliminium salts could be even more reactive than iminium salts, since the imine carbon atom in (93) and (94) is shifted about 5 p.p.m. downfield from that in iminium salt (95).75e,77

1.12.5.2 α-Amidoalkylation Reactions Involving Substituted Azetidin-2-ones

No α-amidoalkylation reaction has been studied in recent years in greater detail than the addition of nucleophiles to substituted azetidin-2-ones such as (96), bearing a leaving group (X) in the 4-position. The addition of oxygen and sulfur nucleophiles has been employed for the synthesis of oxapenam and penem antibiotics, while the addition of stabilized and nonstabilized carbanions has been utilized for the synthesis of carbapenems (97; Scheme 18).8 While a thorough comparative study examining the effect of leaving groups (X) on the reactivity of these 4-substituted azetidin-2-ones is not available, cross comparisons80 (many of which are outside the scope of this chapter) suggest an approximate order of reactivity of Cl > SO2Ph > OAc > SCSOEt, SCS2Et > N3 > OEt > SEt. High yields of 4-alkyl-, 4-allyl-, 4-vinyl- and 4-ethynyl-azetidin-2-ones have been obtained by treatment of 4-phenylsulfonylazetidin-2-ones with either lithium organocuprates or Grignard reagents.80 Yields for the organocuprate additions are, in general, superior to those of the Grignard condensations.

In the addition of phenylthioethynyl Grignard to 3-substituted azetidinone (98), the stereochemistry of addition is exclusively trans, consistent with the intermediacy of azetinone intermediate (99; Scheme 19).81

N-Substituted azetidin-2-ones are more stable than their unsubstituted counterparts and as a result are more resistant to nucleophilic additions. However, treatment of either 4β- or 4α-chloroazetidinone (101)
with allylcopper reagents provides the same product ratio of substituted azetidinones (102), suggesting the intermediacy of an acyliminium ion (equation 12).82

![Scheme 19](image)

1.12.5.3 N-Acylimines/N-Acyliminium Salts

The addition of organometallic reagents to substituted N-halomethylamides (103) has been utilized to generate substituted amides (104; equation 13). Selected examples are shown in Table 7.84-92

N-Acylimine intermediates stabilized by electron-withdrawing groups can be isolated (entries 3-6, Table 7) and readily undergo nucleophilic addition. In most cases, however, N-acylimines need not be isolated since the addition of organometallic reagents (2 equiv.) to N-halomethylamide precursors provides the products in comparable yields. Almost all substituted N-halomethylamides lack β-hydrogen atoms due to the propensity of N-acylimines to tautomerize to acyl enamides.83

Complex alkenyl-copper and -cuprate derivatives, and also alanates, have been generated with high stereochemical purity, and upon treatment with N-chloromethyl-N-methylformamide or N-chloromethylphthalimide provide access to highly functionalized allylic amides (entries 1 and 2, Table 7).84 Addition to acyliminomalonic esters85 or acyliminophosphonates86 provides acylaminomalonates and acylaminalkylphosphonates in modest yield (entries 3 and 4, Table 7).

Carbanion amidoalkylations provide a versatile means of generating α-amino acids. The ability to oxidize alkenes87 or hydrolyze trichloromethyl groups88 of amidoalkylation products (entries 5 and 6, Table 7) to acids provides access to these compounds. α-Halo-N-(t-butoxycarbonyl)glycine esters have been used as ‘electrophilic glycinites’ for the preparation of broadly substituted amino acids (entry 7, Table 7).89 Several approaches have been examined as possible enantioselective routes to relatively inaccessible, synthetic amino acids. The reactions of vinylmagnesium bromide with N-Cbz-L-Phe-α-chloro-Gly-OMe resulted in no asymmetric induction as a 1:1 mixture of diastereomeric β,γ-unsaturated
Table 7 The Addition of Organometallic Reagents to N-Acylimines

<table>
<thead>
<tr>
<th>Entry</th>
<th>Electrophiles</th>
<th>Organometallic Reagent</th>
<th>Conditions</th>
<th>Product</th>
<th>Yield (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ClNMe CHO</td>
<td>0.62 equiv. (HEtOEt)CuLi</td>
<td>THF, -20 °C to r.t., 3 h</td>
<td>HEtOEt</td>
<td>89</td>
<td>84</td>
</tr>
<tr>
<td>2</td>
<td>ClN-OCphen</td>
<td>1.2 equiv. (PrCuBu)MgLiX₂</td>
<td>THF, -20 °C to r.t., 3 h</td>
<td>H</td>
<td>47</td>
<td>84</td>
</tr>
<tr>
<td>3</td>
<td>Et₂O₂CNCPh</td>
<td>1 equiv. NPyLi</td>
<td>THF, -100 to -78 °C</td>
<td></td>
<td>50</td>
<td>85</td>
</tr>
<tr>
<td>4</td>
<td>(EtO)₂PCNPh</td>
<td>1.1 equiv. NCagger</td>
<td>THF, -78 °C</td>
<td></td>
<td>45</td>
<td>86</td>
</tr>
<tr>
<td>5</td>
<td>F₃CN OOBn</td>
<td>NCagger</td>
<td>THF, 0 °C</td>
<td></td>
<td>81</td>
<td>87</td>
</tr>
<tr>
<td>6</td>
<td>Cl₃C NCOR</td>
<td>1 equiv. MeMgBr</td>
<td>Et₂O, 0 °C, 12 h</td>
<td></td>
<td>56</td>
<td>88</td>
</tr>
<tr>
<td>Entry</td>
<td>Electrophiles</td>
<td>Organometallic Reagent</td>
<td>Conditions</td>
<td>Product</td>
<td>Yield (%)</td>
<td>Ref.</td>
</tr>
<tr>
<td>-------</td>
<td>---------------</td>
<td>------------------------</td>
<td>---------------------</td>
<td>---------</td>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>7</td>
<td>Bu'O₂C⁻N⁻O⁻Bu'</td>
<td>2.2 equiv. Benzene-MgBr</td>
<td>THF, -78°C to r.t., 12 h</td>
<td>[Chemical Structure]</td>
<td>91</td>
<td>89</td>
</tr>
<tr>
<td>8</td>
<td>MeO₂C⁻N⁻O⁻H⁻</td>
<td>Excess Benzene-MgBr</td>
<td>THF, -70°C, 2 h</td>
<td>[Chemical Structure]</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>9</td>
<td>BOC⁻N⁻O⁻Br⁻</td>
<td>Bu'MgBr</td>
<td>Et₂O, 0°C</td>
<td>[Chemical Structure]</td>
<td>65</td>
<td>91</td>
</tr>
<tr>
<td>10</td>
<td>BOC⁻N⁻O⁻Br⁻</td>
<td>Bu₂CuCNLi₂</td>
<td>THF, -78°C, 30 min</td>
<td>[Chemical Structure]</td>
<td>48</td>
<td>92</td>
</tr>
</tbody>
</table>

*Optical purity of the L-norecine produced using the chiral auxiliary.
α-amino acid esters was produced (entry 8, Table 7). Obrecht and coworkers have examined the addition of Grignard reagents to α-bromo-N-Boc-glycine-(-)-phenylmenthyl ester (entry 9, Table 7). The high enantioselectivity (82-95% ee, 4 examples) can be rationalized by the shielding of the re-face of the imine double bond by the aromatic ring of the (-)-8-phenylmenthyl moiety, as illustrated in Figure 5. A two-step conversion of these products to amino acids was developed as a result of the resistance of phenylmenthyl esters to hydrolysis.

Williams and coworkers have constructed a rigid 3-bromotetrahydrooxazin-2-one ring from D- or L-erythro-α,β-diphenyl-β-hydroxyethylamine as a chiral template for electrophilic glycinate condensations (entry 10, Table 7). Upon nucleophilic addition, very high diastereoselectivity is obtained (>91%, 11 examples) and is rationalized by a sterically controlled nucleophilic addition to a putative iminium species (Figure 6) or its bromoamide precursor. Hydrogenation or dissolving metal reduction of these products provides amino acids directly in excellent yield. The methodology is best suited for 'neutral' nucleophiles (e.g. silyl enol ethers, allyltrimethylsilanes) since the more basic organometallic agents competitively reduce the α-bromo ketones, resulting in lower overall yields.

Lipshutz et al. have described a singlet oxygen based approach for the conversion of 1,2,4-trisubstituted imidazoles (105) to N-acylimines (106) containing either alkyl or aryl substituents (Scheme 20). N-Acylimines (106; R1 = Bu, Bu, Ph; R = CH2Ph, CH2CH2Ph) are inert to organometallic reagents. Remarkably, hydroxamic N-acylimines (106; R1 = Bu, Bu, Ph; R = OMe) react with a variety of aryl, vinyl, ethynyl, primary and secondary organometallic reagents (2.5 equiv.) to afford α,α-disubstituted amino acid bis-amides (107) in good yield (52-94%). The fact that hydroxamic acid acylimine derivatives react and amide acylimines are inert to nucleophilic attack is unexpected. The authors speculate that organometallic complexation with the hydroxamic moiety might be responsible for organometallic delivery. A chelation-mediated acylimine activation of (106) cannot be discounted.

Weinreb et al. have described a procedure for the preparation of acyclic N-alkylamides (110) which involves the addition of trialkylalanes (4 equiv.) to amide methylols (108; Scheme 21). While the meth-
Nucleophilic Addition to Imines and Imine Derivatives

odology has also been extended to ureas and carbamates, all efforts to couple hydroxylactams such as (111; R = H) with trialkylalanes failed.

\[
\begin{align*}
\text{H} & + \text{N} & \text{O} & \rightarrow & \text{H} & + \text{N} & \text{O} \\
\text{OH} & \quad \text{4AlR}_3 & \quad \text{PhH}, \Delta & \rightarrow & \text{H} & + \text{N} & \text{O} \\
(108) & & & & (109) & & (110) 19-96%
\end{align*}
\]

Scheme 21

Treatment of lactam methyl ether (111; R = Me) with trialkylalanes, however, generated desired product (112) in modest yield (equation 14).95 Similarly, Shono et al.96 have treated α-methoxy carbamates (113) with Grignard reagents in the presence of boron trifluoride etherate to afford substituted pyrrolidines (114; equation 15).

\[
\begin{align*}
\text{BnO} & \quad \text{H} & \quad \text{N} & \text{Et} & \rightarrow & \text{BnO} & \quad \text{H} & \quad \text{N} & \text{Et} \\
\text{R} & \quad \text{13Al} & & & & \text{R} & \quad \text{13Al} & & & & \text{R} \\
(111) & & & & (112) & 22-66%
\end{align*}
\]

\[
\begin{align*}
\text{OMe} & \quad \text{N} & \quad \text{CO}_2\text{Me} & \rightarrow & \text{OMe} & \quad \text{N} & \quad \text{CO}_2\text{Me} \\
\text{RMgX} & \quad \text{BF}_3\text{OEt}_2 & & & & \text{R} & \quad \text{13Al} & & & & \text{R} \\
(113) & & & & (114) & 76-96%
\end{align*}
\]

1.12.6 ORGANOMETALLIC ADDITIONS TO HYDRAZONES

1.12.6.1 Tosylhydrazones

The reaction of alkyllithium reagents with acyclic and cyclic tosylhydrazones can lead to mixtures of elimination (route A) and addition (route B) products (Scheme 22). The predominant formation of the less-substituted alkene product in the former reaction (Shapiro Reaction) is a result of the strong preference for deprotonation syn to the N-tosyl group.97 Nucleophilic addition to the carbon–nitrogen tosylhydrazone double bond competes effectively with α-deprotonation (and alkene formation) if abstraction of the α-hydrogens is slow and excess organolithium reagent is employed.97,98 Nucleophilic substitution is consistent with an S_N2' addition of alkyllithium followed by electrophilic capture of the resultant carbanion.

Treatment of 5α-cholestan-3-one tosylhydrazone (115) with excess (8 equiv.) alkyllithium reagent (primary, secondary and tertiary carbanions) provides, after axial protonation, 3β-alkycholestane products (116) in addition to minor amounts of the anticipated alkene by-products (equation 16).99

In the case of verbenone tosylhydrazone (117), 8-pinene (118) is produced along with verbenene (119) following methyllithium treatment (equation 17).100

Good yields of substitution products can be obtained if elimination is precluded. Alkyllithium addition to fluorenone tosylhydrazone (120) provides access to 9,9-disubstituted fluorenes (121; equation 18).101

In a number of cases, the addition of lithium reagents to ketone mono- and di-tosylhydrazones can be improved by the inclusion of CuI, which activates the carbon–nitrogen bond toward nucleophilic addition.102 However, the formation of complex product mixtures with many ketone tosylhydrazones limits its synthetic utility.103
Nonstabilized Carbanion Equivalents

Route A

\[
\begin{align*}
\text{Li} & \xrightarrow{\text{RLi}} \text{N} \quad \text{Ts} \\
\text{Li} & \xrightarrow{\text{RLi}} \text{N} \quad \text{Ts}
\end{align*}
\]

Route B

\[
\begin{align*}
\text{Li} & \xrightarrow{\text{RLi}} \text{N} \quad \text{Ts} \\
\text{Li} & \xrightarrow{\text{RLi}} \text{N} \quad \text{Ts} \quad \text{R}
\end{align*}
\]

Scheme 22

\[
\text{R} = \text{Bu}^\circ, 55\%; \quad \text{R} = \text{Bu}^\circ, 50\%; \quad \text{R} = \text{Bu}^\circ, 48\%
\]

Vedejs et al. have shown that carbanions bearing leaving groups condense with aldehyde tosylhydrazones to generate disubstituted (128) and trisubstituted alkenes (129) (Scheme 24). While stereochemical control (cis:trans) is poor in the generation of disubstituted alkenes (compared, for example, to the Wittig reaction), the methodology is well suited for the synthesis of structurally diverse terminal alkenes.

As expected, the presence of CuI promotes addition to the lithium and magnesium salts of secondary and tertiary aldehyde tosylhydrazones. Dilithiotrialkylcuprates react with tosylhydrazones (130) to generate in high yield hindered cuprates (131), which undergo typical cuprate reactions (Scheme 25).
1.12.6.2 Chiral N,N-Dialkylhydrazones

Organometallic reagents condense with aldehyde-derived N,N-dialkylhydrazones. This methodology has since been utilized for enantioselective syntheses of amines. The addition of Grignard reagents to N-aminoephedrine and L-valinol derived hydrazones (135)16a-c and (138)16d to provide, after hydrogenolysis, access to (R)- and (S)-1-phenylalkylamines (137) and (140) has been studied by Takahashi \textit{et al.} (Scheme 26). Diastereoselectivity is >98% for alkyl Grignards (Me, Et, Prt) but erodes (<50%) with the addition of arylalkyl(benzyl) Grignards. The \textit{re}-facial selectivity of (135) and \textit{si}-facial selectivity of
(138) can be rationalized by the formation of the six-membered magnesium chelates shown in Figures 7a and 7b, with the diastereoselectivity resulting from a sterically controlled Grignard addition.

![Scheme 26](image)

1.12.6.3 SAMP (RAMP) Hydrazones

Enders and Denmark have shown that SAMP (RAMP) hydrazones apparently provide a more versatile route to optically pure amines. Organolithium and organocerium reagents add to structurally diverse SAMP aldehyde hydrazones (141; Scheme 27). Representative examples are shown in Table 8. While addition diastereomeric selectivity is similar for both the organo-lithium and -cerium substrates, the overall yields in the organocerium additions are superior to those of various organometallic reagents (R1Li, R1MgX, R12CuLi) alone or in conjunction with additives (BF3·Et2O, TMEDA). The preferred reagent stoichiometry is R1M:CeCl3:hydrazone = 2:2:1. Vinyl, primary, secondary and tertiary organocerium reagents give addition products with high diastereomeric selectivity. Aliphatic, aromatic, α,β-unsaturated and highly enolizable aldehyde hydrazones are suitable for nucleophilic addition (entries 1–4, Table 8). Only 1,2-addition is observed with α,β-unsaturated SAMP hydrazones (entry 4, Table 8). Although the intimate mechanistic details of this addition are not known, these results suggest the organolithium or organocerium (RCeCl2) reagent possibly coordinates to the methoxymethyl group and delivers R1 to the re-face of (141) to generate predominately (142).

1.12.6.4 α-Alkoxyaldehyde Dimethylhydrazones

Organolithium reagents (primary, secondary, tertiary, aryl and vinyl) also add in excellent yield to α-alkoxyaldehyde dimethylhydrazones (146; equation 19) with high threo diastereoselectivity (Table 9). Hydrogenolytic cleavage of the resultant hydrazines provide an attractive route to threo-2-amino alcohols. Threo diastereoselectivity is consistent with a chelation-controlled (Cram cyclic model) organolithium addition (Figure 8a). Since five-membered chelation of lithium is tenuous, an alternative six-membered chelate involving the dimethylamino nitrogen atom of the thermodynamically less stable (Z)-hydrazone (in equilibrium with the (E)-isomer) cannot be discounted. The trityl ether (entry 4, Table 9) eliminates the chelation effect of the oxygen atom such that the erythro diastereomer predominates (via normal Felkin–Ahn addition) (Figure 8b).
Table 8 Addition of Organolithium and Organocerium Reagents to SAMP Hydrazones (141)

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>R^1M (2 equiv.)</th>
<th>Yield (%)</th>
<th>Diastereomeric ratio $(142):(143)$</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PhCH$_2$CH$_2$</td>
<td>MeLi/CeCl$_3$</td>
<td>81a (59)b</td>
<td>98:2 (98:2)c</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>PhCH$_2$</td>
<td>MeLi/CeCl$_3$</td>
<td>66 (0)</td>
<td>96:4 (——)</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>Ph</td>
<td>MeLi/CeCl$_3$</td>
<td>59 (47)</td>
<td>91:9 (90:10)</td>
<td>17, 18</td>
</tr>
<tr>
<td>4</td>
<td>(E)-MeCH$_2$CH$_2$</td>
<td>MeLi/CeCl$_3$</td>
<td>82 (52)</td>
<td>96:4 (95:5)</td>
<td>18</td>
</tr>
</tbody>
</table>

aYield after chromatography of the corresponding methyl carbamates. bYield for the addition without CeCl$_3$ (2 equiv. MeLi). cDiastereomeric ratio for the addition without CeCl$_3$ (2 equiv. MeLi).

Table 9 Addition of Organolithium Reagents to α-Alkoxyaldehyde Dimethylhydrazones (146)

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>R^1Li</th>
<th>Yield (%)</th>
<th>Diastereomeric ratio $(147):(148)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bn</td>
<td>MeLi</td>
<td>98</td>
<td>97:3</td>
</tr>
<tr>
<td>2</td>
<td>Bn</td>
<td>Bu1Li</td>
<td>98</td>
<td>>98:2</td>
</tr>
<tr>
<td>3</td>
<td>CM$_2$O$_2$Me</td>
<td>PhLi</td>
<td>95</td>
<td>>98:2</td>
</tr>
<tr>
<td>4</td>
<td>Tr</td>
<td>MeLi</td>
<td>85</td>
<td>1:10</td>
</tr>
</tbody>
</table>

Figure 8
Only fair selectivity was obtained using the dimethylhydrazone of (R)-glyceraldehyde acetonides (149; equation 20). The addition of catalytic CuI reversed the diastereoselectivity (Table 10).11

Table 10 Addition of Organolithium Reagents to (R)-Glyceraldehyde Acetonide Dimethylhydrazones (149)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Organolithium reagent</th>
<th>Threo (150)</th>
<th>Erythro (151)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MeLi</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>MeLi (0.1 equiv. CuI)</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

1.12.7 ORGANOMETALLIC ADDITIONS TO AZADIENES

1.12.7.1 Chiral α,β-Unsaturated Aldimines

Koga and coworkers19 have examined the addition of organometallic reagents to chiral α,β-unsaturated aldimines (11) derived from amino acid esters (equation 21). While n-butyllithium and lithium di-n-butylcuprate add to the aldimine moiety (1,2-addition), 1,4-addition occurs preferentially with Grignard reagents (Table 11).19a,b

Table 11 Addition of Organometallic Reagents to Chiral α,β-Unsaturated Aldimines (11)

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>R¹</th>
<th>R²</th>
<th>Isolated yield (%)</th>
<th>(152) (%)</th>
<th>(153) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me</td>
<td>Ph²</td>
<td>Ph</td>
<td>42</td>
<td>65</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>Me</td>
<td>Bu¹</td>
<td>Ph</td>
<td>52</td>
<td>91</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Ph</td>
<td>Bu¹</td>
<td>Et</td>
<td>56</td>
<td>95</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Me</td>
<td>Bu¹</td>
<td>(CH₂)₂CH=CMe₂</td>
<td>48</td>
<td>98</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Me</td>
<td>Bu¹</td>
<td>Bu²</td>
<td>40</td>
<td>98</td>
<td>2</td>
</tr>
</tbody>
</table>

*Isolated as the corresponding alcohol.

Incorporation of a bulky substituent (R¹ = Bu¹) at the stereogenic center of the aldimine prevents deprotonation at this center and in addition is responsible for the high diastereoselectivity (entries 1 and 2, Table 11). The absolute configuration of the major β,β-disubstituted aldehydes produced after hydrolysis of the aldimine addition products is postulated to result from a chelation-mediated Grignard addition from the less-hindered re-face of the α,β-unsaturated aldimine existing in the s-cis conformation (Figure 9). Both diastereomeric products are accessible in theory, since R- and R*-substituents can be reversed (entries 2 and 3, Table 11).

Similarly, Grignard addition to cycloalkenecarbaldehyde-derived aldimines (154) affords, upon hydrolytic work-up, optically enriched trans-2-substituted cyclohexenecarbaldehydes (156; Scheme 28).19c-e The magnesioenamine intermediate (155) generated by the Grignard additions (only phenyl and vinyl reported) can be alkylated with methyl iodide to give, in most instances, the aldehyde (158).19d,e The amino ester bidentate ligand dictates the stereochemical control in the alkylation. The formation of the other
Nucleophilic Addition to Imines and Imine Derivatives

Figure 9

diasteromeric aldehyde (157) in refluxing THF presumably results from a thermal isomerization of the (Z)-magnesioenamine (155), followed by methyl iodide alkylation.

![Diagram of the reaction](image)

1.12.7.2 2-Azadienes

Metalloenamines produced in the addition of organometallic reagents to 2-azadienes have synthetic advantages over related enolates and enamines since they are formed regioselectively, exhibit a low tendency to suffer equilibration by proton transfer processes and are very nucleophilic. Wender and Eisenstat have shown that N-allylic and α,β-unsaturated imines undergo facile prototropic isomerization to N-alkenylimines (2-azadienes) in the presence of potassium t-butoxide. Addition of organolithium reagents to N-alkenylimines (160) provides in high yield a regiospecific generation of lithioenamine (161), which can be smoothly alkylated or condensed with aldehydes (directed aldol condensation) (Scheme 29).

A potential limitation of this methodology, involving the existence of unfavorable α,β-unsaturated-N-alkenylimine equilibriums (e.g. 159 versus 160, can be circumvented by manipulating aromatic ring substitution (p-OMe substituent favors azadiene formation).

The one-pot procedure involving the in situ generation of metalloenamines has been utilized by Martin et al. in the synthesis of the cyclohexenone (164); Scheme 30.

1.12.7.3 Aromatic Aldimines

Gilman et al. first investigated the 1,4 addition of Grignard reagents to benzophenone anil under forcing conditions. Meyers et al. have shown that conjugative addition of organometallic reagents to 1-naphthylimines provides an alternative to naphthylloxazolines for the preparation of substituted dihydronaphthalenes. Treatment of organolithium reagents (R = Pr, Bu, Bu) with O-t-butylvalinol-derived imine (12), followed by a methyl iodide quench, generates (165) in >95% ee (Scheme 31). Addition to (12; Figure 10) is consistent with a chelation-mediated (butoxy moiety) delivery of the organolithium reagent, paralleling the stereochemical course of the valinol-derived aldime additions described by
Takahashi and Suzuki (equation 4). The use of methyl-, benzyl- and 2-propenyl-lithium gave exclusive 1,2-addition. Demonstration that this methodology can be extended to 2-naphthyl, 3-pyridyl and 3-quinolyl aldimines (paralleling oxazoline chemistry) has not been reported.
1.12.8 ORGANOMETALLIC ADDITIONS TO OXIMES AND OXIME ETHERS

In addition to providing hydroxy (alkoxy) amines, the reaction of oximes with organometallic reagents can generate additional products. The propensity for proton abstraction α to the carbon–nitrogen double bond, the existence of mixtures of (E)- and (Z)-oxime isomers, the lability of the nitrogen–oxygen bond coupled with the poor oxime reactivity all contribute to the variability of this reaction.

1.12.8.1 Aldoxime Ethers/BF\textsubscript{3}-Activated Oxime Ethers

Treatment of benzaldehyde oxime ether (166) with butyllithium (pentane/–10 °C) demonstrates the complexity of the reaction (Scheme 32) as the desired alkoxyamine (167; \(R = \text{Bu} \)) is accompanied by other oxime-derived side products (entry 1, Table 12). Selectivity is reagent/solvent dependent as allyl Grignard (ether), allylzinc bromide (THF), and butyllithium (THF) treatment produce predominantly amine (171; \(R = \text{allyl} \)) (the Beckmann rearrangement derived product), alkoxyamine (167; \(R = \text{allyl} \)) (the oxime addition product) and ketone (169; \(R = \text{Bu} \)) (the nitrile-derived product), respectively (entries 2–4, Table 12).

Table 12 Addition of Organometallic Reagents to Benzaldehyde Oxime

<table>
<thead>
<tr>
<th>Entry</th>
<th>Organometallic Reagent (RM)</th>
<th>(R)</th>
<th>Products (%)</th>
<th>(167)</th>
<th>(168)</th>
<th>(169)</th>
<th>(170)</th>
<th>(171)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3BuLi (pentane/–10 °C/1 h)</td>
<td>Butyl</td>
<td>57</td>
<td>10</td>
<td>20</td>
<td>1</td>
<td>3</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3Allylmagnesium bromide (ether/20 °C/16 h)</td>
<td>Allyl</td>
<td>96</td>
<td>1</td>
<td>113</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3Allylzinc bromide (THF/20 °C/16 h)</td>
<td>Allyl</td>
<td>60</td>
<td>7</td>
<td>113</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2BuLi (THF/0 °C/1 h)</td>
<td>Butyl</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>114</td>
<td></td>
</tr>
</tbody>
</table>

The addition of organometallic reagents to formaldoxime ethers has been employed to incorporate aminomethyl substituents. Lithium carbanions add rapidly (–40 °C) to formaldoxime ether (172) to generate lithium alkoxymamide (173); Scheme 33). Lithium alkoxymides (LiRNOR\textsubscript{2}), in contrast to alkoxamines (RNHOR\textsubscript{2}), react under mild conditions with organolithium reagents (R\textsubscript{2}Li) to provide amines (RNHR\textsubscript{2}). Displacement of the benzylxy moiety of (173) with a second equiv. of organometallic reagent requires somewhat higher temperatures (0–40 °C) and thereby permits sequential addition of two different organolithium reagents. Benzylxyamide (173) and secondary amide (174) can be protonated or quenched with typical acylating or alkylating agents.

Reaction with (172) and other aldoximes may require oxime activation, which can be achieved with the addition of 1 equiv. of BF\textsubscript{3}OEt\textsubscript{2}. Yields in the addition of organometallic reagents to substituted aldoximes are modest and are a function of the isomeric composition of the oxime ethers, as the (Z)-oxime isomers are reported to preferentially react with organolithium reagents (entries 1 and 2, Table 13). The reaction has been employed for the preparation of 6-aminoalkyl-substituted pencillins (entry 3, Table 13). Cyclic oxime ether additions have also been evaluated (entries 4 and 5, Table 13). With the lability of the nitrogen–oxygen bond, addition to 5-substituted isoxazolines provides a potential avenue for stereospecific synthesis of substituted 3-aminoalcohols (entry 5, Table 13).
Corey et al.122 have elegantly exploited the ability of oxime ethers to stabilize carbanions \textit{syn} to the \(N\)-alkoxy substituent in the boron trifluoride mediated addition of the mixed cuprate reagent derived from (177) to \(\alpha,\beta\)-unsaturated oxime ether (178; Scheme 34). Stereochemistry is established by the ring \(t\)-butyldimethylsiloxy group. The addition does not occur in the absence of boron trifluoride. The alkylation of the cuprate adduct of (178) by iodoalkyne (179) provides the PGE\textsubscript{2} skeleton.

The condensation of organolithium reagents (2 equiv.) with glyoxylate-derived oxime ethers (182) provides a direct method for the synthesis of \(\alpha\)-\(N\)-hydroxy amino acids (equation 22).123 Both glyoxylic acid and glyoxylamide oxime ethers are compatible with this process. \(N\)-hydroxyaminoacetamides are also produced in low/moderate yields by the addition of isonitriles to oximes (oxime ethers) analogous to the four component condensation described by Ugi.124
Nucleophilic Addition to Imines and Imine Derivatives

1.12.8.2 Ketoximes/Ketoxime Derivatives

The reaction of ketoximes with Grignard reagents has been extensively investigated and provides aziridines in low/moderate yields. Examples are shown in Table 14. The stereochemical preference for substituted aziridines is consistent with the formation of an azirine intermediate (Scheme 35) followed by Grignard addition from the less-hindered side of the ring (entries 5 and 6, Table 14). Azirine ring formation in turn occurs predominantly syn to the oxime hydroxy group (entries 1, 2, 3, 5 and 6, Table 14). The regiospecificity of azirine formation is solvent dependent (entries 1 and 2, Table 14). Replacement of the oxime functionality with dimethylhydrazone methiodide provides in many instances superior yields to substituted aziridines (entries 4 and 7, Table 14).

The acid-catalyzed Beckmann rearrangement of ketoximes provides a reliable synthetic tool for the synthesis of amides and lactams. A methyllithium-promoted Beckmann rearrangement of oxime tosylates to give substituted amines was reported by Gabel. Yamamoto and coworkers have in recent years increased the synthetic scope and utility of this rearrangement with the discovery of organoaluminum-mediated reaction. Successive treatment of oxime sulfonates with trialkylaluminum, which induces the Beckmann rearrangement and captures the intermediary iminocarbocation, followed by a propargylic or allylic Grignard reagent generates acyclic and cyclic amines in synthetically useful yields (Scheme 36).

For example, treatment of oxime mesylate (191) with Me3Al (2 equiv.) in CH2Cl2 (−78 °C) followed by allylmagnesium bromide (2 equiv., −78 to 0 °C) yields amine (192; equation 23).
Table 14 Preparation of Aziridines from Oximes (Quaternary Hydrazones) and Grignard Reagents

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Grignard</th>
<th>Product(s)</th>
<th>Yield (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph(\text{N}^{-})OH ((E))</td>
<td>5 EtMgBr, toluene</td>
<td></td>
<td>33</td>
<td>126</td>
</tr>
<tr>
<td>2</td>
<td>Ph(\text{N}^{-})OH ((E))</td>
<td>5 EtMgBr, THF</td>
<td></td>
<td>85% 15%</td>
<td>126</td>
</tr>
<tr>
<td>3</td>
<td>Ph(\text{N}^{-})OH ((E):(Z) = 7:3)</td>
<td>5 EtMgBr, toluene</td>
<td></td>
<td>52% 48%</td>
<td>126</td>
</tr>
<tr>
<td>4</td>
<td>N(\text{N}^{+}) + NMe(_3)</td>
<td>PhMgBr</td>
<td></td>
<td>80</td>
<td>134</td>
</tr>
<tr>
<td>5</td>
<td>(\text{PhN}^{-})OH</td>
<td>2 EtMgBr, toluene</td>
<td></td>
<td>35</td>
<td>129</td>
</tr>
<tr>
<td>6</td>
<td>(\text{PhN}^{-})OH</td>
<td>2 MeMgBr, toluene</td>
<td></td>
<td>75% 25%</td>
<td>129</td>
</tr>
<tr>
<td>7</td>
<td>(\text{PhN}^{-})OH + NMe(_3)</td>
<td>MeMgBr</td>
<td></td>
<td>93</td>
<td>134</td>
</tr>
</tbody>
</table>

\[\text{R}^1 \equiv \text{N} \underset{\text{OSO}_2\text{R}}{\text{(187)}} \xrightarrow{\text{Me}_2\text{AlR}} \text{R}^2 \equiv \text{N}^+ \xrightarrow{\text{i, R}^3\text{MgBr \ (188)}} \text{R}^2 \equiv \text{N}^+ \xrightarrow{\text{ii, H}^+ \ (189)} \text{R}^3 \equiv \text{N} \underset{\text{H}}{\text{(190)}} \]

Scheme 36
Nucleophilic Addition to Imines and Imine Derivatives

1.12.9 ORGANOMETALLIC ADDITIONS TO S-ARYL SULFENIMINES

The addition of organometallic reagents to S-aryl sulfenimines (193) yields, upon aqueous work-up, substituted primary amines (195). The scope of these additions has not been extensively explored, largely because of the difficulties encountered in sulfenimine preparation. Recently, the generation of sulfenimines from N,N-bis(trimethylsilyl)sulfenamides and aldehydes or ketones has provided a more convenient access to these molecules.\(^{137}\)

Davis and Mancinelli\(^ {138}\) examined the addition of aryl- and alkyl-lithium reagents to nonenolizable and enolizable S-aryl sulfenimines (Table 15). The intermediate sulfenamides (194) contain a relatively weak sulfur–nitrogen bond, which is cleaved on aqueous work-up to generate amines (195) directly. The ability to add organometallic reagents to enolizable sulfenimines (in addition to providing good diastereoselectivity in several diallylzinc\(^ {139}\) and enolate condensations)\(^ {140}\) demonstrates synthetic advantages over the corresponding oximes or trimethylsilyl imines. On the other hand, sulfenimine condensations are plagued by the functionality’s ambient electrophilicity, as demonstrated in the attempted condensation of sulfenimine (196) with methylthiium.\(^ {141}\) In this case only products indicative of nitrogen–sulfur bond cleavage (imine 197 and thioanisole) were formed. Hart and coworkers\(^ {140}\) have found that nucleophilic attack on the sulfenimine sulfur atom can be minimized by replacement of the S-aryl moiety with the bulky S-trityl substituent.

<table>
<thead>
<tr>
<th>Entry</th>
<th>(R^1)</th>
<th>(R^2)</th>
<th>RM (excess)</th>
<th>Product (195)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph</td>
<td>H</td>
<td>MeLi</td>
<td>PhCH(Me)NH(_2)</td>
<td>79</td>
</tr>
<tr>
<td>2</td>
<td>Me</td>
<td>H</td>
<td>PhLi</td>
<td>PhCH(Me)NH(_2)</td>
<td>61</td>
</tr>
<tr>
<td>3</td>
<td>Me</td>
<td>Me</td>
<td>Bu'Li</td>
<td>Bu'CMe(_2)NH(_2)</td>
<td>43</td>
</tr>
<tr>
<td>4</td>
<td>-(CH(_2))(_5)-</td>
<td>MeLi</td>
<td>N(_2)H</td>
<td></td>
<td>68</td>
</tr>
</tbody>
</table>

Table 15 The Addition of Organometallic Reagents to S-Aryl Sulfenimines (193)
1.12.10 ORGANOMETALLIC ADDITIONS TO SULFONIMINES

Nucleophiles readily add to N-(arylsulfonyl)imines (198; Equation 24). The reaction has limited synthetic utility for amine syntheses due to the harsh conditions required for the removal of the product’s N-(arylsulfonyl) protecting group.

\[
\text{Ar} = \text{N} \underset{\text{SO}_2 \text{Ar}}{\text{SO}_2 \text{Ar}} \quad \text{i, RM} \quad \text{Ar} = \text{N} \underset{\text{H}}{\text{SO}_2 \text{Ar}} \quad \text{(198)}
\]

\[
\text{Ar} = \text{N} \underset{\text{SO}_2 \text{Ar}}{\text{SO}_2 \text{Ar}} \quad \text{ii, } \text{H}^+ \quad \text{(199)}
\]

Diaryl sulfamides (201) produced in the condensation of Grignard (primary, tertiary or aryl) and organolithium (primary or aryl) reagents with sulfamylimines (200) can, however, be hydrolyzed in refluxing aqueous pyridine to afford arylamines (202) in good (75–95%) overall yield (Scheme 38).

\[
\begin{align*}
\text{Ar} &= \text{N} \underset{\text{SO}_2 \text{Ar}}{\text{SO}_2 \text{Ar}}
\text{i, pyridine, H}_2 \text{O} &\quad \text{Ar} = \text{N} \underset{\text{H}}{\text{SO}_2 \text{Ar}}
\text{ii, NaOH} &\quad \text{Ar} = \text{N} \underset{\text{HM}}{\text{NH}_2}
\end{align*}
\]

Scheme 38

1.12.11 ORGANOMETALLIC ADDITIONS TO N-TRIMETHYLSILYLIMINES

While organometallic reagents condense with N-substituted imines (Schiff bases) to afford, after hydrolysis, good yields of substituted amines, the reaction with N-unsubstituted imines (203) derived from ammonia (which are easily hydrolyzed and self condense) is not synthetically useful. As a result, the use of masked imines containing labile silicon- or sulfur-nitrogen bonds, such as N-unmethylsilylimines (204) or N-sulfenimines (205), has been explored.

\[
\begin{align*}
\text{N} \underset{\text{H}}{\text{SiMe}_3} &\quad \text{(203)}
\text{N} \underset{\text{SR}}{\text{SiMe}_3} &\quad \text{(204)}
\end{align*}
\]

Demonstration that N-trimethylsilylimines (which are sometimes too unstable to isolate) can be generated and treated in situ with organometallic reagents has increased the scope and utility of these reactions for the preparation of substituted primary amines. Nonenolizable aldehydes, for instance, condense with lithium bis(trimethylsilyl)amide to afford solutions of N-trimethylsilylaldimines. Hart et al. and Nakahama and coworkers have independently shown that trimethylsilylimines (206) react with organolithium and Grignard reagents to give, after aqueous work-up, primary amines (207) in moderate/excellent yields (equation 25). The isolation of phenyltrimethylsilane, albeit in low yield, in the addition of phenylmagnesium bromide to (206; \(R^1 = \text{H} \)) suggests that silicon attack may, in certain instances, compete with azomethine addition.

\[
\begin{align*}
\text{Ph} \underset{\text{R}^1}{\text{N} \underset{\text{SiMe}_3}{\text{SiMe}_3}} &\quad \text{RM} \quad \text{Ph} \underset{\text{R}^1}{\text{N} \underset{\text{SiMe}_3}{\text{SiMe}_3}}
\end{align*}
\]

\[
\begin{align*}
\text{Ph} \underset{\text{R}^1}{\text{NH}_2} &\quad \text{Ph} \underset{\text{R}^1}{\text{N} \underset{\text{SiMe}_3}{\text{SiMe}_3}}
\end{align*}
\]

Equation 25

Several other preparative methods, involving the condensation of (i) N-(trimethylsilyl)phosphinimines and carbonyl compounds; and (ii) organometallic reagents with nitriles followed by quenching with chlorotrimethylsilane, have been used for the preparation of other aldehyde- and ketone-derived
Nucleophilic Addition to Imines and Imine Derivatives

silylimines. Organolithium reagents add to nonenolizable ketone-derived silylimines such as \((206; R^1 = \text{Ph})\) to generate tertiary carbinamines \((207)\)\(^{145}\).

Attempts to extend the organometallic addition reaction to \(N\)-trialkylsilylimines derived from enolizable ketones have been frustrated by difficulties encountered in the preparation of these silylimines (due to competitive enolization), in addition to the existence of a tautomeric equilibrium between desired silylimines and the corresponding enamines. As a result, addition products (formed in low yield) are accompanied by significant amounts of starting materials (presumably generated via enamine hydrolysis)\(^{145}\). However, silylimines derived from enolizable aldehydes reportedly can be generated and trapped in situ with ester enolates to form \(\beta\)-lactams (18–60% yield)\(^{146}\).

Iminium salts bearing a labile trimethylsilyl group can be generated in situ and undergo nucleophilic addition (see Sections 1.12.4.2 and 1.12.7.3). Bis(trimethylsilyl)methoxymethylamine \((79\), for example\), has been used as a formaldehyde equivalent for the preparation of primary amines\(^{147, 148}\). Cyclic imines, such as 3,4-dihydroquinolines, react with trimethylsilyl triflate (TMS-OTf) to provide reactive labile iminium salts \((53\), which condense with picoline anions\(^{49}\). The addition of nonstabilized Grignard and organolithium reagents to acyclic aromatic ketimines and aldimines, however, is often not facilitated by the presence of TMS-OTf\(^{149}\).

1.12.12 ORGANOMETALLIC ADDITIONS TO NITRONES

The highly polarized imine double bond of nitrones is responsible for the group’s high electrophilic activity. The susceptibility of nitrones to nucleophilic addition has been exploited particularly in dipolar \([3 + 2]\) cycloaddition reactions. The addition of organometallic reagents to acyclic and cyclic nitrones has been reviewed\(^{150}\). Grignards add to acyclic aldonitrones \((208)\) bearing alkyl and aryl substituents to generate after work-up \(N,N\)-disubstituted hydroxylamines \((209)\). \(N,N\)-disubstituted hydroxylamines can be further elaborated via oxidation\(^{151, 154}\) to substituted nitrones \((210)\) or by reduction\(^{152}\) to secondary amines \((211)\). Acyclic ketonitrones are resistant to organometallic addition and have been reduced by Grignard reagents to the corresponding Schiff bases\(^{153}\).

\[
\begin{align*}
\text{R}^1 &\text{N}^+ \text{R}^2 + \text{R}^2\text{MgX} \rightarrow \text{R}^1\text{N}^+\text{R}^2 + \text{R}^2\text{OH} \\
(208) &\rightarrow (209) \\
\text{R}^1 &\text{N}^+ \text{R}^2 + \text{R}^2\text{MgX} \rightarrow \text{R}^1\text{N}^+\text{R}^2 + \text{R}^2\text{OH} \\
(208) &\rightarrow (209) \\
\end{align*}
\]

Scheme 39

1.12.12.1 Acyclic Chiral Nitrones

Chang and Coates\(^{15}\) have examined the addition of organometallic reagents to nitrones \((212; \text{equation 26})\) containing a chiral nitrogen auxiliary (Table 16). These nitrones are prepared by the condensation of chiral \(N\)-alkylhydroxylamines with alkyl and aryl aldehydes and are assumed to exist in the \((Z)\)-configuration. High diastereoselectivity (determined by \(^1\text{H NMR}\)) is obtained in the addition of organolithium and Grignard reagents to nitrones bearing a \(\beta\)-alkoxy group on nitrogen (entries 1, 2, 4, 5 and 6, Table 16).

\[
\begin{align*}
\text{R}^1 &\text{N}^+ \text{R}^2 + \text{R}^3\text{M} \rightarrow \text{Ph} \text{N}^+ \text{R}^1 \text{R}^2 + \text{Ph} \text{N}^+ \text{R}^1 \text{R}^2 \\
(212) &\rightarrow (213) + (214) \\
\text{Et}_2\text{O/0 °C} &\rightarrow \text{79–96%} \\
\text{79–96%} &\rightarrow \\
\end{align*}
\]

Equation 26
The absolute configuration of the major products (213) or (214) can be predicted by the chelation model shown in Scheme 40, as the resident stereogenic substituent controls the facial selectivity in the organometallic additions. The diastereoselectivity is affected by the β-alkoxy functionality. The methoxy substituent is preferred, as the selectivity erodes with benzyloxy substitution (entries 1 and 2, Table 16) and is reversed with the bulky t-butyldimethylsiloxy group (entries 6 and 7, Table 16). As expected, selectivity is poor for nitrones devoid of β-alkoxy substituents (entry 3, Table 16). By appropriate nitrone/organometallic substitution, both diastereomeric products can be preferentially generated (entries 1 and 6, Table 16).

![Scheme 40](image)

Stereochemical control in the addition of Grignard reagents to chiral racemic N-(2-phenylpropylidene)alkylamine N-oxides (215) has been observed (equation 27).\(^\text{154}\) Diastereoselectivity is modest (216:217 = 2:1–5:1). The formation of hydroxylamines (216) as the major products is consistent with Felkin–Ahn Grignard addition (Figure 11).

![Figure 11](image)

1.12.12.2 Cyclic Nitrones

Additions have been reported for both cyclic aldo- and keto-nitrones and have been utilized in the synthesis of structurally diverse heterocyclic systems (see Table 17).\(^\text{155–157}\) The condensation of 3,4-dimethoxybenzyl Grignard with 3,4-dihydroisoquinoline N-oxide (entry 1, Table 17) provides an access to pellefierine alkaloids.\(^\text{155}\) A synthetic use of cyclic ketonitrone condensations is demonstrated in the addi-
tion of allylmagnesium bromide to 6-methyl-2,3,4,5-tetrahydropyridine N-oxides, as the resultant hydroxylamine product can be readily oxidized and trapped internally to generate useful bridged isoxazolidines (entry 2, Table 17). Nitrones need not be isolated for organometallic addition as Grignard reagents readily condense with dimeric nitrones (entry 3, Table 17). In addition, the condensation of alkylolithiums and Grignards with heterocyclic N-oxides such as 2,4,4-trialkylloxazoline N-oxides followed by Cu(OAc)$_2$ exposure provides a flexible entry into biologically useful Doxyl (4,4-dimethyl-oxazolidine-N-oxyl) nitroxide spin labels (entry 4, Table 17).

| Table 17 Additions of Organometallic Reagents to Cyclic Nitrones |
|-------------------|-------------------|-------------------|-------------------|
| Entry | Nitrone | Organometallic | Product | Ref. |
| 1 | | | |
| 2 | | | |
| 3 | | | |
| 4 | | | |

1.12.13 REFERENCES

Nonstabilized Carbanion Equivalents

121. R. A. Volkmann, unpublished results.
125. For a review see J. P. Freeman, *Chem. Rev.*, 1973, 73, 283.
1.13
Nucleophilic Addition to Carboxylic Acid Derivatives

BRIAN T. O’NEILL
Pfizer Central Research, Groton, CT, USA

1.13.1 INTRODUCTION

1.13.2 ACYLATION OF ORGANOLITHIUM AND GRIGNARD REAGENTS
 1.13.2.1 Acylation with N-Methoxy-N-methylamides
 1.13.2.1.1 Formation of alkyne ketones
 1.13.2.2 Acylation with S-(2-Pyridyl) Thioates
 1.13.2.3 Acylation by Carboxylic Acids
 1.13.2.4 α-Amino Acids as Acylating Agents
 1.13.2.5 Acylation with Acid Chlorides
 1.13.2.6 Acylation with Carboxylic Esters
 1.13.2.7 Preparation of Alkyne Ketones from Lactones
 1.13.2.8 Other Activated Acylating Agents for Ketone Synthesis
 1.13.2.8.1 Acylating agents derived from pyridine or quinoline
 1.13.2.8.2 Carboxymethyleniminium salts
 1.13.2.8.3 Acylation with the mixed anhydrides of phosphorus
 1.13.2.9 Addition to Oxalic Acid Derivatives

1.13.3 ACYLATION BY ORGANOCOPPER REAGENTS
 1.13.3.1 Stoichiometric Organocopper Reagents
 1.13.3.1.1 Acylation of vinylcuprates
 1.13.3.2 Acylation of Lithium Dialkylcuprates with Acid Chlorides or Thiol Esters
 1.13.3.3 Acylation of Heterocuprates
 1.13.3.4 Acylation with Thiol Esters
 1.13.3.5 Acylation of α-Trimethylsilylmethylcopper

1.13.4 ACYLATION MEDIATED BY LOW-VALENT PALLADIUM COMPLEXES
 1.13.4.1 Acid Chlorides and Organostannanes
 1.13.4.1.1 Mechanistic studies of palladium-catalyzed acylation
 1.13.4.1.2 Effect of the catalyst
 1.13.4.1.3 Effect of solvent, catalyst concentration and oxygen
 1.13.4.1.4 Transmetalation and reductive elimination
 1.13.4.2 Sources of Tetrasubstituted Stannanes
 1.13.4.3 Acylation of Organostannanes with Acid Chlorides
 1.13.4.4 Palladium-catalyzed Acylation of Organotinns
 1.13.4.5 Palladium-catalyzed Acylation of Organomercurials and other Organometallics

1.13.5 ACYLATION WITH NICKEL AND RHODIUM CATALYSIS
 1.13.5.1 Acylation with Alkylrhodium(I) Complexes and Acid Chlorides
 1.13.5.2 Acylation by Organonickel Complexes

1.13.6 REFERENCES
1.13.1 INTRODUCTION

The reaction of carbon-based nucleophiles and carboxylic acid derivatives often presents a sophisticated problem in reaction chemoselectivity, especially when selective acylation of organometallics to form a ketone is required (equation 1). Historically, this transformation has been plagued by the formation of by-products due to subsequent nucleophilic addition to the desired product. A great deal of effort has been directed toward developing gentler techniques which avoid overaddition. Alternatively, the preparation of a ketone from a carboxylic acid equivalent often relies on a three-step approach, as shown in equation (2).

This familiar protocol begins with the selective reduction of an ester to an aldehyde. The aldehyde is then subjected to a nucleophilic addition with an organometallic to form a secondary alcohol (see Chapters 1.1 and 1.2 of this volume and Chapters 1.11 and 1.12, Volume 8). The required ketone is obtained through oxidation by one of several known reagents for the task (see Chapters 2.7 and 2.8, Volume 7). Although made simple by the ready availability of reducing reagents for the seemingly nontrivial first step and the facile oxidation depicted in the third step, it seems apparent that, even with high yields in each step, the overall transformation suffers from extended linearity. Considering methodology currently available, the development of a single-step general ketone synthesis through direct transformation of the acid derivative would be more expeditious. The goal of this chapter is to document the success of the latter approach, and to influence current practitioners to consider this strategy when designing synthetic approaches to target molecules.

The extent of the challenge can be rationalized as follows: reaction of a weakly electrophilic species such as an ester with a powerful nucleophile such as a Grignard reagent affords initially a ketone. By comparison with the ester, this highly electrophilic species cannot shield itself from the sea of excess nucleophile present in the reaction mixture and thus undergoes a second nucleophilic addition. For example, reaction of methylmagnesium bromide with ethyl acetate affords the intermediate 2-propanone only momentarily before succumbing to further nucleophilic attack with formation of t-butyl alcohol. It is often not possible to control a reaction of this type simply by the choice of solvents, temperature, order of addition or by the amount of the carbanionic reagent used. Although in most cases the desired product is a more reactive moiety than the starting carboxylic acid derivative, new reagents and substrates have been devised that allow for sophisticated manipulation of these reactivities. As we shall see, solutions to this problem are now abundant and our discussion will concentrate on methodology which has been developed recently for promoting ketone formation.

While most of the chemistry discussed in this chapter has been developed in the past decade, several important methods have withstood the test of time and have made important contributions in areas such as natural product synthesis. Methods such as cuprate acylation and the addition of organolithiums to carboxylic acids have continued to enjoy widespread use in organic synthesis, whereas older methods including the reaction of organocadmium reagents with acid halides, once virtually the only method available for acylation, has not seen extensive utilization recently. In the following discussion, we shall be interested in cases where selective monoacylation of nonstabilized carbanion equivalents has been achieved. Especially of concern here are carbanion equivalents or more properly organometallics which possess no source of resonance stabilization other than the covalent carbon-metal bond. Other sources of carbanions that are intrinsically stabilized, such as enolates, will be covered in Chapter 3.6, Volume 2.

Related chemistry not covered in this chapter includes the acylation of stabilized organometallics and the broad category of enolate or metalloenamine C-acylation (Volume 2), the Claisen or Dieckman condensations (Chapter 3.6, Volume 2), the acylation of heteroatom-stabilized carbanions (Part 2, Volume 1), the Friedel-Crafts acylation of alkenes, aromatics or vinyl silanes (see Chapters 3.1 and 2.2, Volume 2), nor will methods that involve radical-mediated acylation be discussed in this section.

Finally, ketone formation by acylation of carbanions can proceed in several ways, including masking of the ketonic product until isolation, the use of carbanion equivalent reagents which do not readily react with the product or the use of substrates which are more reactive than the ketone towards acylation. An
alternative approach involves substrates which selectively coordinate the organometallic and thus activate the substrate towards acylation. As we shall see, examples of successful acylation can occur even when the ketone is present in the reaction mixture. Additionally, transition metal mediated acylation provides a mechanistic alternative where carbon–carbon bond formation is the result of an electronic reorganization of the metal, driven by the stability of the particular oxidation state. This chapter will discuss these approaches in detail, as well as some other types of reactions that selectively result in the formation of ketones, by the presentation of examples from the natural products literature, and simultaneously review the scope and limitations of many of these methods.

1.13.2 ACYLATION OF ORGANOLITHIUM AND GRIGNARD REAGENTS

1.13.2.1 Acylation with N-Methoxy-N-methylamides

In 1981, Nahm and Weinreb reported an effective and versatile method for the direct acylation of unstabilized organometallics. Organolithium and Grignard reagents, the most readily available nucleophilic agents in this class, have been used interchangeably in this ketone synthesis (equation 3). The approach has been successful in large part because of the exceptional stability of tetrahedral intermediate (1), the primary adduct from organometallic addition to N-methoxy-N-methylamides. The inertness of (1) prevents premature release of the ketone functionality and thus avoids products from secondary addition of the nucleophile. Subsequently, we shall discuss methods in which the ketone was released into the reaction mixture during acylation without seriously affecting the selectivity of acylation; however, the Weinreb approach has become one of the most generally effective for preventing overaddition. Furthermore, it is likely that prior coordination of the metal alkyl to the carbonyl and methoxyamide groups can serve to accelerate addition and limit enolization. Prior to this disclosure, few methods provided selective monoaddition of a nucleophile to carboxylic acid derivatives with stoichiometric quantities of both the acylating agent and organometallic. The present method avoids the preparation of specialized organo-cadmiums or -zincs for acylation, and complements the use of S-(2-pyridyl) thioates as acylating agents as demonstrated by Mukaiyama (see Section 1.13.2.2).

While nucleophilic addition to an N-methoxy-N-methylamide with an organolithium or Grignard reagent affords a ketone, the reduction of the same substrate may also be performed with excess lithium aluminum hydride, or (more conveniently) DIBAL-H, thus providing an aldehyde directly. Table 1 shows the scope of both of these transformations.

![Chemical reaction](equation 3)

While nucleophilic addition to an N-methoxy-N-methylamide with an organolithium or Grignard reagent affords a ketone, the reduction of the same substrate may also be preformed with excess lithium aluminum hydride, or (more conveniently) DIBAL-H, thus providing an aldehyde directly. Table 1 shows the scope of both of these transformations.

<table>
<thead>
<tr>
<th>R</th>
<th>R'M</th>
<th>Equiv.</th>
<th>Reaction time</th>
<th>Temperature (°C)</th>
<th>Product</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph</td>
<td>MeMgBr</td>
<td>1.1</td>
<td>1.0 h</td>
<td>0</td>
<td>PhCOMe</td>
<td>93</td>
</tr>
<tr>
<td>Ph</td>
<td>MeMgBr</td>
<td>75</td>
<td>1.0 h</td>
<td>0</td>
<td>PhCOMe</td>
<td>96</td>
</tr>
<tr>
<td>Ph</td>
<td>BuLi</td>
<td>2.0</td>
<td>1.0 h</td>
<td>0</td>
<td>PhCOBu3</td>
<td>84</td>
</tr>
<tr>
<td>Ph</td>
<td>PhC=CBr</td>
<td>1.1</td>
<td>1.0 h</td>
<td>20</td>
<td>PhC=CCOPh</td>
<td>90</td>
</tr>
<tr>
<td>Ph</td>
<td>PhCMBr</td>
<td>1.5</td>
<td>1.5 h</td>
<td>65</td>
<td>PhC=CCOPh</td>
<td>92</td>
</tr>
<tr>
<td>Ph</td>
<td>DIBAL-H</td>
<td>Excess</td>
<td>1.0 h</td>
<td>-78</td>
<td>PhCHO</td>
<td>71</td>
</tr>
<tr>
<td>Ph</td>
<td>LiAlH4</td>
<td>Excess</td>
<td>8 min</td>
<td>-78</td>
<td>PhCHO</td>
<td>87</td>
</tr>
</tbody>
</table>

The requisite N-methoxy-N-methylamides may be prepared from acid chlorides by employing a slight excess of the commercially available N,O-dimethylhydroxylamine hydrochloride in the presence of pyridine. They have also been prepared from acylimidazoles and from mixed anhydrides of carboxylic acids. Once prepared, these systems possess stability equivalent to that of most tertiary amides and, in
this section, we shall discuss several cases where extensive manipulation of ancillary functionality was accomplished without interference from the amide.

Recently, Hlasta has shown that N-methoxy-N-methylamides may be prepared through the addition of organolithiums to N-methoxy-N,N',N''-trimethylurea (2) or the symmetrical reagent (3) (Scheme 1). Interestingly, it is possible in some cases to introduce a second alkyllithium in order to produce a ketone directly without isolation of the intermediate amide.

\[
\begin{align*}
\text{(2)} & \quad \text{for (2)} \\
& \quad \text{RLi, } -78 ^\circ \text{C} \\
\text{(3)} & \quad \text{for (3)} \\
& \quad \text{RLi, } -78 ^\circ \text{C}
\end{align*}
\]

Scheme 1

As an extension of their chiral aldol and alkylation technology, Evans and coworkers have reported a variety of methods for cleaving and replacing the chiral oxazolidinone auxiliary once chain construction has been completed. Included in this methodology was the direct transformation of a chiral imide to an N-methoxy-N-methylamide through the use of aluminum amides (prepared \textit{in situ}). This reaction has been shown to be rather general for complex substrates (Scheme 2).

\[
\text{i, MeONHMe+HCl, AlMe}_3, \text{CH}_2\text{Cl}_2, -15 \text{ to } 0 ^\circ \text{C}, >90\%
\]

Scheme 2

Since it had been determined that ketone or aldehyde functionality was not directly accessible from chiral N-acyloxazolidinones, the transamination–metal alkyl addition procedure provided a conveniently expeditious alternative. The first step, transamination, proceeded in high yield by introduction of the N-acyloxazolidinone into a solution of the aluminum amide in dichloromethane at -15 °C. The reaction is favored by the presence of α-heteroatom substituents and by β-alcohol functionality (aldol adducts). Acceleration of the transamination in the latter case is most likely due to formation of a chelated intermediate (5) which serves to activate only the exocyclic carbonyl towards attack (equation 4). Because of the indicated activation, these aldol adducts are often the best substrates for this permutation. The effectiveness of the transamination in the case of (4) is noteworthy, as retroaldol fragmentation of this substrate usually occurs under mild base catalysis.
In the case of a simple α-alkylated adduct such as (6), which cannot form a chelated intermediate of the type (5) or which does not contain α-heteroatom activation, and for cases that are especially hindered, attempted transamination often leads to competing attack upon the oxazolidinone carbonyl (equation 5).

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\text{N} & \quad \text{N} \\
\text{OH} & \quad \text{OH} \\
\text{Br} & \quad \text{Br} \\
\text{Ph} & \quad \text{Me}
\end{align*}
\]

The preparation of fully elaborated ketones and aldehydes was demonstrated by Evans in the context of the total syntheses of the antibiotic X-20612 and the antitumor cytovaricin.14 The exceptional stability of the N-methoxy-N-methylamide allows application of an array of functional group transformations on distant portions of the molecule before organometallic addition is carried out. Early intermediates towards X-206, compounds (8) and (9), readily suffer ozonolytic cleavage to the aldehyde amide (10). (Notice that either terminus of (9) may later be converted in a single operation to an aldehyde.) When imide or ester functionality is substituted for the N-methoxy-N-methylamide of (8), attempted protection of the secondary alcohol results in retroaldolization. However, 0-benzylation was accomplished with intermediate (8) without competing retroaldol cleavage, even when the sodium aldolate was used! Intermediate (10) was subjected to the Wittig reaction in toluene and the resulting (11) was then reduced by DIBAL-H to aldehyde (12). No epimerization was observed at either stereogenic center during these modifications (Scheme 3).

\[
\begin{align*}
\text{Ph} & \quad \text{N} \quad \text{O} \\
\text{Me} & \quad \text{O} \\
\text{Me} & \quad \text{Me} \\
\text{H} & \quad \text{H} \\
\text{Me} & \quad \text{Me}
\end{align*}
\]

The synthesis of cytovaricin passes through several highly functionalized intermediates including compound (13).13 Glycosidation of the alcohol at C-3 was carried out with the N-methoxy-N-methylamide functionality in place. The addition of methyllithium and deprotection of the alcohol completes the formation of ketone (14) without competing epimerization or elimination (equation 6).

\[\text{MeO} + \text{H} \rightarrow \text{MeO} + \text{H} \]

The acylation of vinylorganometallics was also possible with this technology. In equation (7), taken from the cytovaricin study, the acylation was completed directly after transamination of the starting imide (not shown), without racemization or retroaldolization and apparently without the necessity of protection of the β-hydroxy alcohol.14

A model study, directed at the total synthesis of X-206, showed that more functionalized vinylolithiums could be acylated in very high yield.15 The product, an α-methylene ketone, does not suffer further attack by the vinylolithium reagent because the enone is concealed until after quenching of the reaction mixture.
The tetrahedral intermediate generated by organometallic addition thus provides 'in situ' protection of the ketone (equation 8).

Organometallic addition to the N-methoxy-N-methylamide (15) also affords an exceptionally stable tetrahedral intermediate (16) and carbonyl-protecting group, first used in the synthesis of X-206. Deprotonation of the hydrazone in intermediate (16) was subsequently carried out with lithium diisopropylamide. The resulting dianion initiated a novel attack upon epoxide (17) and in the ensuing transformation was followed by tetrahydrofuran ring formation as depicted, in 71% yield, all in one pot (Scheme 4).

A similar transformation was carried out on the less-oxygenated substrate (18) during the synthesis of a portion (C-10 to C-20) of the antibiotic ferensimycin (Scheme 5). The most complex example of this type of consecutive organometallic acylation, subsequent deprotonation, and tetrahydrofuran ring formation was recorded during the synthesis of the right hand portion of X-206 (Scheme 6). The high overall yield obtained in this process is a testament to the method’s generality.

This method has been applied by other researchers as well. The recent total synthesis of (−)-FK 506 by the Merck Process Group employed N-methoxy-N-methylamide functionality as a mild route to complex aldehydes (equation 9).
Patterson has prepared ethyl ketone (20) without racemization and in good overall yield by the sequence shown in Scheme 7. The preparation of (20) by standard organometallic addition to the corresponding aldehyde followed by Swern oxidation resulted in substantial racemization.18

By way of comparison, a very similar transformation has been accomplished without the use of the N-methoxy-N-methylamide. Hydrolysis of methyl ester (19) affords the corresponding carboxylic acid which was treated directly with methylolithium to afford a 70% overall yield of methyl ketone.19

The acetylation of a precursor to the natural respiratory toxin (±)-anatoxin-a was best achieved under the Weinreb protocol as depicted in equation (10). Other methods which relied on organocuprate or Grignard addition to thioacetates were totally unsuccessful. A proton-transfer side reaction consumed up
Nonstabilized Carbanion Equivalents

Scheme 7

to 10% of the vinyllithium, formed by lithium–halogen exchange under standard conditions (>2 equiv. Bu'Li), but it was not clear whether this was due to deprotonation of the acetyliming agent or t-butyl bromide.20

Weinreb has reported the total syntheses of (+)-actinobolin and (-)-bactobolin from common intermediate (21). Both the reductive cleavage and Grignard addition proceeded in high overall yield (equation 11).21

A highly selective acylation of assorted organometallics by β-lactam (22) was achieved through the use of the N-methoxy-N-methylamide. There was no attack at the β-lactam carbonyl and the overall yields were quite good (equation 12).22

Williams has reported that ortho-lithiated anisole may be acylated with the N-methoxy-N-methylamide of 2-(benzyloxy)acetic acid (equation 13) in higher yield than previously demonstrated with organocadmium reagents (90% versus 40%). The ketone (23) is an early intermediate in an approach to quinocarcin.23 Acylation of lithium 3-lithiopropoxide, generated from the stannane, afforded a hydroxy ketone without racemization at the α-position (equation 14).24
Nucleophilic Addition to Carboxylic Acid Derivatives

1.13.2.1.1 Formation of alkynic ketones

Alkynic ketones have been used extensively in natural product synthesis, due in large part to the contributions of Midland and coworkers and the development of general methods for enantioselective reduction of this moiety to afford optically active propargyl alcohols using chiral trialkylboranes. Furthermore, the derived alkynic alcohol is a versatile system which can be manipulated directly into cis- or trans-allylic alcohols and as a precursor for vinylorganometallic species. This section will briefly cover progress made in the direct acylation of alkynic organolithiums with the acylation protocol developed by Weinreb (see also Section 1.13.2.7).

Several examples of alkynic ketone formation have been recorded since Weinreb's first examples. A Diels–Alder strategy for the synthesis of mevinolin required the preparation of alkynic ketone (24). Standard methods, calling for the addition of the alkynide anion to an aldehyde followed by oxidation, lead to extensive degradation and by-product formation. The Weinreb methodology was clearly more effective (Scheme 8).

Trost has prepared several alkynic ketones by direct acylation of N-methoxy-N-methylamides. Because of subsequent transformations on the product, the addition served as a method for introducing a dienylanion. Interestingly, the methoxyamide moiety is specifically activated towards nucleophilic addition, and the neighboring ester of the lactate system (25) was not disturbed during this transformation (equation 15). Prior coordination of the organolithium within the amide subunit and subsequent activated addition of the nucleophile serves as a reasonable explanation for the unusual selectivity of this process.

Rapoport has compared the leaving-group ability of a variety of activated acyl groups towards metal alkynes and has demonstrated the usefulness of acylisoxazolidides such as (27) for the preparation of α'-amino-α,β-ynones (equation 16). Qualitatively, these acylating agents bear a strong resemblance to the simpler N-methoxy-N-methylamides (26) and appear to be as effective in acylation. The advantage of
the former substrate appears to stem from the crystalline nature of many of the resulting adducts. The yrones prepared by this route retain the optical purity of the N-carboethoxyamino acids. Interestingly, the study also found that the N-protected amino acids themselves were unreactive towards lithium alkynides, whereas alkyl- or alkenyl-lithiums added rapidly to these substrates (vide infra).28

Rapoport found that S-(2-pyridyl) thioates such as (28) did not function as selective acylating agents, and substantial amounts of tertiary alcohol were formed through overaddition (equation 16). Presumably, the tetrahedral intermediate, derived from nucleophilic addition to the S-(2-pyridyl) thioate, was not a stable entity in the reaction mixture. As will be discussed shortly, the lability of these intermediates had been recognized previously.30 The novel dimethylpyrazolide moiety of substrate (29) also did not confer any additional stability to the tetrahedral intermediate and tertiary alcohol was the major product (equation 16). Tertiary amides, such as those derived from pyrrolidine or dimethylamine, were reactive towards lithium alkynides in the presence of BF₃, but analysis of the product indicated that it had undergone substantial racemization.28

Jacobi's synthesis of (±)-paniculide-A involves an intramolecular Diels–Alder reaction of the alkynic ketone (31). This compound was prepared in >90% yield (Scheme 9) by acylation of a lithium alkynide with the N-methoxy-N-methylamide (30). Addition of the anion to other derivatives related to (30) such as an acid chloride, a trifluoroacetic mixed anhydride, an acyl imidazole, S-(2-pyridyl) thiolates and a mixed carbonic anhydride (from ethyl chloroformate) led to either bis-addition or to proton abstraction. Notice should be made of the stability exhibited by the N-methoxy-N-methylamide group while the oxazole moiety was being introduced.29
1.13.2.2 Acylation with S-(2-Pyridyl) Thioates

During the previous discussion, mention was made of the acylation of Grignard reagents with S-(2-pyridyl) thioates as developed by Mukaiyama. In principle, this method also avoids the preparation of cuprates and organocadmiums in favor of the more readily available Grignard reagents; however, the approach often needs modification, usually through the use of copper(I) salts, in cases where overaddition is encountered (vide infra). Some other limitations of the Grignard addition have surfaced during the synthesis of complex natural products; however, the original method is successful in many cases and is exemplified by the preparation of an intermediate for the synthesis of cis-jasmone (equation 17).³⁰

\[
\begin{align*}
\text{S-(2-pyridyl) thioates may be prepared through reaction of the corresponding acid chloride and 2-pyridine-thiol in the presence of a tertiary amine. They are also available directly from carboxylic acids by reaction with 2,2'-dipyridyl disulfide (Aldrithiol-2) and triphenylphosphine.} & \\
\text{In the case illustrated above, protection of the ketone would seem unnecessary if Grignard addition was selective for the thiol ester; however, the starting material, S-(2-pyridyl) \(\gamma\)-oxopentanethioate, is not stable to the lactonization shown in equation (18). } & \\
\end{align*}
\]

The reaction depicted was run in THF at 0 °C, other solvents having been found to be inferior. The S-(2-pyridyl) thioates may be prepared through reaction of the corresponding acid chloride and 2-pyridine-thiol in the presence of a tertiary amine. They are also available directly from carboxylic acids by reaction with 2,2'-dipyridyl disulfide (Aldrithiol-2) and triphenylphosphine.³¹ In the case illustrated above, protection of the ketone would seem unnecessary if Grignard addition was selective for the thiol ester; however, the starting material, S-(2-pyridyl) \(\gamma\)-oxopentanethioate, is not stable to the lactonization shown in equation (18).

Mukaiyama has shown that in cases where lactonization was not possible, oxothioates can be used in the acylation process with selective addition only to the thiol ester (equations 19 and 20).³²

Mechanistic studies have shown that the tetrahedral intermediate (33) is not stable during the course of the reaction (Scheme 10). By monitoring the reaction mixture with infrared spectroscopy, Mukaiyama demonstrated that the ketone is released before the quench and therefore could compete with the more reactive thiol ester in nucleophilic addition.³³ The authors postulate that selective addition occurs to the
thiol ester because of the formation of the activated chelate (32); unfortunately, the apparently strong chelation provided by tetrahedral intermediate (33) is not sufficient to maintain the integrity of this species before quenching. This is a conceptually different situation than was observed for Weinreb's method wherein the tetrahedral intermediate is exceptionally stable. In terms of the chemoselectivity of Mukaiyama's approach, the reactivity differences between the pyridyl thiol ester and other ketones have been shown to be substrate dependent and may not be general.

The formation of a late-stage intermediate for the total synthesis of erythronolide B by Corey and co-workers takes advantage of this methodology. The coupling of pyridyl thiol ester (36) with Grignard reagent (35), prepared indirectly from iodide (34), affords the erythronolide B intermediate (37) in high yield without racemization or attack at the lactone (Scheme 11). The corresponding reaction in the erythronolide A series which contains additional oxidation at pro-C-12, indicated on (37), results in overaddition (see Section 1.13.3.2). Another case of overaddition by functionalized Grignard reagents has been recorded by Still (see Section 1.13.3.1).
The interesting antibiotics X-14547A and A-23187 (calcimycin) contain a novel 2-ketopyrrole moiety, which is apparently important for biological activity. Nicolaou has developed a simple method for incorporation of this unit into the sensitive intermediates required for preparation of the natural products.36 Through use of the Mukaiyama protocol, formation of the 2-pyridyl thiol ester was effected with 2,2'-dipyridyl disulfide and triphenylphosphine. The reaction mixture was then cooled to -78°C and was treated with a solution of pyrolylmagnesium chloride in THF (equation 21).

\[
\begin{array}{c}
\text{R-CHO} \\
\text{toluene 25 $^\circ$C} \\
\text{MeMgCl, toluene, -78°C} \\
\end{array}
\]

The use of the acid chloride instead of the 2-pyridyl thiol ester also results in formation of the 2-ketopyrrole functionality, but significant amounts of the 3-ketopyrrole isomer were also formed. Several rather complex substrates were used as acylating agents in this process with a high degree of success. Some examples of the 2-ketopyrroles that have been prepared are shown in Scheme 12.

Scheme 12

The synthesis of X-14547 A was completed by the transformation shown in equation (22).37 Interestingly, the reaction proceeded without interference from the carboxylic ester group even though excess pyrolylmagnesium chloride was used. At higher temperatures, it was possible to observe addition at both the desired position and at the distant carboxylic ester in 95% yield.

The antibiotic (-)-A-23187 (calcimycin) has been prepared by Boeckman using similar methodology (equation 23).38 No racemization was observed at the position α to the thiol ester.
A similar transformation has been carried out by Nakahara and Ogawa; however, these workers reported no success in adding the pyrrole functionality to the penultimate precursor containing the benzoxazole ring. Most recently, French workers have demonstrated the late stage introduction of the pyrrole unit by prior formation of the methyl ester at position 1 and use of a catalytic amount of copper(I) iodide in the acylation step. Finally, for substrates that require protection at the ring nitrogen, acylation of 2-lithio-\(N\)-(\(N\)',\(N\)''-dimethylamino)pyrrole has been demonstrated by Grieco. The reaction is exemplified by the synthesis of a model system for calcimycin (equation 24). Although extra steps are involved in this transformation the overall yield is slightly higher than the previous case.

1.13.2.3 Acylation by Carboxylic Acids

Methyl ketones are often directly prepared from carboxylic acids by reaction with methyllithium. Other simple alkyl ketones may also be prepared in the same fashion, making this a method that should be considered whenever these substrates are required. An important demonstration of this protocol was reported by Masamune and coworkers in their synthesis of chiral propionate surrogates (Scheme 13). The ethyl and cyclopropyl ketones are important starting materials for macrolide total synthesis and have been prepared on a large scale. The overall yield for the ethyl ketone is 65% using 3.5 equiv. of ethyllithium without protection of the hydroxy group.
Many experimental procedures have been discussed for effectively converting a carboxylic acid to a ketone through the use of organolithium reagents. House has advocated a procedure which begins with formation of the lithium carboxylate in dimethoxyethane. A slight excess of methyllithium is then added at 0 °C to form a 1,1-dilithium dialkoxide. Subsequently, the manner in which the geminal dialkoxide was quenched had a dramatic effect on the yield. Breakdown of the intermediate dialkoxide can in some instances precede protonation of the allyllithium reagent. Rapid addition of the organometallic to the exposed ketone can then take place and result in the formation of a tertiary alcohol. For this reason, House favored inverse addition of the reaction mixture to a vigorously stirred solution of dilute hydrochloric acid at 0 °C. In this way high yields of the ketone may be obtained. This procedure may be even more important for reactions which are conducted with large excesses of allyllithiums. Excess methyllithium can also be quenched by addition of ethyl formate to the reaction mixture followed by aqueous acid, as was demonstrated by Mander.

Other improvements in the standard methodology for addition of allyllithiums to carboxylic acids and esters have been reported by Rubottom and Cooke. Both methods utilize trimethylsilyl chloride (TMS-Cl) at some point during ketone preparation; the former method of Rubottom introduces TMS-Cl once addition of the allyllithium to the carboxylic acid is complete. This was done in an effort to trap residual methyllithium and allow the use of large excesses of reagent. However, it is known that most simple allyllithiums react only sluggishly with trialkylsilyl chlorides, thus the actual mechanism may involve silylation of the geminal dialkoxide. The method of Cooke uses a preformed solution of TMS-Cl and carboxylic ester. The reaction mixture was then treated with an allyllithium whilst maintaining the reaction mixture at -78 °C. Previous use of carboxylic esters in this reaction often led to the formation of tertiary alcohols. The success of this procedure has been attributed to the formation of the O-silylated tetrahedral intermediate (38) which was apparently stable to the reaction conditions (Table 2).

Table 2 Use of Trimethylsilyl Chloride (TMS-Cl) in Acylation of Carboxylic Acids and Esters

<table>
<thead>
<tr>
<th>R^1</th>
<th>X</th>
<th>R^2</th>
<th>Nu</th>
<th>Equiv. TMS-Cl</th>
<th>Temperature (°C)</th>
<th>Yield (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bun</td>
<td>OEt</td>
<td>Bun</td>
<td>25</td>
<td>-100</td>
<td>90</td>
<td>8</td>
<td>48</td>
</tr>
<tr>
<td>Et</td>
<td>OEt</td>
<td>Bun</td>
<td>5</td>
<td>-100</td>
<td>87</td>
<td>15</td>
<td>48</td>
</tr>
<tr>
<td>Ph</td>
<td>OEt</td>
<td>Bun</td>
<td>5</td>
<td>-100</td>
<td>82</td>
<td>21</td>
<td>48</td>
</tr>
<tr>
<td>$C_{6}H_{11}$</td>
<td>OTMS</td>
<td>Me</td>
<td>20</td>
<td>0</td>
<td>92</td>
<td>2</td>
<td>48</td>
</tr>
<tr>
<td>Ph</td>
<td>OTMS</td>
<td>Me</td>
<td>20</td>
<td>0</td>
<td>97</td>
<td>0</td>
<td>47</td>
</tr>
<tr>
<td>$p-OHC_{6}H_{4}$</td>
<td>OTMS</td>
<td>Me</td>
<td>20</td>
<td>0</td>
<td>87</td>
<td><5</td>
<td>47</td>
</tr>
</tbody>
</table>
The acylation of organolithiums with carboxylic acids has often been used in natural product synthesis. Certainly, the method is one of the easiest approaches available when analysis of a target structure indicates that organometallic acylation may be more efficient than the two-step nucleophilic addition to an aldehyde followed by oxidation. Many simple organolithiums are commercially available or may be prepared easily by standard methodology. A case in which this plan was effective can be seen in Stork's synthesis of the corticosteroid ring system (C-11 oxygenated steroid) which embodied the transformations shown in equation (25). Addition of the readily available lithium reagent proceeded in greater than 90% yield, reacting with both the acid and ketone functional groups. After an in situ dehydration, Diels–Alder ring closure afforded the penultimate precursor to the C-11 steroid system (equation 25). The addition of vinyllithium reagents to carboxylic acids was first reported by Interestingly, the latter investigation demonstrated that the reaction of vinyllithium with stearic acid actually had to be heated to 40 °C to achieve a 70% yield of product.

The intermediate 1,1-dialkoxide which was formed from the addition of ethyllithium to carboxylic acid (39) functioned as a masked form of a ketone, and facilitated a subsequent Wittig reaction on aldehyde (40; equation 26). The well-known Parham cyclization of bromoaromatic carboxylic acid derivatives can be exemplified by the examples in equations (27)–(29). The reaction is usually run at very low temperature in ether or THF and provides surprisingly good yields of aromatic ketones. The method has been reviewed recently.

The simple homochiral adduct from Diels–Alder cycloaddition of (R)-pantolactone acrylate ester with cyclopentadiene was hydrolyzed and converted to the methyl ketone in 89% yield through addition of 3
equiv. of methylthium (equation 30). The reaction mixture was treated with TMS-Cl before addition of aqueous ammonium chloride under the conditions of Rubottom.\(^{55}\)

Paquette’s synthesis of africanol advanced through the α,β-unsaturated acid (41). Addition of 2.2 equiv of methylthium followed by standard work-up gave a 71% yield of the methyl ketone (42; equation 31).\(^{56}\)

There has been an isolated report dealing with the direct acylation of Grignard reagents by carboxylic acids mediated by nickel(II) salts. Large excesses of Grignard reagents must be used (6 equiv.) but the reaction can be run at room temperature with only 7 mol % Ni(DPPE)Cl\(_2\). Normally, Grignard reagents are not useful in carboxylic acid acylation because the tetrahedral intermediate breaks down rapidly and the ketone is attacked by the organometallic. The role and generality of the nickel-mediated process has not been elucidated as yet.\(^{57}\)

1.13.2.4 α-Amino Acids as Acylating Agents

α-Amino acids can be directly converted to ketones through the addition of alkyl- or vinyl-organometallics. This approach complements the addition of lithium alkynides to activated amino acid derivatives (Section 1.13.2.1.1) but is much simpler to carry out. Rapoport has shown that 3 equiv. of the organolithium are necessary to transform a protected amino acid such as N-(ethoxycarbonyl)alanine to an aryl or alkyl ketone. The first 2 equiv. of the organometallic function only as a base, resulting in dianion formation. This species is crucial to the process because further deprotonation is not possible and the intermediate is thus protected from racemization. N,N-Disubstituted amino acids were found to be racemized under the same conditions presumably because enolization was no longer impeded by nitrogen deprotonation. In the interest of economy, carboxylate anion formation may be carried out with n-butyllithium prior to addition of the desired nucleophile, but the acylation of a Grignard reagent requires prior formation of the lithium carboxylate to avoid breakdown of the tetrahedral intermediate in solution. The choice for nitrogen protection does not include the popular t-BOC or cbz groups but ethoxycarbonyl, benzoyl, acetyl and phenylsulfonyl may be used interchangeably (Table 3).\(^{58}\)

The addition of allyllithium provides access to β,γ-unsaturated amino ketones or α,β-unsaturated amino ketones, depending upon the conditions chosen for work-up. In Scheme 14, simple interchange of the acidic reagent in the quench affected the positioning of the double bond.\(^{59}\)

A stereospecific total synthesis of the antibiotic sibirosamine was carried out using this methodology. In the first step, addition of methylmagnesium iodide to N-(phenylsulfonyl)-L-allothreonine afforded the α-amino methyl ketone in modest yield.\(^{59}\) This reaction afforded a diminished yield compared with N-(phenylsulfonyl)-L-threonine for some unexplained reason. A clever use of the L-amino acid serine allows for a straightforward preparation of D-amino acids such as D-dopa as is shown in Scheme 15.\(^{60}\)
Table 3 Formation of α-Amino Ketones from Various α-N-Acylated Amino Acids and Organometallic Reagents

![Chemical structure](image)

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>R¹</th>
<th>Y</th>
<th>R²</th>
<th>M</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Me</td>
<td>CH₂CH=CH₂</td>
<td>CO₅Me</td>
<td>Buⁿ</td>
<td>MgBr</td>
<td>40</td>
</tr>
<tr>
<td>b</td>
<td>Me</td>
<td>CH₂CH=CH₂</td>
<td>COPh</td>
<td>Buⁿ</td>
<td>MgBr</td>
<td>87</td>
</tr>
<tr>
<td>c</td>
<td>Me</td>
<td>CH₂CH=CH₂</td>
<td>CO₂Et</td>
<td>CH₂CH=CH₂</td>
<td>Li</td>
<td>74</td>
</tr>
<tr>
<td>d</td>
<td>Pr</td>
<td>CH₂CH=CH₂</td>
<td>SO₂Ph</td>
<td>Buⁿ</td>
<td>MgBr</td>
<td>62</td>
</tr>
<tr>
<td>e</td>
<td>MeSCH₂CH₂</td>
<td>CH₂CH=CH₂</td>
<td>SO₂Ph</td>
<td>Buⁿ</td>
<td>Li</td>
<td>54</td>
</tr>
<tr>
<td>f</td>
<td>MeSCH₂CH₂</td>
<td>CH₂CH=CH₂</td>
<td>SO₂Ph</td>
<td>Buⁿ</td>
<td>MgBr</td>
<td>71</td>
</tr>
<tr>
<td>g</td>
<td>O-BnOCH₄CH₂</td>
<td>CH₂CH=CH₂</td>
<td>SO₂Ph</td>
<td>Buⁿ</td>
<td>MgBr</td>
<td>52</td>
</tr>
<tr>
<td>h</td>
<td>HOCH₂</td>
<td>CH₂CH=CH₂</td>
<td>SO₂Ph</td>
<td>Buⁿ</td>
<td>MgBr</td>
<td>53</td>
</tr>
<tr>
<td>i</td>
<td>HOCH₂</td>
<td>CH₂CH=CH₂</td>
<td>SO₂Ph</td>
<td>Buⁿ</td>
<td>MgBr</td>
<td>48</td>
</tr>
</tbody>
</table>

Scheme 14

Scheme 15

1.13.2.5 Acylation with Acid Chlorides

The synthesis of ketones from acid chlorides has been demonstrated with several organometallic reagents (see Sections 1.13.3, 1.13.4 and 1.13.5); however, the acylation of organolithiums often leads to substantial amounts of overaddition product. Initially, acid chlorides appear to be a poor choice for
ketone synthesis considering highly electrophilic nature and the poor stability of the tetrahedral inter-
mediate produced by nucleophilic addition. For these reasons, substantial amounts of ketone may reside
in solution during addition of the organometallic. In addition, acid chlorides offer no site for prior coordi-
nation of the organometallic, as was the case with the S-(2-pyridyl) thioate of Mukaiyama (Section 1.13.2.2).30

The fact that organomagnesium reagents can often be acylated with acid chlorides to provide high
yields of ketones as the exclusive product is somewhat surprising. Although the reaction is not well
understood in its present form, the scope of the process can be illustrated by the following examples.
Sato and coworkers have found the choice of solvent and temperature are important for the acylation of
simple Grignard reagents.61 A partial list of examples is given in Table 4.

<table>
<thead>
<tr>
<th>Table 4</th>
<th>Acylation of Grignard Reagents by Acid Chlorides</th>
</tr>
</thead>
<tbody>
<tr>
<td>R¹MgX</td>
<td>R²COCl</td>
</tr>
<tr>
<td>Yields</td>
<td></td>
</tr>
<tr>
<td>Ph</td>
<td>1.0 Br PhPh 89</td>
</tr>
<tr>
<td>p-MeC₆H₄</td>
<td>1.0 Br Php-MeC₆H₄OCOPh 84</td>
</tr>
<tr>
<td>Pr⁵</td>
<td>2.0 Cl Bu³ PhPpCOBu³ 88</td>
</tr>
<tr>
<td>n-C₆H₁₃</td>
<td>2.0 Br Me n-C₆H₁₃COMe 93</td>
</tr>
</tbody>
</table>

To avoid overaddition, the reaction was conducted by slowly introducing the Grignard reagent to a solu-
tion of the acid chloride at -78 °C. These workers reported that replacing tetrahydrofuran with diethyl
ether caused a dramatic increase in the amount of tertiary alcohol formed, indicating that Grignard re-
agents reacted more rapidly with acid chlorides in THF rather than in ether, and that the reaction must be
executed at low temperature. Many of the aromatic cases use a molar equivalent amount of R¹MgX; how-
ever, the best yields were obtained in the nonaromatic series by using 0.5 equiv. of Grignard reagent.
Similar observations were reported by Eberle62 and they also showed that functional groups such as car-
boxylic esters, halides and alkenes could be tolerated in the reaction. 1 equiv. of Grignard reagent was
utilized and unlike the previous case the acylating agent was added directly to a cold solution of the or-
ganometallic. This should maximize the chances for tertiary alcohol formation; however, none was ob-
tained. A characteristic example is shown in equation (32).

An isolated example of Grignard acylation by proline acid chloride was achieved by the use of a large
excess of acid chloride (43). The keto aldehyde (45) was obtained in 71% yield (equation 33).63 Unfortu-
nately, the reaction with stoichiometric amounts of the acid halide were not discussed. In light of the re-
sults of Sato61 and Eberle,62 the real capabilities of this reaction were apparently not explored.

To show the potential of the method, the related Grignard reagent (46) has been acylated in good yield
through use of a stoichiometric mixture of organomagnesium and acid halide (equation 34). The use of
low temperatures and THF was critical to the process.64
Sworin has studied several interesting reactions of the Grignard reagent (47) which may indicate it reacts as the dialkylmagnesium (48) in THF at -78 °C (Schlenck equilibrium; equation 35). The proposal was advanced that internal coordination of magnesium by the flanking oxygen moieties resulted in a softer nucleophile, 'similar in reactivity to an organocuprate'. The dimeric material may be responsible for the somewhat 'anomalous behavior' observed in reactions of this Grignard reagent and may point to the importance of temperature and solvent for successful acylations of other Grignard reagents. These workers also recommend that at least 2 equiv. of (47) be employed per mole of substrate to insure that (48) is the sole reactive intermediate. At room temperature, the equilibrium is believed to shift to the left with formation of the monomeric and harder nucleophile (47). Reactions at this temperature take a different course and favor 1,2-addition to the ketone.

Grignard reagents can also be monoacylated in the presence of iron(III) salts. The reaction uses catalytic amounts of iron and reproducible yields of ketones have been obtained. The addition can be conducted at room temperature with stoichiometric amounts of the acid chloride and Grignard reagent. Only very simple substrates were considered initially; however, a synthesis of the methyl ketone derived from Mosher's acid was reported in very high yield (equation 36), as well as a synthesis of a heptatrienyl ketone (equation 37). The reaction may be mediated by an acyl iron complex, although at room temperature one would have expected overaddition products from the Grignard reagent. No mechanistic studies have been carried out as yet.

1.13.2.6 Acylation with Carboxylic Esters

Carboxylic esters have also been used to acylate Grignard reagents with some success. Workers at Shionogi research laboratories demonstrated that the combination of methylmagnesium bromide and triethylamine could be acylated in good yield by substrates such as (49; equation 38). The reaction did not require THF as a solvent, but an excess of triethylamine was needed to achieve the best results. Presumably the amine alters the usual aggregation of the organomagnesium reagent and/or influences the Schlenck equilibrium between MeMgBr and Me₂Mg, as discussed above. This combined reagent may selectively add to the ester functionality in preference to the newly formed ketone. On the other hand, the authors postulate that triethylamine aids in the deprotonation of the resulting methyl ketone, which is
The use of other mixed reagents to promote acylation and subsequent enolization of the ketone during its formation have been reported by Fehr. The success of the method depends on the ease of ketone deprotonation and thus was limited to substituted allylic nucleophiles. The final product was obtained entirely in the form of the α,β-unsaturated ketone. A combination of the nucleophilic Grignard reagent and the nonnucleophilic base lithium diisopropylamide converts sterically hindered ester (50) into α-damascone (52) via (51) (Scheme 16). The ratio of ketone to tertiary alcohol was 98:2 (many cases gave selectivity greater than 9:1); however, a few examples showed a substantial amount of tertiary alcohol formation.

The proposed enolate has been trapped in the case of amide (53) but there was no report if this could be accomplished on the ester substrates (equation 39). In general the amides did give higher yields of ketone and less tertiary alcohol, but this is expected based purely on the enhanced stability of the tetrahedral intermediate. It is not clear to what extent the amide base may influence the degree of aggregation of the Grignard reagent and thus alter its reactivity. All of the cases studied were extremely sterically congested, which could have influenced the rate of tetrahedral intermediate collapse and enolate formation. It should be noted that the previously discussed combination of Grignard reagent and triethylamine failed to give ketones selectively in these cases.

Comins has reported that simple esters can be converted to secondary alcohols in one step with a mixture of Grignard reagent and lithium borohydride (LiBH₄) in THF. The reaction is conducted at 0 to -10 °C to preclude undesired reduction of the ester by LiBH₄. Once acylation has occurred, reduction of the intermediate ketone occurs more rapidly than does addition of a second equivalent of the Grignard
Burke has modified the procedure slightly so as to include DIBAL-H as the reducing agent. In this fashion, either isomer of alcohol (54) may be obtained (equation 40).

\[
\text{DIBAL-H, THF, } -78^\circ C \\
\text{then EtMgBr, THF, } -78 \text{ to } 25^\circ C \\
X^1 = H, X = OH \\
96\% \\
\text{or LiBH}_4, \text{EtMgBr, THF, } -5^\circ C \\
X^1 = OH, X = H \\
73\%
\]

Seebach has also studied the utility of esters in organometallic acylation. In this case, preformed ester enolates of 2,6-di(t-butyl)-4-methylphenyl esters (BHT esters) were slowly warmed above -20 °C to form the corresponding ketene. If this was done in the presence of an additional equivalent of alkyl-lithium the ketene was trapped to give a ketone enolate in high yield. The same reaction failed to give any product when simple esters such as methyl, ethyl or t-butyl were used. Scheme 17 is illustrative of the method.

A variety of alkyllithiums could be acylated by this method. The enolate was then quenched with electrophiles such as aldehydes and chlorosilanes. Unfortunately only branched chain carboxylic acids could be used in this process, as monosubstituted ketenes were unstable in the presence of butyllithium.

1.13.2.7 Preparation of Alkynic Ketones from Lactones

Lactones are convenient acylating agents for lithium alkynides and have been used extensively for this purpose. Lactones are stable, readily available substances with a reactivity substantially different from simple esters. The first report discussing this strategy was by Ogura in 1972. This work demonstrated that γ-valerolactone undergoes monoaddition with simple lithium alkynides, but suffers multiple addition with the corresponding magnesium alkynide. Chabala discussed the effect of lactone ring size on acylation as well as proposing the mechanism by which they undergo addition. In this study, simple esters were found to undergo bis-addition when treated with lithium alkynides, due to the poor stability of the tetrahedral intermediate. However, in the case of δ-valerolactone, the intermediate ketal alkoxide was found to be stable in the reaction mixture and thus serves to protect the carbonyl function from further attack (equation 41). Other ring sizes do not seem to work as well, although acceptable yields of alkynic ketones can be obtained from γ-butyrolactone (50–60%).
Recent evidence for the formation of hemiketal intermediates upon acylation of alkynides has been obtained from glucopyranolactones. Treatment of tetrabenzyl (55) with the anion from 1-benzyloxy-3-butyne gave a quantitative yield of hemiketal (56) which showed IR absorptions for the OH and alkyne portions of the molecule (\(\lambda = 3350 \text{ cm}^{-1}\) and 2250 cm\(^{-1}\), respectively). This compound was stereospecifically reduced to the C-\(\gamma\)-glycoside (57) with triethylsilane/\(\text{BF}_3\)-etherate (overall yield 72%; Scheme 18). None of the other stereoisomer or ring-opened product was obtained.\(^{77}\)

\[
\begin{array}{cccc}
\text{BnO} & \text{O} & \text{Li} & (\text{CH}_2)_2\text{OBn} \\
\text{BnO} & \text{O} & \text{THF}, -78 \text{ to } -40 ^\circ \text{C} & \text{quantitative} \\
\text{BnO} & \text{O} & \text{Et}_3\text{SiH, BF}_3\text{Et}_2\text{O} & \text{MeCN, CH}_2\text{Cl}_2 \\
\text{BnO} & \text{BnO} & \text{BnO} & \text{quantitative}
\end{array}
\]

Scheme 18

The first important test of this methodology came in Hanessian's investigation of the spiroketal portion of avermectin B\(_1\). This highly convergent approach incorporates all the oxidation levels and functionality required for carbons C(15)–C(28), except for the necessity of alkyne to alkene conversion. The lithium alkynide was prepared at \(-78 ^\circ \text{C}\) and then mixed with boron trifluoride etherate under the conditions of Yamaguchi (Scheme 19).\(^{78}\) (Direct condensation of the lithium salt and lactone lead to substantial amounts of \(\alpha,\beta\)-unsaturated lactone.) Addition of the lactone in stoichiometric amounts to the solution of the modified alkynide led to the formation of the desired hemiketal in acceptable yield. Further improvements could be obtained by the recycling of starting material.\(^{79}\)

A more recent example of a functionalized alkyne addition can be seen in Crimmin's synthesis of talaromycin A (equation 42).\(^{80}\) This particular alkynide is an equivalent of the formyl acetone dianion and its use has been generalized as an entry into the spiroketal portion of the milbemycins (Scheme 20).\(^{81}\) This approach differs from the Hanessian strategy in that formation of the C(17)–C(21) pyran ring is constructed last, through use of the alkynic unit.

An alternative construction which incorporates much of the alkyl functionality on to the alkyne portion and which carries the required methoxycarbonylalkyl substituent in the correct configuration at C-17 was reported by Langlois (equation 43).\(^{82}\) This process and recently modified versions of the Hanessian spiroketal synthesis seem to correlate well.\(^{79}\)

In the lactone acylations discussed above, there was never any evidence for a competing side reaction due to break down of the hemiketal moiety and Michael addition of the alcohol to the newly formed propargylic ketone. This may be taken as further evidence for the stability of the ketal-alkoxide intermediate; however, hemiketal ring opening and intramolecular Michael addition would provide an
Nonstabilized Carbanion Equivalents

\[\text{Li} \rightarrow \text{MeO} \rightarrow \text{Li} \rightarrow \text{THF, -78 °C} \rightarrow 95\% \]

\[\text{Li} \rightarrow \text{MeO} \rightarrow \text{Li} \rightarrow \text{THF, -78 °C} \rightarrow \text{i, } \text{ii, } \text{K}_2\text{CO}_3, \text{MeOH} \rightarrow 88\% \]

\[\text{OH} \rightarrow \text{OMe} \rightarrow \text{OMe} \rightarrow \text{OMe} \rightarrow \text{30\% } \text{HClO}_4 \rightarrow \text{CH}_2\text{Cl}_2 \rightarrow 63\% \]

Scheme 20

eight-membered ring vinylogous ester, seemingly a difficult process. Schreiber has discussed a method for achieving this nontrivial ring expansion in the context of the total synthesis of gloeosporone (equation 44).\(^3\)

The initial hemiketal addition product is most likely induced to undergo ring opening as the reaction is warmed to room temperature and while in the presence of HMPA. Conjugate addition of the alkoxide to the alkynic ketone completes the ring formation. The reaction is promoted by \(\alpha,\alpha\)-disubstitution of the \(\delta\)-lactone, as well as by the presence of electron-withdrawing groups on the alkynic fragment.

In a related fashion, certain types of vinylogous amides can be prepared by a modification of this same method, as reported by Suzuki (equations 45 and 46).\(^8\) The triphenylsilyl moiety is essential for this transformation. The corresponding \(\text{t-butyldimethylsilylacetylene} \) gave the simple acylation product without subsequent Michael addition of the amine. In the ring expansion process the use of unmodified lithium acetylide (LiC==CH) lead to the formation of by-products. A similar ring expansion process was reported for \(\alpha\)-lactams with formation of five-membered ring vinylogous amides.\(^8\)

An elegant 'reconstruction' of monensin from two chromic acid degradation products serves as an excellent example of the generality of alkynide addition to activated carboxylic acid derivatives. The alkynide (59) was prepared in eight steps from one degradation product and was then sequentially deprotonated with \(n\)-butyllithium and treated with magnesium bromide. The resultant magnesium salt
Nucleophilic Addition to Carboxylic Acid Derivatives

\[
\begin{align*}
\text{OEE} & \text{Li} \quad \text{SiPh}_3 \\
\text{THF, } -78 \degree \text{C to r.t.} \\
\text{82\%}
\end{align*}
\]

was then acylated with mixed anhydride (58), derived from another degradation fragment. This \(\alpha,\beta\)-ynone was obtained in 87\% yield (equation 47). Lewis acid mediation of alkynide addition as provided by magnesium bromide or boron trifluoride\(^{87}\) often improves the efficiency of the process and is useful for reactions which give substantial quantities of by-products.

\[
\begin{align*}
\text{CO}_2\text{CO}_2\text{Et} & + \text{BrMg} \quad \text{THF} \\
\text{87\%}
\end{align*}
\]

The highly reactive carbonyl of lactone (60), an intermediate in the synthesis of forskolin, was easily converted to propargyl ketone (61) by addition of the lithium alkynide as shown in equation (48).\(^{88}\) It is possible that the intermediate ketal alkoxide was not stable in solution because of ring strain; however, no multiple addition products were reported, nor was there any Michael addition of the alkoxide to the resulting ynone.

\[
\begin{align*}
\text{Li} \quad \text{(CH}_2\text{)}_2\text{OSiMe}_2\text{Bu}^+ \\
\text{THF, } 0 \degree \text{C} \\
\text{80\%}
\end{align*}
\]

One final example of acylation of alkynes by lactones forms part of the synthesis of neomethanolide by Yamaguchi. The Prelog–Djerassi lactone serves as the acylating agent (equation 49). The functionalized alkynide undergoes addition very selectively at the lactonic carbonyl group, despite the presence of a relatively unhindered primary ester.\(^{89}\)
1.13.2.8 Other Activated Acylating Agents for Ketone Synthesis

In this section, several additional types of acylating agents for ketone synthesis will be discussed. Nearly all of these reagents are designed to preassociate with the organometallic reagent prior to acylation. At the present time, very infrequent use has been made of these new acylating agents, and their particular advantage remains to be demonstrated.

1.13.2.8.1 Acylating agents derived from pyridine or quinoline

Sakan and Mori have described the reaction of Grignard reagents with carboxylic esters formed from 8-hydroxyquinoline.\(^\text{90,91}\) This acylating agent was designed to complex the organomagnesium with the substrate prior to formation of the tetrahedral intermediate, as indicated in Scheme 21. The actual tetrahedral species is not stable to the reaction conditions and a strong insoluble complex is formed between magnesium ion and 8-hydroxyquinoline. Although it is apparent that free ketone exists in solution simultaneously with complex (62), little if any tertiary alcohol formation was reported in the few simple cases investigated.\(^\text{91}\) This may be due to the higher reactivity of the complexed oxoquinoline ester relative to the ketone.

![Scheme 21](image)

A competition experiment (Scheme 22) was conducted to test the acylation abilities of the 8-acyloxyquinoline system and another metal-induced acylating agent, the 2-acyloxyprazines (65) and (67). A mixture of quinoline (64) and pyrazine (65) was treated with phenethylmagnesium bromide under conditions which had previously afforded a 98% yield of the ketone (63) with the 8-acyloxyquinoline system. Surprisingly, the only product was that derived from addition to the acyloxypyrazine reagent, i.e., ketone (68). When substrates (66) and (67) were treated in the same fashion again only the product derived from addition to the acyloxypyrazine system was observed.\(^\text{92}\) These results support the notion that the effect of prior complexation of the organometallic with the acylating agent may be as important to the rate of acylation as an incremental amplification in electrophilicity.

Similar results were obtained through the acylation of Grignard reagents with \(O\)-acyloximes (Scheme 23), although a higher degree of metal to substrate interaction is possible in this case.\(^\text{93}\) The extent to which the species drawn in Scheme 23 actually participates in the reaction is unknown.\(^\text{94}\)

Meyers and Comins have reported acylation of Grignard reagents with \(N\)-methyaminopyridylamides as a chemoselective method of ketone formation (equation 50). Once again chelation is expected to play a role in activating the substrate towards nucleophilic attack. However, as in the previously described cases, the resulting tetrahedral intermediate is not stable in the reaction mixture and a second equivalent of either a Grignard reagent or an alkylithium can be introduced to form unsymmetrical tertiary alcohols. Alkylithium reagents did not function as well in the formation of ketones; tertiary alcohols were the major product.\(^\text{95}\)
Nucleophilic Addition to Carboxylic Acid Derivatives

Scheme 22

\[
\begin{align*}
\text{Ph} & \quad \text{Ph} \\
\text{R} & = \text{Me} \\
\text{R} & = \text{Ph}
\end{align*}
\]

(64) (66)

(65) (67)

\[\text{Ph(CH}_2)_2\text{MgBr}\]

\[
\begin{align*}
\text{O} & \quad \text{Ph} \\
\text{R} & = \text{Me} \\
\text{R} & = \text{Ph}
\end{align*}
\]

(68) (63)

Scheme 23

\[
\begin{align*}
\text{acyloxime} & \quad \text{THF} \\
+ \text{R}^2\text{MgBr} & \quad \text{[Scheme 23]}
\end{align*}
\]

\[
\begin{align*}
\text{O} & \quad \text{N} \\
\text{Me} & \quad \text{Me}
\end{align*}
\]

(50)

\[
\begin{align*}
\text{O} & \quad \text{N} \\
\text{Et} & \quad \text{Et}
\end{align*}
\]

1.13.2.8.2 Carboxymethyleniminium salts

The generation of active acylating agents \textit{in situ} has certain advantages over methods which require a separate step for their preparation. Acylating agents that have previously been prepared \textit{in situ} and used for ketone synthesis have included anhydrides and acyl imidazoles. A frequent side reaction with these rather reactive agents is the formation of tertiary alcohols. Fujisawa and coworkers advocated the use of carboxymethyleniminium salts, prepared directly from carboxylic acid salts, and then subjected to reaction with Grignard reagents (Scheme 24). Good yields of ketones were observed in most cases. The

\[
\begin{align*}
\text{MeO}_2\text{C} & \quad \text{Li}^+ \\
\text{O} & \quad \text{Cl} \quad \text{Ph} \\
\text{N}^+ & \quad \text{Ph} \\
\text{Cl}^- & \quad \text{Ph}
\end{align*}
\]

\[
\begin{align*}
\text{MeO}_2\text{C} & \quad \text{Li}^+ \\
\text{O} & \quad \text{Cl} \quad \text{Ph} \\
\text{N}^+ & \quad \text{Ph} \\
\text{Cl}^- & \quad \text{Ph}
\end{align*}
\]

\[
\begin{align*}
\text{cat. CuI,} \\
\text{PhCH}_2\text{CH}_2\text{MgBr,} \\
\text{THF, 0 °C} \\
\text{69%}
\end{align*}
\]

Scheme 24
particular example shown in Scheme 24 indicates the selectivity obtained in competition with a carboxylic ester. No other acylated products or tertiary alcohols were present.

Bearing in mind that the exact nature of the intermediate in this and the following case has not been elucidated, together with the often surprising ability of acid chlorides to provide ketones when treated with Grignard reagents or organocuprates, the same authors have discussed the reaction of carboxylic acids with α-chloroenamines as a way to prepare acylating agents for ketone synthesis (Scheme 25). In this case, the overall yield for the addition of organometallics may be slightly higher than the previously described method. The possible advantage is the direct transformation of a free acid to an acylating agent without the need for an extra equivalent of base.

![Scheme 25](image)

A comparison of the example in Scheme 25 with the results of earlier investigations with N-tosylproline demonstrates that the use of α-chloroenamines has some advantage. N-Tosylproline when treated with methyllithium in ether gave a 50% yield of methyl ketone of ≥95% ee. Similarly, preparation of the mixed anhydride with pivaloyl chloride followed by addition of ethylmagnesium bromide affords (69) in 53% yield utilizing the conditions of Mukaiyama (equation 51). No racemization was observed in any of these cases. Surprisingly in equation (51), the acylation of the mixed anhydride proceeds with only 1 equiv. of Grignard reagent, although there is an equimolar amount of triethylamine hydrochloride present.

![Scheme 25](image)

\[\text{N-Tosylproline} \xrightarrow{\text{Bu'COCl, Et}_{3}N, \text{THF}} \text{Ts} \end{array} \begin{array} {c} \text{O} \end{array} \begin{array} {c} \text{O} \end{array} \begin{array} {c} \text{Bu'} \end{array} \]

\[\xrightarrow{\text{EtMgBr, THF, -78 °C}} \]

\[[\alpha]_{D} = -157.8^\circ \ (c \ 0.0203, \text{CHCl}_3) \]

1.1.3.2.8.3 Acylation with the mixed anhydrides of phosphorus

Kende has demonstrated that the mixed anhydride from carboxylic acids and diphenylphosphinic chloride would acylate Grignard reagents to afford ketones in moderate to good yield. Tertiary carbinols were not observed unless excess Grignard reagent was added. The intermediate anhydrides were generally isolated and made free of triethylamine hydrochloride before addition of the nucleophile. The reaction shown in equation (52) gave improved yields over the simple addition of methyllithium to the carboxylic acid.

Another procedure which was thought to pass through a mixed phosphorus anhydride was the acylation of Grignard reagents with an adduct formed between lithium carboxylates and triphenylphosphine dichloride (Scheme 26). The betaine (70) was the proposed tetrahedral intermediate; however, since no evidence is provided, the reaction may have also proceeded by way of the acid chloride. Surprisingly, good yields of ketone are preserved even in the presence of excess nucleophile and no tertiary alcohol formation was observed. Triethylamine can be used for prior deprotonation of the carboxylic acid; how-
ever, unlike the case of mixed carboxylic anhydrides, 2 equiv. of Grignard reagent were required to complete the addition.\(^{102}\)

\[
\text{RCO}_2\text{Li} \xrightarrow{\text{Ph_3P=Cl}_2} \text{RCO}_2\text{OPh}_3^{+} \xrightarrow{\text{R'MgBr}} \text{RCO}_2\text{OPh}_3^{-} \xrightarrow{\text{H}_2\text{O}^+} \text{RCO}_2\text{R}^1 + \text{Ph}_3\text{P}=\text{O}
\]

\[\text{(70)}\]

\text{Scheme 26}

60–95%

1.13.2.9 Addition to Oxalic Acid Derivatives

General methods for \(\alpha\)-keto ester synthesis are important for the preparation of a wide variety of natural substances of current interest. The direct addition of alkyllithiums or Grignard reagents to oxalate esters has been reported to give good yields of \(\alpha\)-keto esters.\(^{103}\) Presumably the tetrahedral intermediate formed from such an addition is stabilized by the strong electron withdrawal of the adjacent ester carbonyl, thus preventing or retarding reformation of the \(sp^2\) center. Trapping of this intermediate is possible by the addition of acetyl chloride (equation (53)).\(^{104}\)

\[
\text{EtO}_2\text{C} = \text{O} \xrightarrow{i, RLi, ether} \text{R'OC} = \text{OEt} \xrightarrow{ii, \text{AcCl, Et}_3\text{N}} \text{R'OC} = \text{OEt}
\]

\[\text{(53)}\]

A second example of this methodology comes from the Merck synthesis of homo-tyrosine, an intermediate for a potent dopamine agonist (Scheme 27).\(^{105}\) The Grignard reagent is added to a solution of 2 equiv. of diethyl oxalate at \(-20\,^\circ\text{C}\).

\[
\text{MeO} \xrightarrow{\text{MgCl}} \text{MeO} \xrightarrow{(\text{EtO}_2\text{C})_2, \text{THF}} 80\%
\]

\text{Scheme 27}

Preparation of the tricarbonyl region of the immunosuppressive FK-506 can be accomplished through acylation of a heavily functionalized dithiane as shown in equation (54).\(^ {106}\)

Previously, Corey had established a similar type of oxalate acylation using functionalized dithianes in the synthesis of aplasmomycin.\(^{107}\) One additional entry into the \(\alpha\)-keto ester system was through the reaction of triethoxycacetonitrile and alkyllithium reagents.\(^{108}\) Only simple alkyl- and aryl-lithium reagents have been applied thus far, with yields in the range of 80%. Interestingly, the reaction took a different course with Grignard reagents; simple esters were the exclusive products.
1.13.3 ACYLATION BY ORGANOCOPPER REAGENTS

1.13.3.1 Stoichiometric Organocuprate Reagents

A great deal of study has surrounded the usefulness of preformed organocuprate reagents (both stoichiometric and dialkylcuprates) and the utility of copper-catalyzed organometallics in ketone synthesis. When this methodology first became useful there were few other reliable methods for the direct synthesis of ketones from carboxylic acid derivatives. The addition of organolithiums to carboxylic acids, or the reaction of organocadmium or organozincs with acid chlorides was often accompanied by side reactions or suffered from low yields. It was apparent that ketones did not generally react with organocuprates at low temperature, unlike the situation with the corresponding aldehydes. The conditions for acylation were therefore mild enough to prevent side reactions. Stoichiometric alkylcupper species (RCu) were found to afford lower yields of the ketone than were obtained from lithium dialkylcuprates and acid chlorides. These reagents are much less reactive than dialkylcuprates and often require catalysis for addition to take place (vide infra). The work of Rieke represents the most recent study of the acylation of simple organocuprate reagents. Treatment of a functionalized alkyl bromide with a ‘highly reactive copper solution’ (formed in situ by reduction of copper(I) iodide triphenylphosphine complex with lithium naphthalide) results in the formation of an alkylcupper. This reagent adds rapidly to acid chlorides at -35 °C, affording ketones in good yield. The approach allows the preparation of organocupper reagents unavailable by methods which use organo-lithium or -magnesium reagents and copper(I) iodide. A drawback of the chemistry is that an excess of the acid chloride is required due to a serious side reaction which takes place between any excess of soluble copper metal and the acylating agent. Benzoyl chloride reacts rapidly with this form of copper(0) to form cis-stilbene diol dibenzoate thus consuming 4 equiv. of the reagent. Some examples of the method are included in Table 5.

<table>
<thead>
<tr>
<th>Alkyl halide</th>
<th>Acid chloride</th>
<th>Equiv.</th>
<th>Temperature (°C)</th>
<th>Product</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br(CH₂)₂CO₂Et</td>
<td>PhCOCl</td>
<td>2.75</td>
<td>-35</td>
<td>PhCO(CH₂)₂CO₂Et</td>
<td>81</td>
</tr>
<tr>
<td>Br(CH₂)₆Cl</td>
<td>PhCOCl</td>
<td>2.80</td>
<td>-35</td>
<td>PhCO(CH₂)₆Cl</td>
<td>77</td>
</tr>
<tr>
<td>Br(CH₂)₆</td>
<td>PhCOCl</td>
<td>2.80</td>
<td>-35</td>
<td>PhCO(CH₂)₆</td>
<td>58</td>
</tr>
<tr>
<td>Br(CH₂)₃CN</td>
<td>Me(CH₂)₂COCl</td>
<td>2.85</td>
<td>-35</td>
<td>Me(CH₂)₂CO(CH₂)₃CN</td>
<td>61</td>
</tr>
<tr>
<td>o-NCC₆H₄Br</td>
<td>PhCOCl</td>
<td>2.85</td>
<td>0</td>
<td>o-NCC₆H₄COPh</td>
<td>71</td>
</tr>
</tbody>
</table>
One of the advantages of using stoichiometric organocopper reagents (RCu) instead of the more common dialkylcuprates (R₂CuLi) is that only 1 equiv. of RCu is necessary for good yields of ketones, whereas 3 equiv. of the dialkylcuprate are usually required in acylations. In many cases it is possible to substitute the more readily available alkyl or aryl Grignard reagent in the presence of stoichiometric, or in some cases catalytic, amounts of copper iodide. These modified Grignard reagents are then used in equal molar amounts relative to the acid chloride. An important example of this methodology appeared in the synthesis of monensin by Still. The central fragment (71) comprising carbons C(8)–C(15) was prepared through copper(I)-catalyzed Grignard addition to the S-pyridyl thiol ester (72), comprising carbons C(16)–C(25) (equation 55). The direct reaction of the Grignard reagent with the S-pyridyl thiol ester under the conditions of Mukaiyama resulted in multiple addition (Section 1.13.2.2).

A recent example by McGarvey demonstrates the formation of chiral derivatives (73)–(76) which are useful for elaboration into the ubiquitous propionate unit through stereoselective enolate-based alkylation (equation 56). The thiol ester substrates were derived from aspartic acid in seven steps. The acylation of either dimethylcuprate or the Grignard-derived organocopper reagent was extremely clean when these organometalics were used in excess. No epimerization of the adjacent center was observed during the addition.

Scheme 28
1.13.3.1 Acylation of vinylcuprates

The extension of organocopper-based technology to the synthesis of α,β-unsaturated ketones was accomplished by acylation of vinylcopper reagents (Scheme 28). This represented something of an unexpected advance due to the potential for subsequent conjugate addition to the product.\[113\] The approach has not seen extensive utility, compared to approaches using organotransition metal and organolithium methodology which have become more general. The first specific example was generated through adaptation of Normant’s method for the formation of 1,1-disubstituted alkynylcuprates.\[116\] This trisubstituted alkene synthesis proceeds with retention of the stereochemistry generated initially by organocopper addition to an alkyne. The vinylcopper reagent must be β,β-disubstituted to avoid subsequent conjugate addition to the product. This restriction is removed when acylation is carried out with the more reactive acid bromide.\[117\]

The method was made considerably more general by inclusion of a catalytic amount of a palladium(0) complex during addition of the organometallic. Alkenylcopper reagents actually react relatively slowly with acid halides but, in a fashion analogous to other alkenyl metal species (see Section 1.13.4), they may be readily transmetallated to form an acylpalladium(II) complex which then undergoes reductive elimination to the product (Scheme 29).\[118\] A further discussion of acylation mediated by palladium complexes is included in Section 1.13.4. Interestingly, α,β-unsaturated acid chlorides react under these conditions to form divinyl ketones.

![Scheme 29](image)

\[\text{γ-Silylated vinylcopper reagents are acylated with acid chlorides followed by palladium-catalyzed 1,5-sigmatropic rearrangement to form silyloxy dienes in moderate yield (equation 57).} \text{119}\]

![Equation 57](image)

The more reactive lithium dialkenylcuprates (R_2CuLi) cannot be directly acylated even at low temperature, because further addition to the product takes place. These reagents can be modified \textit{in situ} so that the actual species undergoing form is an organozinc (requires palladium catalysis); however, other methods for generating organozincs are available that do not involve prior organocopper formation (Section 1.13.4.4). Stoichiometric vinylcopper and other copper-mediated acylations were not directly applicable to the case shown in equation (58)\[120\] (however, see Section 1.13.2.1).

![Equation 58](image)

1.13.3.2 Acylation of Lithium Dialkylcuprates with Acid Chlorides or Thiol Esters

The use of the more reactive lithium dialkylcuprate (R_2CuLi) species in acylation requires the complete exclusion of moisture and air.\[121\] This fact makes application of organocuprate acylation early in a
Nucleophilic Addition to Carboxylic Acid Derivatives

A synthetic route rather difficult if large amounts of material are to be handled or complex transferrable ligands are to be prepared. Nevertheless, the reaction has been widely used at mM scale with simple alkylolithiums. Posner has shown that lithium dimethyl- and other di-n-alkyl-copper reagents react with primary, secondary and tertiary acid chlorides at low temperature to provide good to excellent yields of simple ketones (equations 59 and 60).

An interesting transformation, carried out by Paquette, demonstrates the selectivity that can be achieved with these reagents. The reaction of the acid chloride (77) and cuprates (78) or (79) takes place selectively in the presence of the lactone. The cuprates must be added to a solution of the acid chloride to obtain high yields. A later transformation demonstrated that a lactone can be converted easily to the ketone with phenyllithium (Scheme 30). No loss of stereochemistry occurs in either permutation.

The diacid chloride (80) can be easily converted to a diketone without epimerization or aldol condensation (equation 61). In this case, inverse addition was not required for high yields.

Walba has used cuprate technology for the synthesis of the septamycin A-ring fragment shown in Scheme 31. The use of the well-known anhydride (81) in this transformation was unsatisfactory.

The same acid chloride formed part of the premonensin synthesis of Sih. Somewhat later in this synthesis, one of the final transformations before union of two large fragments was acylation of dimethylcuprate by acid chloride (82). The reaction proceeded in good yield but the requisite acid chloride had to be prepared from a methyl ester in two steps. A very similar dissection was used by Evans except that the methyl ketone (84) was prepared directly from the corresponding dimethylamide (83) using methyl-
lithium (equation 62). Although both procedures gave high yields, the amide was perhaps the more useful functional group, since it was carried intact through several prior synthetic permutations before acylation.

Because 3 equiv. of the organocuprate are usually required for the synthesis of ketones, the method is less effective for substrates of limited availability. Corey has described a class of mixed homocuprates R_rR_tCuLi in which one of the groups attached to copper is a nontransferable ligand (R_r) while the other group (R_t) is designed to be selectively introduced into the substrate. Although this reagent was first used in the conjugate addition of valuable prostaglandin side chains to cyclopentenones, it has also found utility in acylation chemistry. Most often the residual groups are copper(I) alkynides which become strongly complexed to copper. Copper alkynides are somewhat more susceptible to acylation than they are towards conjugate addition to enones, and the choice of acylating agent is more consequential. The most useful nontransferable ligand in this class is that derived from 3-methyl-3-methoxy-1-butyne.

In Corey’s erythronolide A synthesis, the coupling of vinyl iodide (85) and the S-pyridyl thiol ester (36) could not be accomplished through Mukaiyama’s direct acylation of Grignard reagents, despite close analogy between related transformations in the erythronolide B series (see Section 1.13.2.2). The obstacle was overcome by the formation of mixed homocuprate (86) in which a nontransferable ligand was used. The cuprate was selectively acylated by the S-pyridyl thiol ester with formation of ketone (87; Scheme 32). The reaction was also quite solvent dependent and only a minimum amount of THF can be used in relation to nonpolar cosolvents (hexane/pentane:THF 1.2:1).

Attention should be drawn to the subtle differences between the reaction shown in Scheme 32 and the formation of the related erythronolide B intermediate (Scheme 11) by Corey and coworkers. As mentioned earlier (Section 1.13.2.2), the addition of the Grignard reagent derived from iodide (34) was carried out easily on the identical substrate, S-(pyridyl) thiol ester (36) used in the A series, providing erythronolide B intermediate (37). The reaction in the erythronolide A series appears to be sensitive to the presence of the MTM-protected alcohol.
There have been few transformations of vinylcuprate reagents with acid chlorides (Section 1.13.3.1.1). Marino and Linderman have reported a general preparation of divinyl ketones useful in a Nazarov sense for the formation of cyclopentenones (Scheme 33). Addition of various cuprate species to ethyl propiolate formed a mixed cuprate which is perhaps best represented as the allene (91). In the case of heterocuprates (89) and (90), acylation proceeded in good yield to form the divinyl ketone. Dimethylcuprate afforded none of the desired product but instead produced 1-acetylcyclohexene. The method was generalized for several different acid chlorides.133

(88) R = Me
(89) R = CN
(90) R = \(\equiv\equiv\) Bu

Scheme 33

1.13.3.3 Acylation of Heterocuprates

The addition of secondary and tertiary dialkylcuprates is often impractical due to the thermal instability of these reagents. For instance it is known that solutions of \(s\)- and \(t\)-alkylcopper(I) reagents cannot be cleanly prepared from 2 equiv. of the organolithium and copper(I) iodide even at \(-78^\circ\)C.134 Posner
has developed a method which makes preparation and acylation of these species more practical. The method uses heterocuprates \([R(R'X)CuLi]\) in which \(R'X\) is an alkoxide ion, thiolate or lithium amide ion and \(R\) is the transferrable ligand. The most satisfactory results have been obtained when \(R'X\) was derived from \(t\)-butoxide. The reagents were prepared by addition of lithium \(t\)-butoxide to copper(I) iodide with formation of copper(I) \(t\)-butoxide. Addition of \(s\)-butyl- or \(t\)-butyl-lithium resulted in formation of the heterocuprate which has been shown to add efficiently to acid chlorides (Table 6). As with many heterocuprates, these reagents are generally stable only to \(-50^\circ\)C, but acylation can proceed in high yield utilizing only 1.2-1.3 equiv. of reagent and product isolation was relatively facile. Similar organocuprates can be prepared from primary alkylolithium reagents and acylation is also facile. Unfortunately, these reagents have not seen a great deal of use in natural product synthesis as yet.

Table 6 Acylation of Heterocuprate Reagents Derived from Organolithiums and CuPhos \(t\)-Butoxide

<table>
<thead>
<tr>
<th>Acid halide</th>
<th>Cuprate (equiv.)</th>
<th>Product</th>
<th>Isolated yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Br(CH}2\text{)}{10}\text{COCl})</td>
<td>1.2-1.3 (1.5%)</td>
<td>(\text{Br(CH}2\text{)}{10}\text{COR})</td>
<td>78 (83) 83</td>
</tr>
<tr>
<td>Ph(\text{COCl})</td>
<td>1.2-1.3</td>
<td>Ph(\text{COR})</td>
<td>82 87 70</td>
</tr>
<tr>
<td>(\text{MeO}_2\text{C(CH}2\text{)}{2}\text{COCl})</td>
<td>1.2-1.3</td>
<td>(\text{MeO}_2\text{C(CH}2\text{)}{2}\text{COR})</td>
<td>61 66 66</td>
</tr>
<tr>
<td>(\text{Bu}^\text{a}\text{CO(CH}2\text{)}{4}\text{COCl})</td>
<td>1.2-1.3</td>
<td>(\text{Bu}^\text{a}\text{CO(CH}2\text{)}{4}\text{COR})</td>
<td>73 86 86</td>
</tr>
</tbody>
</table>

Posner has also studied the effect of various other nontransferable ligands in the process. It was concluded that phenthiol was equivalent to \(t\)-butoxide as a nontransferable ligand, but phenoxy, dimethylamino and \(t\)-butylthio were inferior (equations 63 and 64).

\[
\begin{align*}
\text{EtO}_2\text{C} & \quad \text{Cl} & \quad \text{1.2 equiv. of PhS(Bu')CuLi} & \quad \text{THF, } -78^\circ\text{C, 15 min} \\
\text{Cl} & \quad \begin{array}{c}
\text{EtO}_2\text{C} \\
\text{Bu'}
\end{array} & \quad 65\%
\end{align*}
\]

\[
\begin{align*}
\text{Cl} & \quad \text{1.1 equiv. of PhS(Bu')CuLi} & \quad \text{THF, } -78^\circ\text{C, 20 min} \\
\text{Bu'} & \quad \begin{array}{c}
\text{Ph} \\
\text{Bu'}
\end{array} & \quad 84-87\%
\end{align*}
\]

The importance of achieving the combined goals of high thermal stability for the organometallic and for improving the efficiency of alkyl group transfer has led Bertz and Dabbagh to continue the study of heterocuprates in a variety of transformations including acylation. Although these workers were primarily interested in assaying the thermal stability of new types of heterocuprates, they showed that \(\text{Bu}^\text{a}\text{Cu(PPh}_2\text{)}\text{Li}\) or \(\text{Bu}^\text{a}\text{Cu(PCyz)}\text{Li}\) can be quantitatively acylated by excess \(\text{PhCOCl}\) after the cuprates had been aged for 30 min at \(0^\circ\)C and \(25^\circ\)C (Table 7). They provided a comparison of the reactivity of these reagents with other heterocuprates developed by other workers.

An important development in cuprate acylation methodology that addresses several of the most objectionable properties of the reagents themselves has come from Knochel and his associates. New highly functionalized copper reagents, represented by the formula \(\text{RCu(CN)ZnI}\), can be prepared from readily available primary and secondary alkylzinc iodides by transmetallation with the soluble complex \(\text{CuCN}\cdot2\text{LiX}\) in THF (equation 65).

These reagents have several advantages in acylation chemistry. Once prepared, these lower order cuprates may be used at temperatures near \(0^\circ\)C rather than the usual \(-78^\circ\)C needed for alkylheterocuprates. Only one transferable ligand is involved per mole of reagent, which avoids the loss of precious substrates. Reaction work-up and product isolation is simplified relative to heterocuprates containing sulfur or phosphorus ligands. The organozinc and the corresponding organocuprate tolerate a wide variety of
Table 7 Comparison of Heterocuprate Reagents for Acylation with Benzoyl Chloride

<table>
<thead>
<tr>
<th>Entry</th>
<th>Reagent</th>
<th>Solvent</th>
<th>Temperature (°C)</th>
<th>Yield (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bu^bCu(PPh_2)Li</td>
<td>Ether</td>
<td>0 (25)</td>
<td>99 (95)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Bu^bCu(PCy_2)Li</td>
<td>Ether</td>
<td>0 (25)</td>
<td>97 (89)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Bu^bCu(NCy_2)Li</td>
<td>Ether</td>
<td>0 (25)</td>
<td>98 (89)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Bu^bCu(NPPh_2)Li</td>
<td>Ether</td>
<td>0 (25)</td>
<td>100 (87)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Bu^bCu(NEt_2)Li</td>
<td>Ether</td>
<td>0 (25)</td>
<td>98 (73)</td>
<td>224</td>
</tr>
<tr>
<td>6</td>
<td>Bu^bCu(SPh)Li</td>
<td>Ether</td>
<td>0 (25)</td>
<td>19 (0)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Bu^bCu(C=C(Bu')Li</td>
<td>Ether</td>
<td>0 (25)</td>
<td>92 (89)</td>
<td>225</td>
</tr>
<tr>
<td>8</td>
<td>Bu^bCu(CH_2SO_2Ph)Li</td>
<td>Ether</td>
<td>0 (25)</td>
<td>99 (91)</td>
<td>226</td>
</tr>
<tr>
<td>9</td>
<td>Bu^bCu(CN)Li_2</td>
<td>Ether</td>
<td>0 (25)</td>
<td>95 (84)</td>
<td>227</td>
</tr>
</tbody>
</table>

*The yields after 30 min at −50 °C and −25 °C were 100% and 97%.

functionality contained within the original iodide substrate. Ketone, ester and nitrile functionality do not interfere with the generation of the organometallic. In addition, α,β-unsaturated esters are not attacked by these reagents. The yields of acylated organometallic are quite high (Table 8). Further developments of this class of reagent should prove rewarding.

Table 8 Acylation of RCu(CN)ZnI with Acid Chlorides

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Acyl halide</th>
<th>Product</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC(CH_2)_2Cu(CN)ZnI</td>
<td>PhCOCl</td>
<td>NC(CH_2)_2COPh</td>
<td>83</td>
</tr>
<tr>
<td>NC(CH_2)_2Cu(CN)ZnI</td>
<td>Cl(CH_2)_3COCl</td>
<td>NC(CH_2)_2CO(CH_2)_3Cl</td>
<td>77</td>
</tr>
<tr>
<td>NC(CH_2)_2Cu(CN)ZnI</td>
<td>Cc_H_1COCl</td>
<td>NC(CH_2)_2COCcc_H_1</td>
<td>79</td>
</tr>
<tr>
<td>PrCu(CN)ZnI</td>
<td>Ph(OAc)CHCOCOCl</td>
<td>Ph(OAc)CHCOPh</td>
<td>82</td>
</tr>
<tr>
<td>EtO_2C(CH_2)_2Cu(CN)ZnI</td>
<td>PhCOCl</td>
<td>EtO_2C(CH_2)_2COPh</td>
<td>87</td>
</tr>
<tr>
<td>Cc_H_1(Cu(CN)ZnI</td>
<td>PhCOCl</td>
<td>Cc_H_1COPh</td>
<td>84</td>
</tr>
<tr>
<td>Bu^bCu(CN)ZnI</td>
<td>Cl(CH_2)_3COCl</td>
<td>Cl(CH_2)_3COBu^b</td>
<td>94</td>
</tr>
</tbody>
</table>

1.13.3.4 Acylation with Thiol Esters

Because of the requirement for a large excess of dialkylcuprate in the reaction with acid chlorides, other acylating agents have been studied. Anderson has shown that S-ethyl thiol esters or S-phenyl thiol esters react in stoichiometric fashion with homocuprates to provide good yields of ketones (Table 9). Further developments of this class of reagent should prove rewarding.

Table 9 Acylation of Dialkylcuprates with S-Ethyl Thiol Esters

<table>
<thead>
<tr>
<th>Homocuprate</th>
<th>Equiv.</th>
<th>Solvent</th>
<th>Temperature (°C)</th>
<th>Time (h)</th>
<th>R</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeSCuLi</td>
<td>1.2</td>
<td>Et_2O</td>
<td>−78</td>
<td>2</td>
<td>Me</td>
<td>75</td>
</tr>
<tr>
<td>Bu^b2CuLi</td>
<td>0.55</td>
<td>Et_2O</td>
<td>−40</td>
<td>2.5</td>
<td>Bu^b</td>
<td>89</td>
</tr>
<tr>
<td>Bu^b2CuLi</td>
<td>1.0</td>
<td>Et_2O</td>
<td>−40</td>
<td>2.5</td>
<td>Bu^b</td>
<td>87</td>
</tr>
<tr>
<td>Pr^2CuLi</td>
<td>1.1</td>
<td>THF</td>
<td>−40</td>
<td>2</td>
<td>Pr^2</td>
<td>66</td>
</tr>
</tbody>
</table>
In contrast to the results obtained during the acylation of acid chlorides, nearly quantitative substitution of the thiol ester by each alkyl group of the cuprate takes place. Presumably, the intermediary heterocuprate R(ETs)CuLi, related to those prepared by Posner (vide supra), was also sufficiently reactive to provide the ketone from the thiol ester. The yields obtained depend on the reaction temperature and solvent. The transformation was performed by the rapid introduction of the thiol ester to a solution of copper(I) reagent in ether at $-40\, ^\circ\mathrm{C}$. Reaction times varied from one to several hours and quenching was carried out at low temperature with ammonium chloride. Methyl ketones must be prepared in ether at $-78\, ^\circ\mathrm{C}$ to avoid selfcondensation. These thiol esters undergo bis-addition with standard Grignard or organolithium reagents to form tertiary alcohols unlike the S-(2-pyridyl) thioates of Mukaiyama (see Section 1.13.2.2). However, reaction of the thiol esters with 1.5 equiv. of BunMgBr-Cul in THF gave n-butyl ketones in >80% yield.

The selective addition of diethyl cuprate to the dodecadienethioate shown in equation (66) demonstrates the utility of this methodology. Notice that there is only a small amount of conjugate addition product. In diethyl ether, a large percentage of conjugate addition product is formed, even at $-78\, ^\circ\mathrm{C}$ (equation 66).

Another example of this methodology has appeared recently from Masamune and coworkers in connection with a total synthesis of bryostatin (equation 67). The salient point here is the demonstrated utility of the thiol ester, prepared directly through stereoselective boron enolate aldol condensation. Notice that no further activation or removal of a chiral auxiliary is necessary for this transformation, unlike other related aldol methodology.

Researchers at Merck have studied the synthesis of the simple carbapenem system (94) through Wittig cyclization of the keto ylide (93). This interesting precursor was prepared directly from the thiol ester (92) by reaction with lithium dimethylcuprate or magnesium diphenylcuprate (Scheme 34).
Nucleophilic Addition to Carboxylic Acid Derivatives

Other acylating agents are similarly effective in the formation of ketones by reaction with homocuprates. Kim has demonstrated that activated esters such as the 2-pyridyl carboxylates are satisfactory cuprate traps. These esters can be prepared from carboxylic acids and 2-pyridyl chloroformate, provided a catalytic amount of DMAP is utilized (Scheme 35).

\[\text{i. RC}_2\text{H, Et}_3\text{N} \]
\[\text{ii. DMAP} \quad 80-90\% \]

Scheme 35

Once again these acylating agents are useful for the stoichiometric introduction of simple nucleophilic groups (methyl and n-butyl) into multifunctionalized substrates because the intermediate heterocuprate is also acylated (equations 68–70).

\[\text{i. RC}_2\text{H, Et}_3\text{N} \]
\[\text{ii. DMAB} \quad 80-90\% \]

Kim has also studied the corresponding acylation of homocuprates by S-(2-pyridyl) thiocates, discussed earlier in the context of total synthesis of monensin and erythronolide A (Sections 1.13.2.2 and 1.13.3.2). Under the standard anaerobic conditions necessary for cuprate formation, good yields of ketones could be derived from acylation of lithium dimethylcuprate (or lithium dibutylcuprate) by S-(2-pyridyl) thiobenzoate and other simple S-(pyridyl) thiol esters (equation 71). Interestingly, if the homocuprate is intentionally placed under an oxygen atmosphere before acylation and then reacted with the S-(2-pyridyl) thioate in oxygen at \(-78^\circ\text{C}\), one obtains good yields of the corresponding ester (equation 72).
1.13.3.5 Acylation of α-Trimethylsilylmethylcopper

Potentially useful β-silyl ketones\(^{144}\) may be obtained through acylation of the trimethylsilylmethylcopper reagent generated from 1 equiv. of copper(I) iodide and trimethylsilylmagnesium bromide. The results obtained with this reagent have varied depending upon the exact conditions used. Normant has found that acylation of trimethylsilylmethylcopper magnesium bromide under palladium catalysis results in the direct formation of the silyl enol ether without formation of β-silyl ketone.\(^{145}\) It appears that under the latter conditions, the initial product is a β-silyl ketone which then undergoes a palladium- or acid-catalyzed C to O isomerization. Several previous investigations including one by Akiba indicate this is the case. Akiba has shown that β-silyl ketones can be obtained from the stoichiometric copper reagent in good yield, but when treated with a catalytic amount of triflic acid, they underwent immediate isomerization to silyl enol ethers.\(^{146,147}\) Kishi had earlier prepared 1-(trimethylsilyl)-2-butanone by addition of Me\(_3\)SiCH\(_2\)MgBr-CuI to acetyl chloride affording an 80–90% yield.\(^{148}\) The report indicated that this transformation is superior to methods which use the corresponding trimethylsilylmethyl lithium.\(^{149,150}\)

The construction of the naturally derived narbomycin\(^{151}\) and tylosin-aglycones\(^{152}\) by Masamune and coworkers employ identical methodology for seco-acid formation. In each case, Peterson alkenation of a functionalized aldehyde (not shown) and the silyl ketones (96; R = SiMe\(_3\); Scheme 36) or (99; Scheme 37) efficiently introduced the required (E)-α,β-unsaturation. Silyl ketone formation is accomplished in each case through cuprate acylation by an activated carboxylic acid derivative. Formation of an acid chloride was not possible in the sensitive tylosin-aglycone intermediate; however, selective acylation of the silylcuprate proceeded at the pyridyl thiol ester moiety of (98) and not with the t-butyl thiol ester. In a related investigation,\(^{153}\) (97), an advanced intermediate for 6-deoxyerythronolide B, was obtained from (95) via addition of lithium diethylcuprate to the acid chloride (84% yield). In all the above cases, no addition was observed at the t-butyl thiol ester.

![Scheme 36](image)

\[\text{R = Me}_3\text{Si} \quad \text{quantitative} \]

\[\text{R = Me} \quad 84\% \]

![Scheme 37](image)

\[\text{Scheme 36} \]

\[\text{Scheme 37} \]

1.13.4 ACYLATION MEDIATED BY LOW-VALENT PALLADIUM COMPLEXES

1.13.4.1 Acid Chlorides and Organostannanes

The acylation of the mildly nucleophilic organostannanes was first reported by Migita in 1977\(^{154}\) through the use of palladium catalysis. However, the reported conditions were harsh and of limited
scope. Nearly simultaneously, Stille and Milstein reported a more comprehensive study of this method,155 including mechanistic and synthetic studies. Their work also formed the basis for the discovery of improved reaction conditions for acylation.156 Equimolar amounts of an acid chloride and tetrasubstituted organotin undergo acylation with palladium catalysis in HMPA to afford high yields of ketones wherein one of the tin substituents has been acylated (equation 73). Transfer of a second substituent from \(\text{R}_3\text{SnCl} \) is 100 times slower than transfer from \(\text{R}_4\text{Sn} \) but can still be useful. \(\text{R}_2\text{SnCl}_2 \) and \(\text{RSnCl}_3 \) do not undergo acylation. The reaction can be carried out in the presence of the following functional groups without interference: \(\text{NO}_2, \text{RC}==\text{N}, \text{aryl halide} \ (\neq \text{Br}), \text{vinyl}, \text{methoxy}, \text{carboxylic esters} \) and aldehydes. The latter functional group is not tolerated by any other method of ketone formation that involves organometallic addition to a carboxylic acid derivative. An especially interesting case is that of \(p\)-acetylbenzaldehyde (equation 74) which serves to introduce the method. The product, a keto aldehyde, is generally difficult to prepare by other methods since it undergoes rapid selfcondensation.

\[
\begin{align*}
\text{X} & \quad \text{R} \quad \text{O} \quad \text{Cl} \quad + \quad \text{R}_3\text{SnR}^2 \quad & \quad \text{[L}_2\text{Pd}^0] \\
& \quad \text{n} = 0-4 & \quad \text{X} \quad \text{R} \quad \text{O} \quad \text{R}^2 \quad + \quad \text{R}_3\text{SnCl}
\end{align*}
\]

(73)

Other aromatic and aliphatic acid chlorides give good to excellent yields of the desired ketones using this procedure. Hindered or \(\alpha,\beta \)-unsaturated acid chlorides also function effectively, the latter forms \(\alpha,\beta \)-unsaturated ketones without competing conjugate addition (equations 75 and 76).

\[
\begin{align*}
\text{Ph} & \quad \text{\text{-C}==\text{C}==\text{O}} \quad \text{Cl} \quad & \quad \text{Me}_4\text{Sn, BnPd(PPh}_3\text{)}_2\text{Cl} \\
& \quad 91.3\% \quad & \quad \text{Ph} \quad \text{\text{-C}==\text{O}} \quad \text{COMe}
\end{align*}
\]

(75)

\[
\begin{align*}
\text{\text{-C}==\text{C}==\text{O}} \quad \text{Cl} \quad & \quad \text{Me}_4\text{Sn, BnPd(PPh}_3\text{)}_2\text{Cl} \\
& \quad 93.3\% \quad & \quad \text{\text{-C}==\text{C}==\text{O}} \quad \text{COMe}
\end{align*}
\]

(76)

There is no need for an inert atmosphere as both the catalyst and organostannane are air stable; in fact the reaction is accelerated by the presence of oxygen. Depending on the solvent, reaction times are very short, an hour or less in HMPA and under 24 h for solvents like chloroform, THF and dichloroethane. The end of the reaction is dramatically signaled by the precipitation of metallic palladium from the clear reaction solution.

The acylation is limited to the use of acid chlorides due to their unique ability to oxidatively add palladium(0); other acylating agents are not generally useful in this context. It was also known that acid chlorides do not react with organotins without Lewis acid catalysis and more importantly organotins do not generally react with the expected product, the ketone, except under very strong Lewis acidic conditions.157 Even diacid chlorides may be utilized in this process (equation 77); however, oxalyl chloride cannot be used due to the indicated decarbonylation of the intermediate acid chloride (equation 78).155

\[
\begin{align*}
\text{Cl} & \quad \text{\text{-C}==\text{C}==\text{Cl}} \quad & \quad \text{Me}_4\text{Sn, BnPd(PPh}_3\text{)}_2\text{Cl} \\
& \quad 90.5\% \quad & \quad \text{Cl} \quad \text{\text{-C}==\text{C}==\text{Cl}} \quad \text{Cl}
\end{align*}
\]

(77)

\[
\begin{align*}
\text{Cl} & \quad \text{\text{-C}==\text{Cl}} \quad & \quad \text{Me}_4\text{Sn} \\
& \quad \text{BnPd(PPh}_3\text{)}_2\text{Cl} \quad & \quad \text{Cl} \quad \text{\text{-C}==\text{Cl}} \quad \text{Cl} \quad \text{Pd}^0 \quad \text{\text{-CO}} \quad \text{Cl} \quad \text{Pd}^0 \quad \text{Cl}
\end{align*}
\]

(78)

10% overall yield

There is no need for an inert atmosphere as both the catalyst and organostannane are air stable; in fact the reaction is accelerated by the presence of oxygen. Depending on the solvent, reaction times are very short, an hour or less in HMPA and under 24 h for solvents like chloroform, THF and dichloroethane. The end of the reaction is dramatically signaled by the precipitation of metallic palladium from the clear reaction solution.

The acylation is limited to the use of acid chlorides due to their unique ability to oxidatively add palladium(0); other acylating agents are not generally useful in this context. It was also known that acid chlorides do not react with organotins without Lewis acid catalysis and more importantly organotins do not generally react with the expected product, the ketone, except under very strong Lewis acidic conditions.157 Even diacid chlorides may be utilized in this process (equation 77); however, oxalyl chloride cannot be used due to the indicated decarbonylation of the intermediate acid chloride (equation 78).155
α-Diketones have been prepared by the reaction of acylstannanes and acid chlorides. Few cases have been studied thus far and the yields for unsymmetrical α-diketones were moderate at best. Two by-products have been observed in the reaction. Decarbonylation made up 4–20% of the material balance and degradation of acyl-tri-n-butyltin resulted in n-butyl ketone, although the latter mode of decomposition only accounted for a few percent of the reaction product (Scheme 38).

\[
\begin{align*}
\text{R} & = \text{Pr}^1, \text{Et}; R^1 = \text{phenyl and substituted phenyl} \\
\end{align*}
\]

Scheme 38

Symmetrical diketones have been prepared in a similar fashion from 2 mol of the acid chloride and 1 mol of hexabutylditin with palladium catalysis (equation 79). The yields were still moderate.

\[
\begin{align*}
\text{Ph} & = \text{Ph}^2, \text{Ph}^3; \text{R}^1 = \text{phenyl and substituted phenyl} \\
\end{align*}
\]

Soderquist has reported a slightly more effective method not subject to the losses due to decarbonylation of intermediates. Acylation of α-methoxyvinyltin under palladium(0) catalysis afforded a good yield of the α-methoxyenone. Hydrolysis in acetone/aqueous acid releases the diketo functionality (equation 80). Only the unsubstituted vinyl system has been employed thus far.

\[
\begin{align*}
\text{R} & = \text{Me}, 44\%; R = \text{Ph}, 73\%; R = \text{Bu}^1, 79\% \\
\end{align*}
\]

Prior to the studies which uncovered the utility of organotin acylation as described in the preceding paragraphs, acid chlorides were also found to undergo a similar rhodium(I)-mediated acylation with allyltins to form β,γ-unsaturated ketones. The palladium(0)-catalyzed coupling has been found to be more general with respect to varied substitution patterns of both reagents and could be conducted under essentially neutral conditions (see Section 1.13.5.1).

1.13.4.1.1 Mechanistic studies of palladium-catalyzed acylation

The mechanism of palladium-catalyzed coupling of organic halides with tetrasubstituted organotins has been widely studied by Stille and a general understanding of the mechanism is critical to further developments in this area. The use of other organometallics in palladium-catalyzed acylation will follow this discussion, as well as further examples where this method has been used.

Thus far we have discussed numerous examples whereby selective ketone formation has been achieved through organometallic acylation. The problem was approached by choosing a less nucleophilic organometallic which can be acylated but does not interact with the desired product. Thus far, few reagents with this type of selectivity have been found (organocuprates). Most often, the strategy was to either preserve the tetrahedral intermediate formed upon nucleophilic addition or to activate the substrate.
Nucleophilic Addition to Carboxylic Acid Derivatives

439

towards nucleophilic attack by prior coordination of the organometallic. A conceptually different approach, achieved through the use of transition metals, alters the mechanism of acylation such that carbon–carbon bond formation is not part of the rate-determining step. Many examples of the formation of acylmetal complexes have been reported in the literature.\(^\text{162}\) Depending upon the nature of the metal and the degree of coordination, these complexes can function as nucleophiles or as electrophiles in reactions with organic substrates. An example of a nucleophilic acylmetal complex used in ketone synthesis was reported by Collman. Nucleophilic acyliron(0) complexes such as (102) readily undergo oxidative addition (akin to nucleophilic displacement) with alkyl halides to form the hexacoordinate acylalkyliron(II) species (104) or (105). These are unstable with respect to reductive elimination of the alkyl and acyl ligands and the complex degrades to form a ketone and complexed iron(0).\(^\text{164}\) The carbon–carbon bond formation is therefore a result of electronic reorganization of the metal driven by the stability (or lack thereof) of the particular oxidation state with the given ligands.

The acyliron(0) complex (102) has been isolated and subjected to the same nucleophilic displacement (or equivalently oxidative addition) with excellent correlation (Scheme 39). The same species is also readily available from acid chlorides (i.e. formation of 103), but the overall process has not been widely used in the synthesis of ketones (Scheme 40).\(^\text{165}\) The final step of the process, a reductive elimination of acyliron(II) complex (104) or (105), is quite rapid and it has not been possible to isolate and identify the presumed intermediates in this case (Scheme 41). Since the oxidative addition of the acyliron complex with the alkyl halide is extremely mild, the corresponding ketone formed in the reaction is not subject to attack by organometallic reagents and no tertiary alcohol is formed.

\[\text{Na}_2\text{Fe(CO)}_4 + \text{CO} \text{ (1 atm)} \underset{\text{THF}}{\text{Na}^+}\rightarrow \text{MeI, HMPA} \rightarrow \text{98% ee} \]

Scheme 39

\[\text{Na}_2\text{Fe(CO)}_4 + \text{OCl} \rightarrow \text{Na}^+ \rightarrow \text{97% ee} \]

Scheme 40

\[\text{(103)} \rightarrow \text{cis to trans} \rightarrow \text{reductive elimination} \]

Scheme 41

Palladium(0) complexes are well known to suffer oxidative addition with acid chlorides.\(^\text{166}\) The resulting acypalladium(II) complex (106) is, in contrast to the acyliron(II) complex discussed above, an electrophilic species which is subject to nucleophilic attack by various organometallics. Stille has studied the addition of organotins because they undergo rapid nucleophilic addition to the acylpalladium(II) complex, but do not add to either the acid chloride or react with the ketone (Scheme 42). There are several other organometallics useful in this sense (vide infra).

Both of the described processes, nucleophilic acyliron or electrophilic acylpalladium, rely upon the rapid degradation of organoacyl metal complexes by a net reduction of the metal to a low-valent form with creation of a carbon–carbon bond. The precise mechanism involved in the formation of each high-valent complex is complementary and interesting but irrelevant to the resulting ketone formation, due to
Nonstabilized Carbanion Equivalents

reductive elimination. Many examples of these processes have been described with other metals, but are beyond the scope of this discussion.167 The particular case of organocuprates may also fit into the same model. One can envision an oxidative addition of a dialkylcuprate (a copper(I) complex) to the acid chloride forming an acylcopper(II) species. Reductive elimination returns copper(I) and generates the ketone. At present, however, there is no evidence for this latter supposition, none of the intermediates in the organocuprate acylation have been characterized and researchers are only now beginning to understand the complex chemistry of organocuprates.168

1.13.4.1.2 Effect of the catalyst

Returning to the palladium-catalyzed process, we begin with a discussion of the catalytic cycle and particularly the function of the metal, the effect of phosphine ligands and the identity of the organopalladium intermediates along the route. What will become important is the rate at which these intermediates are transformed along the reaction pathway, and whether or not a step in the catalytic cycle is made rate limiting through the addition or omission of a particular reagent, solvent or ligand.

The rapid rate of oxidative addition of palladium(0) to an acid chloride has been attributed to the extended bond length and highly polarized nature of the carbon–chlorine bond.169 The half life for oxidative addition of tetrakis(triphenylphosphine)palladium(0) to benzoyl chloride has been measured at approximately 10 min at -40 °C.170 Palladium(0) is required for oxidative addition but large effects on the reaction rate may be observed depending on the degree and type of ligation around this metal. Electron-donating ligands, such as triarylphosphines, tend to make palladium more nucleophilic, but they also increase steric interaction with the substrate.172 Palladium(0) catalysts are also air sensitive making their handling a problem. It is often beneficial to introduce the catalyst in the form of a palladium(II) species that is more stable to atmospheric conditions. In a separate step, reduction of the palladium(II) complex occurs by one of several mechanisms to a suitable form of solvated or ligated palladium(0), which undergoes reaction. Stille has found that benzyl(chloro)bis(triphenylphosphine)palladium(II), formed as shown in equation (81), is an excellent catalyst precursor for acylation of organotins by acid chlorides.155

The actual acylation catalyst for alkyltins and acid chlorides is generated through sacrificial transmetallation of the organotin to form a new palladium(II) complex with release of trialkyltin halide (see Scheme 43). Reductive elimination then forms a small amount of benzylated adduct and the coordinately unsaturated and highly nucleophilic catalyst bis(triphenylphosphine)palladium(II) complex (109) which is not observable but then undergoes a rapid trans to cis migration, possibly involving dissociation of one of the ligands.190 The cis complex (109) immediately undergoes reductive elimination to the product and returns the palladium(0) complex.

Commercially available Pd0(PPh3)4 also catalyzes the process depicted above, but observations indicate that the reaction rate is significantly depressed over those seen with PhCH2PdII(PPh3)2Cl.155 This is true even though the same coordinately unsaturated complex, Pd0(PPh3)2, is responsible for catalysis in both cases through the well-known dissociative process shown in equation (82).171
Nucleophilic Addition to Carboxylic Acid Derivatives

The inclusion of additional triphenylphosphine in reactions catalyzed by PhCH₂Pd(PPh₃)₂Cl results in a deceleration of the oxidative addition process. The highly reactive coordinatively unsaturated catalyst Pd⁰(PPh₃)₂ now becomes part of the equilibrium shown above. Since in this case coordinatively saturated Pd⁰(PPh₃)₄ first undergoes dissociation, the added ligand shifts the equilibrium towards the left and decreases the rate of oxidative addition.¹⁷² In mechanistic studies to be discussed later, the effect of added triphenylphosphine was found to be the greatest during oxidative addition. Smaller effects of this ligand were observed in the ensuing transmetallation and reductive elimination.

Other potential sources of catalyst for the acylation include the air- and moisture-stable dibenzylideneacetone complex of palladium(0); Pd⁰₂(DBA)₃CHCl₃.¹⁷³ This complex reacts with triphenylphosphine to form coordinatively unsaturated complexes in situ but has been used infrequently for acylation.¹⁷⁴ So-called 'ligandless catalysts' have been exploited with promising results. Ligandless palladium complexes such as R₃Pd⁺⁺Cl₂ (L = solvent) contain no phosphine-derived ligands but instead are merely solvated by the reaction medium. These complexes are among the most active catalysts for cross-coupling and can be formed in situ from either (η⁵-C₅H₅PdCl)₂, (MeCN)₂PdCl₂ or PdCl₂LiCl through metathesis with the organotin. Acid chlorides will suffer oxidative addition by these complexes and good yields of ketones are obtained (Scheme 44).¹⁷⁵

![Scheme 43](image)

Scheme 43

\[
Pd⁰(PPh₃)_₄ \rightleftharpoons Pd⁰(PPh₃)_₂ + 2PPh₃ \quad (82)
\]

Aromatic or α,β-unsaturated acid chlorides were found to undergo rapid oxidative addition with these palladium complexes, and the subsequent acylation of an organotin proceeded smoothly in HMPA (1–60 min) or in acetone. Formation of simple aliphatic acylpalladium(II) complexes proceeds at markedly reduced rates and the acylation of organotins is slower but still useful (10–24 h).

![Scheme 44](image)

Scheme 44

\[
R = \text{Ph}; R¹ = \text{Me, Bn, vinyl, Ph, p-ClC₆H₄, p-CNC₆H₄, p-NO₂C₆H₄, 2-thenoyl,}
R = \text{Me, o-FC₆H₄, Bn, PhCH=CH, p-ClC₆H₄; } R¹ \text{ = Ph, Me}
\]
The formation of the acylated palladium(II) species has been formulated as shown in Scheme 45. The sequence relies on strong solvent participation to prevent precipitation of palladium(0) during reductive elimination of intermediate complex (110). When tetramethyltin or benzyltrimethyltin is to be used in this process it is necessary to introduce a small amount of MesSnz to aid in the formation of the active catalyst. These organotins are slow to react with \((\eta^3-C_3H_5PdCl)_2\).

\[
\frac{1}{2}\left\{\begin{array}{c} \text{PdCl}_2 \\
\end{array}\right\} + \text{solvent} \rightarrow \text{solv} \text{R}^1\text{SnMe}_3 \rightarrow \text{Me}_3\text{SnCl} \rightarrow \text{R}^1\text{Pd}(\eta^3-C_3H_5) \rightarrow \text{solv} \rightarrow \text{RCOCI} \rightarrow \text{solv} \rightarrow \text{O} \rightarrow \text{PdCl}_2 \rightarrow \text{solv} \\
(110)
\]

Scheme 45

1.13.4.1.3 Effect of solvent, catalyst concentration and oxygen

Several factors were found to influence the rate of the Stille acylation process, including an acceleration effect by oxygen and also acceleration by the use of polar solvents such as HMPA. Oxidative addition to the acid chloride forms a trans-acylpalladium(II) complex which can in principle degrade by the loss of carbon monoxide. In some cases it is advantageous to use an atmosphere of CO to reverse this process.\(^{176}\) The initial rate was also found to be critically dependent on catalyst concentration. Surprisingly, high catalyst concentrations do not accelerate the reaction and are in fact only slightly more effective than low levels of palladium (see Table 10). The initial rate and \(t_{1/2}\) were found to be sensitive to the concentration of palladium complex between 0 and \(3 \times 10^{-3}\) M, but became constant above this concentration. The optimal catalyst concentration for the reaction shown in Table 10 is about \(7 \times 10^{-4}\) M in PhCH$_2$Pd(PPh$_3$)$_2$Cl.\(^{155}\)

<table>
<thead>
<tr>
<th>[Catalyst] (mol L$^{-1} \times 10^{-4}$)</th>
<th>Turnover number</th>
<th>Initial rate (mol L$^{-1}$ min$^{-1} \times 10^{-4}$)</th>
<th>(t_{1/2}) (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.866</td>
<td>14925</td>
<td>30.72</td>
<td>125</td>
</tr>
<tr>
<td>1.73</td>
<td>7692</td>
<td>76.80</td>
<td>60</td>
</tr>
<tr>
<td>6.94</td>
<td>1852</td>
<td>172.80</td>
<td>38</td>
</tr>
<tr>
<td>8.30</td>
<td>1563</td>
<td>70.40</td>
<td>50</td>
</tr>
<tr>
<td>30.4</td>
<td>422</td>
<td>46.08</td>
<td>128</td>
</tr>
<tr>
<td>75.5</td>
<td>170</td>
<td>40.96</td>
<td>115</td>
</tr>
<tr>
<td>149.4</td>
<td>86</td>
<td>42.24</td>
<td>120</td>
</tr>
</tbody>
</table>

[PhCOCl] = 1.28 M, [Me$_3$Sn] = 1.40 M.

The exact reasons for this behavior are not clear; however, deactivation at high concentrations may be due to dimerization of the catalyst which liberates triphenylphosphine as shown in equation (83). As discussed, the reaction is significantly impeded by added phosphine.

\[
\begin{align*}
2 \text{Bn}_2\text{Pd} & \xrightarrow{\text{PPh}_3\text{Cl}} \text{Bn}_2\text{Pd} \xrightarrow{\text{PPh}_3\text{Cl}} 2\text{PPh}_3
\end{align*}
\]

Although it is not certain by what mode added oxygen accelerates the catalytic process, it has been proposed that oxygen initiates a radical-based oxidative addition to palladium which is several orders of magnitude faster than the alternative nucleophilic displacement occurring largely under inert atmosphere.\(^{177}\) Radical scavengers predictably override the rate enhancement due to oxygen. It is possible that at least two mechanisms are active to some extent during oxidative addition.\(^{178}\) One path involves
nucleophilic addition, displacement of chloride with possible formation of a cationic metal complex, and collapse to \(\text{RCOPd(L}_2\text{)}\text{X} \). The other process may involve halide abstraction, electron transfer to form a radical pair \((\text{L}_2\text{Pd}^\text{+X} + \text{RCO}^-) \) which can collapse to \(\text{RCOPd(L}_2\text{)}\text{X} \). In this case oxygen can act as the electron acceptor to initiate the process. The latter proposition is based upon CINDNP effects observed during oxidative addition of platinum and palladium complexes to alkyl halides. Latter stages of the process, including transmetallation and reductive elimination, are not enhanced. The stoichiometric reaction of isolated acylpalladium complex (107) (Scheme 43; \(\text{R} = \text{Ph} \)) with tetraalkyltins (transmetallation, \textit{trans} to \textit{cis} isomerization and reductive elimination) was actually shown to be retarded by the presence of oxygen.

Originally, it was felt that a polar solvent such as HMPA was a requirement for the reaction; however, subsequent work has shown that even nonpolar solvents such as chloroform can be used with only a small decrease in yield and in reaction rate. The work-up was made considerably simpler by this change and in some cases the reaction is made more selective over similar reactions using HMPA. Bromoaromatic compounds such as 4-bromobenzoyl chloride are converted to the acetophenone without replacement of the halogen. In HMPA, up to 26% of the 4-methylacetophenone is produced. No bromination or elimination was observed from substrates such as 6-bromohexanoyl chloride. It is known that cyclic ethers such as THF may be cleaved with acylpalladium(II) halide complexes in the absence of tetraalkyltins, but this solvent can still be used effectively for ketone synthesis since the rate of organotin acylation exceeds that of the degradation reaction. A strong coordination of the acylpalladium complex by THF is indicated by these observations. Interestingly, solvent effects play a role in the selectivity of acylation when using allylic stannanes. In equations (84)–(86), the use of \(\text{CHCl}_3 \) rather than THF led to multiple addition products.

The palladium(II) catalyst, because of its Lewis acidity, may play a role in the addition of allylic tin to the ketone; however, acylation of crotyltin was not reported to form a tertiary alcohol using palladium(II). It appears that solvent effects dominate in these cases. As part of the same study, substituted vinylstannanes were shown to undergo acylation with retention of configuration; however, the resulting \(\alpha,\beta \)-unsaturated ketones were not configurationally stable to the reaction conditions. Isomerically pure \((Z) \)-1-propenylstannane was acylated to afford a 50:50 mixture of alkenes (equation 87). The \((Z) \)-\(\alpha,\beta \)-unsaturated ketone was shown to isomerize to a mixture of \((Z) \)- and \((E) \)-isomers under the reaction conditions. Mixtures of \((Z) \)- and \((E) \)-2-substituted vinylstannanes were acylated to afford mainly the \((E) \)-\(\alpha,\beta \)-unsaturated ketone (equation 88).
Nonstabilized Carbanion Equivalents

The acceleration of palladium-catalyzed acylation of organostannanes with polar solvents is thought to originate in the transmetallation and reductive elimination sequence. Kinetic studies have shown that the transmetallation of the tin substituent is rate limiting for reactions catalyzed by BnPd(CH$_3$)$_2$Cl and in the absence of excess triphenylphosphine. Support for transmetallation of the acylpalladium(II) chloride by the stannane, and direct evidence for the existence of the acylpalladium complex in solution was obtained from 3P NMR using the reaction shown in equation (89). After the reaction had proceeded for 1.5 h at 65 °C, the 3P resonance due to BnPd(CH$_3$)$_2$Cl at δ = 28.7 disappeared and a new resonance at δ = 19.8 was observed. The latter correlated exactly with spectra of independently prepared PhCO-Pd(PH$_3$)$_2$Cl. The build up of this intermediate in the catalytic process suggests the transmetallation was rate limiting. Acylarylpalladium(II) complexes (108) and (109) (Scheme 43) were not observed spectroscopically, intimating that the reductive elimination was not a rate-limiting process. Also, it was not possible to observe the presence of the presumed palladium(0) catalyst (PPh$_3$)$_2$pd0 which demonstrates that oxidative addition was not rate limiting.

The order of reactivity in the transmetallation of organostannanes to the acylpalladium(II) complex (107) has been found to be PhC=C > PrC=CH > PhCH=CH, CH$_2$=CH > Ar > allyl, benzyl > MeOCH$_2$ > Me > Bu. The order of reactivity indicates that substantial amount of charge is borne by the migrating group and is consistent with electrophilic attack by the acylpalladium(II) complex. In most cases with diverse substituents attached to tin, alkyl groups will not be transferred and the better migrating ligand is always the one to be consumed. Alkyl groups can only be transferred with tetraalkylstannanes. Tetramethyltin is commercially available and has been used for the purpose of preparing methyl ketones. The tetraorganotin reagents transfer the first group rapidly but the second leaves about 100 times slower. Usually stoichiometric amounts of acid chloride and stannane are used.

As discussed earlier, the transmetallation segment occurs with retention of stereochemistry in the case of vinylstannanes, although the thermodynamic isomer usually predominates. Stillc has provided evidence that transmetallation of alkyl substituents occurs with inversion of configuration based upon the acylation of (S)-(−)-(α-deuteriobenzyl)tributyltin ([α]2D$_{0}$ = −0.328° (neat) approx. 75% ee). Although the final product was sensitive to racemization, the authors could conclude that at least 65% stereospecificity was realized in this process. The last step, reductive elimination has been shown to proceed with retention of configuration (equation 90).

Reductive elimination from the acyloganopalladium(II) complex is generally a facile process. The rate is influenced by the solvent polarity and added triphenylphosphine. Reductive elimination has been shown to be faster than the elimination of palladium hydride from intermediate (111) in both chloroform and HMPA (Scheme 46). This makes the process useful even for alkyl group acylation.
Kinetic studies indicate that reductive elimination is preceded by a dissociation step in which a phosphine ligand is removed. This places the migrating groups on adjacent sites for elimination from a tricoordinate species. Recall the rate retardation caused by addition of triphenylphosphine to a stoichiometric reaction of RCOPd\(^{11}\)L\(_2\)Cl and R'\(_4\)Sn. This would be expected if ligand dissociation is a necessary step in \textit{trans} to \textit{cis} migration prior to reductive elimination (Scheme 47)\(^{150}\).

\[\text{Pd} \quad \text{R} \quad \text{L} \quad \text{L'} \quad \text{R} \quad \text{RR} \quad \text{LPd} \]

Polar solvents may lower the activation energy needed for removal of a phosphine ligand by substitution with a weaker solvent ligand at the site of unsaturation. During reductive elimination, palladium obtains two electrons from the displaced groups, therefore strong \(\sigma\)-donation from these groups is more important than continued electron donation from a phosphine. Strongly donating phosphine ligands tend to reduce the rate of reductive elimination by keeping the electron density on the metal relatively high.\(^{150}\) Although additional phosphine ligand was observed to slow the rate of reductive elimination by displacing the equilibrium shown in Scheme 47, the overall rate of the catalytic reaction is effected to a much greater extent, indicating a more substantial hindering effect during oxidative addition.\(^{155}\) Beletskaya has shown that oxidative addition of palladium to the acid chloride is not dependent upon the \(\sigma\)-donation of phosphine ligands and advocates the use of ligandless palladium in these reactions.\(^{175}\)

The end of the reaction is signified by the precipitation of metallic palladium as bis(triphenylphosphine)palladium(0) undergoes disproportionation in the absence of the acid chloride (equation 91).

\[2\text{Pd(PPh}_3\text{)}_2 \quad \rightarrow \quad \text{Pd(PPh}_3\text{)}_4 \quad + \quad \text{Pd} \quad \text{(91)} \]

1.13.4.2 Sources of Tetrasubstituted Stannanes

Aromatic, heterocyclic, alkenyl, alkenyl and alkyl stannanes have all been shown to be useful as the nucleophilic partner in palladium-catalyzed acylation.\(^{191}\) The organostannanes are not water or air sensitive and may be prepared easily by one of several general strategies;\(^{192}\) a few simple organotins are commercially available. The application of trimethyl- or tri-\(n\)-butyl-stannyl anions with organic electrophiles provides the most versatile approach to these derivatives; a wide range of functionality may be tolerated as part of the electrophilic substrate. Alternatively, trialkyltin halides or sulfonates may be reacted with common organometallic agents, including Grignard, organolithium and organoaluminum reagents. The functionality which is to be introduced into the organostannane by the latter method is limited by the choice of the organometallic; however, both approaches have seen a great deal of use. Once tin is incorporated into an organic substrate, selective manipulation of other functional groups on the molecule may subsequently be carried out. Selective reactions such as lithium aluminum hydride reduction or perganate- and chromium-mediated oxidation have been demonstrated, as well as a variety of nucleophilic addition and acid-base chemistry. The organotins may be purified by distillation or silica gel chromatography. Other methods of organotin construction, which have been employed recently, include the free radical addition of organotin hydrides to substituted alkenes or alkynes, the palladium-catalyzed coupling of hexaalkyldistannanes with aryl or benzylic and allylic systems and the formation of \(\alpha\)-stannylated ketones through reaction of trialkyltin amides with simple ketones.
1.13.4.3 Acylation of Organostannanes with Acid Chlorides

Several interesting uses of palladium-mediated acylation in organic synthesis have appeared recently. In the synthesis of the marine natural product diisocyanoadociane completed by Corey, formation of optically active enone ester (112) was accomplished under the conditions shown in equation (92).193 Note that tetrakis(triphenylphosphine)palladium(0) was used as the catalyst and the reaction was conducted under an inert atmosphere without severely impeding its completion (2 h).

\[
\text{SnBu}^3_3, \text{THF} \quad \xrightarrow{\text{Pd(PPPh}_3)_4, 70 \degree \text{C}} \quad 90\% \quad (92)
\]

\[
\text{SnBu}^3_3, \text{THF} \quad \xrightarrow{\text{Pd(PPPh}_3)_4, 70 \degree \text{C}} \quad 90\% \quad (112)
\]

The conditions used by Stille provided an increased rate of conversion in a related synthesis of a steroid precursor (equation 93); however, HMPA was the solvent.194 Enone (113) was previously synthesized in 40–44\% yield by aluminum chloride mediated acylation of ethylene.195

\[
\text{SnBu}^3_3 \quad \xrightarrow{\text{Cl} \quad \text{MeO}_2\text{C} \quad \text{BnPd(Ph}_3\text{P}_2\text{Cl)} \quad \text{HMPA}} \quad 65 \degree \text{C, 1 min} \quad 92.5\% \quad (93)
\]

\[
\text{SnBu}^3_3 \quad \xrightarrow{\text{Cl} \quad \text{MeO}_2\text{C} \quad \text{BnPd(Ph}_3\text{P}_2\text{Cl)} \quad \text{HMPA}} \quad 65 \degree \text{C, 1 min} \quad 92.5\% \quad (113)
\]

Preparation of the macroline antibiotic pyrenophorin may be accomplished through Mitsunobu coupling of two identical fragments derived from (114; equation 94). Stille has completed a formal synthesis of this molecule with minimal protection of the precursor, through palladium-mediated acylation of organotins.196,197 Several modifications of the original procedure155 were incorporated as part of this synthesis to facilitate isolation of the product and to avoid side reactions caused by decomposition of the intermediate acylpalladium species. Replacement of the preferred solvent HMPA with chloroform caused a reduction in the reaction rate but the work-up was considerably easier. Reaction times in chloroform vary depending on the degree of substitution on the organotin. Unsubstituted vinyltins react in less than an hour; however, di- and tri-substituted vinylstannanes transfer the alkene group at progressively slower rates, ranging from 20 to 72 h, respectively. In the synthesis of enone ester (114) shown in equation (94), two charges of the stannane were required during the 30 h reaction period before complete consumption of the acid chloride was noted. A total of 1.6 equiv. of stannane were added. Additionally, carbon monoxide was necessary to reverse the observed decomposition of the intermediate acylpalladium complex; the latter modifications served to improve the yield by 40%.

\[
\text{SnBu}^3_3, \text{THF} \quad \xrightarrow{\text{Pd(PPPh}_3)_4, 70 \degree \text{C}} \quad 90\% \quad (92)
\]

\[
\text{SnBu}^3_3, \text{THF} \quad \xrightarrow{\text{Pd(PPPh}_3)_4, 70 \degree \text{C}} \quad 90\% \quad (112)
\]

\[
\text{SnBu}^3_3, \text{THF} \quad \xrightarrow{\text{Pd(PPPh}_3)_4, 70 \degree \text{C}} \quad 90\% \quad (112)
\]

\[
\text{SnBu}^3_3, \text{THF} \quad \xrightarrow{\text{Pd(PPPh}_3)_4, 70 \degree \text{C}} \quad 90\% \quad (112)
\]
In Kende's formal total synthesis of the antitumor agent quadrone, a late stage intermediate, prior to closure of the third carbocyclic ring, was prepared using the method of Stille. The reaction appears to be exceedingly slow, even when HMPA is used as the solvent (equation 95). This points to the fact that transfer of simple alkyl groups from tin to the acylpalladium complex is not facile. No mention was made of alternative nucleophiles for this transformation such as dimethylcuprate or methylmagnesium chloride.

\[
\text{BnPd(Ph}_3\text{P)}\text{ZCl}
\]

\[
\text{2 equiv. Me}_2\text{Sn, HMPA}
\]

\[
65^\circ\text{C, 3 d}
\]

\[
82\%
\]

In contrast, early in the synthesis of the hexahydrobenzofuran portion of the avermectins, Ireland reported that palladium-catalyzed acylation of tetramethyltin was the most effective method for preparing the required methyl ketone as shown in equation (96). The sensitive 3,4-O-isopropylidene-threonyl chloride was converted in high yield to the corresponding methyl ketone without epimerization at C-3. To avoid decarbonylation, the reaction was run under a carbon monoxide atmosphere until completion (4 h).

\[
\text{COCl}
\]

\[
\text{Me}_2\text{Sn, HMPA}
\]

\[
Pd(\text{Ph}_3\text{P})_2(\text{PhCH}_2)\text{Cl}, 25^\circ\text{C}
\]

\[
87\%
\]

The acylation of organocadmium reagents with acid chlorides such as (115) formed an early method for synthesis of progesterone derivatives such as 21-methyl progesterone (equation 97). The same transformation may be accomplished more easily with palladium-catalyzed organotin acylation in 45% yield.

\[
\text{Et}_2\text{Sn, HMPA}
\]

\[
BnPd(\text{Ph}_3\text{P})_2\text{Cl}
\]

\[
80^\circ\text{C, 45 min}
\]

\[
45\%
\]

Holton has demonstrated that certain palladium(II) complexes can function as nucleophiles towards powerful acylating agents such as acetyl chloride. These reactions proceed through the intermediacy of the palladium(IV) species (116) formed through oxidative addition as depicted in equation (98). Palladium(IV) intermediates had been proposed earlier to explain rate acceleration by reactive alkylating agents such as methyl iodide or benzyl bromide in metal-catalyzed carbon–carbon bond formation. Logue has studied a substantial number of palladium-catalyzed acylations of (1-alkynyl)tributylstannanes. Alkynylstannanes were acylated under very mild conditions which allowed a variety of functional groups to be present; however, in many cases the alkynylstannanes themselves had to be prepared from alkynyllithiums. Recall the earlier discussion of the acylation of alkynyllithiums by N-methoxy-N-methylamides (Section 1.13.2.1.1), and lactones (Section 1.13.2.7). In addition, it is also possible to acylate terminal alkynes directly with copper(I) iodide and palladium dichloride bistriphenylphosphine complex without the necessity of tin mediation.
1.13.4.4 Palladium-catalyzed Acylation of Organozincs

Organometallics derived from the reaction of zinc chloride and Grignard reagents or organolithiums can be efficiently acylated by acid chlorides in the presence of palladium(0). The reaction is quite similar to the acylation of organostannanes but depending upon the case, may be easier to carry out for relatively simple alkyl organometallics which do not transfer well from tin. On the other hand, the need for an organometallic limits the functionality that can reside on the intended nucleophile. Unlike the case of organotins and acid chlorides there is some uncatalyzed acylation of zinc organometallics by the substrate; however, the latter process in and of itself is not useful. Organozinc reagents do not appear to add to ketones without Lewis acid activation.

Although not intensely studied, the mechanism of acylation with zinc reagents is expected to take the same course as that proposed for organotins. The most reactive catalyst, (Ph₃P)₂Pd can be generated in situ from (Ph₃P)₄Pd as discussed previously (Section 1.13.4.1.2) or by reduction of Cl₂Pd(PPh₃)₂ and Cl₂Pd(DPPF) with diisobutylaluminum hydride.²⁰⁶ Also Stille’s catalyst, BnPdp(PPh₃)₂Cl, is reported to be as effective for acylation under these conditions as with the organotins.²⁰⁸ As with stannane acylation triphenylphosphine has a rate-retarding effect on oxidative addition of the acid chloride and would be expected to have a somewhat smaller rate-retarding effect on reductive elimination. Reactive halides such as benzyllic bromides may be directly acylated with acid chlorides in the presence of zinc powder and palladium(0).²⁰⁵ The most effective catalyst precursor was Cl₂Pd(PPh₃)₂ and the rate was decreased by suboptimal catalyst concentrations as was observed for organotins. Many of the examples have been substituted alkenyl or alkynyl zincs (equations 99–101). The acylation is >98% stereospecific for retention of configuration with disubstituted alkenes.²⁰⁶

The reaction was recently applied to the synthesis of 1,4- and 1,5-diketones (equation 102).²⁰⁷ Perhaps not surprisingly, the β- and γ-ketozincs are stable to selfcondensation and proton abstraction. HMPA or some polar aprotic solvent must be used for high yields.

The corresponding dialkyl zinc reagents have also been used in acylation (equation 103). Under the reaction conditions with aromatic acid chlorides, substituted benzaldehydes are often a by-product. The
Nucleophilic Addition to Carboxylic Acid Derivatives

\[\text{Bu}^n\text{ZnCl} + \text{PhCl} \xrightarrow{\text{Pd}(\text{PPh}_3)_4, \text{THF, 25 }^\circ\text{C}} \text{Ph} \text{Bu}^n \] (uncatalyzed reaction 52%)

\[X = \text{Et}; \quad n = 2 \quad R' = \text{Ph} \quad 53\% \]
\[X = \text{Me}; \quad n = 3 \quad R' = \text{H}_2\text{C} = \text{CH} \quad 85\% \]

The yield of the desired product can be maximized by using ether as the solvent and the bidentate DPPF ligand which prevents the elimination of palladium hydride. Alkyl acid chlorides do not require these special conditions in acylation.\(^{208}\)

\[\text{Bu}^n\text{Zn} + \text{PhCl} \xrightarrow{\text{BnPd}(\text{PPh}_3)_2\text{Cl}, \text{Et}_2\text{O, 25 }^\circ\text{C}} \text{Ph} \text{Bu}^n \] (103)

Amino acid synthons can be prepared from iodoalanine with no loss of optical integrity (Scheme 48). The amino acid was transformed into a novel zinc reagent through reductive metallation with a zinc–copper couple in benzene/dimethyl acetamide. This organometallic was acylated under palladium catalysis in good overall yield.\(^{209}\)

\[\text{I} \xrightarrow{\text{Zn}(\text{Cu}), \text{PhH, DMAC ultrasound}} \text{IZn} \xrightarrow{(\text{Ph}_3\text{P})_2\text{PdCl}_2} \text{RCOCl} \]

\[R = \text{Ph, 70%; R = 2-furyl, 90%; R = Me, 80%; R = Bu}^1\text{CH}_2, 84\% \]

Scheme 48

In a related procedure, the Diels–Alder substrate (118) was prepared from the iodide (117) through reductive metallation with a zinc–copper couple followed by palladium-catalyzed acylation (Scheme 49).\(^{210}\) This was a very rapid acylation in contrast to the related organotin-mediated coupling.

\[\text{I} \xrightarrow{\text{Zn}(\text{Cu}), \text{PhH, DMF ultrasound}} \text{IZn} \xrightarrow{\text{Pd}(\text{PPPh}_3)_4} \text{COCl} \]

\[(118) \]

Scheme 49
1.13.4.5 Palladium-catalyzed Acylation of Organomercurials and other Organometallics

Many other types of organometallics which are not acylated directly by acid chlorides and which do not undergo addition to ketones may still transmetallate into the acylpalladium(II) complex. Simple alkyl organomercurials have been acylated in this fashion to give moderate to good yields of ketones. Larock has studied the palladium-catalyzed acylation of vinylmercury(II) compounds with acyl halides (equation 104). The reaction was only modestly productive and could not compare to the yield provided by aluminum chloride catalysis.

\[
\text{Bu}^n\text{HgCl} + \text{AcCl} \xrightarrow{10 \text{ mol } \% (\text{PPh}_3)_4\text{Pd}} \text{HMPA, 60 °C} \quad 58\%
\]

Bun + AcCl

Organoaluminum reagents are known to react with ketones to form geminal dialkyl compounds, thus their use in acylation chemistry has been limited. For instance treatment of benzoyl chloride with triethylaluminum in THF gave less than 5% of propiophenone. Surprisingly, the corresponding palladium(0)-catalyzed process afforded this ketone in 70% yield with 5 mol % Pd(PPh_3)_4 (equation 105). The rate of acylation must be substantially faster than addition of the trialkylaluminum reagent to the ketone. Transmetallation of the organoaluminum with the acylpalladium(II) intermediate must also be facile. Palladium catalysts generated in situ from Pd\text{II}(\text{OAc})_2 and 2 equiv. PPh_3 were effective, as were other sources including Cl_2Pd\text{II}(PPh_3)_2. Presumably, the actual catalyst, Pd(PPh_3)_2, was generated by sacrificial transmetallation of a portion of the organoaluminum as in the analogous case of organotins (Section 1.13.4.1.2).

\[
\text{PhCOCl} + \text{Et}_3\text{Al} \xrightarrow{\text{Pd(PPh}_3)_4} \text{THF, 25 °C} \quad 70\%
\]

Bu−AlEt₂ + Ph−Cl

\[
\text{Bu}^n-\text{AlEt}_2 + \text{Ph}−\text{Cl} \xrightarrow{\text{Pd(PPh}_3)_4} \text{THF, 25 °C} \quad 74\%
\]

We have previously discussed the acylation of organocopper(I) reagents under palladium catalysts as a method for the preparation of \(\alpha,\beta\)-unsaturated ketones (Section 1.13.3.1.1). An additional example of what must be a palladium(II)-catalyzed process for the synthesis of furanones comes from the work of Inoue (Scheme 50).

1.13.5 ACYLATION WITH NICKEL AND RHODIUM CATALYSIS

1.13.5.1 Acylation with Alkylrhodium(I) Complexes and Acid Chlorides

The use of nickel and rhodium in acylation has largely been supplanted by the growing use of palladium complexes. This is in large part due to the lethargic nature of reductive elimination from nickel(II)
Nucleophilic Addition to Carboxylic Acid Derivatives

451

complexes and the need for stoichiometric amounts of rhodium in the original protocol. Nevertheless, an exceedingly mild method for the acylation of simple primary alkyl-, aryl- or allyl-lithiums (or Grignard reagents) by acid halides is achieved through the prior transformation of these organometallics into substituted rhodium(I) complexes. Although this method has not found widespread acceptance in the literature, it was one of the first examples of transition metal mediated organic synthesis applied to the preparation of ketones. Substrates complicated with extensive functionality and which are sensitive to strongly basic conditions can be acylated in much the same way that palladium mediates acylation of a variety of nucleophiles. For this reason, a short discussion of the applications of this technology are included.

Although the scope of nucleophilic reagents that can be used in this approach is not exceedingly broad, many different functional groups such as aldehydes, esters and nitriles as well as α-chloro ketones are tolerated as part of the substrate molecule. The conditions are mild and the rhodium(I) complex is returned unchanged from the reaction mixture. The addition of allyllithiums or Grignard reagents offers a selective method for the preparation of β,γ-unsaturated ketones. As mentioned, it is necessary to employ stoichiometric amounts of a rhodium complex, usually in the form of chloro(carbonyl)bis(triphenylphosphine)rhodium(I). This is because of the high nucleophilicity of the organometallics chosen. The reaction is thought to proceed by addition of the nucleophile to form rhodium(I) complex (119) which then oxidatively adds to the acid chloride forming rhodium(III) complex (120). Reductive elimination releases the ketone and returns the original form of the rhodium complex, ready for reuse (Scheme 51). Attempts to isolate the intermediate rhodium(I) or rhodium(III) complex have thus far failed; however, the reaction may be monitored by infrared spectroscopy. A clear transformation of the initial rhodium complex (121) to the alkylrhodium(I) complex (119) was observed by a shift of the carbonyl absorption to lower energy, expected of the more electron-rich complex. It was not possible to observe the rhodium(III) complex (120) by this method. After addition of the acid chloride, infrared bands for the expected carbonyl product and for the starting rhodium(I) complex become evident. The expectation of a rhodium(III) intermediate was based upon other work in this area, but still remains a supposition. Oxidative addition to the acid chloride was not observed to take place with complex (121) and formation of the alkyl complex (119) increases the ability of the metal to add oxidatively by electron donation. Other more nucleophilic forms of rhodium such as Rh(PMe2Ph)3Cl are known to oxidatively add to acid chlorides but have not been used in this acylation process.

\[
\text{Rh}^{1}\text{Cl(CO)(PPh3)}_{2} + \text{RM \rightarrow \left[\text{Rh}^{1}\text{R(CO)PPh3}\right]_{2}} \quad \text{THF, -78 °C}
\]

(119) L=PPh3

\[
\text{R}^{1}\text{Cl(CO)(PPh3)}_{2} \quad \text{THF, -78 °C}
\]

(120)

\[
\text{R}^{1}\text{Cl(CO)(PPh3)}_{2}
\]

Scheme 51

Some examples of this method are given in Table 1. Most of the entries proceed in about 60–80% yield, with the exception of secondary and tertiary alkylolithiums. In these cases, the facility of β-hydride elimination in the intermediate alkylrhodium complex predominates over oxidative addition to the acid halide. One example of formation of an optically active ketone proceeded without racemization at the α-center.

<table>
<thead>
<tr>
<th>Acid chloride</th>
<th>RM</th>
<th>Product</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-C11H23COCl</td>
<td>MeLi</td>
<td>n-C11H23CO</td>
<td>77</td>
</tr>
<tr>
<td>n-C11H23COCl</td>
<td>MeMgBr</td>
<td>n-C11H23COMe</td>
<td>58</td>
</tr>
<tr>
<td>PhCOCl</td>
<td>PhLi</td>
<td>PhCO</td>
<td>94</td>
</tr>
<tr>
<td>PhCOCl</td>
<td>CH2=CHCH2MgBr</td>
<td>PhCOCH2CH=CH2</td>
<td>71</td>
</tr>
<tr>
<td>trans-PhCH=CHCOCl</td>
<td>MeLi</td>
<td>trans-PhCH=CHCO</td>
<td>68</td>
</tr>
<tr>
<td>CICH2COCl</td>
<td>BuLi</td>
<td>CICH2COBu</td>
<td>55</td>
</tr>
<tr>
<td>(S)-(+-)PrCH(Me)COCl</td>
<td>EtLi</td>
<td>(S)-(+-)PrCH(Me)COE</td>
<td>83</td>
</tr>
<tr>
<td>PhCOCl</td>
<td>EtCH(Me)Li</td>
<td>EtCH(Me)CO</td>
<td>3</td>
</tr>
</tbody>
</table>
In an extension of this work, Pitman has found that the rhodium(I) complex may be anchored to polystyrene resin thus enabling facile catalyst regeneration (Scheme 52). Unfortunately, certain acid chlorides such as p-nitrobenzoyl do not oxidatively add to the rhodium(I) complex at an appreciable rate; other unreactive substrates include p-methoxybenzoyl and some hindered acid chlorides.\(^{218}\)

\[
P(PPh_2)_2RhCl(CO) + RLi \xrightarrow{-78 \degree C, THF} P(PPh_2)_2RhR(CO) + LiCl
\]

\[
R = Bu', Ph
\]

\[
R' = \text{MeO}_2C(CH_2)_4COCl \quad R = \text{Ph}, 56\%
\]

\[
R' = m-\text{NCC}_6H_4COCl \quad R = Bu', 60\%
\]

Scheme 52

The advantage of the previously described palladium-mediated acylation of organotins actually lies in the fact that the tin reagents do not directly react with the acid chlorides in the same way as organolithiums and Grignard reagents. The substituent on tin readily transmetallates or acts as the nucleophile towards the acylated palladium(II) complex which then undergoes rapid reductive elimination to form the product and reform the palladium(0) catalyst. Since organolithiums and magnesiums are not compatible with acid halides, stoichiometric quantities of the rhodium complex are necessary to preform the alkylrhodium(I) complex. To make the rhodium-mediated process catalytic in metal, Migita and coworkers demonstrated that the combination of allyltins and acid chlorides will afford ketones in good yield using 2 mol \% \(\text{CIRh}^1\)(PPh_3)_3 (equations 107 and 108).\(^{219}\) They propose the mechanism of this process to involve addition of the allyltin to the rhodium(I) complex, which then suffers oxidative addition with the acid chlorine. An alternative possibility begins with oxidative addition of the acid chloride to the rhodium(I) complex, followed by transmetallation of the allyltin, and reductive elimination. In equation (108) introduction of the tin substituent occurs without allylic rearrangement, as is also the case with palladium catalysis; however, compared to the methodology developed for the corresponding palladium-catalyzed process, the use of rhodium in acylation has not been shown to be advantageous.

\[
\text{Bu'}\text{OC-Cl} + \text{SnBu}_3 \xrightarrow{2 \text{ mol \% \(\text{PPh}_3)_3\text{RhCl}\), PhH, 10 h} 72\% \text{Bu'}\text{O-C-Cl}
\]

\[
\text{Et}\text{OC-Cl} + \text{SnBu}_3 \xrightarrow{2 \text{ mol \% \(\text{PPh}_3)_3\text{RhCl}\), PhH, 12 h} 64\% \text{EtO-C-CO-Cl}
\]

1.13.5.2 Acylation by Organonickel Complexes

Only scattered examples of the use of nickel salts in acylation have been reported in the past few years. Marchese and coworkers in a series of papers have discussed their discovery that Ni\(^{11}\) complexes such as Ni(DPPE)Cl\(_2\) will moderate the acylation of Grignard reagents to afford ketones (see also Sections 1.13.2.5 and 1.13.2.6). In a particularly interesting synthesis of 1,4-diketones or 1,4-keto aldehydes, these workers selectively monoacylated the Grignard reagent derived from 2-(2-bromoethyl)-1,3-dioxolane with S-phenyl carbonochloridothioate using catalytic amounts of nickel(II) (Scheme 53). Subsequently, a second equivalent of another Grignard reagent was added to the resulting product, this time with mediation from iron(II) acetylacetonate.

Each step of the process proceeds in high yield without formation of tertiary alcohol by-products. The reaction can be run at 0 \(^\circ\)C in THF, which is somewhat of an advantage compared to the low temperatures normally required in Grignard acylations. Both steps can also be conducted in one pot, although yields are higher if the intermediate thiol ester is isolated before the next step.\(^{220}\)

Mukaiyama has described the use of nickel(II) salts as catalysts for the acylation of weakly nucleophilic organozincs. The advantage of this methodology is that the zinc reagent is prepared \textit{in situ} from
Nucleophilic Addition to Carboxylic Acid Derivatives

Scheme 53

R = H, 85%
R = Me, 80%

R'MgI
Fe(acac)₃
THF, 0 °C

R = Me R = H
R¹ = (Z)-EtCH═CHC₂H₄ 93%
Bu⁻ 97%
Bu⁺ 93% 90%
Ph 75% 73%

Generally only primary and some secondary iodides have been useful in this process; tertiary iodides do not react. It was also observed that no reaction occurred between the alkyl iodide and zinc unless the nickel catalyst was present. Several carboxylic acid derivatives were tested as acylating agents; however, the best yields were afforded by the 2-[6-(2-methoxyethyl)pyridyl] carboxylate shown in equation (109). Presumably, the higher degree of coordination attainable between this functionality and the organometallic, activates the acylating agent towards nucleophilic addition. This important effect has been seen in several other acylating agents including the S-(2-pyridyl) thiol ester. Both the S-(2-pyridyl) thiol ester and the 2-pyridyl carboxylic ester gave lower yields in this reaction.²²¹

P₂γ-Unsaturated ketones have been prepared in moderate yield through the acylation of π-allylnickel complexes with activated 2-pyridyl carboxylates. But, isomerization of the initially formed unconjugated alkene resulted in mixtures of products and limited the value of the method. Substituted π-allylnickel complexes derived from crotyl bromide or cinnamyl bromide were acylated in 79% and 50% yields, respectively, without formation of the α,β-unsaturated ketone.²²²

Rieke and coworkers have found that a special type of activated metallic nickel, available through reduction of nickel(II) iodide with lithium metal, suffers oxidative addition of benzyllic and allylic halides. The resulting nickel(II) complexes readily undergo cross-coupling with acid chlorides to form ketones. Once again it was difficult to obtain β,γ-unsaturated ketones from this method. Moderate to good yields of simple ketones may be prepared by this method.²²³

1.13.6 REFERENCES

Nucleophilic Addition to Carboxylic Acid Derivatives

69. I. Kikikawa and T. Yorifuji, *Synthesis*, 1980, 877; as an alternative mechanism, the ester may be deprotonated, followed by elimination to form the ketene, followed by elimination of the second equivalent of reagent results in the formation of the ketene enolate.
79. S. A. Donoghue, A. G. Crimmins, G. Marchese and M. N. Deshpande, *J. Org. Chem.*, 1983, 48, 4427. Later reports on the total synthesis of avermectin B1 indicated that the yield of this transformation had been improved to 82% by using the lithium salt of the alkyne. No further comment was made by the authors.
Nonstabilized Carbanion Equivalents

134. G. M. Whitesides, W. F. Fischer, Jr., J. San Filippo, Jr., R. W. Bashe and H. O. House, J. Am. Chem. Soc., 1969, 91, 4871. This procedure uses copper(I) iodide-tri-n-butylphosphine complex; the resulting cuprates are significantly more stable at -78 °C.

136. See ref. 121a; and G. H. Posner and C. E. Whitten, Org. Synth., 1976, 55, 122; see also ref. 137 for some interesting results in the case of methylamino ligands.

144. Although somewhat misleading, the term β-silyl ketone refers to the isomer in which the silyl group is attached to the carbon adjacent to the carbonyl. The term α-silyl ketone and acyclic. 145. M. Demuth, Helv. Chim. Acta, 1978, 61, 3136.

Nucleophilic Addition to Carboxylic Acid Derivatives

165. Disodium tetracarboxylferrate is commercially available at reasonable cost; however, it is highly basic (pKb = OH-), extremely oxygen sensitive and spontaneously inflammable in air.
168. See ref. 121.
Nonstabilized Carbanion Equivalents

2.1
Nitrogen Stabilization

ROBERT E. GAWLEY and KATHLEEN REIN
University of Miami, Coral Gables, FL, USA

2.1.1 INTRODUCTION

This chapter covers the carbonyl addition chemistry of carbanions stabilized by a nitrogen atom or a nitrogen-containing functional group in which the nitrogen is responsible for the stabilization. In most cases, the carbanions are formed by deprotonation, but metal–halogen exchange is occasionally important. A carbanion that is stabilized by a nitrogen may exist in three oxidation states: sp, sp2 or sp3. The simplest nitrogen-stabilized carbanion is cyanide, the sp-hybridized case. In recent years, most efforts in this area have been expended on developing the chemistry of sp2- and sp3-carbanions. This chapter deals with the addition of these types of anions to carbonyl compounds. Alkylation reactions of sp2-hybridized species are covered in Volume 3, Chapter 1.2, and alkylation of sp3-hybridized carbanions is covered in Volume 3, Chapter 1.4. Specifically excluded from this chapter are additions of carbanions stabilized by a nitro group (the Henry nitroaldol reaction) and azaenolates, which are covered in Volume 2, Chapters 1.10, 1.16 and 1.17.

Each section of this chapter is subdivided according to the type of species being metalated: acyclic, carbocyclic or heterocyclic. The site of metalation is the criterion for classifying each species. Thus, the ortho metalation of anisole is classified as a carbocyclic system, whereas metalation of the N-methyl
group of a heterocycle is an acyclic system and the α-metalation of a piperidinecarboxamide is a heterocyclic system.

2.1.2 sp-HYBRIDIZED CARBANIONS (CYANIDE)

The addition of HCN to aldehydes has been a well-known reaction since the 19th century, especially in the context of the Kiliani–Fischer synthesis of sugars. Even older is the Strecker synthesis of amino acids by simultaneous reaction of aldehydes with ammonia and HCN followed by hydrolysis. The challenge in recent years has been to achieve face-selectivity in the addition to chiral aldehydes. These face-selective additions, known as ‘nonchelation-controlled’ processes, refer to the original formulation of Cram’s for the reaction of nucleophiles with acyclic chiral carbonyl compounds. The ‘chelation-controlled’ reactions refer also to a formulation of Cram’s, but whose stereochemical consequences sometimes differ.

An example of this type of effort is as follows. Complexation of the carbonyl oxygen of N,N-dibenzyl-α-amino aldehydes with Lewis acids such as BF$_3$, ZnBr$_2$, or SnCl$_4$, followed by addition of trimethylsilyl cyanide leads to adducts formed by a nonchelation-controlled process. Complexation with TiCl$_4$ or MgBr$_2$ affords the opposite stereochemistry preferentially, through a chelation-controlled process (Scheme 1).

Nonchelation control

$$\begin{align*}
 & R = \text{Me}, \text{Bn}, \text{Bu}^t, \text{Pr}^t \\
 & \text{i, BF}_3, \text{ZnBr}_2 \text{ or SnCl}_4, \text{CH}_2\text{Cl}_2; \text{ii, Me}_3\text{SiCN}; \text{iii, H}_2\text{O or citric acid, MeOH}
\end{align*}$$

Chelation control

$$\begin{align*}
 & R = \text{Me}, \text{Bn}, \text{Bu}^t, \text{Pr}^t \\
 & \text{i, TiCl}_4 \text{ or MgBr}_2, \text{CH}_2\text{Cl}_2; \text{ii, Me}_3\text{SiCN}; \text{iii, H}_2\text{O or citric acid, MeOH}
\end{align*}$$

Scheme 1

2.1.3 sp^2-HYBRIDIZED CARBANIONS

2.1.3.1 Introduction

There are two common methods for forming sp^2-hybridized carbanions: deprotonation and metal-halogen exchange. In their 1979 review of heteroatom-facilitated lithiations, Gschwend and Rodriguez contend that there are two mechanistic extremes for a heteroatom-facilitated lithiation: a ‘coordination only’ mechanism and an ‘acid–base mechanism’. They further state that: ‘between these extremes there is a continuous spectrum of cases in which both effects simultaneously contribute in varying degrees to the observed phenomena’. Because the subject of this chapter is nitrogen-stabilized carbanions, and because this stabilization is most often exerted by coordination to the cation (usually lithium), it turns out that most of the deprotonations are best rationalized by prior coordination of the base to a heteroatom (the coordination only mechanism). Because these effects often render a deprotonation under conditions of kinetic control, this phenomenon has been termed a ‘complex-induced proximity effect’. The most
important manifestation of this coordination in the examples presented below is a high degree of regioselectivity in proton removal.

We have not restricted our coverage to instances of cation coordination to a nitrogen atom, since there are a number of important functional groups (such as secondary and tertiary amides) where coordination occurs at oxygen but stabilization is also provided by nitrogen. Thus, most of the developments of the last 10 years have been in the area commonly known as 'directed metalations'. Several reviews have appeared on various aspects of these subjects.5-9

2.1.3.2 Additions via Metalation of Acyclic Systems

A novel method has been reported for the elaboration of carbonyl compounds, which is discussed in Section 2.1.4.2.10,11 However, one of the examples falls into the present category: the transformation of cyclohexanone to keto alcohol (4), via enamidine (1; equation 1). Treatment of (1) with tert-butyllithium effects regioselective deprotonation of the vinylic hydrogen to give (2), which adds to propanal to give (3). Hydrolysis then provides keto alcohol (4).10,11

\[
\begin{align*}
&\text{Bu}^t\text{Li} \\
&\text{THF} \\
&-78 \, ^\circ\text{C}
\end{align*}
\]

A synthesis of pyrroles and pyridines is possible by addition of dilithium species (5) to carbonyls (Scheme 2). The syn lithiation to give (5) was established by quenching (5) with trimethylsilyl chloride.12

2.1.3.3 Additions via Metalation of Carbocyclic Systems

2.1.3.3.1 Ortho metalation

The vast majority of the species discussed in this and the following sections are formed by ortho lithiation (equation 2). In that the regioselective metalation of a given substrate at a given position is predicated on the 'directing ability' of the directing functional group, it is important to know what functional groups might take precedence over others. This ordering may be the result of either kinetics or thermodynamics. At one extreme for example, a strongly basic atom in a functional group might coordinate a lithium ion so strongly that coordination (and therefore ortho lithiation) is precluded at any other site (a kinetic effect). At the other extreme, metalation might occur to produce the most stable anion (a thermodynamic effect).

The relative directing abilities of several functional groups have been evaluated by both inter- and intra-molecular competition experiments.9,13-15 The strongest directing group is a tertiary amide, but groups such as 3,3-dimethyloxazolinyl and secondary amides are also effective. The pKₐ values of a
number of monosubstituted benzenes (ortho lithiation) were measured against tetramethylpiperidine (pKa = 37.8) by NMR spectroscopy. The results, shown in Table 1, are accurate to ±0.2 pKa units. By and large, the thermodynamic acidities parallel the directing ability of the substituent. Thus, the acidity imparted to the ortho position is a useful guideline for determining relative directing ability. Also pertinent to the mechanism of nitrogen-directed lithiations is a recent theoretical study on the lithiation of enamines, which concludes that 'a favorable transition state involves the achievement of both the stereoelectronic requirement for deprotonation and stabilizing coordination of the lithium cation with the base, the nitrogen of the enamine and the developing anionic center'.

Table 1 pKₐ Values for Ortho Lithiation of Substituted Benzenes in THF at 27 °C

<table>
<thead>
<tr>
<th>R</th>
<th>pKₐ (±0.2)</th>
<th>R</th>
<th>pKₐ (±0.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-NMe₂</td>
<td>≥40.3a</td>
<td>-OPh</td>
<td>38.5</td>
</tr>
<tr>
<td>-CH₂NMe₂</td>
<td>≥40.3a</td>
<td>-SO₂NEt₂</td>
<td>38.2b</td>
</tr>
<tr>
<td>-C≡CPh</td>
<td>≥40.3a</td>
<td>3,3-Dimethylazolonyl</td>
<td>38.1b</td>
</tr>
<tr>
<td>-NHCOBu₁</td>
<td>≥40.5a</td>
<td>-CN</td>
<td>38.1</td>
</tr>
<tr>
<td>-OLi</td>
<td>≥40.5a</td>
<td>-CONPr₂</td>
<td>37.8b</td>
</tr>
<tr>
<td>-OTHP</td>
<td>40.0</td>
<td>-OCONEt₂</td>
<td>37.2c</td>
</tr>
<tr>
<td>-OMe</td>
<td>39.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*No metalation observed. b-40 °C. c-70 °C.

From a synthetic standpoint, a highly useful consequence of the directed metalation strategy for aromatic substitution is the cooperativity exerted by two directing groups that are meta: metalation and substitution occur at the hindered position between the two directing groups (equation 3). However, exceptions have been noted in certain instances. Metalation may be directed elsewhere by the use of a trimethylsilyl blocking group at the preferred position.
2.1.3.2 Meta metation

In some cases, aniline or indole derivatives can be substituted meta to the nitrogen by lithiation of the appropriate chromium tricarbonyl complexes. Examples are given in Scheme 3. One of the Cr---C=O bonds eclipses the C---N bond, and therefore the other carbonyls eclipse the meta C---H bonds. Two suggestions have been offered for the meta selectivity: (i) the butyllithium coordinates the chromium carbonyl oxygen and then removes the proximate proton (a kinetic effect); (ii) the eclipsed conformation produces a lower electron density at the meta position, which in turn renders the meta protons more acidic (a thermodynamic effect).

\[
\begin{align*}
\text{Me}_2\text{SiMe}_2\text{Bu}^1 \quad \text{(CO)}_3\text{Cr} \quad \text{Me}_2\text{SiMe}_2\text{Bu}^1 \\
\text{Li} \quad \text{THF} \quad \text{57-71\%} \\
\text{selectivity 86:14–98:2 (m:p)}
\end{align*}
\]

Scheme 3

2.1.3.3 Amines and anilides

The classic example of amines as directing groups, and the reaction cited by Gschwend and Rodriguez as the best example of a ‘coordination only’ mechanism, is the ortho metation of N,N-dialkylbenzylamines, reported by Hauser in 1963. Recent applications of the same directing group, working cooperatively with a meta methoxy to produce substitution between the two, are shown in Scheme 4. In the illustrated examples, paraformaldehyde is the electrophile, and the benzyl alcohol is obtained in 92% yield. The conversion of (6) to isochromanones such as (7) and berberines such as (8) illustrates the advantages of directed metations over more traditional aromatic substitution methods such as Pictet–Spengler cyclizations.

Imidazolidines may also act as ortho directing groups: the lithiation of 1,3-dimethyl-2-phenylimidazolidine followed by addition to benzophenone proceeds in 63% yield. Carbazole aminals can be metalated ortho to the nitrogen, while benzo[a]carbazole may be dilithiated at nitrogen and the 1-position. A 2-amino group of a biphenyl directs lithiation to the 2'-position of the other ring in a novel synthesis of a phenanthride.

Lithium amides add to benzaldehydes to form α-aminoalkoxides that direct ortho metation, as shown in Scheme 5. In a related process, the α-aminoalkoxides may be metalated by lithium–halogen exchange.

In an aliphatic system, Stork has reported the regioselective lithiation of chelating enamines such as (9), to give vinyl carbamions such as (10; Scheme 6). Work-up often results in hydrolysis of the enamine, and in the case of addition to aldehydes, dehydration.
Gschwend reported the ortho lithiation of aniline pivalamides and subsequent addition to nitriles and carbonyls in 1979. A few years later, Wender used a similar aryllithium (11), obtained by metal–halogen exchange, in a new synthesis of indoles (Scheme 7). An analogous metatation occurs when N-phenylimidazol-2-ones are treated with LDA in THF at -78 °C.

2.1.3.3.4 Amides

Secondary amides may direct ortho lithiation, but they must first be deprotonated. This makes them somewhat weaker ortho directors than tertiary amides, but they may still serve the purpose quite well. For example, the lithiation and addition of benzamide (12) to aldehyde (13) was used in a synthesis of 11-deoxycarminomycinone (Scheme 8). More recently, it has been shown that the amide monoanion may be obtained by addition of a phenylsodium to an isocyanate.

The pKₐ data listed in Table 1 note that tertiary amides are more acidic than several other functional groups, suggesting thermodynamic acidity as an important component of the mechanistic rationale for their lithiation. Indeed tertiary amides are the strongest ortho directing group, taking preference over all other functional groups tested in both intra- and inter-molecular competition experiments. The use of tertiary amides as ortho directors was reviewed in 1982, so this discussion will focus only on developments since then.

Beak has reported an aromatic ring annelation using ortho lithiation to regioselectively introduce an aldehyde, which is then converted to a carbene. Subsequent Diels–Alder cycloaddition of the resultant isobenzofurans result in adducts that may be oxidized to naphthalenes or reduced to tetralins. A typical example is shown in Scheme 9.
Nitrogen Stabilization

$$\text{Bu'Li, hexane, r.t.}$$

$$(9)$$

$$(10)$$

$$(11)$$

Scheme 6

Scheme 7
Ortho lithiation of a tertiary amide and addition to 3-(phenylthio)acrolein, followed by a second lithiation in situ, provides a convenient 'one-pot' synthesis of naphthoquinones. One of the several examples reported is shown in Scheme 10.

Two groups report the addition of metalated benzamides to aldehyde carbonyls. The methods differ in the metal. Lithiated diethylamides must be transmetalated with MgBr₂ before addition to the aldehyde, but β-aminoamides react similarly as the lithium derivative. Following addition, the hydroxyamide is hydrolyzed to afford phthalides in moderate overall yield (Scheme 11).

The lithiation of a 1,6-methano[10]annulenamide occurs selectively at the 'peri' position, but the lithiation of fused ring aromatics takes place preferentially at the ortho (rather than peri) position, as shown by the examples in Scheme 12. Subsequent transformations of the phthalides obtained in the naphthalene example also illustrate the usefulness of this method for the annelation of aromatic rings. The preference for ortho over peri lithiation holds true for phenanthrenes as well. The selective metalation of trimethoxyphenanthrenamide (15) followed by phthalide synthesis as above constitute the key steps in the synthesis of the phenanthroquinolizidine alkaloid cryptopleurine and the phenanthroindolizidine alkaloid antofine (Scheme 13).
Nitrogen Stabilization

Scheme 10

\[
\text{MeO} \quad \text{MeO} \quad \text{NET}_2 \quad \text{MeO} \quad \text{NET}_2 \quad \text{MeO} \quad \text{NET}_2
\]

\[
\text{MeO} \quad \text{MeO} \quad \text{Li} \quad \text{H} \quad \text{SPh} \quad \text{MeO} \quad \text{MeO}
\]

i, Bu'Li, THF, TMEDA, -78 °C; ii, PhSCH=CHCHO; iii, air, r.t.; iv, Bu_3SnH

Scheme 11

\[
\text{MeO} \quad \text{MeO} \quad \text{NET}_2 \quad \text{MeO} \quad \text{NET}_2 \quad \text{MeO} \quad \text{NET}_2
\]

\[
\text{MeO} \quad \text{MeO} \quad \text{MgBr} \quad \text{Pr}
\]

i, Bu'Li, THF, TMEDA, -78 °C; ii, MgBr_2·Et_2O, to r.t.; iii, PrCHO, -78 °C; iv, TsOH, PhH, reflux; v, PhCHO, to r.t.; vi, 6M HCl, reflux

Scheme 12
4.68

Heteroatom-stabilized Carbanion Equivalents

OMe OMe

BuLi/TMEDA

THF/-78 °C

NEt2

NEt2

MeO

i, CHO

ii, H⁺

MeO

i, CHO

ii, H⁺

MeO

BuZiA

M*g,o

4 steps

96%

81%

Scheme 13

2.1.3.5 Nitriles

In spite of the acidity imparted to the ortho position by a cyano group (Table 1), little use has been made of it as a directing group. Two examples are shown in Scheme 14. Because of the susceptibility of the nitrile function to addition by organometallics, the bases used are lithium amides.50,51

2.1.3.6 Oxazolines

Oxazolines may be used as ortho directors in phthalide syntheses analogous to those shown in Schemes 11–14. The phthalides derived from oxazolines have been further transformed to polycyclic aromatics by a route that is analogous to, and perhaps more general than, those shown in Scheme 12.52,53 An efficient synthesis of the lignin lactones chinensin and justicidin along such lines was reported by Meyers (Scheme 15).54

The use of a chiral oxazoline to achieve an enantiofacial-selective addition to aldehydes was also reported by Meyers.55 Although the selectivities were not high (51:49–64:36), the diastereomeric products could be separated by crystallization. A typical example is shown in Scheme 16. In this55 and another
Nitrogen Stabilization

\[\text{Scheme 14} \]

\[\text{Scheme 15} \]

study\(^{66}\) it is shown that the alcohol addition product may subsequently attack the oxazoline causing ring opening.

\[\text{Scheme 16} \]

2.1.3.7 Uretanes

Lithiation of both \(N\)-phenyl- and \(O\)-phenyl-urethanes has been reported. The \emph{ortho} lithiation of \(N\)-\(t\)-butoxyaniline and subsequent addition to carbonyls, nitriles and several other electrophiles was first reported by Muchowski in 1980\(^{57}\). In some cases the adduct cyclized by attacking the urethane carbonyl. Typical examples are shown in Scheme 17. Lithiation of an \(N\)-\(t\)-butoxyaniline derivative served as one of two directed lithiation steps in Snieckus' synthesis of anthramycin (17; Scheme 18)\(^{58}\).

Treatment of phenothiazines with 2 equiv. of butyllithium affords an \(N,\alpha\)-dilithium species, but reaction with electrophiles occurs at both sites. Katritzky has shown that the sequence of \(N\)-lithiation, carbonation and \(\alpha\)-lithiation protects the nitrogen from alkylation (Scheme 19)\(^{59}\).

The \emph{ortho} lithiation of phenolic urethanes was reported by Snieckus in 1983\(^{60}\). In addition to being an efficient \emph{ortho} director (as expected considering the \(pK_a\) data in Table 1), the \(O\)-phenylurethane also is capable of an 'anionic Fries rearrangement'. This rearrangement allows substitution \emph{ortho} to the urethane, then lithiation and rearrangement at the \emph{ortho'} position, resulting in introduction of a tertiary
An ortho lithiation, carbonyl addition and anionic Fries rearrangement (18 → 19) are illustrated by the sequence shown in Scheme 20, which is part of a formal synthesis of ochratoxins A and B. Noteworthy in this scheme is the selective lithiation of (18) ortho to the urethane, in preference to the tertiary amide.
2.1.3.4 Additions via Metalation of Heterocyclic Systems

2.1.3.4.1 α-Metalation

The metalation of heterocycles is possible without the aid of a directing group. This type of reaction is most common in the π-excessive heterocycles, and is most important for thiophenes.\(^4\) For nitrogen heterocycles, examples of unactivated lithiation of π-excessive azoles have been reported, and are summarized below. π-Deficient heterocycles such as pyridine are resistant to unactivated lithiation,\(^4\) although pyridine can be metalated with low regioselectivity using butylsodium.\(^6^2\) Pyridines also form weak complexes with fluoro ketones; the complex of 4-t-butylpyridine and hexafluoroacetone can be lithiated and added to benzaldehyde in 60% yield.\(^6^8\)

A review on the metalation and metal-halogen exchange reactions of imidazole appeared in 1985.\(^6^4\) Generally, N-protected imidazoles metalate at the 2-position;\(^6^5\) 1,2-disubstituted imidazoles usually metalate at the 5-position, unless sterically hindered.\(^6^4\) Even 2,5-dilithiation of imidazoles has been achieved.\(^6^6\) 1-Substituted 1,3,4-triazoles can be metalated at the 5-position and added to carbonyls in good yield.\(^6^7\) Oxazoles are easily lithiated at the 2-position, but the resultant anion readily fragments.\(^6^8\) 1-(Phenylthiomethyl)benzimidazole can be lithiated at the 2-position at low temperature (Scheme 21), but higher temperatures afford rearrangement products.\(^6^9\)

Pyrrrolopyridines can be lithiated at the 2-position,\(^7^0\) in direct analogy to pyrrole itself. The reaction is sufficiently mild that it has been applied to the functionalization of purine nucleosides, as illustrated by the examples in Scheme 22.\(^7^1\)
As will be seen in the examples below, the use of an activating group usually determines the site of lithiation for \(\pi \)-excessive heterocycles, and facilitates the lithiation of \(\pi \)-deficient ones.

Furans and thiophenes normally undergo \(\alpha \)-lithiation,\(^4\) but when substituted at the 2-position by an activating group, a competition arises between metalation at the 3-position (ortho lithiation) and the 5-position (\(\alpha \)-lithiation).\(^4\,72-74\) 2-Oxazolinylthiophenes may be lithiated selectively at either the 3- or 5-position by adjusting the reaction conditions;\(^73\) tertiary amides give little or no ortho selectivity;\(^74\) but secondary amides direct ortho lithiation reasonably well, as seen in Scheme 23.\(^74\) Both thiophenes and furans that are substituted with an oxazoline or tertiary amide at the 2-position may be dilithiated at the 3- and 5-positions.\(^75,76\) Although secondary amides are less successful at directing ortho lithiation of furans than thiophenes,\(^74\) \(N,N',N,N' \)-tetramethyldiamido phosphates work quite well. Subsequent hydrolysis affords access to butenolides.\(^77\) A typical example is shown in Scheme 24.

![Scheme 22](image)

Scheme 22

\[R = \text{SiMe}_2\text{Bu}' \]

i, 5 LDA, THF, \(-78^\circ\text{C}\); ii, MeI; iii, HCO_3\text{Me}; iv, NaBH_4

2.1.3.4.2 Ortho metalation

![Scheme 23](image)

Scheme 23

![Scheme 24](image)

Scheme 24
Nitrogen Stabilization

N-Substituted pyrroles and indoles normally undergo lithiation at the 2-position (α-metalation), so when there is an ortho director on the nitrogen, metalation is facilitated. For example, the lithiation of N-t-BOC pyrrole and its addition to benzaldehyde occurs in 75% yield. Similar lithiations of N-t-BOC indole and N-benzenesulfonylindole have also been reported. Examples of these reactions are illustrated in Scheme 25.

![Scheme 25](image)

The recently reported dilithiation of the azafulvene dimer (20) is the key step in a synthesis of 5-substituted pyrrole-2-carbaldehydes. This synthesis offers a reasonable alternative to the Vilsmeier–Haack formylation for the synthesis of such compounds. An example is shown in Scheme 26.

![Scheme 26](image)

The regioselective functionalization of Δ²-pyrrolines at the 2-position by metalation of the derived t-butylformamidine (21) is shown in Scheme 27. Metilation at the 2-position of a pyrrole having an ortho director at the 3-position is readily achieved. Functionalization of a pyrrole at the 3-position by ortho metalation of a 2-substituted derivative is more problematic, with a mixture of 3- and 5-substituted
Heteroatom-stabilized Carbanion Equivalents

products usually resulting, as summarized in a recent review. An intriguing possibility is ortho palladation, as shown in Scheme 28.

Ortho lithiation of 2-substituted indoles occurs readily, but fragmentation to an alkynylanilide may occur in some instances. The use of a 2-pyridyl group to facilitate the 3-lithiation of an indole was recently used in a synthesis of some indolo[2,3-a]quinolizine alkaloids; an example is the synthesis of flavopereirine (22; Scheme 29).

In pyridines, the ortho lithiation of 2-substituted secondary and tertiary amides and sulfonamides has been reported. All three afford regioselective metatlation at the 3-position, as illustrated by Kelly’s synthesis of bermamycinic acid (23; Scheme 30). A recent development is the use of catalytic amounts of diisopropylamine for the ortho metatlation of 2-methoxypyridine.

Pyridines substituted at the 3-position by a urethane, halogen, secondary amide or tertiary amide, metalate regioselectively at the 4-position. An exception appears to be 3-alkoxypyridines, which metalate selectively at the 2-position. The lithiation of halopyridines may be accomplished by metal–halogen exchange, or by ortho lithiation. In the latter instance, lithium amides are used as the base, and the temperature must be kept low to prevent pyridyne formation. For 3-halo-4-lithiopyridines, the order of stability is F > Cl > Br > I. Selective lithiation at the 4-position, directed by a tertiary amide, has been used in the synthesis of bostrycoyldin and sesbanine.

Pyridines having a directing group at the 4-position undergo ortho metatlation. Groups reported in this category include sulfonamides, secondary amides, tertiary amides, halogens and oxazolines. As was the case in the carbocyclic series, a pyridine having directing groups in
Nitrogen Stabilization

Scheme 30

Scheme 31

positions 2 and 4 is metalated in between, at the 3-position. This has been used in a synthesis of (g)-fused isoquinolines, whose key step is shown in Scheme 32.109

Scheme 32
2.1.4 sp³-HYBRIDIZED CARBANIONS

2.1.4.1 Introduction

The deprotonation of an sp³-hydrogen α to a nitrogen atom, although a relatively recent development synthetically, is now a common phenomenon. It has been stated that the ‘normal’ reactivity of carbon atoms attached to nitrogen or oxygen is α₁, meaning it is an acceptor site in polar reactions.¹¹⁰ The deprotonation of such a site has therefore been called a charge affinity inversion or reactivity umpolung.¹¹¹ There is ample precedent in the literature to support the notion of α₁ reactivity to nitrogen, of course, but we contend that this classification is inappropriate. The α-deprotonation of dimethyldodecylamine¹¹² and of triethylamine¹¹³ were reported over 20 years ago, although the former was in low yield and no products of reaction of the latter with electrophiles were found. However in 1984, Albrecht reported that s-butylpotassium readily deprotonates N-methylpiperidine, N-methylpyrrolidine and trimethylamine, and that the derived organometallics add readily to aldehydes, ketones and alkyl halides.¹¹⁴ In 1987, it was found that t-butyllithium deprotonates a methyl group of N,N,N'-tetramethylethlenediamine (TMEDA), whereas n-butyllithium (BuLi/KOBu') deprotonates a methylene.¹¹⁵

Furthermore, it was first shown nearly 20 years ago that α-lithioamines could be produced by the transmetalation of α-aminostannanes.¹¹⁶ Thus, the thermodynamic stability of α-amino anions is reasonably good, even if the kinetic acidity of the conjugate acids is low. Although some authors have suggested that α-amino carbanions constitute a reversal of ‘normal’ reactivity,¹¹⁰,¹¹¹ we suggest that this notion is inappropriate and should be discontinued.

Most of the chemistry described in the following sections involves two types of anion stabilization by nitrogen: resonance and dipole stabilization. Since these topics were reviewed in 1984,¹¹¹ this discussion is restricted to recent developments. By and large, the chemistry of resonance-stabilized species (azaenolates) is covered in Volume 2 of this series; however, there are a few species whose inclusion here seems appropriate and consistent with the present discussion. One such example is removal of a benzylic proton by a base that is coordinated to a nitrogen or nitrogen-containing functional group.

Another resonance-stabilized species discussed here is nitrosamine anions, whose chemistry has been reviewed several times.¹¹¹,¹¹⁷-¹¹⁹ Cyclic nitrosamines normally lose the axial proton syn to the nitrosamine oxygen,¹²⁰ and alkylate by axial approach of the electrophile.¹²¹ In these respects, nitrosamine anions are similar to their isoelectronic counterparts, oxime dianions, as shown in equation (4).¹²²,¹²³

\[
\begin{align*}
\text{Ph} & \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{O} \\
\text{i, BuLi} & \quad \text{H} \\
\text{ii, MeCOMe} & \quad \text{OH}
\end{align*}
\]

(4)

Dipole-stabilization is a term coined by Beak to describe the situation that results when a carbanion is stabilized by an adjacent dipole.¹¹⁷ Such a situation arises when, for example, an amide is deprotonated α to nitrogen. The chemistry of these systems has been reviewed,¹¹¹,¹¹⁷ so only a few pertinent points will be made here. Firstly, metalation occurs syn to the carbonyl oxygen, and when the system is cyclic, the equatorial proton is removed selectively, and the electrophile attacks equatorially, as shown in equation (5).¹²⁴,¹²⁵ Thus, in contrast to nitrosamines, amide anions give the less stable equatorial product.¹²⁴,¹²⁵

\[
\begin{align*}
\text{Ph} & \quad \text{N} \quad \text{Ar} \\
\text{i, BuLi} & \quad \text{H} \\
\text{ii, MeCOMe} & \quad \text{OH}
\end{align*}
\]

(5)

Considerable theoretical work has been done to explain equatorial alkylations such as the one illustrated in equation (5).¹²⁵-¹²⁷ The simplest model of a dipole-stabilized anion is N-methylformamide anion, HCONHCH₂⁻. The geometric requirements for this system are strict: the lone pair on carbon is 16–18 kcal mol⁻¹ more stable when oriented in the nodal plane of the amide σ-system than when rotated 90° into conjugation.¹²⁶,¹²⁷ To explain the removal of an equatorial hydrogen, it has been suggested that ‘the electronic effects of extended amide conjugation should be felt relatively early along the reaction coordinate for proton removal’.¹²⁸ Thus equatorial protons are removed for stereoelectronic reasons, and
the anions of piperidinecarboxamides124,125 and amidines128,129 are configurationally stable and do not invert. Note, however, that if the carbanion is also benzylic, pyramidal inversion is possible130,131 in spite of the intervention of pyramidal inversion in benzylic systems, the anion is still in the nodal plane of the amide π-system. Semiempirical calculations on lithiated oxazolines129,131 and an X-ray crystal structure of a pivaloylisouquinoline Grignard132 confirm the location of the carbon–metal bond in or near the nodal plane of the amide or amidine. At the same time, the theoretical and crystal structures show considerable overlap with the benzene p-orbitals, thus providing a possible explanation for the inversion process.

The mechanism of the deprotonation of dipole-stabilized anions has been studied in detail. It has been shown by IR spectroscopy that a preequilibrium exists between the butyllithium base and the amide133,134 or amidine135 forming a coordination complex prior to deprotonation. A recent mechanistic study has shown that, in cyclohexane solvent, this prior coordination is between the amide (or added TMEDA) and aggregated s-butyllithium, and that the effect of the coordination is to increase the reactivity of the complex134. The diastereoselectivity of proton removal in chiral benzylic systems has also been examined130,131,136 but since the anions invert, this selectivity is of little consequence in the alkylation step.

2.1.4.2 Additions via Metalation of Acyclic Systems

The directed metalation of aromatic systems that was discussed in Section 2.1.3.3 has one ramification that was not mentioned there: the directed lithiation of an o-methyl group. Although the resultant species is formally a resonance-stabilized anion, and therefore covered in Volume 2 of this series, we mention it here for consistency with the other topics covered. In particular, the examples that have appeared in recent years involve substrates having a methyl ortho to a tertiary amide. Intentional use of such a directed lithiation has been used in the synthesis of the isocoumarin natural products hydrangenol and pyllodulin137,138. Interestingly, the directed metalation of 5-methyl-oxazoles and -thiazoles occurs in preference to deprotonation at a 2-methyl group (azaenolate) (Scheme 33)139

\[
\begin{align*}
\text{CONEt}_2 & \quad \text{Bu}^+\text{Li}, \text{THF}, -78 ^\circ \text{C} \\
\text{X} = O, 98\% & \quad \text{X} = S, 93\%
\end{align*}
\]

Scheme 33

N-Alkyl π-excessive heterocycles such as pyrazoles140, imidazoles141 and triazoles141,142 can be lithiated. In the example shown in Scheme 34, lithiation occurs selectively on the N-methyl in preference to the C-methyl (azaenolate)140

\[
\begin{align*}
\text{Me} & \quad \text{Bu}^+\text{Li}, \text{Et}_2\text{O}, -78 ^\circ \text{C} \\
\text{Li} & \quad \text{PhCOMe}, 23 ^\circ \text{C} \\
\text{Ph} & \quad 78\%
\end{align*}
\]

Scheme 34

As was mentioned in Section 2.1.4.1, the metalation (at an N-methyl group) of tertiary amines by s-butylpotassium was reported in 1984114. The derived potassium species are strong bases and tended to deprotonate enolizable carbonyl compounds, but transmetalation with lithium bromide afforded a more nucleophilic species. Several examples are shown in Scheme 35.

The γ'-lithiation of allylic amines affords a nitrogen-chelated allylic lithium species by regioselective deprotonation. An example is shown in Scheme 36143

Baldwin has shown that monoalkyl hydrazones may be used as acyl anion ("RCO"−)144,145 or α-amino anion equivalents ("CH$_2$NH$_2$"−)146. An example of the former is shown in Scheme 37. Note that the isomerization step ($26 \rightarrow 27$) is necessary to avoid reversion to the parent hydrazone and ketone144.

In spite of considerable potential synthetically, nitrosamines have not received a lot of attention because of their high toxicity111,117–119. One potentially important development, reported by Seebach, is a...
one-pot alkylation and reduction protocol for the synthesis of secondary amines. An example is shown in Scheme 38.

An interesting method for the synthesis of amines and the homologation of carbonyl compounds has been reported that utilizes the condensation of a lithiated formamidine with a carbonyl compound. Typical examples are shown in Scheme 39.

A number of heterocyclic N-alkyllactams have been metalated to dipole-stabilized anions, and the yields of addition to carbonyls are reasonably good. An experimental and theoretical study of the competitive metalation to form enolates or dipole-stabilized anions of a series of alicyclic N-benzyllactams has been reported by Meyers and Still. Experimentally, the regioselectivity of the deprotonation varies inconsistently with ring size. Specifically: 5-, 6- and 11-membered rings are deprotonated in the ring to form enolates (29), whereas 7- and 8-membered rings are deprotonated at the N-benzyl to form dipole-
Nitrogen Stabilization

Scheme 38

\[
\text{But} \rightarrow \text{Bu}^n\text{Li; ii, piperonal; iii, LiAlH}_4; \text{iv, Raney Ni, } \text{H}_2
\]

Scheme 39

\[
i, \text{Bu}^n\text{Li, THF, } -78 \text{ to } -20 \degree \text{C}; ii, \text{a-tetralone, } -78 \degree \text{C to r.t.; iii, NaBH}_4; \text{iv, dilute HCl; v, N}_2\text{H}_4, \text{H}^+
\]

stabilized anions (30; Scheme 40). In contrast, 9-, 10- and 13-membered ring lactams give mixtures of enolization and benzylic metalation. A simplistic molecular mechanics model was found to predict the regioselectivity that evaluates the strain energy necessary to achieve the optimal geometry for enolate formation. The model restrains the lactam \(\alpha\)-hydrogen in a stereoelectronically preferred 90' O=C--C=H alignment, then compares the resulting minimized energy calculated using the MM2 force field with the global minimum for each lactam. When the differences in strain energies are small (<0.1 kcal mol\(^{-1}\)), enolization is the preferred course of deprotonation. When the differences are between 1.3 and 2.2 kcal mol\(^{-1}\), mixtures of enolization and benzylic metalation are found, and when the differences are large, 2.25 and ≥3.5 kcal mol\(^{-1}\), exclusive benzylic metalation is found.

Scheme 40

The formation of \(\alpha\)-aminolithium reagents by transmetalation of \(\alpha\)-aminostannanes was first reported in the early 1970s.\(^{116}\) However, the exploitation of this protocol was delayed until better methods were developed for the synthesis of the requisite stannanes. Quintard has shown that tributyltin Grignard reagents afford \(\alpha\)-aminostannanes when reacted with amino acetals\(^{149}\) or iminium ions,\(^{150}\) as shown in Scheme 41. Transmetalation of the \(\alpha\)-aminostannanes and addition to aldehydes and ketones has been
Heteroatom-stabilized Carbanion Equivalents

Representative examples are shown in Scheme 42.

Scheme 41

Scheme 42

2.1.4.3 Additions via Metalation of Carbocyclic Systems

The regioselective syn, vicinal lithiation of cyclopropane and cubane amides has been reported. Transmetalation to organomercury or zinc compounds facilitates functionalization, as shown in Scheme 43.

Directed lithiations of α,β- and γ,δ-unsaturated amides have been extensively studied. Illustrative examples are shown in Scheme 44. Prior complexation of the alkylithium base with the amide carbonyl oxygen directs the base to the thermodynamically less acidic β'-position in α,β-unsaturated amide (31), which adds to benzophenone and subsequently lactonizes. Analysis of the NMR spectrum reveals that the organolithium added the benzophenone in the equatorial position. A different kinetic deprotonation is seen in γ,δ-unsaturated amide (32), where β-lithiation to form an allylic anion predominates over α-lithiation to form an enolate. Addition of the lithium anion to acetone affords poor regioselectivity, but transmetalation to magnesium before carbonyl addition yields a species which adds exclusively at the δ-position.
2.1.4.4 Additions via Metalation of Heterocyclic Systems

A one-pot procedure for the activation and metalation of tetrahydroisoquinoline involves the carbonation of the lithium amide anion and then further metalation. As is illustrated in Scheme 45, the dipole-stabilized anion species may be added to carbonyl compounds in good yield. For the activation of tetrahydroisoquinoline Grignards, Seebach examined benzamides, pivalamides and phosphoramides, and found that the benzamides would not metalate, and that although the phosphoramides were most easily removed, the pivalamides were the most nucleophilic species. As is shown in Scheme 46, the lithiated pivaloylisooquinoline adds to cyclohexanone in good yield.

\[
\begin{align*}
\text{i, Bu}^\text{t}\text{Li, THF, } -20 \text{ } ^\circ\text{C} ; \text{ ii, } \text{CO}_2 ; \text{ iii, } \text{Ph}_2\text{CO} ; \text{ iv, } 2\text{M HCl} \end{align*}
\]

Scheme 45
Seebach also compared the same pivaloylisouquinoline to a tetrahydroisouquinoline formamidine to evaluate the face-selectivity in the addition of the metalated derivatives to aldehydes. In both cases, the organolithium showed significantly lower diastereoselectivity than the Grignard obtained by transmetalation with MgBr₂·Et₂O, as shown by the examples in Scheme 47. The transmetalation protocol was used to prepare a number of racemic isouquinoline alkaloids.

Similarly low face-selectivity was found in the addition of lithiated formamidines of tetrahydroquinoline, dihydroindole and β-carboline to benzaldehyde, although addition of the lithiated β-carboline to methyl chloropropyl ketone afforded an 8.5:1 selectivity (Scheme 48). Lithiated formamidines of pyrrolidine and piperidine also add to benzaldehyde in excellent yield, but the diastereoselectivity was not reported.

Formamidines whose α-protons are allylic are easily metalated, but the predominant site of electrophilic attack is the γ-position, as shown by the example in Scheme 49.
The lithiation and carbonyl additions of piperidinecarboxamides has been studied by both Beak167 and Seebach.168 An example of the addition of a lithiated derivative to propionaldehyde is shown in Scheme 50.167 Beak found that although the face-selectivity of the addition shown in Scheme 50 is not high, acid hydrolysis affords a single diastereomer of the product of N- to O-acyl migration. The stereospecificity must be obtained before the acyl migration: the suggested mechanism is illustrated in Scheme 51.167

\begin{align*}
\text{i, Bu}^+\text{Li, TMEDA, Et}_2\text{O;} \text{ ii, EtCHO;} \text{ iii, conc. HCl, MeOH;} \text{ iv, KOBu}^+\text{, H}_2\text{O, diglyme;} \text{ v, LiAlH}_4
\end{align*}

\begin{align*}
\text{N} & \quad \text{H} \\
\text{H} & \quad \text{OH}
\end{align*}

\text{Scheme 50}

\begin{align*}
\text{N} & \quad \text{H} \\
\text{H} & \quad \text{OH} \\
\text{Scheme 51}
\end{align*}

\section*{2.1.5 REFERENCES}

Nitrogen Stabilization
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.

485

1981,46,4108.
1040.


2.2 Boron Stabilization

ANDREW PELTER and KEITH SMITH

University College Swansea, UK

2.2.1 INTRODUCTION

Based upon their knowledge of the chemistry of carbonyl, nitro, sulfonyl, cyano compounds etc., organic chemists have long believed that carbanions XCH2- are stabilized if the group X is electron withdrawing.

Recently, calculations have been carried out on anions XCH2- in which X is a member of the first row element set: Li, BeH, BH2, CH3, NH2, OH and F.1-4 Schleyer's calculations (Table 1)1 suggest that the methyl group is destabilizing, the amino group is borderline, while all other groups are stabilizing. These results are qualitatively similar to those obtained from other calculations. In particular, very large π-effects are exhibited by BeH and planar BH2 groups, while inductive stabilization by the electronegative F and OH groups is less effective.

In Table 2 are given similar calculations for stabilization by first row elements, together with calculated and experimental values for a variety of stabilizing organic groups.4

Clearly, whichever method of calculation is used, there is a remarkable stabilization by a boron atom, comparable with that of a carbonyl group. When diffuse function-augmented basis sets are used, the stabilization energies calculated are generally lower,1 and in the case of organic stabilizing groups this brings them closer to the experimental values (Table 2).

There is an appreciable C—B bond shortening of 0.13 Å in planar H2B—CH2- when compared to the perpendicular form, and at the 4-31G level the planar form is 57.2 kcal mol\(^{-1}\) (1 cal = 4.18 J) lower in energy than the perpendicular form.4
Table 1 Calculated Stabilization Energies (kcal mol⁻¹) for Carbanions XCH₂⁻

<table>
<thead>
<tr>
<th>X</th>
<th>STO-3G//4-31G//</th>
<th>4-31G*</th>
<th>6-31G*//4-31G //</th>
<th>MP2//6-31G*//4-31G //</th>
<th>4-31+G//4-31G //</th>
<th>MP2//6-31G*//4-31G //</th>
<th>6-31+G*//4-31G //</th>
<th>MP2//6-31+G*//4-31G //</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td>-54.9</td>
<td>-17.5</td>
<td>-13.7</td>
<td>-25.8</td>
<td>-2.4</td>
<td>-6.6</td>
<td>-4.8</td>
<td>-8.1</td>
</tr>
<tr>
<td>BeH</td>
<td>-65.8</td>
<td>-40.4</td>
<td>-38.1</td>
<td>-46.9</td>
<td>-31.8</td>
<td>-33.3</td>
<td>-31.3</td>
<td>-32.9</td>
</tr>
<tr>
<td>BH₂</td>
<td>-81.6</td>
<td>-67.7</td>
<td>-61.4</td>
<td>-71.8</td>
<td>-54.7</td>
<td>-58.0</td>
<td>-53.2</td>
<td>-57.4</td>
</tr>
<tr>
<td>CH₃</td>
<td>-9.0</td>
<td>-2.1</td>
<td>-1.4</td>
<td>-3.3</td>
<td>+5.7</td>
<td>+4.8</td>
<td>+4.0</td>
<td>+3.0</td>
</tr>
<tr>
<td>NH₂</td>
<td>-16.6</td>
<td>-5.2</td>
<td>-3.3</td>
<td>-5.6</td>
<td>+1.9</td>
<td>+0.6</td>
<td>+1.5</td>
<td>+0.6</td>
</tr>
<tr>
<td>OH</td>
<td>-20.0</td>
<td>-15.8</td>
<td>-7.9</td>
<td>-10.9</td>
<td>-7.7</td>
<td>-8.1</td>
<td>-3.7</td>
<td>-5.6</td>
</tr>
<tr>
<td>F</td>
<td>-21.7</td>
<td>-24.6</td>
<td>-14.6</td>
<td>-16.1</td>
<td>-15.6</td>
<td>-9.3</td>
<td></td>
<td>-9.0</td>
</tr>
</tbody>
</table>

Since the degree of stabilization of boron-stabilized carbanions is similar to that for anions stabilized by a formyl or a cyano group, the comparative lack of knowledge of boron-stabilized carbanions must be due either to kinetic factors associated with their production or to the availability and nature of their precursors.

Boron-stabilized carbanions are expected to assume a geometry which allows maximum overlap between the lone pair on the α-carbon atom and the vacant boron orbital. Dynamic NMR studies⁴ on Mes₂B-CHPh (Mes = 2,4,6-trimethylphenyl) demonstrate this by showing that the anion decomposes at 140 °C, before observation of rotation effects about the B—C—Ph bond. This gives a ΔG rotation greater than or equal to that of the isoelectronic Mes₂B—NHR₂.⁶,¹⁰ and greater than that found² for rotation about the B—S bond in Mes₂B—SR (19.25 kcal mol⁻¹); calc.³ 22 kcal mol⁻¹) and for rotation about the B—O bond in Mes₂B—OMe (13.2 kcal mol⁻¹).⁷,¹⁰ The B—C rotational barrier¹¹ of (Mes₂B)₂CHLi is 17 kcal mol⁻¹, very similar to that found for a series of isoelectronic substituted allyl cations.¹² It was concluded¹¹ that structure (1) makes a significant contribution to the overall electronic structure of Mes₂BCH₂⁻.

The crystal structure of (2), as its 12-crown-4 derivative, has been determined.¹³ The C₂BCH₂ core of the molecule is essentially planar and the length of the B—CH₂ bond is 1.444 Å. This is within the 1.42–1.45 Å predicted for B—CH₂ and quite distinct from the B—Me distance of the parent compound (3).¹³ The distances and angles found are in accord with formulation (1), as is the upfield shift of 43.2 p.p.m. in the ¹¹B NMR spectrum on passing from (3) to (2).¹³ Thus there is a high degree of orbital overlap in species of type (4), which might be better represented in general as the highly stabilized forms (5).

![Diagram](image-url)
2.2.2 PREPARATION OF BORON-STABILIZED CARBANIONS

2.2.2.1 Introduction

This topic has been summarized in references 14 and 15, of which the former is the most recent and wide ranging of the reviews available over the whole field of boron chemistry.

There are currently three general methods for the production of boron-stabilized carbanions, each of which has analogies in carbonyl chemistry. The cleavage of a 1,1-diborylalkane by base readily yields the desired anion in a fashion similar to the base cleavage of a β-dicarbonyl compound. Deprotonation α to a boron atom can be accomplished directly in special circumstances, as can the addition of an organometallic compound to a vinylborane, which is similar to conjugate addition to an α,β-unsaturated carbonyl compound. Each of these methods is treated in detail in the next three sections.

2.2.2.2 Preparation and Cleavage of 1,1-Diboryl Compounds

1,1-Diboryl compounds (6) are made by reaction of certain dialkylboranes, generally dicyclohexylborane [(C6H11)2BH], disiamylborane (SiazBH) or 9-borabicyclo[3.3.1]nonane (9-BBN-H), with 1-alkynes (equation 1).

\[
\text{R}_1\text{BC}_\equiv\text{R}_2 + 2\text{R}'_2\text{BH} \rightarrow \text{R}_1\text{BR}_2^2 + \text{BR}_2^2
\]

The products (6) are very prone to hydrolytic cleavage by base; this is presumably due to the ready production of an intermediate carbanion followed by its rapid protonation. This possibility was tested\(^\text{19}\) by treating a series of compounds (6; R\(^2\) = cyclohexyl) with Bu\(^n\)Li at -78 °C in THF. The products had properties consistent with the production of (7; equation 2). The by-product, a simple trialkylborane, also reacts with butyllithium, and so 2 equiv. of the latter must be added. Thus, the process is wasteful in that one atom of boron and 1 equiv. of base are consumed in an unproductive fashion (equation 3).

\[
\text{R}_1\text{BR}_2^2 + \text{BuLi} \rightarrow \text{R}_1\text{BR}_2^2 \text{Li}^+ + \text{BuBR}_2^2
\]

The reaction of pent-1-ynyl with borane, followed by base cleavage, has been studied\(^\text{20}\) yields having been estimated by alkylation with ethyl bromide. Although the reaction occurred with sodium and lithium methoxides, it went better with butyllithium and best with 2 equiv. of methyllithium. It was later shown\(^\text{17}\) that diborane gave ca. 10% of 1,2-addition, which did not occur with dicyclohexyl- and disiamyl-borane. Hydroboration with 9-BBN-H\(^2\) readily gave (6) (BR\(^2\)\(_2\) = 9-BBN), which on cleavage with 2.5 mol equiv. of MeLi gave high yields of the corresponding product (7).

Tris(dialkoxyboryl)alkanes such as (8), produced as in equation (4), may also be used as precursors of boron-stabilized carbanions.\(^\text{22}\) Reaction of (8) with base gives (9),\(^\text{22,23}\) which is stabilized by two boron atoms (equation 5). It is not clear whether a similar reaction succeeds with CH\(_2\)[B(OR)]\(_2\)\(_2\).

Although cleavage of gem-diboryl compounds is a mild and general process for the production of boron-stabilized carbanions, it nevertheless suffers from two disadvantages. Firstly, although
Heteroatom-stabilized Carbanion Equivalents

1,1-diborylalkanes are available from terminal alkynes, \(\text{gem-diboryl compounds within a carbon chain are not readily available. Compounds such as (8) are very interesting as one-carbon synthons, but are confined to this function as yields drop when CH is replaced by CMe or CPh.}^{24} \) Secondly, there is the wasteful use of base and boron referred to previously.

2.2.2.3 Cleavage of \(\alpha \)-Substituted Organoboranes

Boron-stabilized carbanions may also be produced by selective cleavage of a heteroatom group from an \(\alpha \)-substituted organoborane such as a borylstannymethane (equations 6–8).\(^{25,26}\)

\[
\text{SnMe}_3 + \text{MeLi} \rightarrow \text{Li} \quad \text{at} -100^\circ C
\]

\[
\text{Mes}_2\text{B} + \text{SnR}_3 \rightarrow \text{Mes}_2\text{B} + \text{Li} + \text{XSnR}_3
\]

\[
\text{Mes}_2\text{B} + \text{SiMe}_3 \rightarrow \text{Mes}_2\text{B} + \text{Li} + \text{FSiMe}_3
\]

The reactions of bases with borylstannylalkanes generally lead to cleavage of the tin moiety,\(^{25,26}\) and lithium thiophenoxide is especially specific.\(^{25}\) It is of interest that the reaction of fluoride anion with dimesitylboryl(trimethylsilyl)alkanes also gives \(\alpha \)-boryl carbanions, thus obviating the need to use organo-metallics.\(^{26,27}\)

2.2.2.4 Deprotonation of Organoboranes

It appears that the first example of deprotonation to give a boron-stabilized carbanion was that shown in equation (9).\(^{28}\) In general, however, early attempts to deprotonate organoboranes (equation 10) foundered because borate formation (equation 11) was favored.

\[
\begin{align*}
\text{Ph} & \quad \text{Bu}^\prime\text{Li} \\
\text{Bu}^\prime\text{Li} & \quad \text{Ph} \\
\text{Bu}^\prime\text{Li} & \quad \text{Ph} \\
\text{Bu}^\prime\text{Li} & \quad \text{Ph}
\end{align*}
\]

Successful deprotonations must discourage equation (11) so as to allow equation (10) to proceed. This may be achieved in several ways as follows: (a) the reagent can be a very hindered, non-nucleophilic base; (b) the groups around boron can be large so that attack on boron is inhibited on steric grounds; or (c) the electrophilicity of the boron atom may be lowered by the use of heteroatom substituents (e.g. equation 10; \(X = \text{OR} \)). All three of these approaches have been used, either separately or in conjunction with one another.
Boron Stabilization

\[R_1B(X)X_2 + MY \rightarrow R_1B(Y)X_2 + YH \]

(10)

\[R_1B(X)X_2 + MY \rightarrow R_1B(Y)X_2 + Y^+ \]

(11)

The first successful attempt to deprotonate a simple alkylborane is shown in equation (12).29 B-Methyl-9-BBN (10) was reacted with a variety of lithium amides and the yield of (12) estimated by deuterium incorporation on quenching with D\textsubscript{2}O. Neither lithium diethylamide nor lithium diisoo-propylamide gave any of (12) at all, but the hindered piperidide (11) (LITMP) produced up to 75% of (12) using 100% excess of base.

\[\text{B-Me} + \text{N-Li} \rightarrow \text{B-Li} + \text{N-H} \]

(12)

Even using LITMP it was not possible to convert (13) into (14) when X = H (equation 13). It appears that stabilization by one dialkoxyboryl group is not sufficient and that at least one other stabilizing group is required for anion formation.30 Deprotonation with LITMP was successful for (13) with X = Ph,30 SPh,31 TMS,32,33 Ph\textsubscript{3}P+,33 and CH=CH\textsubscript{2},33 but failed for X = Me\textsubscript{2}S+33 and R\textsubscript{3}N+.34 Compound (15; X = H; equation 14) is successfully deprotonated by LITMP in the presence of TMEDA to give (16; X = H). Unfortunately, with (15; X = Ph), cleavage takes precedence over deprotonation and (14; X = Ph) is produced rather than (16; X = Ph).30

\[\text{Li} \rightarrow \text{Li} \]

(13)

\[\text{Li} \]

(14)

\[\text{X} \]

(15)

\[\text{X} \]

(16)

Compound (17; equation 15) is deprotonated by LDA to give (19), but treatment with butyllithium leads to cleavage of the B—C bond (equation 16).35

\[\text{PhS} \]

(17)

\[\text{PhS} \]

(18)

\[(17) + \text{BuLi} \rightarrow \text{Bu-B} + \text{LiPhS-SPh} \]

(16)
The production of boron-stabilized carbanions using steric hindrance on the borane to inhibit borate formation was first demonstrated as part of a study of the properties of dimesitylboryl derivatives. Unlike the situation with dialkoxyboryl derivatives, it was possible to carry out the deprotonation with only one boron atom present and with no extra stabilizing groups. Either LDA or lithium dicyclohexylamide may be used as base, the latter being rather more efficient (equation 17). The initial study showed that the reaction with Mes₂BCHR₁R₂ was successful with: R¹, R² = H; R¹ = H, R² = Me; R¹ = H, R² = Ph; and R¹, R² = Me.

A study of the reactions of various bases with dimesitylmethylborane (Scheme 1) showed that the outcome critically depends on the nature of the base used. Both mesityllithium and lithium dicyclohexylamide give high yields of the required anion, mesityllithium proving to be a superior base for a wide variety of alkyldimesitylboranes. n-Butyllithium attacks at boron to give the borate and t-butyllithium gives the hydroborate by β-hydrogen transfer. Sodium hydride also gives the hydroborate, while potassium metal gives the radical anion.

Further studies showed that a variety of substituted anions, Mes₂BCHR₁X, in which X = SPh, TMS, SnPh₃ and BMes₂, are available by deprotonation of the corresponding boranes. It is noteworthy that the triphenyltin derivative gives the anion without cleavage, while both the trimethyltin and α-n-butylditin derivatives are cleaved at the carbon-tin bond by treatment with mesityllithium.

Vinylboranes, readily available by the hydroboration of 1-alkynes with dialkylboranes such as Si₂BH, react readily with LiTMP to give high yields of the corresponding allyl carbanions (equation 18).

Vinylboranes, readily available by the hydroboration of 1-alkynes with dialkylboranes such as Si₂BH react readily with LiTMP to give high yields of the corresponding allyl carbanions (equation 18). Thus, boron-stabilized allyl units are available from either allyl- or vinyl-boranes.

2.2.2.5 Addition to Vinylboranes

As vinylboranes are electronically similar to α,β-unsaturated ketones, reactions analogous to conjugate addition might be expected. Unfortunately, many attempts to add organometallic compounds to simple alkenyldimesitylboranes gave only very low yields (ca. 5%) of the required carbanions. However, additional steric hindrance and/or carbanion-stabilizing ability at the α-position, caused by the introduction of a TMS group, allows the process to be realized and so a wide variety of organometallics have been added to 1-dimesitylboryl-1-trimethylsilylethylene (19; R¹ = H; equation 20).
For the case of $R^1 = H$, R^2M can be Bu^nLi, $BuLi$, $PhLi$, $(RS)_2CHLi$, BuO_2CCH_2Li, $CH_2=CH(CH_2)_4Li$ and $Bu_2Cu(CN)Li$. However, there was no addition of $BuMgCl$ or $PhC=CLi$, nor could an enolate anion be added. For $19; R^1 = Ph$ or $CH=CH_2$ addition of butyllithium was successful and in the latter case the addition was entirely to the terminal position (equation 21). Somewhat strangely, the addition of $BuLi$ to $19; R^1 = Bu^n$ was unsuccessful.

\[
\begin{align*}
\text{Bu}^n\text{Li} & \quad + \quad \text{BuLi} \\
\text{Bu}^n\text{Li} & \quad + \quad \text{PhLi} \\
\text{Bu}^n\text{Li} & \quad + \quad \text{CH} = \text{CH} \text{CH}_2 \text{Li} \\
\text{Bu}^n\text{Li} & \quad + \quad \text{BuO}_2 \text{CCH}_2 \text{Li}
\end{align*}
\]

Of particular interest is the process shown in equation (22), in which the (E)-alkene geometry of (20) precludes intramolecular ate complex formation and hence an addition–cyclization reaction occurs to give the α-unsubstituted carbanion (21), which may be trapped by protonation, deuteration or alkylation.

\[
\begin{align*}
\text{BMesz} & \quad + \quad \text{BuLi} \\
\text{BMesz} & \quad + \quad \text{PhLi} \\
\text{BMesz} & \quad + \quad \text{CH} = \text{CH} \text{CH}_2 \text{Li} \\
\text{BMesz} & \quad + \quad \text{BuO}_2 \text{CCH}_2 \text{Li}
\end{align*}
\]

As much recent work has concerned dimesitylboryl species, it is worth remarking that the related compounds (22)–(24) also readily yield carbanions. Unlike mesityl compounds, (22) cannot be deprotonated at the 4'-methyl group, while compounds (23) have some special properties due to the great increase in steric hindrance around boron. Compounds (24) promise to be of utility due to their very ready solvolysis with water or alcohols in the presence of catalytic quantities of mineral acid. They are even selectively hydrolyzed in preference to vinyl as well as alkyl groups (equation 23).
2.2.3 REACTIONS OF NONALLYLIC BORON-STABILIZED CARBANIONS

2.2.3.1 Reactions with Metal Halides

The reactions shown in equation (24) proved relatively facile for M = Ge, Sn or Pb. Although chlorotriphenylsilane failed to react, the corresponding TMS derivative was readily produced.22

\[
\text{Ph}_3\text{M} + \text{LiCl} \rightarrow \text{Ph}_3\text{MCl} + \text{Li} \quad (24)
\]

The products (25; M = Ge, Sn, Pb) react with butyllithium to give (26) by C—B cleavage and further reactions of these anions with Ph₃MCl (M' = Sn, Pb) proceed to give compounds (27; equation 25) with no evidence of disproportionation.22 If (28; equation 26) is treated in a similar fashion, the very stable tristannylmethylborane (29) results.22

\[
\text{Ph}_3\text{M} \quad \text{BuLi} \quad \text{Ph}_3\text{MCl} \quad \text{Ph}_3\text{M} + \text{M'Ph}_3 \quad (25)
\]

\[
\text{Ph}_3\text{Sn} \quad \text{i, BuLi} \quad \text{Ph}_3\text{SnCl} \quad \text{Ph}_3\text{Sn} + \text{SnPh}_3 \quad (29)
\]

To obtain analogous organometallic compounds containing α-protons, it is better to use ethylenedioxyboryl derivatives (equation 27).43

\[
\text{O} \quad \text{B} \quad \text{O} \\
\text{i, RLi} \quad \text{MPh}_3 \\ \text{ii, Ph}_3\text{MCl} \\
(27)
\]

The reactions shown in equation (28) have been used37 to make a set of dimesitylboryl compounds (30) in which M = Si, R = Me, n = 3; M = Sn, R = Me, Bu, Ph, n = 3; M = S, R = Ph, n = 1; M = Hg, R = CH₃BMes₂, n = 1. In most cases R₃MCl was used as the reactant, but for introducing sulfur to give (31), PhSSO₂Ph was advantageous in yielding pure product.26 Otherwise the reaction shown in equation (29) was utilized.37 Products (30) are stable, crystalline compounds that may act as precursors of boron-stabilized carbanions.37

\[
\text{Mes}_2\text{B} + \text{Li} \quad \text{R}_n\text{MX} \rightarrow \text{Mes}_2\text{B} \quad \text{MR}_n + \text{LiX} \quad (28)
\]

\[
\text{Mes}_2\text{BF} + \text{Li} \quad \text{SPh} \rightarrow \text{Mes}_2\text{B} \quad \text{SPh} + \text{LiF} \quad (29)
\]
2.2.3.2 Alkylation Reactions

In general, all types of boron-stabilized carbanions are readily alkylated by primary alkyl halides. The situation for the alkylation of dimesitylboryl compounds is summarized in Scheme 2.\(^4\) These reactions represent highly efficient homologation processes. Oxidation of the tertiary alkyl organoboranes is slow, but use of 4-methoxy-2,6-dimethylphenyl groups instead of mesityl groups renders the products sensitive to solvolysis.\(^4\)

\[
\begin{align*}
\text{Mes}_2\text{BMe} & \quad \rightarrow \quad \text{Mes}_2\text{B} \quad \text{Li} \quad \rightarrow \quad \text{Mes}_2\text{B} \quad \text{R} \quad \rightarrow \quad \text{[O]} \quad \rightarrow \quad \text{HO} \quad \text{R} \\
\text{Mes}_2\text{B} \quad \text{R}^1 \quad \rightarrow \quad \text{Mes}_2\text{B} \quad \text{Li} \quad \rightarrow \quad \text{Mes}_2\text{B} \quad \text{R}^2 \quad \rightarrow \quad \text{[O]} \quad \rightarrow \quad \text{OH} \quad \text{R}^1 \quad \text{R}^2
\end{align*}
\]

\(\text{i.e. } \text{RX} \quad \rightarrow \quad \text{HO} \quad \text{R} \)
\((\text{R} = \text{primary alkyl})\)

\(\text{RX} = \text{RBr, RI, ArCH}_2\text{I; overall yields } \sim 95\%\)

\[
\begin{align*}
\text{Mes}_2\text{B} \quad \text{R}^1 \quad \rightarrow \quad \text{Mes}_2\text{B} \quad \text{Li} \quad \rightarrow \quad \text{Mes}_2\text{B} \quad \text{R}^2 \quad \rightarrow \quad \text{[O]} \quad \rightarrow \quad \text{OH} \quad \text{R}^1 \quad \text{R}^2
\end{align*}
\]

overall yields \(\sim 80\%\)

\[
\begin{align*}
\text{Mes}_2\text{B} \quad \text{R}^1 \quad \rightarrow \quad \text{Mes}_2\text{B} \quad \text{Li} \quad \rightarrow \quad \text{Mes}_2\text{B} \quad \text{R}^3 \quad \rightarrow \quad \text{[O]} \quad \rightarrow \quad \text{HO} \quad \text{R}^1 \quad \text{R}^3
\end{align*}
\]

yield of organoborane \(\sim 70\%\)

Scheme 2 Alkylation of alkyldimesitylboranes

Alkylations with s-alkyl halides give lower yields due to competitive elimination reactions.\(^4\) Alkylations of boron-stabilized carbanions have been carried out with primary alkyl halides containing acetal,\(^2\) alkene,\(^4\) alkyne,\(^2\) chloride,\(^4\) cyano,\(^4\) ester\(^4\) and tosylate\(^4\) groups, though a ketone group was not tolerated.\(^2\)

The anion derived from (31) reacted in a remarkable fashion with primary alkyl halides so that alkylation occurred only on sulfur to give the corresponding ylide (equation 30).\(^4\)

\[
\begin{align*}
\text{Mes}_2\text{B} \quad \text{SPh} + \quad \text{C}_7\text{H}_{15}\text{I} & \quad \rightarrow \quad \text{Mes}_2\text{B} \quad \text{SPh}\quad \text{C}_7\text{H}_{15} \\
(30)
\end{align*}
\]

Alkylations of bis(dialkoxyboryl)methyl anions give products that may be oxidized to aldehydes or ketones (Scheme 3).\(^3\)

\[
\begin{align*}
\text{O} \quad \text{Li} \quad \rightarrow \quad \text{O} \quad \text{R}^1 \quad \rightarrow \quad \text{O} \quad \text{R}^1 \quad \rightarrow \quad \text{NaBO}_3 \\
\text{O} \quad \text{NaBO}_3 \\
\text{O} \quad \text{R}^1 \quad \text{CHO}
\end{align*}
\]

Scheme 3 Alkylation of bis(dialkoxyboryl)methyl anions

Monoalkylation of (32)\(^3\) gives products that are readily converted by NCS into monothioacetals (equation 31).\(^4\)
2.2.3.3 Reactions with Epoxides

The reactions of epoxides with dialkoxyboryl-stabilized carbanions are complicated by interaction of the oxyanion produced with the dialkoxyboryl grouping. When such an interaction is sterically inhibited, as with cyclohexene oxide, a single product results (equation 32).31

\[
\text{Mes}_2\text{B} \quad \text{Li} \quad \overset{\text{Ph}}{\text{O}} \quad \overset{\text{C}_9\text{H}_{13}}{\text{O}} \quad \overset{\text{C}_9\text{H}_{11}}{\text{O}}
\]

\[
\text{erythro/threo} = 4:3^b
\]

\[
\text{Mes}_2\text{B} \quad \text{Li} \quad \overset{\text{Et}}{\text{O}} \quad \overset{\text{Bu}}{\text{O}} \quad \overset{\text{H}}{\text{O}}
\]

\[
\text{erythro/threo} = 10:1 \quad \text{erythro/threo} = 2:1
\]

\[
\text{Mes}_2\text{B} \quad \text{Li} \quad \overset{\text{R}^1}{\text{O}} \quad \overset{\text{R}^2\text{R}^3\text{C}^-\text{CR}^4\text{R}^5}{\text{O}} \quad \overset{\text{OH}}{\text{OH}} \quad \overset{\text{OH}}{\text{OH}}
\]

\[
\text{erythro/threo} = 10:1
\]

\[
\text{erythro/threo} = 2:1
\]

\[^a\text{Yields are of isolated 1,3-diol and are based on starting organoboranes. The arrows indicate the position(s) of attack on the epoxide based on the isolated diol. For symmetrical epoxides no arrows are shown.}\]

\[^b\text{The erythro/threo ratio is defined by the relationship of the 1,3-alcohol units.}\]
oxirane, anion (33), derived from ethyldimesitylborane, reacts with unusual selectivity with the same epoxide. In certain cases, stereo- as well as regio-selectivity is obtained. The *erythro:*threo ratio of 10:1 in the 1,3-diols derived by reaction of (33) with *trans*-1,2-di-*n*-propyloxirane is extremely unusual.48

With more hindered epoxides, yields are lower but only become negligible with tetrasubstituted epoxides. The method therefore provides a widely applicable synthesis of 1,3-diols.

2.2.3.4 Acylation Reactions

The overall process shown in equation (33) has been fairly well investigated. The presumed initial acylation products (34) undergo rearrangement to give alkenyloxyboranes (enol borinates) (35), the isolable products of the reaction. There has been no recorded instance of polyacylation in this process.

\[
\text{BY}_2 \text{Li} + \text{R'COZ} \rightarrow \text{X} \rightarrow \text{X}^+\text{OBY}_2
\]
(33)

A specific example of the process, useful for the synthesis of phenyl ketones, is shown in equation (34).21 Unfortunately, the further reactions of the intermediate enol borinates (36) with aldehydes show little diastereoselectivity (equation 35).21

\[
\begin{align*}
\text{R}^1 & \rightarrow \text{PhCO}_2\text{Me} \\
\text{PhC} & \text{O}_2\text{Me} \\
\text{H}_2\text{O} & \rightarrow \text{PhC} & \text{O}_2\text{Me} \\
\end{align*}
\]
(34)

The reactions of (37) with esters give poor or moderate yields of ketones (equation 36).30

\[
\text{Li} \text{C}_3\text{H}_1_\text{L} \rightarrow \text{R}^1\text{COOMe} \rightarrow \text{R}^1\text{C}_3\text{H}_1_\text{L}
\]
(36)

The reactions with esters of stabilized anions (32) and (38) give α-phenylthio ketones in yields of 75–82% (equation 37).31 Acylations with succinic anhydride and butyrolactone to give γ-keto acids and γ-hydroxy ketones respectively, also proceed in good yields.31

\[
\begin{align*}
\text{R}^1\text{Li} + \text{R}^2\text{COOMe} & \rightarrow \text{R}^1\text{C}_3\text{H}_1_\text{L} \\
\end{align*}
\]
(37)
The acylation of the pinacol derivative of dihydroxy[lithio(trimethylsilyl)methyl]borane with methyl benzoate has been recorded.33 No details were given due to difficulties in the isolation of the products.

Acylation of Mes\textsubscript{2}BCH\textsubscript{2}Li (2) with methyl benzoate for 5 min gave a 72\% yield of acetophenone, marginally better than for use of benzoyl chloride or benzoic anhydride.49 However, acylation of other dimesitylboryl-stabilized anions does not appear to be of general use, often giving only modest yields.49

The ethoxycarbonylation shown in equation (38) leads to ethyl octanoate in 50\% yield.49 When dimethyl carbonate was used, \(\alpha\)-methylolation occurred in preference to ester homologation.49

\[
\begin{align*}
\text{C}_6\text{H}_{13} & + \text{Cl}\cdot \text{CO}\cdot \text{Et} \\
\text{Li} & \text{B}\text{Mes}_2 \\
\text{C}_6\text{H}_{13} & \text{OB}\text{Mes}_2 \\
\text{H}_2\text{O} & \text{C}_7\text{H}_{15} \text{OEt}
\end{align*}
\]

Acylation of (2) with benzonitrile gives an intermediate which yields acetophenone (52\%) on hydrolysis with 3 M HCl.49 This seems to be the only recorded reaction of a boron-stabilized carbanion with a nitrile.49

The carboxylation of boron-stabilized carbanions followed by acidification has been reported to give malonic acids in yields of 65–70\% (equation 39).19 The carboxylation of (39), however, did not yield any of the corresponding malonic acids.26

\[
\begin{align*}
\text{R} & \text{B(c-C_6H_{11})_2} \\
\text{Li} & \text{i, CO}_2 \\
\text{ii, H}^+ \\
\text{R} & \text{O} \\
\text{O} & \text{OH}
\end{align*}
\]

2.2.3.5 Reactions with Aldehydes and Ketones

It was early reported50 that boron-stabilized carbanions reacted with benzaldehyde and ketones to yield alkenes (equation 40). The reaction gave a 45–50\% yield in the one case quantified, with (\(E\):(\(Z\)) ratios varying over a wide range with temperature. Benzophenone gave a similar yield but the yields with aliphatic ketones were considerably less.50

\[
\begin{align*}
\text{C}_6\text{H}_{11} & \text{B(c-C_6H_{11})_2} \\
\text{Li} & \text{O} \\
\text{C}_6\text{H}_{11} & \text{R}^1 \text{R}^2
\end{align*}
\]

An analogous reaction with cyclohexanone gave methylenecyclohexane in 55–60\% yield (equation 41).29

\[
\begin{align*}
\text{Li} & \text{B(c-C_6H_{11})_2} \\
\text{O} & \text{O} \\
\text{C}_6\text{H}_{11} & \text{R}^1 \text{R}^2
\end{align*}
\]

The reactions of dimesitylboryl-stabilized carbanions (39; \(R = \text{H, Me, C}_7\text{H}_{13}\)) with aldehydes and ketones are extremely interesting as they can lead to different products, depending on the nature of \(R\), the carbonyl compounds and the reagents used in the work-up.

Aromatic ketones react to give excellent yields (70–90\%) of the corresponding alkenes directly (equation 42), a reaction that was postulated to proceed by \(\text{syn}\) elimination from oxaboretane intermediates by analogy with the Wittig and Peterson reactions.51 In one case an intermediate \(\beta\)-hydroxyborane has been isolated by chromatography, and in many cases intermediate salts separate, but dissolution of the salts in chloroform gives alkenes upon warming.51

\[
\begin{align*}
\text{Mes}_2\text{B} & \text{R} \\
\text{Li} & \text{O} \\
\text{Ar} & \text{R}
\end{align*}
\]
The direct reactions of (39) with benzaldehyde are complex, giving products as shown in equation (43) in proportions varying with the conditions. The alkene, however, was overwhelmingly (E)-alkene, in contrast to the similar reactions of 'unstabilized' Wittig reagents.

\[
\begin{align*}
(39) + \text{PhCHO} & \rightarrow \text{(E)} + \text{PhOH} + \text{O} \quad (43)
\end{align*}
\]

If the reactions are carried out at low temperature and the reaction mixtures then oxidized also at low temperature, the products are erythro-1,2-diols (41) obtained in good yields. This is a synthetically useful process, unique among Wittig-type reactions.52 On the assumption that the oxidation proceeds with retention of configuration at carbon, as for all other C—B bond cleavages by alkaline hydrogen peroxide,18 then the intermediate has the stereochemistry (40; Scheme 5). This can exist as the acyclic form (40a) or the cyclic form (40b). The latter, however, would have to give (Z)-alkene, whereas (E)-alkene is actually observed. This must arise therefore by anti elimination from (40a), which is a most unusual pathway in Wittig-type reactions.

\[
\begin{align*}
\text{NaOH} / \text{H}_2\text{O}_2, -78 \degree \text{C} & \quad \text{anti} \text{ -78 to 25 \degree C} \\
\text{or} & \quad \text{syn} \text{ -78 to 25 \degree C}
\end{align*}
\]

Scheme 5 Reactions of aromatic aldehydes with dimesitylboryl-stabilized carbanions

Intermediates (40) react at -110 °C with TMS-Cl to give compounds (42), which are stable, readily purified products. The \(^1\text{H NMR of (42)}\) is in accord with the assigned stereochemistry and shows that the oxidation of (40) had indeed proceeded with retention of configuration. Reaction of (42) with HF/MeCN gives (E)-alkenes in excellent yields (Scheme 6) with none of the many by-products seen in the original reaction. The (E):(Z) ratios range from 100:0 to 95:5 and the reaction tolerates NO₂, Cl, OMe and alkyl groups in the aromatic aldehyde.53

By contrast if (40a) is reacted with trifluoroacetic anhydride (TFAA) at low temperatures and the reaction then allowed to warm, the (Z)-alkene is obtained, presumably by a cyclic ester type elimination (Scheme 6).53 The isolated yields (72–77%) of (Z)-alkene are rather lower than the yields for the (E)-alkene process, as are the stereoselectivities. In the case of 4-nitrobenzaldehyde the process shows little stereoselectivity.53

The reactions of (39; R = H) with aliphatic aldehydes give alkenes in yields that are strongly temperature dependent.51 If the reaction is carried out in the presence of TFAA, then excellent yields of the methylene compounds result.54 However, reaction of aliphatic aldehydes with (39; R = C₆H₁₃) in the same conditions proceeds by a most unexpected redox process to yield ketones in good yields after aqueous work-up.54 The appearance of ketones as products is unique in any Wittig-type of reaction at this oxidation level. Alkenyloxyboranes appear to be the intermediates in the reactions, and these react with excess TFAA to give enol trifluoroacetates, which can be isolated and characterized.54 A possible sequence is shown in Scheme 7.54

If the added aldehyde is premixed with a protic acid, the intermediates (43) are still formed, but are immediately discharged to give (44), which then decompose to give alkenes in good yields. Acetic acid shows little stereochemical discrimination in the production of alkenes except when R = Bu¹ (100% of Z)
Scheme 6 Stereoselective alkene formation using the boron Wittig reaction

Scheme 7 Reactions of 1-dimesitylboryl-1-lithiooctane with aliphatic aldehydes
Boron Stabilization

and cyclohexyl (90% of Z), but excess of stronger acids (HCl, CF₃SO₃H) gives >90% of (E)-alkene for less hindered aldehydes. The overall situation for (39; R = C₇H₁₅) is summarized in Scheme 7.

Bis(dialkoxyboryl)-stabilized anions react with aldehydes to give alkenylboranes which may be oxidized to the homologated aldehydes (equation 44).[59] Addition of TMEDA and careful control of conditions are required to give good yields.

The reactions of α-TMS-substituted boranes with aldehydes proceed with elimination of the TMS group to give alkenylboranes as in equations (45) and (46). Such products can be hydrolyzed to alkenes or oxidized to aldehydes.[33] The intermediate in the case of the dimesitylborane reaction was directly oxidized to aldehyde in 95% overall yield, a good formyl homologation process.[37]

In reactions with benzophenone and cyclohexanone the dialkoxyboryl-stabilized carbanions still eliminate silicon[33] but the dimesitylboryl derivatives eliminate boron and silicon competitively so that a mixture of products results.[36]

1-Lithio-1-phenylthioalkane-1-boronates react with aldehydes or ketones to give phenylthioalkenes as mixtures of geometric isomers, when this is possible, in yields of 61–86% (equation 47).[31]

The dialkoxyboryl-substituted Wittig reagent (45) also loses boron upon reaction with benzophenone to yield another Wittig reagent that has been used in the synthesis of allenes (equation 48).[33]

2.2.3.6 Halogenation Reactions

The halogenation of boryl-substituted carbanions has received little attention. However, bromination of the appropriate carbanions has been accomplished to give compounds (46), (47) and (48).[31] The latter undergoes reaction with phenylmagnesium bromide to give (49), though only 57% of impure material has been isolated. With aliphatic Grignard reagents only cleavage products were isolated.[31]
2.2.4 REACTIONS OF ALLYLIC BORON-STABILIZED CARBANIONS

The anion derived from (50) gives mixtures of products from reactions with D₂O, MeI, BuI and TMS-Cl and it was concluded that it cannot function as a useful synthetic reagent.³³

Anion (51) protonates and methylates at the α-position but reacts with TMS-Cl and acetone (equation 49) specifically at the γ-position. No product derived from a boron-Wittig reaction was noted in the reaction with acetone, which upon work-up with propionic acid gave the corresponding alkene (52).³⁸

C₃H₁₁⁻ − BSi₂ + O → Sia₂B⁻ (51) α-OH (52)

Anions (53) undergo only α-attack with TMS-Cl or Bu₃SnCl to give (54; equation 50).⁵⁵ The stereochemistry of compounds (54) has not been defined, but upon reaction with water they give only the (Z)-allyl-silicon or -tin derivatives (55).⁵⁵

R¹⁻ − B + R²₂MCl (53) → R¹ − MR²₃ (54) → R¹ − (Z) − MR²₃ (55)

The reactions of anion (56) proceed entirely at the γ-position with D₂O, Me₂SO₄, EtI, PrI, C₆H₁₃I, C₅H₁₇I, PhCH₂I, and TMS-Cl, and in every case (E)-alkenylboranes result.³⁹ Alkylations proceed in high yields (90–96%) and buffered oxidation of the products gives aldehydes (90–95% overall), giving an efficient three-carbon homologation of alkyl iodides (equation 51).³⁹

C₃H₁₁⁻ − BMes₂ + RI → Mes₂B⁻ E − R → [O] R − HCO (51)

Benzaldehyde also reacts with (56) at the γ-position and oxidation of the intermediate yields γ-lactols (equation 52).³⁹

(56) + PhCHO → Mes₂B⁻ Ph → [O] Ph − OH (52)
2.2.5 CONCLUSION

It is clear that the chemistry of carbanions stabilized by boron is so far undeveloped compared, say, with the chemistry of carbanions stabilized by sulfur. Despite this, a variety of unique reactions have been produced and it is certain that more await discovery and development.

2.2.6 REFERENCES

40. A. Pelter, unpublished results.
2.3 Sulfur Stabilization

KATSUYUKI OGURA
Chiba University, Japan

2.3.1 INTRODUCTION

Sulfur is one of the most frequently employed elements in organic synthesis. Typical functionalities containing sulfur atoms are illustrated below (1a–1d); they all stabilize the adjacent carbanion, which serves as a nucleophile. The carbanion reacts with alkyl halides or adds to C=\(X\) \(\pi\)-bonds (\(X = C, O, N,\) etc.) to form a C–C bond, which is an essential process in organic synthesis.

This section deals with addition reactions of sulfur-stabilized carbanions to C=\(X\) \(\pi\)-bonds from the standpoint of stereo- and regio-selectivity.
Heteroatom-stabilized Carbanion Equivalents

\[
\begin{array}{cccc}
\text{(a) Sulfide} & \text{(b) Sulfoxide} & \text{(c) Sulfone} & \text{(d) Sulfoximine} \\
\end{array}
\]

2.3.2 SULFENYL-STABILIZED CARBANIONS

2.3.2.1 Configuration of the Carbanion

The action of butyllithium on thioanisole in THF generates (phenylthio)methyl lithium in a low yield of 35%.\(^\text{1,2}\) Corey and Seebach found that reaction of equimolar amounts of butyllithium, DABCO and thioanisole in THF at 0 °C produces (phenylthio)methyl lithium in ca. 97% yield.\(^\text{3}\) Dimethyl sulfide can be metalated with a butyllithium-TMEDA complex at room temperature (equation 1).\(^\text{4}\) Treatment of chloromethyl \(p\)-tolyl sulfide with magnesium produces the corresponding Grignard reagent; a reaction temperature between 10 and 20 °C is crucial for its efficient generation (equation 2).\(^\text{5}\)

\[
\begin{align*}
\text{Bu}^\text{Li} & \quad \text{DABCO or TMEDA} \\
\rightarrow & \quad \text{RSMe} \\
\rightarrow & \quad \text{RS}-\text{Li} \\
\rightarrow & \quad \text{RS}-\text{Cl} \\
\rightarrow & \quad \text{RS}-\text{MgCl}
\end{align*}
\]

The \(pK_a\) value for 2-CH\(_2\) of 1,3-dithiane is 31.1,\(^\text{6}\) indicating that the sulfenyl group stabilizes the adjacent carbanion. Theoretical studies present convincing evidence for the unimportance of \(d\)-orbital participation in the acidification of C—H bonds \(\alpha\) to sulfur atoms.\(^\text{6,7}\) Whether or not \(3d\)-orbitals are included in the basis set, the preferred conformation of \(\text{CH}_2\text{SH}\) is predicted to be that of an \(sp^3\) carbanion (2).\(^\text{8}\) The calculation, NMR studies and crystallography all support a tetrahedral structure for the \(\alpha\)-lithiated sulfide.\(^\text{9}\)

![Diagram of 2](image)

Anderson and coworkers emphasized the polarizability of sulfur, which accounts for the regiochemistry of C—H acidification by sulfur.\(^\text{10}\) Epiotis et al. developed a hyperconjugative model involving delocalization of the unshared pair on carbon into the low-lying adjacent \(S—R\) antibonding orbital,\(^\text{11}\) which accounts for the stereochemical aspects of C—H bond acidification by sulfur.

2.3.2.2 Addition to C—O Bonds

(Phenylthio)methyl metal (metal = Li or MgCl) adds to the carbonyl group of ketones and aldehydes.\(^\text{3,12,13}\) Benzoyl derivatives of these adducts are converted to alkenes by reductive elimination with Li–NH\(_3\),\(^\text{14}\) TiCl\(_4–\)Zn\(^\text{15}\) or Ti.\(^\text{16}\) Transformation of (3) into an alkene via its phosphoric ester has also been reported (equation 3).\(^\text{17}\)

The above ketone methylenation is applicable to highly hindered ketones, which are usually inert to the Wittig method. For example, a highly hindered tricyclic ketone (norzizanone, 4a) undergoes the methylenylation to give zizaene (4b; equation 4). \(\Delta^2\)-Cholesten-3-one (5a) was also converted to the nonconjugated diene 3-methylene-\(\Delta^2\)-cholestene (5b; equation 5).\(^\text{14}\)

Condensation of the lithio derivative of benzyl phenyl sulfide (6) with benzaldehyde gave two diastereomers of 2-phenylthio-1,2-diphenyl-1-ethanol (7) in a ratio of 60:40 (equation 6).\(^\text{18}\)
In the addition of the sulfide (8), which has a chiral center at the β-position, 1,2-induction was completely stereoselective, while 1,3-asymmetric induction occurred with 80% efficiency (Scheme 1). It has been shown that the critical factor for obtaining high stereoselectivity is a thermodynamic preference in the lithio derivative (9) and not a diastereoselective deprotonation. In essence, C—Li bonds to sulfur are similar to their oxygen and nitrogen counterparts and differ only in the fact that the epimerization rate of (9) is seemingly faster.19
The reaction of \(\alpha \)-sulfenylated allylic carbanions with electrophiles may give both the \(\alpha \)- and \(\gamma \)-products (equation 7). Regiochemical control of this ambident anion is dependent upon many factors, including substituents, counterions, the solvent system, the type of electrophile and steric effects.

When the counterion is lithium, the \(\alpha:\gamma \) regioselectivity depends in part upon the electrophile employed (Scheme 2). 3-Methyl-2-butenyl phenyl sulfide generates an allylic carbanion by the action of \(n \)-butyllithium–THF. Methyl iodide reacts with \(\alpha \)-selectivity (exclusively \(\alpha \) at \(-78^\circ \text{C}\)), whereas acetone predominantly affords the \(\gamma \)-adduct (\(\alpha:\gamma = 25:75 \)). The regioselectivity of alkylation and of reaction with acetone also depends on the presence of solvating species. The results are best explained by assuming that in THF without a complexing agent, the carbanion exists as an ion pair, the lithium ion being closely associated with the \(\alpha \)-carbon. In contrast, the cryptate \([2.2.2]\) accommodates the lithium in its cavity so that solvent-separated ion pairs or free anions are present. The reaction now occurs at both \(\alpha \)- and \(\gamma \)-carbons with methyl iodide (\(\alpha:\gamma = 60:40 \)) and only at the \(\alpha \)-carbon with acetone.\(^{20}\) Addition of the lithio derivative of an aryl allyl sulfide to benzaldehyde (equation 8) was also reported to afford predominantly the corresponding \(\gamma \)-adduct (\(\alpha:\gamma = 15:85 \) or \(28:72 \) in the cases of aryl = phenyl or \(p \)-methoxyphenyl, respectively). The diastereomeric ratio of the product resulting from \(\alpha \)-attack ranges from \(34:66 \) (aryl = mesityl) to \(25:75 \) (aryl = \(p \)-methoxyphenyl).\(^{21}\)

In contrast to lithio derivatives, (isopropylthio)allyl copper reacts with acetone in ether at \(-78^\circ \text{C}\) to yield an \(\alpha \)-adduct as a major product (Scheme 3).\(^{22}\) The reaction between a wide variety of (alkylthio)allyltitanium reagents of type (11) and carbonyl compounds has also been reported (equation 9). Table 1 illustrates how the relative proportions of \(\alpha \)- and \(\gamma \)-adduct formed vary according to the reagent.

The substitution pattern of the starting sulfide (10) can have a pronounced effect on the \(\alpha:\gamma \) ratio in the final condensation products. With unsubstituted sulfides (\(R^1 = R^2 = R^3 = R^4 = \text{H} \)) or \(\alpha \)- and \(\beta \)-mono- and di-substituted sulfides (\(R^1 \) and/or \(R^2 = \text{Me} \)), the \(\alpha \)-selectivities are about 97–99\%. On the other hand, a dramatic alteration in product distribution occurs when the condensation with aldehydes is carried out using \(\gamma \)-substituted sulfides (\(R^3 \) and/or \(R^4 = \text{Me} \)); excellent \(\gamma \)-selectivity was observed. It is highly interesting that \(\alpha \)- and \(\gamma \)-disubstituted sulfide (\(R^1 = R^3 = \text{Me} \)) gives the \(\alpha \)-adduct almost exclusively. The
The value in parenthesis is the ratio of erythro:threo.

The well-known procedure for desulfurization via sulfonium salt formation followed by base-catalyzed cyclization converts this reaction into a stereoselective alkenyloxirane synthesis. Some examples are illustrated in Scheme 4.

The triethylaluminum or triethylborane ate complexes (12) of the (isopropylthio)allyl carbanion react with carbonyl compounds at the α-position (equation 10). In the reactions with carbonyl compounds, very high regioselectivity (for example, butanal 95:5, 3-methylbutanal 99:1, cyclohexanone 92:8 and acetophenone 95:5) was achieved by using the aluminum ate complex. On the other hand, the α-regioselectivity with ketones decreases if the boron ate complex is used (cyclohexanone 72:28, acetophenone 45:55). It is noteworthy that the stereoselectivity of the α-adduct from an aldehyde is low. Presumably the geometry of the double bond in the ate complex (12) is not homogeneous.
Heteroatom-stabilized Carbanion Equivalents

Seebach and coworkers reported that the doubly lithiated 2-propenethiol (13) reacts preferentially in the γ-position with a variety of electrophiles, including aldehydes and ketones. The selectivity is 67–75%. The magnesium derivative (14), readily accessible by addition of MgBr₂ (1 equiv.), reacts with aldehydes and ketones to give α-adducts almost exclusively (more than 90%). Successive addition of a saturated or α,β-unsaturated aldehyde or ketone followed by methyl iodide to a solution of the magnesium derivative at −80 °C affords very high yields of the α-adducts, which are synthetic precursors for vinyloxiranes (Scheme 5).

2.3.2.4 Miscellaneous

Formaldehyde dithioacetals are often utilized as synthetic equivalents of formyl anion (−CHO) and carbonyl dianion (C==O). 1,3-Dithiane is commonly used; its 2-H is quite acidic (pKₐ = 31.1) due to sta-
bilitation by its two adjacent sulfenyl groups. 2-Lithio-1,3-dithiane adds to aldehydes and ketones. Its addition to 4-t-butylcyclohexanone proceeds under kinetic control, and the rates of equatorial and axial attack are comparable.\(^7\) 2-Phenyl-1,3-dithiane generates a more stable carbanion at the 2-position (\(pK_a = 28.5\) in cyclohexylamine), thus enabling thermodynamic control, under which attack is exclusively equatorial. The dianion (15) of 2-hydroxymethyl-1,3-dithiane adds to an epoxycyclohexanone (16) in a highly stereoselective manner, which is the key step in a novel approach to the avermectin southern hexahydrobenzofuran unit (Scheme 6).\(^2\)

![Scheme 6](image)

In the reaction with \(\alpha,\beta\)-unsaturated ketones (18), 2-lithio-1,3-dithiane (17; \(R = H\)) produces 1,2-adduct (20) in THF. By addition of HMPA (1–2 equiv.) to the reaction mixture, 1,4-addition is successfully attained (equation 11).\(^2\) It is noteworthy that the lithio derivative of 2-aryl-1,3-dithiane regiospecifically adds to 2-cyclohexenone in a 1,4-manner (25 °C in THF).\(^3\)

![Scheme 7](image)

The reactions of lithiated tris(phenylthio)-,\(^3\) methoxyphenylthiotrimethylsilyl-,\(^3\) bis(methylthio)trimethylsilyl- and bis(methylthio)stannyli methanes\(^3\) with conjugated ketones give the corresponding 1,4-adducts exclusively.

The allyllithium derived from 2-ethylidene-1,3-dithiane (22) and LDA reacts with an aldehyde (21) at predominantly the \(\alpha\)-position (\(\alpha:\gamma = 90:10\)). When the counterion is changed from lithium to cadmium, the regioselectivity is reversed (\(\alpha:\gamma = 10:90\)), as shown in Scheme 7.\(^4\)
The crotyllithium compound (23) generated from (E)-2-(1-propen-1-yl)-1,3-dithiane reacts with aldehydes to give exclusively γ-adducts, which favor the anti isomer (Scheme 8). However, crotyllithium (23) reacts with ketones at either the α- or the γ-site, depending on the nature of the ketone (for 2-butanone, α:γ = 84:16, anti:syn = 77:23). To account for the high regioselectivity and anti selectivity of the aldehyde addition, a chelation model with a chair-like transition state (25) was proposed. This regio- and diastereo-selective reaction is applicable to syntheses of trans-β,γ-disubstituted γ-lactone (27). The anti γ-adducts are prone to cyclization to afford (26), which undergoes hydrolysis with HgCl₂, leading to (27; equation 12).

\[
\text{Li}^+ \text{CH}_2\text{S(O)H} \rightarrow \text{Li}^+ \text{CH}_2\text{S(O)H} \rightarrow \text{Li}^+ \text{CH}_2\text{S(O)H}
\]

Scheme 8

2.3.3 SULFINYL-STABILIZED CARBANIONS

2.3.3.1 Configuration of the Carbanion

Sulfoxides bearing two different substituents are dissymmetric and resolvable into optically active enantiomeric forms. Since the sulfinyl group is pyramidal, a diastereotopic relationship exists for the methylene protons (H₄ and H₅) and differential acidity of these protons is observed.

It has been demonstrated that pro-(R) hydrogen (H₄) of (S)-benzyl methyl sulfoxide undergoes exchange in alkaline D₂O or in MeOD containing NaOMe at a rate approximately 16 times faster than the pro-(S) hydrogen (H₅). The results hitherto reported are summarized in Figure 1. Deuteration and methylation of benzyl methyl sulfoxide occur with opposite stereospecificity, whereas the corresponding actions of benzyl t-butyl sulfoxide in THF proceed with the same stereospecificity. The lithiated α-sulfinyl carbanions produced from (Sₕ) and (Rₕ)-benzyl methyl sulfoxides may have (Sₕ,Sₕ) and (Sₕ,Rₕ) configurations, respectively. Water comes from the lithiated side of the carbanions because its polarization causes it to interact initially with the counterion. However, methyl iodide is a nonpolar substrate and prefers to react on the more nucleophilic side, which is anti to the sulfur lone pair. Thus, the sulfur lone pair can exert an α-effect to make the anti lone pair more polarizable.

Ab initio MO calculations on the hypothetical anion \(^{-}\text{CH}_2\text{S(O)H}\) suggest a nonplanar geometry to be preferable at the anionic center, and the order of carbanion stability is shown in Figure 2.

This order is not in agreement with most of the results from experiments conducted to determine the conformational preferences of α-sulfinyl carbanions in solution, where solvation and ion-pairing effects are important. For example, Biemann found that the product stereochemistry varies with solvent and temperature, and with the presence or absence of lithium chelating agents such as cryptate. Lithium cation–oxygen chelation may control the conformation in THF (Figure 3), while a free anion is predominant in the presence of the chelating agent.
Sulfur Stabilization

Even the widely accepted assumption of pyramidal sp^3-hybridized α-sulfinyl carbanions has been challenged. A 13C NMR study provides evidence for a chelated α-lithio thiane S-oxide with a planar metalated carbon. The stereoselectivity observed in methylation with MeI is completely reversed with (MeO)$_2$PO. These results are explained in terms of trans approach of MeI to the chelated face and cis approach of (MeO)$_2$PO, which requires coordination to Li$^+$. It was also reported that the carbanion carbon of PhCHLiS(0)Me or Bu'S(0)CHzLi is primarily sp^2-hybridized or intermediate between sp^2- and sp^3-hybridized, respectively.

2.3.3.2 Addition to C—O Bonds

In 1972, Tsuchihashi disclosed that the carbanion (28; Ar = p-tolyl), generated from (R)-methyl p-tolyl sulfoxide with lithium diethylamide, adds to benzaldehyde or α-tetralone to give an adduct (29) in a diastereomeric ratio of 50:50 or 64:36, respectively. Additions of this carbanion to various unsymmetrical ketones are also reported to be poorly diastereoselective (for example, EtCOMe 50:50, Bu'COMe 55:45, Bu'COPh 70:30). Note that in the case of Ar = 2-pyridyl a chiral sulfinyl group increases the asymmetric induction observed in the addition of the corresponding carbanion to carbonyl compounds (PhCHO 80:20, n-C$_9$H$_{18}$CHO 70:30). Since diastereomer pairs of (29) are separable, chromatographic separation followed by reductive desulfurization with Raney Ni provides a method for obtaining optically active alcohols (30; Scheme 9).

Reaction of the α-carbanion of an alkyl aryl sulfoxide (RCH$_2$SOAr) with aldehydes may give four diastereomers. In general, the reaction is highly diastereoselective with respect to the α-sulfinyl carbon, but poorly diastereofacially selective with respect to attack on the carbonyl component. In fact, the α-carbanion (31) of benzyl r-butyl sulfoxide adds to an aldehyde to produce only two diastereomers (32a) and (32b). As shown in Scheme 10, the selectivity increases when the counterion is Zn$^{2+}$. A transition state structure (33) is proposed to account for the anti stereoselection. Addition of the dianion of (R)-3-(p-tolylsulfinyl)propionic acid (34) to aldehydes affords two main diastereoisomeric β-(p-tolylsulfinyl)-γ-lactones (35; R = Ph and Bu', ca. 60:40). These isomers (35) were separated by chromatography, and their
pyrolysis gave optically pure 5-substituted furan-2(5H)-ones (36; Scheme 11). Analogously, optically active cis-7,8-epoxy-2-methyloctadecane (39), the sex attractant of the gypsy moth, was synthesized by utilizing the addition of the α-carbanion of optically active i-butyl 5-methylhexyl sulfoxide (37) to undecanal (38a:38b = ca. 67:33) as shown in Scheme 12.

Condensation of α-sulfinyl carbanions with aldehydes provides a useful method for generating 1,2-asymmetry as well as construction of 1,3-asymmetric relationships in acyclic systems. α-Sulfinyl carbanions such as (40) undergo condensation with aldehydes, yielding the β-hydroxy sulfoxides (41), thus generating two asymmetric centers at C-4 and C-5 (equation 13). Successive treatment of the sulfoxide (42a) with LDA and then with benzaldehyde at −78 °C gave adducts (43) and (44) in 85% yield in a 91:9 ratio, whereas the diastereomer (42b) gave four adducts (45, 46, 47 and 48) in 94% yield of 67:17:13:3 composition, respectively (Scheme 13). In analogous fashion, condensation of the racemic sulfoxides which have the opposite configuration of the β-methyl substituent at C-3 afforded 85–90% yields with benzaldehyde. It is noteworthy that major products (43) and (45) share the same relative stereochemistry along the carbon backbone, in spite of the inversions of sulfinyl configuration. The general mode of the addition demonstrates the same preference for ‘erythro’ orientations at C-4 and C-5 as observed in the addition of an anion to a carbonyl compound, which presumably does not involve a cyclic, chair-like, transition state. An indolizidinyl sulfoxide (49) also adds to butanal via its α-sulfinyl carbanion to afford two diastereomers (50a) and (50b) in a ratio of 2:1. Since the configuration of the newly created
Sulfur Stabilization

hydroxycarbon is always (S), pyrolytic dehydro sulfinylation of (50a) and (50b) furnishes the same product, (−)-elaeokanine B.56

2.3.3.3 Addition to C–N Bonds

In 1973, addition of a carbanion (52; Ar = p-tolyl) to benzylideneaniline (51a; Scheme 15) at −10 to −20 °C was found to be a highly diastereoselective process.57 Later, this and its related reactions were re-examined in detail.58 An anion (52; Ar = Ph) adds smoothly to (51a) at −78 °C over a period of 5 h to give a mixture of the diastereoisomeric adducts with modest diastereoselection (18:82). Longer reaction
times (0.5–20 h) at 0 °C result in very poor diastereoselection (30:70–43:57), suggesting an equilibrium between the anions (53) of the diastereoisomeric adducts. Under kinetically controlled conditions (0 °C/10 min), the reaction of (52; Ar = p-tolyl) with (51b) or (51c) is highly diastereoselective (9:91). The chair transition state (55; equation 14) can account for the preference of the diastereoisomeric adduct (54a) over (54b).

Addition of (52; Ar = p-tolyl) to 3,4-dihydro-6,7-dimethoxyisoquinoline (56) gives a diastereomeric mixture of the adduct (57a:57b = 77:23) under kinetically controlled conditions (–78 °C – 40 °C/2 h), whereas the diastereoselection was reversed to a high degree (8:92) at 0 °C (equation 15).

Since these adducts undergo reductive desulfurization with Raney Ni, the optically active aryl methyl sulfoxide is a versatile reagent for the synthesis of optically active amines from imines.

2.3.3.4 Addition to Nonactivated C–C Bonds

Intramolecular addition of an α-sulfanyl carbanion to an isolated double bond occurs on treatment of medium-ring E-homoallylic sulfoxides (58), (59), (60) and (61) with butyllithium (0.5 equiv.; equations 16–19). Kinetic data suggest that this process is a nucleophilic addition of a carbanion (an α-lithiated sulfoxide) to a nonactivated double bond and takes place readily, provided a suitable proton source is available. Normally the free sulfoxide is the proton donor species.

Under the same conditions, the corresponding (Z)-isomers are inert, even though the E-Z differential strain is negligible in 9- and 10-membered ring systems. The presence of an (E) double bond induces a
conformation in which the double bond lies in a plane almost perpendicular to the mean ring plane and is faced transannularly by the anionic orbital α to the sulfinyl group. Although the cyclization of (58) and (59) is stereospecific, treatment of (60) or (61) with butyllithium (0.5 equiv.) at -30 °C or -20 °C for 2 h produces two isomeric products in about equal amounts. This result is due to kinetic control. When the resulting mixture is allowed to stand at room temperature in the presence of butyllithium, an equilibrium is established between these products to afford the trans-junction isomer (65b) or (65c) exclusively or

This transannular addition of α-sulfinyl carbanions to nonactivated double bonds is utilized as the key step in a synthesis of trans-1-thiadealin (70) in enantiomerically pure form. The required (E)-thiacyclocdec-4-ene S-oxide (66a,b) was prepared via several steps from (RR)-1,6-dibromo-3,4-hexanediol. Upon treatment with butyllithium, a 4:1 mixture of isomeric sulfoxides (66a and 66b) undergoes smooth cyclization to give a mixture of isomeric bicyclic sulfoxides (67a and 67b) in the same 4:1 ratio as the starting material, suggesting that the cyclization is essentially stereospecific. The major isomer (67a) is reduced with PCl$_3$ to a sulfide (68) from which the desired (70) is derived via a thiaoctaline (69; Scheme 16).

2.3.3.5 Addition of Allylic Sulfinyl Carbanions to C=O Bonds

Deprotonation of allyl sulfoxides with LDA generates the corresponding allylic carbanions, which are able to add to aldehydes. Addition of the anion of aryl allyl sulfoxides to aromatic aldehydes proceeds
readily in moderate yields to afford a mixture of products resulting from \(\alpha\)- and \(\gamma\)-attack on the allyl anion (equation 20). All four possible diastereomers are formed from \(\alpha\)-attack. Rapid epimerization at two chiral centers (sulfinyl sulfur and \(\alpha\)-carbon) occurs via allylic sulfoxide–sulfenate 2,3-sigmatropic rearrangement, causing the low stereoselection summarized in Table 2. The \(\gamma\)-product possesses (E)-geometry at the double bond, and 1,5-asymmetric induction is observed to the extent that the major/minor diastereomeric ratio exceeds 2:1. The metalated carbon in the \(\alpha\)-lithiated sulfoxide should be planar and
the lithium cation should chelate with the sulfinyl oxygen. By analogy with the model proposed to explain diastereoselection in the reaction of aldehydes with enolates, the transition states (71) and (72), involving coordination in a six-membered ring, were proposed (Scheme 17).

Table 2 Results of the Addition Reaction in Equation (20)

<table>
<thead>
<tr>
<th>Ar</th>
<th>Ar'</th>
<th>α/γ</th>
<th>Diastereomer ratio</th>
<th>α-Product</th>
<th>γ-Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph</td>
<td>Ph</td>
<td>1/2.1</td>
<td>3/6/7/2</td>
<td>3.0/1</td>
<td></td>
</tr>
<tr>
<td>p-Tol</td>
<td>Ph</td>
<td>1/1.7</td>
<td>3/3/6/2</td>
<td>3.0/1</td>
<td></td>
</tr>
<tr>
<td>p-NO₂C₆H₄</td>
<td>Ph</td>
<td>1/2.2</td>
<td>5/5/5/1</td>
<td>2.0/1</td>
<td></td>
</tr>
<tr>
<td>p-Tol</td>
<td>p-MeOC₆H₄</td>
<td>1/1.0</td>
<td>4/3/1/1</td>
<td>2.0/1</td>
<td></td>
</tr>
<tr>
<td>p-Tol</td>
<td>p-NO₂C₆H₄</td>
<td>1/1.1</td>
<td>8/5/2/1</td>
<td>3.4/1</td>
<td></td>
</tr>
<tr>
<td>p-Tol</td>
<td>2-naphthyl</td>
<td>1/1.5</td>
<td>6/3/2/1</td>
<td>2.5/1</td>
<td></td>
</tr>
</tbody>
</table>

Scheme 17

Treatment of allyl p-tolyl sulfoxide with LDA followed by addition of HMPA (4.4 mol equiv.) and chiral 2-methylalkanal (3 mol equiv.) at -78 °C gave a mixture of readily separable α- and γ-adducts, where the α:γ regioisomer ratios are markedly higher than those obtained in the reaction with aromatic aldehydes. Exposure of the α-adduct to an excess of a thiophile (trimethyl phosphite or dimethylamine in MeOH) results in quenching of the allylic sulfoxide–sulfenate equilibrium and affords diastereoisomeric mixtures of the syn- and anti-diols (Scheme 18), for which some yields and product ratios are shown in Table 3.

Scheme 18
Tandem condensation of chiral α-alkoxy aldehydes with the anion of allyl 2-pyridyl sulfoxide and (MeO)₃P-promoted desulfurization of the resulting α-adduct provide (E)-alkoxydiols. The major stereochemical path in their preparation may be accounted for by the Felkin–Anh (nonchelation control) model (Scheme 19).67

Scheme 19

<table>
<thead>
<tr>
<th>(R')</th>
<th>(R)</th>
<th>Yield (%)</th>
<th>(\text{Syn/anti})</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. LDA</td>
<td>ii. (R) (\overset{\text{CHO}}{\longrightarrow}) (R')</td>
<td>((96))</td>
<td>(\text{syn/anti})</td>
</tr>
<tr>
<td>Me</td>
<td>PhCH₂</td>
<td>51</td>
<td>1/2.5</td>
</tr>
<tr>
<td>Me</td>
<td>Bu'Me₂Si</td>
<td>40</td>
<td>1/5.5</td>
</tr>
<tr>
<td>PhCH₂OCH₂</td>
<td>PhCH₂</td>
<td>68</td>
<td>1/3.0</td>
</tr>
<tr>
<td>C₆H₁₀(Me)CH₂O</td>
<td>60</td>
<td>1/6.5</td>
<td></td>
</tr>
</tbody>
</table>

23.3.6 Addition of Allylic Sulfinyl Carbanions to C—C—C—O Bonds

In preliminary reports, the \(\gamma \)-carbon of the carbanion of allyl phenyl sulfoxide has been shown to attack cyclopentenone and cyclohexenone by 1,4-addition to deliver vinyl sulfoxides.68–71 The lithiated carbanion (75) of 1-(phenylsulfinyl)-2-octene \((E:Z = 85:15)\) adds to 4-\(t \)-butoxycyclopent-2-en-1-one (74) to give \(\text{syn-(E)} \)-vinyllic sulfoxide (76) and \(\text{anti-(E)} \)-vinyllic sulfoxide (77) in the ratio of 79:21. It has been suggested that (76) arises almost exclusively from the \((E)-(75) \), and (77) derives from the \((Z)-(75) \). Both the products have the same geometry about the double bond, but differ in configuration at the allylic carbon atom (equation 21).72,73

Since the 1,4-\(\gamma \)-adducts can be converted to various types of bicyclic compounds,74 1,4-addition of allylic sulfoxides to enones provides a useful tool for stereoselective synthesis of cyclic compounds. Further, the 1,4-addition can be utilized in a three-component coupling process for synthesis of prostanoic acid derivatives (Scheme 20).75 Typical examples of addition of the lithio derivative (78) of \((R)\)-allyl \(p \)-tolyl sulfoxide to cyclic enones are summarized in Scheme 21.76

Only 1,4-\(\gamma \)-adducts are formed in the five-membered ring system and the carbanion, which has \(\text{trans} \) geometry, attacks from the \(\text{si} \) face. The \(\text{trans}-fused 10-membered \) cyclic transition state offers an explanation for this highly stereoselective reaction. Six- and seven-membered cyclic enones provide both 1,4-\(\gamma \) and 1,2-\(\gamma \)-adducts, with the larger ring providing a greater percentage of the 1,2-\(\gamma \)-adduct. With the seven-membered ring, a 58% yield of the 1,2-\(\gamma \)-adduct is isolated. These 1,4- and 1,2-addition re-
actions appear to be kinetically controlled. The same product or product ratio is observed whether the addition reactions are performed at -100 °C or at -50 °C, and the 1,2-γ- and 1,4-γ-adducts do not interconvert under these reaction conditions, or even at 25 °C.

Kinetic resolution is operative in the reaction with 4-substituted cyclopent-2-en-1-ones. For instance, when 2 equiv. of racemic 4-(1-methyl-1-phenylethoxy)-2-cyclopentenone (79) is reacted with the carbanion (78), (S)-(79) reacts to yield predominantly the product derived by approach of the carbanion from the si face of (79). The formation of the cis adduct probably results from the chelation of lithium counterion with the C-4 oxygen (equation 22). Kinetically selective resolution of a bicyclic enone (80) is also effected. On treatment of the carbanion of (R)-(78) with racemic (80) (2 equiv.), an enantiomer of (82) and (S)-(80) are obtained in 80% and 45% yields respectively. Addition of the lithio derivative (2 equiv.) of
racemic cis-crotyl phenyl sulfoxide (81) to (S)-(80) affords a 1,4-\(\gamma\)-adduct (83; 91% yield/82% ee), which is a synthetic precursor of (+)-pentalenene (Scheme 22).\(^{76,77}\)

Stereospecific 1,4-addition of the carbanion (78) to (siloxymethyl)bicyclooctenone (84) yields mainly the corresponding 1,4-\(\gamma\)-adduct. In seven steps, this adduct is converted into the known \(\delta\)-lactol (85), from which pentalenalactone (\(E\))-methyl ester (86) may then be derived (Scheme 23).\(^{78}\)

In addition, the 1,4-addition reaction of the anion (87) derived from various cyclic allylic sulfoxides with 2-cyclopentenones (88) were investigated (Scheme 24).\(^{79}\) Methyl substitution at C-3 of (88) hinders the 1,4-addition. An activated enone (88e), however, affords excellent chemical and optical yields of the 1,4-adducts (89). (+)-12,13-Epoxytrichothece-9-ene (91) and its antipode have been enantioselectively synthesized from (S)-4-methyl-2-cyclohexenone (90) in 11 steps (Scheme 25).\(^{79}\)
Addition of α-Sulfinyl Carbonyl Compounds to C=O Bonds

The metal enolate of (R)-N,N-dimethyl-α-(p-tolylsulfinyl)acetamide (92) reacts with an aldehyde to afford a diastereomeric mixture of adduct (93), which undergoes desulfurization with 10% Na(Hg) in MeOH (NaH$_2$PO$_4$) to give an optically active β-hydroxyamide (94). By the use of Li$^+$ as a counterion, low to medium levels of enantioselection are achieved. However, the magnesium enolate of (92) realizes a high enantioselectivity, as summarized in Table 4. A rigid chelation model, shown in Scheme 26, is suggested for the transition state of this addition.

Similarly, the magnesium enolate of t-butyl (R)-(p-tolylsulfinyl)acetate adds to aldehydes and ketones. The subsequent reductive desulfurization yields the corresponding optically active β-hydroxy esters (Scheme 27). This process can be utilized for preparation of a synthetic intermediate (95) of maytansine with a selectivity of 93:7 (equation 23). Michael-type addition of t-butyl (R)-(p-tolylsulfinyl)acetate to crotonic ester with NaH in DMF has also been reported, but the enantiomeric excess of the desulfurized product is very low (12%).

\[
\begin{align*}
\text{Table 4 Addition of (92) to RCHO} \\
\begin{array}{cccccc}
R & \text{BuLi as base} & \text{Yield ($\%$)} & \text{ee ($\%$)} & \alpha & \text{Bu'MgBr as base} & \text{Yield ($\%$)} & \text{ee ($\%$)} & \alpha \\
Me & 65 & 47 & + & 68 & \gg 99 & - \\
Bu^t & 77 & 45 & + & 71 & 98 & - \\
Pr^t & 78 & 31 & + & 66 & 95 & - \\
Bu^i & 20 & 8 & + & 56 & 90 & - \\
\end{array}
\end{align*}
\]
Heteroatom-stabilized Carbanion Equivalents

Direct condensation of \((p\text{-tolylsulfinyl})\text{methyl ketones}\) (96) with aldehydes followed by reductive desulfurization is an alternative method for obtaining optically active \(\beta\text{-hydroxy ketones}\) (97), but this reaction occurs with only moderate enantiomeric excess (Scheme 28).85

Aldol-type condensation of chiral \(\alpha\text{-sulfinyl hydrazones}\) with aldehydes also provides a route leading to chiral \(\beta\text{-hydroxy ketones}\).86,87 This is exemplified by the synthesis of \((-\text{)-(R)-[6]-gingerol}\) (98; equation 24).88

2.3.3.8 Addition of \(\alpha\text{-Halo Sulfoxides to C=X Bonds}\)

Durst reported that lithiation of chloromethyl phenyl sulfoxide (99) with butyllithium followed by treatment of a symmetrical ketone (−78 °C to −20 °C) affords an adduct (100). This reaction is so highly stereoselective that only one diastereomer is produced. Reaction of (100) with dilute methanolic KOH gives an epoxy sulfoxide (101; equation 25).89,90

When chloromethyl \(p\text{-tolyl sulfoxide}\) (102; \(R = p\text{-tolyl}\)) is treated with carbonyl compounds (103) and potassium \(t\text{-butoxide in } t\text{-butyl alcohol ether, } (p\text{-tolylsulfinyl})\text{oxiranes}\) (104) are directly formed.91 Chloromethyl methyl sulfoxide (102; \(R = \text{Me}\)) exhibits the same behavior (Scheme 29).92 These reactions proceed with high stereoselection at the position \(\alpha\) to the sulfinyl group. The stereochemical course proposed for the attack of the carbanion of an \(\alpha\text{-halo sulfoxide}\) on a carbonyl compound is shown in Figure 4.93
Sulfur Stabilization

\[
\text{O-SO}_2\text{O} \quad R^1 + \quad \text{O} \quad \text{R}^2 \quad \text{H} \quad \xrightarrow{\text{Bu'MgBr}} \quad \text{O-SO}_2\text{O} \quad R^1 \quad \xrightarrow{\text{Al(Hg)}} \quad \text{R}^2 \quad \text{H} \quad \text{optical purity of 60% (98)}
\]

\[
\text{HO} \quad \text{O} \quad \text{R}^1 \quad \text{R}^2
\]

\[
\text{R}^1 \quad \text{R}^2 \quad \text{ee} (%) \quad \text{R}^1 \quad \text{R}^2 \quad \text{ee} (%) \\
\text{H} \quad \text{Et} \quad 64 \quad \text{Et} \quad \text{Et} \quad 78 \\
\text{H} \quad \text{cyclohexyl} \quad 54 \quad \text{Et} \quad \text{cyclohexyl} \quad 74 \\
\text{H} \quad \text{Ph} \quad 72
\]

Scheme 28

\[
\text{Me}_2\text{N}^+ \quad \text{N} \quad \text{O} \quad \text{S} \quad \text{O} \quad \text{R}^1 \quad \text{R}^2 \quad \text{BnO} \quad \text{OMe} \\
\text{BuLi} \quad \text{HMPA} \quad \text{in THF} \quad \text{n-C}_5\text{H}_{11} \text{CHO} \quad \text{Na(Hg)} \\
\text{OMe} \quad \text{Me}_2\text{N}^+ \quad \text{N} \quad \text{OH} \quad \text{n-C}_5\text{H}_{11} \quad \text{OMe} \\
optical purity of 60% (98)
\]

Scheme 29

\[
\text{S} \quad \text{Cl} \quad \text{Ph} \quad \xrightarrow{i, \text{BuLi}} \quad \text{S} \quad \text{R} \quad \text{OH} \quad \xrightarrow{\text{KOH, MeOH}} \quad \text{S} \quad \text{O} \quad \text{R} \\
\text{R}^1 = \text{Me}, \text{R}^2 = \text{Bu}, \text{R}^3 = \text{Me}, \quad 75:25
\]

It is noteworthy that the sterically hindered epoxide is preferentially formed in this Darzens-type condensation, which is in sharp contrast with that of \(\alpha\)-halo sulfones (see Section 2.3.4.4). This intriguing

\[
\text{S} \quad \text{Cl} \quad \text{R}^1 \quad \xrightarrow{\text{Bu'OK}} \quad \text{S} \quad \text{R}^2 \quad \text{R}^3 \quad \text{S} \quad \text{Cl} \quad \text{R}^1 \quad \text{R}^2 \quad \text{R}^3
\]

\[
R^1 = \text{Tol}, R^2 = \text{Ph}, R^3 = \text{H}, \quad 100:0 \\
R^1 = \text{Me}, R^2 = \text{Bu}, R^3 = \text{Me}, \quad 75:25
\]

Scheme 29
phenomenon may be rationalized in terms of a kinetically controlled approach of the anion of α-halo sulfoxide to aldehydes or ketones.92

Lithio-fluoro (or -chloro) methyl phenyl sulfoxide reacts with N-(benzylidene)aniline derivatives (105) to afford the corresponding aziridines (106) in good yields. Two diastereomeric isomers are produced, but the trans isomer is the major product except in the case of N-benzylidene-p-nitroaniline (Scheme 30).94

\[
\begin{align*}
\text{Ph} \quad \text{S} & \quad \text{F} + \quad \text{Ar} \quad \text{N} \quad \text{Ar}' \\
\text{Ph} & \quad \text{S} & \quad \text{F} + \quad \text{Ar} \quad \text{N} \quad \text{Ar}' \\
\end{align*}
\]

(105)

\[
\begin{align*}
\text{Ar} & = \text{Ph}, \quad \text{Ar}' = \text{Ph}, \quad 38:72 \\
\text{Ar} & = p-\text{ClC}_6\text{H}_4, \quad \text{Ar}' = \text{Ph}, \quad 45:55 \\
\text{Ar} & = p-\text{NO}_2\text{C}_6\text{H}_4, \quad \text{Ar}' = \text{Ph}, \quad 100:0 \\
\text{Ar} & = \text{Ph}, \quad \text{Ar}' = p-\text{BrC}_6\text{H}_4, \quad 29:71 \\
\end{align*}
\]

Scheme 30

The Darzens-type products from α-halo sulfoxides and carbonyl compounds undergo reductive desulfurization by the action of butyllithium. This is a useful synthetic route to various epoxides. Yamakawa and coworkers disclosed a novel asymmetric synthesis of epoxides (109) using optically active 1-chloroalkyl p-tolyl sulfoxide (107).93,95 This method is most effective when the starting ketones are symmetrical, because only one diastereomer is then formed in the Darzens-type condensation (equation 26).

\[
\begin{align*}
\text{S} & \quad \text{O} \quad \text{R} \\
\text{Cl} & \quad \text{R}' \quad \text{OH} \\
\end{align*}
\]

(107)

\[
\begin{align*}
\text{R} & = \text{n-C}_{10}\text{H}_{23}, \quad \text{R}' = \text{Me} \text{ or } 2\text{R}' = (\text{CH}_2)_3 \text{ or } (\text{CH}_2)_4 \\
\end{align*}
\]

(26)

2.3.3.9 Addition of Dithioacetal S-Oxides and S,S'-Dioxides to C=X Bonds

Dropwise addition of butyllithium to a solution of (±)-1,3-dithiane S,S'-dioxide (110) in pyridine–THF (1.5:1) generates an anion (111), which reacts with an aldehyde to give an adduct (112) as a 1:1 diastereomeric mixture. The reaction is extremely rapid at -78 °C, but the kinetic selectivity is moderate. In the reaction with benzaldehyde or pivalaldehyde, equilibration is attained at 0 °C to give predominantly a single diastereomer in good yield (Scheme 31).96

Formaldehyde dimethyl dithiocetal S-oxide (FAMSO; 113) and its ethyl analog are widely used as synthetic carbonyl equivalents.97,98 Addition of the lithio derivative of (113) to aldehydes and ketones followed by acidic hydrolysis is a preparative method for α-hydroxy aldehyde derivatives (equation 27).99 A chiral analog of (113), (S)-formaldehyde di-p-tolyl dithioacetal S-oxide (114), can be synthesized from (−)-mentyl (R)-p-toluenesulfinate.5,100 The reaction of the lithio derivative of (S)-(114)
with benzaldehyde in THF at −78 °C affords an adduct (115), which is transformed into (R)-α-methoxyphenylacetaldehyde (116) with an enantiomeric excess of more than 70%. The intermediary adduct (115) should consist of four stereoisomers, but the ratio is reported to be 55:30:15:0 [tentatively assigned (1S,2S,3R):(1S,2R,3R):(1S,2S,3S):(1S,2R,3S)]. It is noteworthy that a highly stereoselective formation of the adduct is achieved by NaBH₄ reduction of the benzoyl derivative (117) in MeOH–NH₃ (Scheme 32).

The anion of an aldehyde dithioacetal S-oxide is well known to add to α,β-unsaturated carbonyl compounds. Conjugate addition of formaldehyde di-p-tolyl dithioacetal S-oxide (114) to open-chain and cyclic enones is achieved by using HMPA as a polar cosolvent in THF (−78 °C). The lithio derivative of (S)-(114) was found to add to 2-cyclopentenone with asymmetric induction. Transformation of the dithioacetal part into a formyl group gives 3-formylcyclopentanone in 39% enantiomeric excess (equation 28). Interestingly, highly asymmetric induction is observed in the conjugate addition of the
The enone (118) was added at -78 °C to the anion of (S)-(114) in THF containing HMPA (10 mol equiv.). After 30 min at -78 °C, usual work-up gave the 1,4-addition product (119) in 45% yield. The ratio of the four trans diastereomers was 48:44:5:3 [(1S,2R or S,3R,4S):(1S,2S or R,3R,4S):(1S,2S or S,3S,4R):(1S,2R or R,3S,4R)]. Formation of significant amounts (>90%) of only two diastereomers should be noted. The key step of this asymmetric synthesis is the addition of a chiral formyl anion equivalent to the enone (118). The reaction proceeds with high β- and γ-asymmetric induction of 92% and with poor α-stereoselection (52:48), probably due to the presence of α- and β-substituents of (118), which create a more demanding steric array in the transition state.

2.3.4 SULFONYL-STABILIZED CARBANIONS

2.3.4.1 Configuration of the Carbanion

Configuration of an α-sulfonyl carbanion has been much investigated both theoretically and experimentally. Several experiments were designed to distinguish between planar and pyramidal structures for α-sulfonyl carbanions, which investigated: (i) the rate of H/D exchange of 1-phenylethyl phenyl sulfoxide; (ii) the intramolecular H/D exchange of cyclopropyl alkyl sulfoxides; and (iii) the base-catalyzed decarboxylation of optically active 2-methyltetrahydrothiophene-2-carboxylic acid 1,1-dioxide derivatives. The results suggest that α-sulfonyl carbanions are symmetrical (planar) as discrete reaction intermediates in asymmetric environments.

Ab initio calculations on the hypothetical α-sulfonyl carbanion HSO₂CH⁻ suggested that the geometry of the anionic carbon is intermediate between sp^2 and sp^3 structures. Further, HSO₂CH₂Li was calculated to have only an unsymmetrically chelated structure (120; Figure 5). Bors and Streitwieser, Jr. also reported theoretical (ab initio) studies of the anion of dimethyl sulfoxide, showing that the pyramidal anion is 0.57 kcal mol⁻¹ (1 cal = 4.184 J) higher in energy over the planar form. The most stable geometry of the lithium salt of this anion is a structure (121), which is similar to (120). Another minimum with an unusual structure (122), is 1.1 kcal mol⁻¹ higher in energy than (121; see Figure 6).

It should be noted that the crystal structure of the Li/TMEDA salt of benzy1 phenyl sulfoxide reported by Boche is conceptually similar to the theoretical structure (122). X-Ray structure determination of α-[(phenylsulfonyl)benzyl]lithium–TMEDA, α-[(phenylsulfonyl)ally]lithium and the potassium salt of bis(methylsulfonyl)-3-(2,6-dimethoxy)pyridyl)sulfonylmethane shows that the coordination about the anionic carbon atom is nearly planar, and that the p-orbital on the anionic carbon is approximately gauche to the two oxygen atoms on the sulfox.

The anionic carbon atom can be described as interacting with the sulfur atoms in an ylide-like manner with a barrier to rotation about the C-SO_2 bond.

2.3.4.2 Addition to C=O Bonds

Sulfonyl groups are useful for organic synthesis, and several methods have been elucidated for generation of their \(\alpha \)-anions, for example: (i) action of butyllithium; (ii) treatment of \(\alpha \)-silyl sulfone with fluoride anion; (iii) addition of an anion to an \(\alpha,\beta \)-unsaturated sulfone, and so on. Although the carbanion \(\alpha \) to the sulfonyl group has the ability to add inter- or intra-molecularly to \(\text{C}=\text{O} \) bonds, the stereoselectivity of this addition is relatively low. Fluoride-induced reaction of \(\text{(123)} \) gave a cyclization product \(\text{(124)} \) as a 75:25 mixture of two diastereomers (equation 29). Therefore, addition of the \(\alpha \)-sulfonyl carbanion to a formyl group is usually utilized in combination with a subsequent reaction to delete the newly created asymmetry. In the above case, reductive cleavage of \(\text{(124)} \) gave the corresponding alkene \(\text{(125)} \). Intermolecular addition of an \(\alpha \)-sulfonyl carbanion to an aldehyde was utilized as an efficient method for coupling of subunits in a synthesis of FK506. The lithium salt of \(\text{(126)} \) reacted with an aldehyde \(\text{(127)} \) in THF at \(-78^\circ \text{C} \). Oxidation of the resultant product mixture \(\text{(128)} \) with Dess–Martin periodinane afforded keto sulfone diastereomers which, upon reduction with lithium naphthalenide, were converted into the homogeneous ketone \(\text{(129)} \) in 60% overall yield (equation 30).124

\[
\begin{align*}
\text{(123)} & \quad \text{Me}_3\text{Si} \quad \text{PhSO}_2 \quad \text{OH} \\
& \quad \text{TBAF, Et}_2\text{O} \\
& \quad 25^\circ \text{C/0.75 h} \quad \quad \quad \quad \quad \quad \quad 78\%
\end{align*}
\]

\[
\begin{align*}
\text{(124)} & \quad \text{75:25} \\
& \quad \text{HO} \quad \text{SO}_2\text{Ph} \\
& \quad \text{TBAF, Et}_2\text{O} \\
& \quad 25^\circ \text{C/0.75 h} \quad \quad \quad \quad \quad \quad \quad 78\%
\end{align*}
\]

\[
\begin{align*}
\text{(123)} & \quad \text{Me}_3\text{Si} \quad \text{PhSO}_2 \quad \text{OH} \\
& \quad \text{TBAF, Et}_2\text{O} \\
& \quad 25^\circ \text{C/0.75 h} \quad \quad \quad \quad \quad \quad \quad 78\%
\end{align*}
\]

2.3.4.3 Addition of Allylic Sulfonyl Carbanions to C–X Bonds

The butyllithium-generated anion of an allylic sulfone was reported to add to conjugate enones, but different regioselectivity was observed for 2-cyclohexenone \((1,4-\gamma)\) and 3-penten-2-one \((1,4-\alpha)\), as shown in equation (31). Clean 1,4-\(\alpha \) additions to both acyclic and cyclic enones can be realized when the lithio carbanions are allowed to react in the presence of HMPA \((2 \text{ mol equiv.) at } \sim -78^\circ \text{C} \). Under these conditions, allyl phenyl sulfone reacts with 2-cyclohexenone, 2-methyl-2-cyclopentenone and 3-methyl-2-cyclohexenone, giving the corresponding 1,4-\(\alpha \) adducts as a 75:25 mixture of two diastereoisomers. In the reaction of allylic phenyl sulfone with an acyclic enone, 4-methyl-3-penten-2-one,
Heteroatom-stabilized Carbanion Equivalents

\[
\text{(126)} \quad \text{Bu}^3\text{Me}_2\text{SiO} \quad \text{SO}_2\text{Ph} \quad \text{MeO} \quad \text{Bu}^3\text{Li} \quad \text{OHC} \quad \text{Ar} \\
\]

\[
\text{(127)} \quad \text{Bu}^3\text{Me}_2\text{SiO} \quad \text{OH} \quad \text{Bu}^3\text{Me}_2\text{SiO} \\
\]

\[
\text{(128)} \quad \text{Bu}^3\text{Me}_2\text{SiO} \quad \text{OH} \quad \text{Bu}^3\text{Me}_2\text{SiO} \quad \text{PhSO}_2 \quad \text{O} \\
\]

\[
\text{(129)} \quad \text{Bu}^3\text{Me}_2\text{SiO} \quad \text{OH} \quad \text{Bu}^3\text{Me}_2\text{SiO} \quad \text{PhSO}_2 \quad \text{O} \\
\]

\[
\text{(130)} \quad \text{ArSO}_2\text{Cl} \quad \text{RCH}_2\text{CHO} \quad \text{ArSO}_2\text{Cl} \\
\]

\[
\text{(131)} \quad \text{ArSO}_2\text{Cl} \quad \text{ArSO}_2\text{Cl} \\
\]

\[
\text{(132)} \quad \text{ArSO}_2\text{Cl} \quad \text{R} \quad \text{O} \\
\]

\[
\text{(133)} \quad \text{ArSO}_2\text{Cl} \quad \text{R} \\
\]

A 1,4-\(\alpha\) adduct is exclusively produced. From several experiments, it has been concluded that the rapid and highly regioselective formation of 1,4-\(\alpha\) adduct in the THF–HMPA (2 mol equiv.) system results from a direct conjugate addition rather than a kinetically controlled 1,2-\(\alpha\)-addition followed by a rearrangement.

2.3.4.4 Addition of \(\alpha\)-Halo Sulfones to C–O Bonds

When chloromethyl phenyl sulfone (130; \(\text{Ar} = \text{phenyl}\)) was subjected to the Darzens-type reaction with an aldehyde, a thermodynamically stable \textit{trans} isomer (133) was produced exclusively (equation 32). This is in sharp contrast with the corresponding reaction of chloromethyl phenyl sulfoxide. Tavares proposed that the initial nucleophilic attack of the \(\alpha\)-sulfonyl carbanion upon a carbonyl compound is rapidly reversible due to its stability, and that the product-determining step is the ring closure. Thermodynamic equilibrium between the two diastereomers of (132) allows predominant formation of the thermodynamically stable isomer (133) from the preferred transition state.\(^{127}\)

\[
\text{ArSO}_2\text{Cl} \quad \text{RCH}_2\text{CHO} \quad \text{ArSO}_2\text{Cl} \quad \text{ArSO}_2\text{Cl} \\
\]

\[
\text{ArSO}_2\text{Cl} \quad \text{O} \quad \text{ArSO}_2\text{Cl} \\
\]

\[
\text{ArSO}_2\text{Cl} \quad \text{R} \\
\]

Treatment of the epoxy sulfones obtained thus with MgBr\(_2\) produces \(\alpha\)-bromo ketones or \(\alpha\)-bromo aldehydes.\(^{128}\) This conversion can be applied to stereoselective preparations of \(\alpha\)-bromo methyl ketones from cyclohexanone derivatives. Thus, treatment of 17-\(\beta\)-hydroxy-5-\(\alpha\)-androstan-3-one (134) with 1-chloroethyl phenyl sulfone provides an epoxy sulfone (135), which is cleaved by MgBr\(_2\) to give a 99:1 mixture of 3-acetyl-3-bromoandrostanes (136 and 137; equation 33), whereas similar treatment of 17-\(\beta\)-hydroxy-5-\(\beta\)-androstan-3-one (138) gives a 4:96 mixture of 3-acetyl-3-bromoandrostanes (139 and 140; equation 34). These facts may reflect the steric course of the initial attack of the \(\alpha\)-sulfonyl carbanion on the carbonyl face.
2.3.5 SULFONIMIDOYL-STABILIZED CARBANIONS

2.3.5.1 Configuration of the Carbanion

Bordwell estimated the pKₐ of N,S-dimethyl-S-phenylsulfoximine (141) in DMSO to be about 33, less acidic than methyl phenyl sulfone by about 4 pK units. From a cyclopropyl effect on the equilibrium acidity of N-phenylsulfonyl-S-methyl-S-phenylsulfoximine (142), it was concluded that the carbanion is planar or nearly planar to the sulfonimidoyl group. However, on the basis of the ¹JCH coupling constant in a ¹³C NMR spectroscopic study, it was concluded by Marquet that the configuration of the lithiated α-carbon (142) is pyramidal.

X-Ray structure analyses of the α-lithiated (141) and N-trimethylsilyl-S-trimethylsilylmethyl-S-phenylsulfoximine (143) were reported. The latter compound can be crystallized as a tetramer including two molecules of cyclohexane, and its α-carbon is shown to be markedly pyramidalized. The ¹JCH value of its α-carbon varies depending on the solvent employed, suggesting a hybrization between sp² and sp³ in cyclohexane and a nearly sp² hybrization in THF.
2.3.5.2 Addition to C—O Bonds

In 1971, Johnson and a coworker reported that the lithio derivative of (S)-N,S-dimethyl-S-phenylsulfoximine (141) added to benzaldehyde in THF at room temperature to give an adduct as a 75:25 mixture of two diastereomers. Fractional crystallization gave one of the diastereomers in a pure form. Treatment of this material with aluminum amalgam in aqueous THF yielded optically pure (R)-1-phenylethanol. This preliminary result was extended to a general method for syntheses of optically active alcohols. By addition of the lithium derivative of (S)-(141) to prochiral ketones and aldehydes, optically active β-hydroxy sulfoximines were prepared as diastereomeric pairs. The ketone adducts (144) showed moderate diastereoselectivities (for example, 60:40 for propiophenone). After separation by medium pressure chromatography on silica gel, each diastereomer was desulfurized with Raney nickel to yield an optically active tertiary alcohol (145; Scheme 33). When the aldehyde adducts (146) are treated with Raney nickel without separation into each diastereomer, the corresponding secondary alcohols (147) are yielded in optical purities of 25–46% (equation 35).

\[
\begin{align*}
\text{Bu}^n\text{Li} & \xrightarrow{\text{RCHO}} (146) \\
\text{Raney Ni} & \xrightarrow{} (147)
\end{align*}
\]

Scheme 33

N-Silyl-S-methyl-S-phenylsulfoximine (148) adds to aldehydes in ether at −78 °C. Desilylation of the resulting adducts with hydrochloric acid affords N-unsubstituted β-hydroxyalkyl sulffoximines (149; Scheme 34). The product ratios are insensitive to the steric bulk of the reacting aldehydes and to reaction temperature (−78 to −10 °C). The use of a larger N-silyl group enhances the diastereoselectivity of 1,2-addition, particularly when a sterically bulky aldehyde is used. The oxygen-coordinated model (150) provides for interaction of the silylated sulffoximine nitrogen with the R group of the incoming aldehyde.

\[
\begin{align*}
\text{Bu}^n\text{Li} & \xrightarrow{\text{RCHO}} (149a) \\
\text{H}^+ & \xrightarrow{} (149b)
\end{align*}
\]

Scheme 34

(S)-(141) is also known to be a reagent for ketone methylenation with optical resolution. Thus, addition of (S)-(141) to a racemic tricyclic ketone (151) resulted in the production of two diastereomers, (+)-(152) and (+)-(153), which were readily separated by flash chromatography. Treatment of (+)-(152) with...
aluminum amalgam and acetic acid in aqueous THF gave (−)-β-panasinsene (154) in 96% yield. Similar treatment of (+)-(153) gave the unnatural enantiomeric (+)-β-panasinsene (155; Scheme 35).

\[
\text{(S)-(141) + (151)} \rightarrow \text{(152) 42%} \quad \text{(153) 33%}
\]

Scheme 35

The adduct (157) derived from (S)-(141) and an α,β-unsaturated ketone (156) undergoes Simmons-Smith cyclopropanation which is directed by the coexisting β-hydroxsulfoximine chiral center. As outlined in Scheme 36, this is a new methodology for optical activation of cyclopropyl ketones (159). Indeed, optically active tricyclic ketones (−)-(161) and (+)-(161) were synthesized from a bicyclic ketone (160) in optical purities of 96% and 94%, respectively (equation 36).
The same type of process using osmylation instead of the Simmons–Smith reaction leads to a synthesis of enantiomerically pure 2,3-dihydroxycycloalkanones from 2-cycloalkenones. Addition of \((S)-\)\((141)\) to 3,5,5-trimethyl-2-cyclohexenone \((162)\) produces a mixture of diastereomers \((163a)\) and \((163b)\), which are easily separable by silica gel chromatography. Treatment of the individual diastereomers with triethylamine N-oxide and \(\text{OsO}_4\) (5 mol %) affords crude triols. In each case, a single diastereomeric product is produced. The subsequent thermolysis of the diastereomeric triols gives enantiomeric 2,3-dihydroxy-3,5,5-trimethyl-2-cyclohexanones (164; Scheme 37).

Optical resolution of ketones using \((S)-\)\((141)\) has also been reported. As mentioned above, the addition of \((S)-\)\((141)\) as its \(\alpha\)-lithio derivative to ketones occurs readily and irreversibly at \(-78\) °C to give an adduct in excellent yield. The adduct usually consists of two or three diastereomers, which are separated by chromatography. Envelope-shaped bicyclic ketones such as \((165)\) and \((166)\) give diastereofacial specificity on addition of the lithio derivative of \((S)-\)\((141)\) to form two diastereomers in a 50:50 ratio. Simple 2-substituted cyclohexanones such as \((167)\) and \((168)\) generally give rise to three diastereomeric adducts (61:22:17 and 57:25:18, respectively): two major adducts resulting from equatorial addition and a single minor product resulting from axial addition. Steric complications arise during axial attack, but with only one of the two diastereomeric transition states. The diastereofacial selectivity of chiral acyclic ketones (or aldehydes) is usually low, and four diastereomers result from the addition of \((S)-\)\((141)\). Thermolysis of the individual diastereomers occurs smoothly at 80–120 °C to regenerate the optically active ketone and the starting \((S)-\)\((141)\). This technique is applicable to resolving various cyclic ketones (169, 170 and 171), which are useful intermediates for the synthesis of biologically active compounds.
2.3.5.3 Others

The α-carbanion of an N-substituted sulfoximine adds to cycloalkadiene-molybdenum complexes (173) with asymmetric induction. Although the reaction of N-substituted S-methyl-S-phenylsulfoximine is problematic, giving multiple products, the enolate ion of its S-(methoxycarbonylmethyl)analog (172) satisfactorily reacts with these complexes. It was established that the enolates derived from (R)-(172) preferentially add to the pro-(R) terminus of the complexes. Desulfonylation of the adducts (174) gave enantiomerically enriched monoester derivatives (175; equation 37), which could be further functionalized by hydride abstraction and a second nucleophilic addition. Typical results are summarized in Table 5. The reactions show a marked dependence on the sulfoximine N-substituent. The corresponding sodium and potassium enolates gave quite similar enantiomeric excesses, higher in all cases than those observed for the lithium enolates. The asymmetric inductions observed for reactions of complexes (173) are quite respectable and synthetically useful. To explain this stereoselectivity, open transition state models are proposed. The similar reaction of (172) to give dienyliron complexes (176) and (177) was also reported. Since the observed asymmetric inductions are lower, these reactions seem to be less useful.

\[
\text{RN}=\text{S}^{\text{O}}\text{CO}_{2}\text{Me} \quad + \quad \text{Mo}(\text{CO})_{2}\text{Cp} \quad \xrightarrow{\text{base}} \quad \text{RN}^{+}\text{S}^{\text{O}}\text{CO}_{2}\text{Me}\quad \xrightarrow{\text{Al(Hg)}} \quad \text{Mo}(\text{CO})_{2}\text{Cp}
\]

(172) \(n = 1, 2\)

(173) \(n = 1, 2\)

(174) \(n = 1, 2\)

(175) \(n = 1, 2\)

Table 5 Asymmetric Induction in Equation (37)

<table>
<thead>
<tr>
<th>(n)</th>
<th>((173))</th>
<th>(R^*)</th>
<th>Base</th>
<th>Yield (%)(^b)</th>
<th>((175))</th>
<th>ee (%)(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ts (+)</td>
<td>Bu'OK</td>
<td>79</td>
<td>16 (+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Me (+)</td>
<td>NaH</td>
<td>45</td>
<td>35 (+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>TBDMS (+)</td>
<td>Bu'OK</td>
<td>80</td>
<td>78 (−)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>DMTS (−)</td>
<td>LDA</td>
<td>77</td>
<td>55 (−)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>DMTS (−)</td>
<td>NaH</td>
<td>83</td>
<td>75 (−)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>DMTS (−)</td>
<td>Bu'OK</td>
<td>80</td>
<td>80 (−)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>DMTS (−)</td>
<td>Bu'OK</td>
<td>80</td>
<td>85 (−)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^{a}(+)^{\text{r}}\) or \((-)^{\text{l}}\) indicates enantiomer. \(^{b}\)Overall yield after desulfonylation.

Recently Gais and coworkers disclosed an asymmetric synthesis of alkyl-substituted exocyclic alkenes from ketones by the use of optically active \(N,S\)-dimethyl-S-phenylsulfoximine (141). Scheme 38 shows the conversion of 4-\(t\)-butylcyclohexanone (178) into optically active 4-\(t\)-butyl-1-ethylidenecyclohexane (182). Addition of the lithiated (S)-(141) to (178) affords two diastereomeric adducts (179) and (180), which are easily separable. Trimethylsilylation followed by action of butyllithium brings about asymmetric elimination of LiOSiMes, leading to an alkenylsulfoximine (181). Treatment of (181) with dimethylzinc in the presence of MgBr\(_2\) (2 equiv.) gives the enantiomerically pure alkene (182) in 74% yield. This method is effectively applicable to stereoselective synthesis of a precursor (186) for carbacyclins. Highly selective \textit{exo} addition of the lithiated (\(R\)-(141) to bicyclic ketone (183) yields the
β-hydroxysulfoximine (184). Silylation and then subsequent asymmetric elimination of LiOSiMe₃ affords the (Z)-alkenylsulfoximine (185) with more than 98% diastereoselectivity. In the reaction of (185) with a dialkylzinc in ether in the presence of NiCl₂(DPPP), a carbacyclin precursor (186) is obtained in 70% yield with 99:1 diastereoselectivity (Scheme 39).

Scheme 38

Scheme 39

2.3.6 REFERENCES

Sulfur Stabilization

2.4

The Benzoin and Related Acyl Anion Equivalent Reactions

ALFRED HASSNER
Bar-Ilan University, Ramat-Gan, Israel

and

K. M. LOKANATHA RAI
University of Mysore, India

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.1 INTRODUCTION</td>
<td>542</td>
</tr>
<tr>
<td>2.4.1.1 Catalysts for Benzoin Formation</td>
<td>543</td>
</tr>
<tr>
<td>2.4.1.2 Masked Acyl Anion Equivalents</td>
<td>544</td>
</tr>
<tr>
<td>2.4.1.3 Electrophiles</td>
<td>544</td>
</tr>
<tr>
<td>2.4.1.4 Miscellaneous</td>
<td>544</td>
</tr>
<tr>
<td>2.4.2 CHIRAL CYANOHYDRINS</td>
<td>546</td>
</tr>
<tr>
<td>2.4.2.1 1,2-Addition to Aldehydes and Ketones</td>
<td>546</td>
</tr>
<tr>
<td>2.4.2.2 1,4-Addition to α,β-unsaturated Carbonyl Compounds</td>
<td>546</td>
</tr>
<tr>
<td>2.4.2.3 Addition to Mannich Bases</td>
<td>547</td>
</tr>
<tr>
<td>2.4.2.4 Miscellaneous Reactions of Cyanohydrins</td>
<td>547</td>
</tr>
<tr>
<td>2.4.3 O-PROTECTED CYANOHYDRINS</td>
<td>547</td>
</tr>
<tr>
<td>2.4.3.1 O-Silyl-protected Cyanohydrins</td>
<td>548</td>
</tr>
<tr>
<td>2.4.3.1.1 1,2-Addition to aldehydes and ketones</td>
<td>548</td>
</tr>
<tr>
<td>2.4.3.1.2 1,4-Addition to α,β-unsaturated carbonyl compounds</td>
<td>548</td>
</tr>
<tr>
<td>2.4.3.1.3 Alkylation with R—X</td>
<td>550</td>
</tr>
<tr>
<td>2.4.3.1.4 Miscellaneous reactions of O-silylated cyanohydrins</td>
<td>551</td>
</tr>
<tr>
<td>2.4.3.2 Cyanohydrin Ethers and Esters</td>
<td>551</td>
</tr>
<tr>
<td>2.4.3.2.1 1,2-Addition to aldehydes and ketones</td>
<td>551</td>
</tr>
<tr>
<td>2.4.3.2.2 1,4-Addition to α,β-unsaturated carbonyl compounds</td>
<td>552</td>
</tr>
<tr>
<td>2.4.3.2.3 Alkylation with R—X</td>
<td>552</td>
</tr>
<tr>
<td>2.4.3.2.4 Miscellaneous reactions</td>
<td>553</td>
</tr>
<tr>
<td>2.4.4 α-(DIALKYLAMINO)NITRILES</td>
<td>554</td>
</tr>
<tr>
<td>2.4.4.1 1,2-Addition to Aldehydes and Ketones</td>
<td>555</td>
</tr>
<tr>
<td>2.4.4.2 1,4-Addition to α,β-unsaturated Carbonyl Compounds</td>
<td>556</td>
</tr>
<tr>
<td>2.4.4.3 Alkylation with R—X</td>
<td>557</td>
</tr>
<tr>
<td>2.4.4.4 Miscellaneous Reactions of α-Aminonitriles</td>
<td>559</td>
</tr>
<tr>
<td>2.4.5 CYANOPHOSPHATES</td>
<td>560</td>
</tr>
<tr>
<td>2.4.6 α-THIONITRILES</td>
<td>561</td>
</tr>
<tr>
<td>2.4.7 α-(ARYLESELENO)NITRILES</td>
<td>562</td>
</tr>
<tr>
<td>2.4.8 α-HETEROSUBSTITUTED PHOSPHONATE CARBANIONS AS ACYL ANION EQUIVALENTS</td>
<td>562</td>
</tr>
<tr>
<td>2.4.8.1 1,2-Addition to Aldehydes and Ketones</td>
<td>562</td>
</tr>
<tr>
<td>2.4.8.2 Alkylation with R—X</td>
<td>563</td>
</tr>
</tbody>
</table>
C--C bond formation is a pivotal process in organic synthesis.1,2 An effective pathway for C--C bond formation involves the reaction of an enolate at the α-position of a carbonyl compound with a carbon electrophile (alkyl halide, epoxide, carbonyl or unsaturated carbonyl compound). An alternative pathway would involve reaction of an acyl anion with an electrophile. Since acyl anions are in general unattainable, a great deal of effort has been expended to find masked acyl anions (acyl anion equivalents),3 usually compounds of type RCXY, in which CXY can be reconverted into a carbonyl group. The benzoin condensation (Scheme 1), one of the oldest reactions in organic chemistry, represents a special case of such masked acyl anions. In this chapter we do not aim at exhaustive coverage of the subject but rather to give examples that highlight the utility of acyl anion equivalents, especially those related to cyanohydrins, in synthetic manipulations.

\begin{equation}
\text{RCHO} + \text{CN}^- \rightleftharpoons \text{R-CH} = \text{C}^- \overset{\text{CN}}{\longrightarrow} \text{RCHOHCOAr}
\end{equation}

Scheme 1

In the benzoin condensation, both aromatic and heterocyclic aldehydes are transformed into α-hydroxy ketones of the general formula ArCHOHCOAr, often called benzoins.4--6 This class of compounds is frequently encountered in natural products, hence the benzoin and related reactions have received much attention.7--13 The reaction employs a cyanide ion as the catalyst and the mechanism, proposed by Lapworth,4 involves formation of carbanions stabilized by the nitrile group (Scheme 1).

\begin{equation}
\text{ArC}=\text{O} + \text{Ar}^1\text{CHO} \xrightarrow{\text{KCN}} \text{ArC}\text{OAr} + \text{ArCHO}
\end{equation}

The fact that treatment of a benzoin with potassium cyanide in the presence of a second aldehyde leads to mixed benzoins indicates that all the steps are reversible (equation 1).

The carbanion (1) can be generated independently from cyanohydrins and can be added to the double bond of α,β-unsaturated ketones, esters and nitriles by an irreversible reaction which ultimately leads to γ-diketones, 4-oxocarboxylic esters and 4-oxonitriles.7

Studies on thiamine (vitamin B\textsubscript{1}) catalyzed formation of acyloins from aliphatic aldehydes and on thiamine or thiamine diphosphate catalyzed decarboxylation of pyruvate7,8 have established the mechanism for the catalytic activity of 1,3-thiazolium salts in carbonyl condensation reactions. In the presence of bases, quaternary thiazolium salts are transformed into the ylide structure (2), the ylide being able to exert a catalytic effect resembling that of the cyanide ion in the benzoin condensation (Scheme 2). Like cyanide, the zwitterion (2), formed by the reaction of thiazolium salts with base, is nucleophilic and reacts at the carbonyl group of aldehydes. The resultant intermediate can undergo base-catalyzed proton
transfer to give a carbanion (3), which is stabilized by the thiazolium ring. The carbanion (3), like (1), undergoes 1,4-addition to α,β-unsaturated esters, ketones or nitriles.

\[
RCHO + \text{Scheme 2}
\]

2.4.1.1 Catalysts for Benzoin Formation

Generally benzoins are generated by the action of sodium cyanide or potassium cyanide on aromatic aldehydes in aqueous ethanol via cyanohydrin intermediates. Benzoins may also be prepared in good yields by treating aromatic aldehydes with potassium cyanide in the presence of crown ethers in water or aprotic solvents. Other sources for cyanide in this type of condensation are tetrabutylammonium cyanide, polymer-supported cyanide, and acetone cyanohydrin with \(K_2CO_3\). Similarly, addition of aromatic aldehydes to α,β-unsaturated ketones can be accomplished by means of cyanide catalysis in DMF.

The use of thiazolium salts enables the benzoin condensation to proceed at room temperature. It can also be performed in dipolar aprotic solvents or under phase transfer conditions. Thiazolium salts such as vitamin B\(_1\), thiazolium salts attached to γ-cyclodextrin, macrobicyclic thiazolium salts, thiazolium carboxylate, naphtho[2,1-d]thiazolium and benzothiazolium salts catalyze the benzoin condensation and are reported to have similar catalytic activity. Alkylation of 2-hydroxyethyl-4-methyl-1,3-thiazole with benzyl chloride, methyl iodide, ethyl bromide and 2-ethoxyethyl bromide yields useful salts for catalyzing 1,4-addition of aldehydes to activated double bonds. Insoluble polymer-supported thiazolium salts are catalysts for the benzoin condensation and for Michael addition of aldehydes. Electron rich alkenes such as bis(1,3-dialkyylimidazolidin-2-ylidenes) bearing primary alkyl substituents at the nitrogen atoms or bis(thiazolin-2-yldiene) bearing benzyl groups at the nitrogen atoms are examples of a new class of catalyst for the conversion of ArCHO into ArCHOHCOAr.

The yeast-mediated condensation of benzaldehyde with acetaldehyde is of particular interest since it represents one of the first industrially useful microbial transformations, with the acyloin produced being subsequently converted chemically to α-epihdine. Other illustrations of synthetic value are the yeast-induced condensation of aldehyde (4a,b) with fermentatively generated acetaldehyde. The initially formed acyloins (5a,b) are not isolated but are further reduced, again with enantiotopic specificity, to give the pheromone synthon (6a; \(R = β\)-styryl) and the α-tocopherol chromanyl moiety precursor (6b; \(R = 2\)-propenylfuran) respectively (Scheme 3).

α-Hydroxy ketones bearing a trifluoromethyl group were prepared from an aromatic aldehyde in high yield via a hydrazone.
2.4.1.2 Masked Acyl Anion Equivalents

The benzoin condensation has recently been recognized as belonging to the general class of reactions that involve masked acyl anions as intermediates.\(^5,8,11,12\) For example, an aldehyde is converted into an addition product \(RCH(OX)Y\), which renders the \(C\text{-}H\) acidic. Then under basic conditions, a masked acyl anion (see 1) can be formed and may react with an electrophilic component \(E^+\). Decomposition of the product \(RCE(OX)Y\) should regenerate the carbonyl group with formation of \(RC(O)E\). Intermediates such as (1) are used in the conversion of aldehydes into \(\alpha\)-hydroxy ketones, \(\alpha\)-diketones and 1,4-dicarbonyl compounds, proving to be a powerful strategy in the development of new synthetic methods.\(^3,8-12\)

The most systematically investigated acyl anion equivalents have been the TMS ethers of aromatic and heteroaromatic aldehyde cyanohydrins,\(^30\) TBDMS-protected cyanohydrins,\(^31,32\) benzoyl-protected cyanohydrins,\(^33\) alkoxy carbonyl-protected cyanohydrins,\(^34\) THP-protected cyanohydrins,\(^35\) ethoxycarbonyl-protected cyanohydrins,\(^36\) \(\alpha\)-(dialkylamino)nitriles,\(^8\) cyanophosphates,\(^37\) diethyl 1-(trimethylsiloxy)-phenylmethyl phosphonate\(^38\) and dithioacetals.\(^3\) Deprotonation of these masked acyl anions under the action of strong base, usually \(LDA\), followed by treatment with a wide variety of electrophiles is of great synthetic value. If the electrophile is another aldehyde, \(\alpha\)-hydroxy ketones or benzoins are formed. More recently, the acyl carbanion equivalents formed by electroreduction of oxazolium salts\(^39\) were found to be useful for the formation of ketones, aldehydes or \(\alpha\)-hydroxy ketones (Scheme 4). \(\alpha\)-Methoxyvinyl-lithium also can act as an acyl anion equivalent and can be used for the formation of \(\alpha\)-hydroxy ketones, \(\alpha\)-diketones, ketones, \(\gamma\)-diketones\(^40\) and silyl ketones.\(^13,41,42\)

\[\begin{align*}
 &\text{RCO}_2\text{H} \\
 \text{i.} &\quad \text{H}_2\text{N} - \text{OH} \\
 \text{ii.} &\quad \text{Me}^+ \\
 \text{RCO}_2\text{H} &\quad \text{Me}^+ \\
 \text{H}_2\text{N} &\quad \text{O} \\
 \text{R} &\quad \text{N} \\
 \text{O} &\quad \text{O} \\
 \text{Me}^+ &\quad \text{N} \\
 \text{R} &\quad \text{O} \\
 \text{H}_2\text{N} &\quad \text{OH} \\
 \text{RCHO} &\quad \text{R}^1\text{CHO} \\
 \text{H}_2\text{O}^+ &\quad \text{OH} \\
 \text{R} &\quad \text{O} \\
 \text{R}^1 &\quad \text{OH} \\
 \text{R} &\quad \text{R}^2 \\
 \text{R} &\quad \text{R}^2 \\
\end{align*}\]

Scheme 4

2.4.1.3 Electrophiles

In the benzoin condensation, one molecule of aldehyde serves as an electrophile. If a carbanion is generated from protected cyanohydrins, \(\alpha\)-aminonitriles or dithioacetals, it can react with electrophiles such as alkyl halides, strongly activated aryl halides or alkyl tosylates to form ketones. Amongst other electrophiles which are attacked by the above carbanions are heterocyclic \(N\)-oxides, carbonyl compounds, \(\alpha,\beta\)-unsaturated carbonyl compounds, \(\alpha,\beta\)-unsaturated nitriles, acyl halides, Mannich bases, epoxides and chlorotrimethyl derivatives of silicon, germanium and tin.

2.4.1.4 Miscellaneous

Benzoins can also be synthesized by the photolysis of aldehydes at high concentration.\(^43\) The formation of benzoin can be rationalized as arising from intermolecular hydrogen abstraction followed by collapse of the radicals.

The addition of lithium and Grignard reagents to isocyanides which do not contain \(\alpha\)-hydrogens proceeds by an \(\alpha\)-addition to produce a metalloaldimine (7, an acyl anion equivalent). The lithium aldimes are versatile reagents which can be used as precursors for the preparation of aldehydes, ketones, \(\alpha\)-hydroxy ketones, \(\alpha\)-keto acids, \(\alpha\)- and \(\beta\)-hydroxy acids, silyl ketones and \(\alpha\)-amino acids (Scheme 5).\(^44,45\)
The benzoin and related acyl anion equivalent reactions

4. \[\text{RIM} + \text{R-N=C}^- \]

<table>
<thead>
<tr>
<th>R(_1)M (\rightarrow)</th>
<th>R(_1)CHO (\rightarrow)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rightarrow)</td>
<td>(\rightarrow)</td>
</tr>
<tr>
<td>R(_1)CHO (\rightarrow)</td>
<td>(\rightarrow)</td>
</tr>
<tr>
<td>H(_2)O (\rightarrow)</td>
<td>(\rightarrow)</td>
</tr>
<tr>
<td>Me(_2)SiCl (\rightarrow)</td>
<td>(\rightarrow)</td>
</tr>
<tr>
<td>(\rightarrow)</td>
<td>(\rightarrow)</td>
</tr>
<tr>
<td>R(_1)CO(_2)Et (\rightarrow)</td>
<td>(\rightarrow)</td>
</tr>
<tr>
<td>R(_1)CO(_2)H (\rightarrow)</td>
<td>(\rightarrow)</td>
</tr>
</tbody>
</table>

Scheme 5

The lithium salts of aldehyde \(t\)-butylhydrazones react with electrophiles (aldehydes, ketones, alkyl halides) to form C-trapped \(t\)-butylazo compounds; isomerization and hydrolysis give \(\alpha\)-hydroxy ketones or ketones in good yields, thereby providing a convenient path via a new acyl anion equivalent (Scheme 6). Reacting these lithium salts with aldehydes and ketones, followed by elimination, provides a new route to \(\alpha\)-\(\alpha\)alkenes, whereas homolytic decomposition of C-trapped azo compounds of trityl and diphenyl-4-pyridylmethyldrazones lead to the formation of alkanes, alkenes, alcohols or saturated esters.

Scheme 6

\[\text{Bu}^\prime\text{N} + \text{R}^1 \text{H} \rightarrow \text{Bu}^\prime\text{N} + \text{R}^1 \text{H} \rightarrow \text{Bu}^\prime\text{N} + \text{R}^1 \text{H} \rightarrow \text{RX or RCHO} \]

Scheme 7
When the 2,6-xylylimine of trialkylsilyl trimethylstannyl ketone is selectively transmetallated at \(-78^\circ C\) with Bu\(^{\circ}\)Li to generate a derivative, the latter serves as a versatile masked acyl anion that can react with various electrophiles. For example, \(\alpha\)-hydroxy ketones were prepared using this new reagent (Scheme 7).\(^49\)

2.4.2 CHIRAL CYANOHYDRINS

Asymmetric synthesis by means of a cyanohydrin is an important process in organic synthesis, because the cyanohydrin can be easily converted into a variety of valuable synthetic intermediates, such as \(\alpha\)-hydroxy ketones, \(\alpha\)-hydroxy acids, \(\gamma\)-diketones, \(\beta\)-amino alcohols, 4-oxocarboxylic esters, 4-oxonitriles, \(\alpha\)-amino acids and acyl cyanides. More specifically, the (S)-cyanohydrin of \(m\)-phenoxybenzaldehyde is a building block for the synthesis of the insecticide deltamethrin,\(^50\) or (1R)-cis-pyrethroids.\(^51\)

In catalytic processes with enzymes such as \(\beta\)-oxynitrilase\(^52\) and (\(R\))-oxynitrilase (mandelonitrilase)\(^53\) or synthetic peptides such as cyclo[(S)-phenylalanyl-(S)-histidyl],\(^54\) or in reaction with TMS-CN promoted by chiral titanium(IV) reagents\(^55\) or with lanthanide trihalides,\(^56\) hydrogen cyanide adds to numerous aldehydes to form optically active cyanohydrins. The optically active Lewis acids (8) can also be used as a catalyst.\(^58\) Cyanation of chiral cyclic acetals with TMS-CN in the presence of titanium(IV) chloride gives cyanohydrin ethers, which on hydrolysis lead to optically active cyanohydrins.\(^59\) An optically active cyanohydrin can also be prepared from racemic RR'C(\(\text{OH}\))CN by complexation with brucine.\(^60\)

![Image of formula (8)](image)

2.4.2.1 1,2-Addition to Aldehydes and Ketones

The oldest known reaction involving masked acyl anions of the type (1) is the preparation of benzoin from aromatic aldehydes as illustrated in Scheme 1 (\(R = \text{Ph}\)). The reaction is applicable only to aldehydes with no \(\alpha\)-hydrogen atoms (otherwise the aldol reaction competes); attempts to prepare a mixed acyloin yield a mixture of products. It is essential that the reaction be carried out in aprotic solvents, general preference being given to DMF. Aldehydes which normally give poor yields of benzoin in aqueous alcohol react in DMF-DMSO to give good yields of benzoins, especially if tetrabutylammonium cyanide is used as the base.\(^57\) Under these conditions, the cyanide ion becomes more nucleophilic and basic; the reaction is usually complete in a few hours at room temperature.

Quite often the products of the benzoin condensation are unstable to oxygen and lead to \(\alpha\)-diketones.\(^5\) This is the case in intramolecular condensations when the initial product is an \(\alpha\)-quinol, which is easily oxidized to the quinone.\(^5\) 4-Substituted tetramides can be prepared by the reaction of an aromatic aldehyde with oxalaldehyde in the presence of cyanide ion, via the benzoin condensation (Scheme 8).\(^6\)

![Image of scheme 8](image)

2.4.2.2 1,4-Addition to \(\alpha\),\(\beta\)-Unsaturated Carbonyl Compounds

The most suitable technique for addition of aromatic aldehydes to \(\alpha\),\(\beta\)-unsaturated ketones utilizes cyanide catalysis in DMF (equation 2).\(^7\) Unsubstituted aromatic aldehydes and those bearing substituents in the ring, except for \(ortho\)-substituted benzaldehydes, can add to an aliphatic, aromatic or heterocyclic \(\alpha\),\(\beta\)-unsaturated ketone. Addition of heterocyclic aldehydes can be catalyzed by cyanide ion as well. The
products are γ-diketones, which can be converted to cyclopentenones, furans, pyrroles, thiophenes and pyrazines, as illustrated for the synthesis of N-methyl-2,3,5-tris(3-pyridyl)pyrrole, quinolizidines and 1-(3-phenyl-1-indolizidinyl)-1-propanol.\(^7\)

\[
\begin{align*}
(1) & + R^1 & \rightleftharpoons \quad & \text{O} & \quad R^1 & \quad O & \quad R^2 & \quad \rightarrow & \quad \text{O} & \quad R & \quad R^2 & \quad + & \quad \text{CN}^- \quad (2)
\end{align*}
\]

Aromatic or heterocyclic aldehydes also add smoothly to α,β-unsaturated esters and nitriles.\(^7\)

Dialdehydes such as 2,5-thiophenedicarbaldehyde can be added to acrylonitrile in the presence of cyanide ion and the product can be converted to 4,9-dioxododecanedioic acid.\(^7\)

2.4.2.3 Addition to Mannich Bases

Aromatic and heterocyclic aldehydes add readily to Mannich bases in a cyanide-catalyzed reaction in DMF to produce γ-diketones (equation 3).

\[
R^1 = H, \text{Me}, \text{Ph}; R^2 = \text{Me}, \text{Pr}, \text{Ph}; R^1 R^2 = -(\text{CH}_2)_n-\quad (3)
\]

Examples include the reactions of 3-pyridinecarbaldehyde with 3-dimethylamino-1-phenyl-1-propanone, of furfural with 3-dimethylamino-1-(2-furyl)-1-propanone and of 2-thiophenecarbaldehyde with 3-dimethylamino-1-(2-thienyl)-1-propanone.\(^7\)

2.4.2.4 Miscellaneous Reactions of Cyanohydrins

Direct conversion of aldehydes to esters was carried out via oxidative benzoin reactions, using an aromatic nitro compound as an oxidizing agent under the catalytic action of cyanide ion or of a conjugate base of a thiazolium ion (Scheme 9).\(^6\)

\[
\begin{align*}
(1) & \text{ or (3)} & \xrightarrow{\text{PhNO}_2} & \quad R & \quad \text{O} & \quad X & \quad \text{O}^- & \quad \text{Ph} \quad \rightarrow & \quad R & \quad X & \quad \text{PhNO} & \quad & \text{OH}^- \\
\text{X} = \text{CN}, \text{Tz}
\end{align*}
\]

2.4.3 O-PROTECTED CYANOHYDRINS

The mechanism of the benzoin condensation,\(^4\) as depicted in Scheme 1, suggested that anions derived from a protected aldehyde cyanohydrin should function as nucleophilic acylating reagents. The use of protected cyanohydrins as carbanion equivalents has been studied by Stork\(^6\) and by Hunig\(^6\) and has found wide applicability in chemical synthesis. Such species may serve as either acyl anion equivalents\(^12\) or homoenolate anions.\(^25,36\)

Anions of protected cyanohydrins of aliphatic, aromatic or α,β-unsaturated aldehydes undergo 1,4-addition to cyclic and acyclic enones. The synthetic utility of protected cyanohydrins in 1,4-addition depends on regioselectivity, since a competing reaction is 1,2-addition to the carbonyl group. The regioselectivity of these reactions (1,4- versus 1,2-addition) is dependent on the structure of the protected cyanohydrin, the enone and the reaction solvent.\(^8\) Some general principles which influence the regioselectivity can be defined.
Conjugate additions predominate with bulky anions or with an enone containing a hindered carbonyl function. Anions derived from protected cyanohydrins of α, β-unsaturated aldehydes favor 1,4-additions. Anions derived from aryl aldehydes, especially if substituted with electron-withdrawing substituents, give predominantly conjugate addition. Increased bulk at the β-position of the enone, such as in β, β-dimethyl substituted enones, leads to increased amounts of 1,2-addition.

The anions of protected cyanohydrins are excellent nucleophiles in reaction with both primary and secondary alkyl halides.

2.4.3.1 O-Silyl-protected Cyanohydrins

O-Silylated cyanohydrins have found considerable utility in the regioselective protection of p-quinones as intermediates for the preparation of α-amino alcohols and as precursors to acyl anion equivalents. Such compounds are typically prepared in high yield by either thermal or Lewis acid catalyzed addition of TMS-CN across the carbonyl group. This cyanosilylation has a variety of disadvantages and modified one-pot cyanosilylation procedures have been reported. The carbonyl group can be regenerated by treatment with acid, silver fluoride or triethylaluminum hydrofluoride followed by base.

2.4.3.1.1 1,2-Addition to aldehydes and ketones

The anion of the adduct of TMS-CN with benzaldehyde reacts with aldehydes and ketones to form acyloxil silyl ethers, by way of a 1,4-O-silyl rearrangement (Scheme 10). This method gives α-hydroxy ketones in excellent yield (80-90%) and allows the selective synthesis of unsymmetrical benzoins.

2.4.3.1.2 1,4-Addition to α, β-unsaturated carbonyl compounds

The anion (9a) derived from crotonaldehyde reacts with 2-cyclohexen-1-one (14) to give exclusively a 1,4-addition product (equation 4). Both the solvent and the nature of the protecting group affect the regioselectivity in the reactions of anions (9) with 4-methyl-3-penten-2-one (15). For instance, in THF, the 1,2-adduct (16) is formed in 74% yield (equation 5), while in ether only the 1,4-addition product (17) is isolated.

The introduction of electron-donating or electron-withdrawing substituents in the para position of anion (18) strongly influences the regioselectivity in additions to (15). In DME the amount of 1,4-addition increases from 0% for the p-dimethylamino to 100% for the p-cyano derivative. In ether only the 1,4-product (19) is observed when the para substituent is hydrogen, chloro, trifluoromethyl or cyano. The p-OMe derivative in ether gives 70% of (19), while the p-dimethylamino derivative gives mainly 1,2-product (20; equation 6; 86%).
The Benzoin and Related Acyl Anion Equivalent Reactions

Scheme 11

\[\text{OSiMe}_3 \quad \text{X} \]

\[\text{LDA} \quad \rightarrow \quad \text{OSiMe}_3 \quad \text{X} \]

\[\text{Me}_3\text{SiO} \quad \text{KCN} \]

\[\text{TsOH} \quad \rightarrow \quad \text{C}_7 \text{H}_5 \text{O} \]

(9) \quad \text{CN} \quad \text{OSiMe}_3

(10) \quad \text{O} \quad \text{CN} \quad \text{OSiMe}_3

(11) \quad \text{Me}_3\text{SiO} \quad \text{CN} \quad \text{OSiMe}_3

(12) \quad \text{HO} \quad \text{O}

(13) \quad \text{O} \quad \text{O}

(14) \quad \text{O}

(15) \quad \text{CN} \quad \text{OSiMe}_3

(16) \quad \text{R} \quad \text{Me}_3\text{SiO}

(17) \quad \text{R} \quad \text{CN} \quad \text{OSiMe}_3

(18) \quad \text{X} \quad \text{Me}_2\text{N}, \text{MeO}, \text{H}, \text{Cl}, \text{CF}_3, \text{CN}

(19) \quad \text{X} \quad \text{NC} \quad \text{OSiMe}_3

(20) \quad \text{X} \quad \text{NC} \quad \text{OSiMe}_3

\[\text{R} \quad \text{CN} \quad \text{OSiMe}_3 \]

\[\text{LDA} \quad \rightarrow \quad \text{OSiMe}_3 \quad \text{X} \]

\[\text{Me}_3\text{SiO} \quad \text{KCN} \]

\[\text{TsOH} \quad \rightarrow \quad \text{C}_7 \text{H}_5 \text{O} \]

(9a) \quad \text{CN} \quad \text{OSiMe}_3

(14) \quad \text{O}

(15) \quad \text{CN} \quad \text{OSiMe}_3

(16) \quad \text{R} \quad \text{Me}_3\text{SiO}

(17) \quad \text{R} \quad \text{CN} \quad \text{OSiMe}_3

(18) \quad \text{X} \quad \text{Me}_2\text{N}, \text{MeO}, \text{H}, \text{Cl}, \text{CF}_3, \text{CN}

(19) \quad \text{X} \quad \text{NC} \quad \text{OSiMe}_3

(20) \quad \text{X} \quad \text{NC} \quad \text{OSiMe}_3

\[\text{R} \quad \text{CN} \quad \text{OSiMe}_3 \]

\[\text{LDA} \quad \rightarrow \quad \text{OSiMe}_3 \quad \text{X} \]

\[\text{Me}_3\text{SiO} \quad \text{KCN} \]

\[\text{TsOH} \quad \rightarrow \quad \text{C}_7 \text{H}_5 \text{O} \]

(9a) \quad \text{CN} \quad \text{OSiMe}_3

(14) \quad \text{O}

(15) \quad \text{CN} \quad \text{OSiMe}_3

(16) \quad \text{R} \quad \text{Me}_3\text{SiO}

(17) \quad \text{R} \quad \text{CN} \quad \text{OSiMe}_3

(18) \quad \text{X} \quad \text{Me}_2\text{N}, \text{MeO}, \text{H}, \text{Cl}, \text{CF}_3, \text{CN}

(19) \quad \text{X} \quad \text{NC} \quad \text{OSiMe}_3

(20) \quad \text{X} \quad \text{NC} \quad \text{OSiMe}_3

\[X = \text{Me}_2\text{N}, \text{MeO}, \text{H}, \text{Cl}, \text{CF}_3, \text{CN} \]

increasing amount of 1,4-addition
Addition of the α,β-unsaturated anion (21) to the Michael acceptor (22), in which either alkylation or 1,4-addition is possible, affords only the Michael product. Internal alkylation of the intermediate ester enolates leads to cyclopropyl derivatives (equation 7). Terpenoid polyenes are prepared through conjugate addition of the lithiated protected cyanohydrins (23) to dienyl sulfoxide (24; equation 8). 2.4.3.1.3

Alkylation with R—X

Anions (25) derived from aryl and heterocyclic aldehydes have been used by Hunig et al. for the preparation of a large number of ketones in which one residue is aromatic or heterocyclic (equation 9). In view of the competition between displacement and elimination so frequently encountered in reactions of nucleophiles with secondary halides, it is striking that alkylation of (25; R = Ph) proceeds well even with a tertiary iodide. 1-Bromo-4-t-butylcyclohexane reacts with (25) to give the trans product (26) with inversion of configuration (equation 10).

An intramolecular S_N2 displacement at a neopentyl center in (27) gave (28), a precursor for the total synthesis of steroids (equation 11).
2.4.3.1.4 Miscellaneous reactions of O-silylated cyanohydrins

Oxidation of a cyanohydrin derived from a conjugated aldehyde (as the O-TMS derivative) using pyridinium dichromate (PDC) in DMF gave an α,β-unsaturated lactone (β2-butenolide) as the major product (equation 12).68 Simple nonconjugated cyanohydrins are not satisfactory substrates for the synthesis of acyl cyanides using PDC, because they seem to add to the initially formed acyl cyanides, leading ultimately to cyanohydrin esters. Oxidation of cyanohydrin to acyl cyanides can be carried out either by means of manganese dioxide,69 ruthenium-catalyzed oxidation with t-butyl hydroperoxide70 or NBS.71

\[
\begin{align*}
\text{CN} & \quad \text{PDC} \quad \text{CN} \\
\text{O} & \quad \text{O} \\
\text{OSiMe}_3 & \quad \text{OSiMe}_3 \\
\end{align*}
\]

(12)

Tetronic acids and β-keto-γ-butyrolactones are easily prepared by reaction of an O-trimethylsilylated cyanohydrin with α-bromo esters in the presence of a Zn–Cu couple in a Reformatsky-type reaction (Scheme 12).72,73

\[
\begin{align*}
\text{NC} & \quad \text{OSiMe}_3 \\
\text{R} & \quad \text{R} \\
\text{R}^1 & \quad \text{R}^2 \\
\end{align*}
\]

\[
\begin{align*}
\text{Br} & \quad \text{CO}_2\text{Et} \\
\text{Zn–Cu} & \quad \text{THF} \\
\end{align*}
\]

\[
\begin{align*}
\text{HO} & \quad \text{R} \\
\text{R}^1 & \quad \text{R}^2 \\
\end{align*}
\]

Scheme 12

Acyloins are prepared in high yields by attack of a Grignard reagent on the cyano group of O-trimethylsilylated cyanohydrins. The method is particularly useful for the preparation of unsymmetrical acyloins.74

2.4.3.2 Cyanohydrin Ethers and Esters

Acid-catalyzed addition of aliphatic, aromatic or heteroaromatic cyanohydrins to ethyl vinyl ether, n-butyl vinyl ether or dihydro-4H-pyran provides base stable, protected cyanohydrin derivatives.9 Phase transfer catalyzed alkylation of aliphatic cyanohydrins with allylic bromides gave α-substituted α-allyloxyacetonitriles.75 Carbonyl compounds react with cyanide under phase transfer catalysis to give cyanohydin anions, which are trapped by an acyl chloride or ethyl chloroformate to give acyl- or alkoxy carbonyl-protected cyanohydrins respectively.34 The reduction of the carbonyl group of an acyl cyanide by NaBH₄ under phase transfer conditions followed by esterification serves as an alternative route to aldehyde-derived cyanohydrin esters.76

Cyanation of acetals was achieved either by means of t-butyl isocyanide or 1-trimethylsilyl ethyl isocyanide in the presence of titanium(IV) chloride (equation 13)77 or by TMS-CN in the presence of electrogenerated acid.78

\[
\begin{align*}
\text{CN} & \quad \text{+} \quad \text{CN} \\
\text{OMe} & \quad \text{OMe} \\
\text{MeCl} & \quad \text{MeCl} \\
\end{align*}
\]

(13)

2.4.3.2.1 1,2-Addition to aldehydes and ketones

The condensation of cyanohydrin ethers with aldehydes or ketones provides α-hydroxy ketones.9 O-Benzoyl-protected cyanohydrins react with aldehydes to give α-hydroxy ketones via intramolecular deprotective benzylation analogous to TMS-protected cyanohydrins (Scheme 10).33
A comparative study was reported using 1,3-dithianes and O-benzoylated cyanohydrins respectively for the synthesis of several analogs of secoisoquinoline alkaloids bearing a dimethylamino side chain and a benzilic or reduced benzilic group.79

2.4.3.2.2 1,4-Addition to α,β-unsaturated carbonyl compounds

The anions of protected cyanohydrins derived from saturated aliphatic aldehydes undergo competitive 1,2- and 1,4-addition to unsaturated carbonyl electrophiles. The proportion of the adducts appears to vary as a function of both structure and solvent. Steric interactions that favor dissociation of the reversibly formed 1,2-addition product increase the proportion of the 1,4-addition product. For example, increasing the size of the substituent R in a protected cyanohydrin (29) from methyl to n-pentyl increases the ratio of 1,4-addition product (30) to 1,2-addition product (31) from 1.5:1 to 2.7:1 (equation 14).62

\[
\text{(29)} \quad \text{R-CN-O-} \quad \text{LDA} \quad \text{R-CN-O-} \quad \text{NC-R-O-} \quad \text{R-CN-O-} \quad \text{OH-R-CN-O-} \\
\text{(30)} \quad \text{(31)}
\]

(14)

Conjugate addition of an aryl cyanohydrin has been used in the synthesis of tetracyclines, 13-oxyprostanoids and β-cuparenone.8

2.4.3.2.3 Alkylation with R—X

The alkylation of protected cyanohydrin anions constitutes an excellent method for ketone synthesis.9,62 Generally the anions are generated from aliphatic or aromatic aldehyde protected cyanohydrins with LDA under nitrogen at -78 °C. The addition of an alkyl halide produces the protected ketone cyanohydrin. The carbonyl group is then liberated by successive treatment with dilute acid and dilute aqueous base. This method is applicable for the synthesis of bufomedil.80

Regiocontrolled synthesis of 2,4-disubstituted pyroles is achieved using the alkylation of a protected cyanohydrin with an alkynyl bromide (equation 15).81

\[
\text{OEE-CN-R} \quad \text{i, LDA} \quad \text{NC-R-OEE-CN-R} \quad \text{EE-CN-R} \quad \text{i, LiAlH_4} \quad \text{EE-CN-R} \\
\text{EE = ethoxymethyl}
\]

(15)

The side chain of brassinolide, (20S,22R), can be stereoselectively introduced by alkylation (SN2) of the (20R)tosyloxy steroid with a protected cyanohydrin followed by the stereoselective reduction of the resulting 23-en-22-one.82

α-Hydroxy-γ-butyrolactones are prepared by the alkylation of a protected cyanohydrin with an epoxide.83 Maldonado et al. applied this method to the synthesis of α-bisabolone (equation 16).84

\[
\text{CN-OEE} \quad \text{i, LDA} \quad \text{CN-OEE-CN} \quad \text{CN-OEE-CN} \quad \text{CN-OEE-CN} \\
\text{OH} \quad \text{ii, H_2SO_4} \quad \text{OH} \quad \text{OH}
\]

(16)
Of special interest is the use of protected cyanohydrins in the formation of carbocyclic rings. Ring closure of an acyclic intermediate to form a five-membered ring (75–85%) has been described in the synthesis of prostaglandins (equation 17). In addition this method is applicable to the formation of cyclopropyl, cyclobutyl and cyclohexyl rings (60–70%).

Macrocyclic ketones are prepared by intramolecular alkylation without the use of high dilution conditions. These cyclizations have the following characteristic features: (i) the alkylation is irreversible and very rapid, and the cyclized product is stable under basic conditions. Therefore, this method of cyclization requires short reaction times and no high dilution conditions and provides the macrocycle in a satisfactory yield; (ii) the carbanion derived from an α,β-unsaturated cyanohydrin acts via α-attack, so that γ-attack and isomerization of double bonds are not observed; and (iii) the cyclized products are easily converted by mild acid and base treatment to the corresponding enones in high yields with excellent stereoselectivity. This cyclization method can be applied to the synthesis of a wide variety of naturally occurring compounds such as the pheromone periplanone B, the sesquiterpenes acoragermacrone (equation 18), germacrone, humulenol, germacrone lactones such as costunolide and haagenolide, (E,E) and (E,2)-2,6-cyclodecadienones, trans-2-cyclopentadecanone, a precursor of the natural products (+)-muscone and exaltone, zearalenone, dihydroxy-trans-resorcylic and the 14-membered (E,E,E)-macrocyclic triene, a precursor for the Diels–Alder synthesis of a steroid skeleton (equation 19). Such cyclizations have been carried out on a 60 mmol scale.

2.4.3.2.4 Miscellaneous reactions

The classic S_N_Ar substitution of activated aryl halides by protected cyanohydrin anions provides substituted benzophenones. Another procedure for the arylation of protected cyanohydrin anions involves the use of aromatic substrates activated as their π-chromium tricarbonyl complexes. Addition of the anion of (32) to the 1,3-dimethoxybenzene complex, for example, leads principally to the meta-substituted isomer (33; equation 20). Preferential meta regioselectivity is also noted with other π-chromium tricarbonyl complexes of arenes. Other arylation of cyanohydrin anions include interesting but synthetically limited additions at the α-position of quinoline N-oxides. In a similar manner, cyanohydrin carbonates of aromatic aldehydes react with N-oxides of quinoline and isooquinoline.

β,γ-Unsaturated ethers of cyanohydrins, on formation of lithio derivatives, undergo a 2,3-sigmatropic rearrangement to form β,γ-unsaturated ketones (equation 21), whereas benzylc ethers of aliphatic cyanohydrins gave o-methylalkyl ketones. The method has been used to prepare 3-methyl-1-(3-methyl-2-furyl)-1-butanois, a naturally occurring C_{10} terpene, α-allenic ketones and enolic monoethers of γ-keto aldehydes via 2,3-sigmatropic rearrangement of their respective carbanions.

An annelation reaction of α,β-unsaturated carbonyl compounds with cyanophthalides (34) can be used for the construction of naphthoquinone and anthraquinone systems in biologically active natural
products. For example, synthesis of racemic 1-fluoro-, 4-fluoro-, 2,3-difluoro- and 1,4-difluoro-4-de-methoxy-daunomycinones (35) is achieved by annelation of highly functionalized quinone monoketal with the appropriate cyanophthalide anion followed by deprotection (equation 22).101,102 Annelative reactions of arynes generated \textit{in situ} from haloarenes and LDA in THF with lithiated cyanophthalide provide a convenient way of preparing a wide variety of anthraquinones and anthracyclines.103 More recently, Yoshii \textit{et al.} utilized a tetracyclic cyanophthalide anion in an annelative reaction with 5-\textit{t-}butoxy-2-furfurylideneacetone in their synthesis of (f)-granaticin.104

2-Substituted cyclohexenones are prepared by the alkylation of 2-cyano-6-methoxytetrahydropyran, a cyclic protected cyanohydrin (Scheme 13).105

An interesting variant of these Michael-type additions is the 1,6-addition of the anion of type (29) to a dienyl sulfone as a route to tagetones106 and 1,4-addition to nitrostyrene to form \(\beta\)-nitro ketones.107 A key step in a synthesis of 11-deoxyanthracyclinone involves the regioselective reaction of complexed styrene with lithiated protected acetaldehyde cyanohydrin.108

2.4.4 \(\alpha\)-(DIALKYLANIMINO)NITRILES

From a historical perspective, the \(\alpha\)-(dialkylation)nitrite anions were the first acyl anion equivalents to undergo systematic investigation.9 More recent studies indicate that anions of \(\alpha\)-(dialkylation)nitrites derived from aliphatic, aromatic or heteroaromatic aldehydes intercept an array of electrophiles9 including alkyl halides, alkyl sulfonates, epoxides, aldehydes, ketones, acyl chlorides, chloroformates, unsaturated ketones, unsaturated esters and unsaturated nitriles. Aminonitriles are readily prepared and their anions are formed with a variety of bases9 such as sodium methoxide, KOH in alcohol, NaH, LDA, PhLi, sodium amide, 70% NaOH and potassium amide. Regeneration of the carbonyl group can be achieved
either by the usual acid hydrolysis or by other mild hydrolytic agents such as copper sulfate, iron(II) sulfate, copper acetate, silver nitrate in D$_2$O-THF-diethyl ether and silica gel. Aromatic and aliphatic aldehydes in the presence of dialkylamines and an equivalent of acid such as hydrochloric, perchloric or p-toluenesulfonic acid give iminium salts, which add cyanide ion to form α-(dialkylamino)nitriles. An alternative preparation involves the reaction of the aldehyde with dialkylamines in the presence of acetone-cyanohydrin, α-(N,N-dialkylamino)isobutyronitriles, diethyl phosphorocyanidate or TMS-CN. Another route to α-aminonitrile starts with an aldehyde, the salt of an amine and KCN in organic solvents under solid-liquid two-phase conditions by combined use of alumina and ultrasound. Chiral α-aminonitriles were prepared by Strecker-type reactions, cyanosilylation of Schiff's bases, amination of α-siloxynitriles or from an N-cyanomethyl-1,3-oxazolidine synthon. Reaction of tertiary amines with ClO$_2$ in the presence of 5.7 mol equiv. of aqueous NaCN as an external nucleophile affords α-aminonitrile.

2.4.4.1 1,2-Addition to Aldehydes and Ketones

α-Hydroxy ketones can be prepared by the addition of carbanions derived from easily accessible α-(dialkylamino)nitriles to carbonyl compounds followed by hydrolysis. Optically active α-hydroxy ketones are obtained by the nucleophilic acylation of chiral α-aminonitriles. 1,2-Addition to cyclic ketones, aryl aldehydes and aliphatic aldehydes leads to ethanolamines. Stereoselectivity in favor of the threo isomer occurs with α-(dimethylamino)propionitrile, while reversed stereoselectivity is observed with the open chain Reissert compound (Scheme 14). A high degree of stereoselectivity is also observed in the condensation of N-benzoyl-2-cyanopiperidine with propanal, a key step in the synthesis of (+)-conhydrine.

Unsymmetrical amino ketones were prepared by 1,2-addition of an α-aminonitrile to an aldehyde (Scheme 16). α-(Dialkylamino)nitriles (38) can react as either acyl anion or β-homoenolate ion equivalents on varying the reaction conditions. This constitutes a general entry to the formation of cyclopentenone derivatives (Scheme 17).
2.4.4.2 1,4-Addition to \(\alpha,\beta\)-Unsaturated Carbonyl Compounds

Addition of \(\alpha\)-aminoacrylates to an \(\alpha,\beta\)-unsaturated ketone affords 1,4-diketones. High yields are also observed in 1,4-additions to ethyl acrylate or acrylonitrile.\(^7\)\(^9\) \(\alpha\)-Phenyl-\(\alpha\)-(N-morpholino)acetonitrile gives good yields of 1,4-adducts with methyl crotonate, methyl methacrylate, diethyl maleate and ethyl propiolate under catalysis of sodium methoxide in THF. Reaction of the lithium salt of (41) with methyl acrylate is reported to give pyrrole derivatives (Scheme 18).

Conjugate addition of the benzoyl anion equivalent (42) to unsubstituted and 2-substituted cyclic enones can be highly stereoselective (equation 24).\(^{12}\) Lewis acids such as BF\(_3\)-Et\(_2\)O, Ti(OR\(_4\))\(_x\) or ZnCl\(_2\) make possible the Michael addition of (42) even to \(\beta,\beta\)-disubstituted \(\alpha\)-enones.\(^{12}\)
2.4.4.3 Alkylation with R—X

Alkylation of metallated α-(dialkylamino)nitriles with alkyl halides, epichlorohydrin, allyl halides or ethyl bromoacetate followed by hydrolysis furnishes an array of ketones in good yield. For example, reaction of (42) with benzyl chloride leads to the formation of deoxybenzoins. Alkylation of α-(dialkylamino)nitriles is also possible if the latter are derived from aliphatic aldehydes.

\[
\text{(42)} \quad \overset{\overset{\overset{\text{Sn2}}{\text{PhLi}}}{\overset{\text{CO}_2\text{Me}}{\text{PhLi}}}}{\longrightarrow} \quad \overset{\overset{\text{CO}_2\text{Me}}{\text{Ph}}}{\overset{\text{NC}}{\overset{\text{Ph}}{\text{Ph}}}} \quad \overset{\text{-LiCN}}{\longrightarrow} \quad \overset{\overset{\text{CO}_2\text{Me}}{\text{Ph}}}{\overset{\text{NC}}{\overset{\text{Ph}}{\text{Ph}}}}
\]

Scheme 18

\[
\text{Ph} \quad \overset{\overset{\overset{\text{Li}}{\text{Ph}}}{{\text{CN}}} \quad \overset{\overset{\overset{\text{Me}}{\text{N}}}{{\text{Me}}}}{\longrightarrow} \quad \overset{\overset{\overset{\text{O}}{\text{R}}}{{\text{H}}} \quad \overset{\overset{\overset{\text{N}}{\text{Me}}}{{\text{Me}}}}{\longrightarrow} \quad \overset{\overset{\overset{\text{O}}{\text{R}}}{{\text{H}}} \quad \overset{\overset{\overset{\text{N}}{\text{Me}}}{{\text{Me}}}}{\text{Ph}}}
\]

\[
\text{Scheme 19}
\]

The alkylation of (42) with chiral 1-methylheptyl halides in liquid ammonia proceeds with partial inversion of configuration. The accompanying racemization is dependent on the basic reagent, on the configuration of the alkylation agent and on the extent of participation of the electron transfer process in the alkylation (Scheme 19).

The key step for the conversion of open-chained α,β-unsaturated aldehydes to their corresponding cyclized carbonyl compounds involves the regioselective alkylation of (39) with dihalides.

2-Alkyl- and 2,6-dialkyl-piperidine alkaloids have been synthesized by the alkylation of cyclic α-ammononitriles such as N-benzyl-2-cyano-6-methylpiperidine or 1-benzyl-2,6-dicyanopiperidine.

Unsaturated α-(dialkylamino)nitriles (43) form ambident anions which are alkylated at either the α- or γ-position. Alkylation of (43a) with methyl iodide is completely selective to give only the γ-alkylated regioisomer, while alkylation of (43b) with ethyl bromide gave exclusively the α-alkylated product (equation 25). The structure of the secondary α-amino group as well as the steric bulk of the alkylation reagent influence the regioselectivity. With dimethylamine or piperidine as the amine component, the alkylation with methyl iodide gives approximately equal amounts of α- and γ-alkylation product, while with the morpholino derivative (43b) α-alkylation is the major product. Increased amounts of γ-alkylation are observed with isopropyl bromide.

Ring closures through intramolecular alkylation of Reissert compounds have been described. The sequential dialkylation of dimethylaminocacetanitrile (44) first with methallyl chloride and then isopentenyl bromide, followed by hydrolysis and isomerization, affords artemesia ketone in 77% overall yield (Scheme 20).

3-Substituted pyrazoles can be prepared by the alkylation of α-(dimethylamino)nitriles with bromodiethyl acetal followed by heating with hydrazine dihydrochloride in ethanol. 3,5-Dialkylpyrazoles were
Heteroatom-stabilized Carbanion Equivalents

(43a) \(R = H; R^1 = Me; R^2 = Ph \)

(43b) \(R = Me; R^1R^2 = -(CH_2)_2O(CH_2)_2- \)

\[
\begin{align*}
\text{Scheme 20} \\
\text{synthesized by reaction of } \alpha,\gamma\text{-dialkyl-} \alpha,\gamma\text{-dipyrroldinylnitriles with hydrazine.}^{132} \text{ Vinyl ketones in general and the himachalene skeleton specifically can be synthesized by the alkylation of (45) with an alkyl halide, e.g. (46; Scheme 21).}^{133}
\end{align*}
\]

\[
\begin{align*}
\text{Scheme 21} \\
\text{Reaction of 1-benzyl-2,5-dicyanopyrrolidine with an alkyl halide gives unsymmetrical 2,5-dialkylated products (47) in high yield. Hydrolysis of (47) provides a } \gamma\text{-diketone, which serves as a precursor for jas-} \\
m\text{mone analogs (Scheme 22).}^{134}
\end{align*}
\]

\[
\begin{align*}
\text{Scheme 22} \\
\delta\text{-Diketones and their aldol-derived cyclohexenones are obtained from alkylation of 1-benzyl-2,6-dicyanopiperidine followed by hydrolysis.}^{135,136} \text{ This dicyano analog of (47) provides a new method for the synthesis of } \text{trans-2-} \\
\text{methyl-6-undecylpiperidine (solenopsin), } \alpha\text{-propylpiperidine (coniine) and other 2,6-dialkylpiperidine alkaloids.}^{129}
\end{align*}
\]

\[
\begin{align*}
\text{The pyrrolidine synthon (48) is useful for the chiral synthesis of pyrrolizidine,}^{138} \text{ pyrroldine,}^{139,140} \text{ indolizidine}^{138} \text{ and azabicyclic alkaloids}^{141} \text{ (see Scheme 23).}
\end{align*}
\]

\[
\begin{align*}
\text{Scheme 23}
\end{align*}
\]
In a similar manner, the 2-cyano-6-oxazolopiperidine synthon is useful for the chiral synthesis of indolizidine (monomerine I), piperidine ([+]- and [−]-coniine and dihydropinidine) and quinolizidine alkaloids. 2-Hydroxymethyl-1-amino-1-cyclopropanecarboxylic acid (−)-(2R)-hydroxy-(3S)-nonylamine and α-substituted phenylethylamines are obtained in optically active form from (−)-N-cyanomethyl-4-phenyloxazolidine.

Alkylation of the α-aminonitrile (49) with propyl bromide followed by reductive decyanation gives the key intermediate (50), which on treatment with diethyl cyanophosphonate leads to the formation of a new α-aminonitrile (51). Compound (51) reacts with K and 18-crown-6 in THF to form gephyrotoxin-223AB, an indolizidine alkaloid (Scheme 24).

α-Ethoxyurethanes react with TMS-CN in the presence of Lewis acid to afford the corresponding α-cyanourethanes, analogous to α-aminonitrile, which via the carbanion are transformed to α-alkylated products in moderate yield. This synthon is useful for the synthesis of coniine and trans-quinolizidines.

2.4.4.4 Miscellaneous Reactions of α-Aminonitriles

1,2,5-Trisubstituted pyrroles are obtained in 50–100% yields by the addition of open chain analogs of a Reissert compound to the vinyltriphenylphosphonium cation, with subsequent cyclization by an intramolecular Wittig reaction and base-catalyzed elimination of HCN (Scheme 25).

Allylamines are prepared regio- and stereo-selectively by reaction of Grignard reagents with an α-aminonitrile. α-Phenyl-4-morpholinoacetonitrile (52) reacts with 4-chlorobenzoyl chloride to give diketone (53; equation 26).
The phenylcyanoamine derivative (54) has been used as a benzoyl anion equivalent in an intramolecular process to effect the replacement of the hydroxy group of enols or phenols by the benzoyl group (Scheme 26).

The reaction proceeds as follows:

\[
\text{Ph} - \text{N} - \text{CN} + \text{OH} \rightarrow \text{Ph} - \text{N} - \text{O} - \text{CO}_2\text{Et} \quad \xrightarrow{\text{K}_2\text{CO}_3} \quad \text{Me} - \text{N} - \text{O} - \text{CO}_2\text{Et} \rightarrow \text{Me} - \text{N} - \text{O} - \text{CO}_2\text{Et}
\]

Scheme 26

A particularly interesting development involves the alkylation of the nitrogen of an α-aminonitrile with allylic halides and subsequent 2,3-sigmatropic rearrangement of the allylic ammonium ylides. This method provides a convenient route to 2-methyl-3-formylpyridines or 2-methyl-3-acylpyridines. With the use of 1-(cyanomethyl)pyrrolidine, the reaction with various allylic halides proceeds with a stereochemical bias that varies with the substrate to give β,γ-unsaturated aldehydes, as illustrated in the preparation of (55; equation 27). The procedure also succeeds with benzylic halides to furnish ortho-oriented carbonyl and methyl groups on an aromatic ring.

\[
\begin{align*}
\text{NBS}^{-} & \quad \text{CN}^- & \quad \text{Bu}^{0}\text{OK} & \quad \text{H}^{+} \\
\text{(i) i-v} & \quad \text{(55)}
\end{align*}
\]

Ester-stabilized ammonium ylides of α-(dialkylamino)nitriles, formed by treatment of ammonium salts with DBU (1,5-diazabicyclo[5.4.0]undec-5-ene), undergo spontaneous fragmentation to give α,β-unsaturated nitriles. Asymmetric induction is observed in 2,3-sigmatropic rearrangements via chiral ammonium chlorides such as (56), which was obtained from (S)-proline ethyl ester. Ylide formation with potassium t-butoxide, rearrangement and acid hydrolysis of the aminonitrile affords (R)-(+-)methyl-2-phenyl-3-butenal (90% optical purity) (equation 28). Application of this sequence furnishes intermediates in a new approach to steroids, to various sesquiterpenes such as α-sinsenal and to a highly substituted pyridine, as part of an impressive synthesis of streptonegrin.

\[
\begin{align*}
\text{Cl}^{-} & \quad \text{Bu}^{0}\text{OK} & \quad \text{H}^{+} \\
\text{(56)} & \quad \text{R} = \text{CH}_2\text{OCH}_2\text{Ph} & \quad \text{(R)-(+-)}
\end{align*}
\]

2.4.5 CYANOPHOSPHATES

Cyanophosphates can be prepared from aromatic or α,β-unsaturated aldehydes with diethyl phosphorocyanidate (DEPC, (EtO)$_3$P(O)CN) in THF using LiCN or LDA as a base. Deprotonation of a cyanophosphate with BuLi in the presence of tetramethylethlenediamine in THF at -78 °C, followed
by reaction with alkyl (or acyl) halides, carbonyl compounds and α,β-unsaturated nitriles or esters, as well as cyanophosphates themselves, affords alkylated (or acylated) products, mixed benzoin and acyloin phosphates, polysubstituted cyclopropanes and diarylfumaronitriles in moderate yields respectively (Scheme 27).

\[\text{P} \overset{\text{CN} \overset{\text{R}}{\text{O}}}{\text{CN}} \overset{i}{\rightarrow} \overset{\text{C}^{-}}{\text{C}} \overset{\text{OP}^1}{\text{R}} \overset{\text{ii}}{\rightarrow} \overset{\text{R}}{\text{OH}} \overset{\text{OP}^1}{\text{R}} \overset{\text{iii}}{\rightarrow} \overset{\text{R}}{\text{OCOR3}} \overset{\text{iv}}{\rightarrow} \overset{\text{CN}}{\text{R}} \overset{\text{v}}{\rightarrow} \overset{\text{OP}^1}{\text{CN}} \overset{\text{vi}}{\rightarrow} \overset{\text{R}}{\text{CH(OP)CN}} \]

i, BuLi/TMEDA; ii, R^1CHO; iii, NaOH; iv, R^2X; v, R^3COX; vi, CH_2=CR^4R^5, R^4=H, Me, R^5=CN, CO_2Et; vii, RCH(RO)CN

Scheme 27

2.4.6 α-THIONITRILES

α-Thionitriles also serve as acyl anion equivalents. The parent compound RSCH_2CN is accessible by the reaction of RSCH_2Cl with Hg(CN)_2, or by an S_N2 process involving CICH_2CN and RSNa. Aliphatic nitriles on treatment with two equivalents of LDA followed by RSSR afford α-thionitriles (57), as does the reaction of thioacetals (alkyl or aryl) with TMS-CN in the presence of SnCl_4 (Scheme 28). They can also be prepared by the reaction of thioacetals with Hg(CN)_2 and iodine or from a 1-(phenylthio)vinylsilane with TMS-CN via a thionium ion intermediate. Alternatively such compounds are prepared by the reaction of an aldehyde with phenyl thiocyanate and tributylphosphine.

\[\begin{align*}
\text{SR} & \overset{\text{SnCl}_4}{\rightarrow} \overset{R^1}{\text{+}} \overset{\text{SR}}{\text{H}} \overset{\text{Me_3SiCN}}{\rightarrow} \overset{\text{SR}}{\text{N=CN}} \overset{\text{i, LDA}}{\rightarrow} \overset{\text{R^1}}{\text{N=CN}} \overset{\text{ii,}}{\rightarrow} \overset{\text{(57)}}{\text{C}} \\
\end{align*} \]

Scheme 28

Reaction of an α-(phenylthio)nitrile with base, such as LDA, followed by an aldehyde or a ketone gives a 1,2-addition product in good yield, while the use of α,β-unsaturated aldehydes and ketones usually leads to the 1,4-addition product. Conjugate addition of the α-(phenylthio)acetonitrile anions to 2-methyl- or 2-phenyl-2-cyclohexenones or 2-methyl-2-cyclopentenones, followed by acid quenching under kinetic control, leads to different ratios of cis- and trans-2,3-disubstituted cyclonanes depending on ring size.

An intramolecular alkylation of α-thionitrile (58) leads to a macrocycle, an intermediate for the synthesis of the sesquiterpene (-)-dihydrogermacrene D (Scheme 29). Alkylation of an α-cyanosulfone followed by reduction gave α-substituted acetonitriles. Cyclization of a 1,3-dibromoalkane with (methylthio)acetonitrile yields a 1-cyano-1-(methylthio)cyclobutane, a precursor for the synthesis of cyclopentanones. Reaction of α-(arylthio)nitriles with aryl halides in the presence of LDA and Bu_3P at -78 °C affords cyanostilbenes.

A chiral cyclopentenoid building block (60) has been reported to result in a one-pot cyclization process from epoxide (59) (readily accessible from (R,R)-(+)−tartaric acid) with the carbanion derived from (phenylthio)acetonitrile (equation 29).
2.4.7 α-(ARYLSELENO)NITRILES

Cyanoselenation of aldehydes with phenyl selenocyanate in the presence of Bu₃P gave α-(arylseleno)nitriles.¹⁶⁷ Selenylation of nitriles after treatment with 2 equiv. of base also led to the formation of α-selenonitriles.¹⁶⁸ Their lithiated derivatives undergo smooth alkylation with methyl iodide (80%) and Michael addition to cyclohexenone in 90% yield (Scheme 30).¹⁶⁷

![Scheme 30](image)

2.4.8 α-HETEROSUBSTITUTED PHOSPHONATE CARBANIONS AS ACYL ANION EQUIVALENTS

A system analogous to a cyanohydrin is a siloxyalkylphosphonate. Thus, the diethyl 1-phenyl-1-trimethylsiloxyethylphosphonate carbanion derived from (61) on treatment with LDA¹⁶⁹ acts as an effective acyl anion equivalent in the preparation of α-hydroxy ketones and ketones.³⁸ The phosphonate (61) is formed from triethyl phosphate, benzaldehyde and TMS-Cl in excellent yield.¹⁷⁰

2.4.8.1 1,2-Addition to Aldehydes and Ketones

When the carbanion of (61) reacts with aldehydes or ketones, a 1,4-silicon migration from O to O with subsequent loss of diethyl phosphate is observed (Scheme 31).³⁸ Hydrolysis of the resulting rearranged product leads to α-hydroxy ketones in good yield.
2.4.8.2 Alkylation with $R-X$

Unsymmetrical ketones result from the alkylation of the carbanion generated in situ from phosphonate (61) with LDA, as shown in equation (30).

$$\text{Ph}_2\text{P}+\text{R}+\text{RX} \rightarrow \text{Ph}_2\text{P}+\text{R}+\text{R}^1$$

A new acyl anion equivalent derived from an aldehyde, a secondary amine and diphenylalkylphosphine oxide, e.g. $(N$-morpholinomethyl)diphenylphosphine oxide, reacts with aldehydes or ketones to form enamines, which on acid hydrolysis afford aldehydes or ketones (Scheme 32). The usefulness of this acyl anion equivalent is demonstrated by the synthesis of dihydrojasmine and (Z)-6-henicosen-11-one.

2.4.9 DITHIOACETALS AND DITHIANES

In dithioacetals the proton geminal to the sulfur atoms can be abstracted at low temperature with bases such as Bu$^\text{Li}$. Lithium ion complexing bases such as DABCO, HMPA and TMEDA enhance the process. The resulting anion is a masked acyl carbanion, which enables an assortment of synthetic sequences to be realized via reaction with electrophiles. Thus, a dithioacetal derived from an aldehyde can be further functionalized at the aldehyde carbon with an alkyl halide, followed by thioacetal cleavage to produce a ketone. Dithiane carbanions allow the assemblage of polyfunctional systems in ways complementary to traditional synthetic routes. For instance, the β-hydroxy ketone systems, conventionally obtained by an aldo process, can now be constructed from different sets of carbon groups.

Dithioacetals, 1,3-dithianes or 1,3-dithiolanes are prepared by reaction of the corresponding carbonyl compound in the presence of an acid catalyst (conc. HCl, Lewis acids such as ZnI$_2$, BF$_3$-Et$_2$O, TMS-Cl, etc.) with a thiol or dithiol. Silica gel treated with thionyl chloride was found to be an effective as well as selective catalyst for thioacetalization of aldehydes. Thioacetalization can also be achieved using a (polystyryl)diphenylphosphine–iodine complex as a catalyst. Conversion of aldehydes or acetals into 1,3-dithianes is achieved with the aid of organotin thioalkoxides and organotin triflates or with 2,2-dimethyl-2-sila-1,3-dithiane. Direct conversion of carboxylic acids to 1,3-dithianes can be carried out by reaction with 1,3,2-dithiaborenane–dimethyl sulfide and tin(II) chloride or 1,3,2-dithiaborolene with trichloromethylthium followed by basic hydrolysis.

The dithiane-derived anion can be generated by the action of Bu$^\text{Li}$ in THF at -78°C or with complex bases NaNH$_2$–RONa at room temperature. Lithiated dithiane can also be prepared in situ by sonication of n-butyl chloride with lithium in the presence of dithiane. Dithioacetals or ketals are resistant to acidic or basic hydrolysis. Regeneration of the carbonyl group from the dithioketal sometimes presents difficulties but can be carried out by hydrolysis in polar solvents (acetone, alcohols, acetonitrile) in the presence of metallic ions such as HgII, CuII, Ag$^+$, TiIV or TiIII. Alternatively, alkylation hydrolysis
using methyl iodide, methyl fluorosulfonate or Meerwein salts, or oxidative cleavage using chloramine-
T, N-halosuccinimides, peroxy acids, ceric ammonium nitrate (CAN) or 1-chlorobenzotriazoles leads to
the carbonyl compound.\(^{177}\) In other cases one can use \(n\)-tributyltin hydride, trialkoxonium tetrafluorobor-
ate, isopentyl nitrite, thionyl chloride–silica gel–water, Fe(NO\(_3\))\(_2\) or Cu(NO\(_3\))\(_2\) supported on clay,\(^{187}\)
nitrosium ion (NO\(^+\)) sources,\(^{188}\) methyltriphenylphosphonium tribromide, trimethylphenylammonium tribromide,\(^{189}\) phenyldichlorophosphonate–DMF–NaI\(^{180}\) or photochemistry\(^{5,177}\) to achieve the hydrolytic cleavage.

It has been shown that thioacetal monosulfoxides undergo hydrolysis with greater ease than thioacetals or
dithiines, \(i.e.\) the hydrolysis can be carried out with dilute sulfuric or perchloric acid.\(^{175}\) Not only is the
hydrolysis of the thioacetal monosulfoxides more facile but the addition of the lithium salt proceeds
1,4 rather than 1,2 to \(\alpha,\beta\)-unsaturated carbonyl compounds.\(^{175,191}\)

2.4.9.1 1,2-Addition to Aldehydes and Ketones

1,2-Addition of lithiodithianes to carbonyl compounds followed by hydrolysis gives \(\alpha\)-hydroxy
ketones in good yield (equation 31).\(^{1,175,192}\) The reaction of sugar lactones with lithiodithiane provides a
preparative route to higher sugars.\(^{175}\) The reaction of 2-phenyl-1,3-dithianyllithium with 4-t-butyloc-
holoxanone in cyclohexane or THF proceeds with thermodynamic control, involving exclusively equatorial
attack on the carbonyl group. In contrast only kinetic control (axial attack) is seen in the reaction of the
same ketone with 1,3-dithianyllithium.\(^{194}\)

$$\begin{align*}
\text{R} & \quad \text{Li} \\
\text{S} & \quad \text{S} \\
\text{R} & \quad \text{COR} \\
\end{align*}$$

$$\begin{align*}
\text{R} & \quad \text{Li} \\
\text{S} & \quad \text{S} \\
\text{R} & \quad \text{COR} \\
\end{align*}$$

Stereoselective addition of a dithiane anion to chiral 2-methyl-3-trimethylsilyl-3-butenal combined
with the stereoselective addition of a Grignard reagent to the chiral \(\alpha\)-alkoxy ketone affords a practical
method for the construction of \(\alpha,\gamma\)-dimethyl-\(\alpha,\beta\)-dihydroxy compounds, useful intermediates for
the synthesis of erythronolides (Scheme 33).\(^{195}\) \(\beta\)-Hydroxy carboxylic esters were synthesized by the
addition of ethyl 1,3-dithiolanyl-2-carboxylate enolate to a chiral aldehyde, followed by desulfurization.\(^{196}\)

$$\text{SiMe}_3\text{CHO}$$

$$\text{SiMe}_3\text{OH}$$

$$\text{SiMe}_3\text{OBz}$$

\(i, \text{BzBr, NaH}; ii, \text{HgCl}_2\text{–CaCO}_3; iii, \text{EtMgBr}\)

Scheme 33

The intramolecular carbonyl addition of a lithiated dithiane to a ketone was used in the synthesis of ro-
caglamide, an anticancer compound, in 64% yield.\(^{197}\)

\(\alpha\)-Hydroxy ketones having fungicidal activity were prepared from the reaction of lithiated 2-alkyldi-
thianes with 3-pyridyl ketones.\(^{198}\)

The reaction of 2-cyclohexenone with 2-lithiodithiane occurs in a 1,2-fashion to give the unsaturated
hydroxy derivative, which, after rearrangement followed by deprotection, gives 3-hydroxy-1-cyclohex-
enecarboxaldehyde.\(^{199}\)

1,2-Addition of dithianyl anion to the appropriate aldehydes is a key step in the multistep synthesis of
(i) amphotericin B (Scheme 34);\(^{200,201}\) (ii) the dioxabicyclononane unit of tirandamycin (Scheme 35);\(^{202}\)
(iii) secoisoquinoline alkaloids such as peshawarine, cryptopleuroperminor, (\(\pm\))-corydalisol, (\(\pm\))-
aobamine and hypercorine\(^{203}\) and baldulin; and (iv) sesquiterpene lactones\(^{204}\) and chiral lyco-
erone.\(^{205}\)

Reaction of dianion (62) with nicotinaldehyde or \(N\)-methylpiperidone gave the corresponding alcohols
in good yield (equation 32),\(^{206}\) whereas the \(N\)-protected anion to the formation of the ring-opened al-
kyne derivative (equation 33).
The regio- and diastereo-selective reaction of the anion generated from 2-(1-propen-1-yl)-1,3-dithiane with an aldehyde is applicable to the synthesis of trans-β,γ-disubstituted γ-lactones, including the natural products (±)-eldnolide and (±)-trans-quercus lactone.207
2-Lithio-2-(1-methyl-2-alkenyl)-1,3-dithianes showed 1,3-syn selectivity on addition to aldehydes (equation 34). The presence of a bulky substituent R³ on the aldehyde gave increased syn selectivity in the following order: alkyl > phenyl > 1-silylalkenyl > alkenyl > alkynyl. Activation of an aldehyde by BF₃·Et₂O reduced the ratio.²⁰⁸

\[
\begin{align*}
\text{R}^1 & \quad \text{R}^2 & \quad \text{R}^3 \\
\uparrow & \quad \uparrow & \quad \uparrow \\
\text{OH} & \quad \text{OH} & \quad \text{OH} \\
\text{syn} & \quad \text{anti} \\
\end{align*}
\]

Intramolecular addition of lithiodithiane to an acetal leads to the formation of cyclic derivatives (equation 35).²⁰⁹ Carbonyl additions have been extended to the analogous imonium salts (R²C⁺=NR²), which furnish α-amino ketones.²¹⁰

\[
\begin{align*}
\text{Bu}^\text{Li} & \quad \text{THF} \\
\rightarrow & \quad \text{OH} \\
\end{align*}
\]

The reaction of 6-deoxy-6-iodo-1,2,3,4-di-O-isopropylidene-α-D-galactopyranose with 2-lithiodithiane yields an unsaturated open chain heptose derivative (equation 36).²¹¹

\[
\begin{align*}
\end{align*}
\]

2.4.9.2 1,4-Addition to α,β-Unsaturated Carbonyl Compounds

This reaction is of importance since it enables the conversion of α,β-unsaturated carbonyl systems into 1,4-dicarbonyl compounds, which are precursors of cyclopentenones (e.g. jasmonoids, redtronoids and prostanoids).²¹² The 1,4-addition proceeds in the presence of 1–2 equiv. of HMPT²¹³ and additional anion-stabilizing groups on the alkene enhance the tendency of metallated S,S-acetals to undergo the conjugate addition.

Chirally mediated conjugate addition reactions of lithiated dithioacetals to a prochiral α,β-unsaturated ester proceed enantioselectively to the corresponding adduct.²¹⁴ Alkylation of an acyclic α,β-unsaturated ester was achieved with high diastereoselectivity using a dithioacetals as the stereocontrolling unit (Scheme 36).²¹⁵ The conjugate addition of 2-lithiodithiane to 2-cyclohexenones, followed by quenching of the intermediate enolate anion with 2-chloroacyl chloride, affords 2-substituted 4(1,3-dithian-2-yl)-4,5,6,7-tetrahydro-3(2H)-benzofuranones.²¹⁶

The benzylic alcohols (63) are readily prepared by the conjugate addition of appropriate sulfur-stabilized carbanions, either as arylidithianes or as arylbis(phenylthiomethanes), to butenolides, followed by trapping of the generated enolate with an aromatic aldehyde.²¹⁷ Cyclization of the derived ketone provides a short efficient synthesis of clinically important podophytotoxin derivatives (Scheme 37),²¹⁸ whereas Raney nickel desulfurization, followed by hydrolysis under various conditions, gave lignan lactones like (-)-burseran, (-)-cubebin, hinokinin²¹⁹ and podorhizol.²¹⁷ More significantly, the use of a chiral butenolide leads to an asymmetric synthesis of the lignans (+)-burseran, isostegane and (+)-steganacin.²¹⁷

A total synthesis of (±)-aromatam has utilized the lithium anion of the dithiane of (E)-2-methyl-2-butenal as a functional equivalent of the thermodynamic enolate of methyl ethyl ketone in an aprotic
Michael addition. The synthesis of the naturally occurring benz[a]anthraquinones, X-14881 (64; R = Me) and ochromycinone (R = H) utilizes 2-phenyldithiane anion (Scheme 38), while 11-deoxydaunomycinone was prepared using 2-methyldithiane. The formation of bicyclo[3.3.0]oct-1(5)-ene-2,6-dione utilizes 2-(2,2-diethoxyethyl)-1,3-dithiane anion. Conjugate addition of the highly stabilized anion (65) occurs readily with enamide (66), whereas the related acyclic anion (67) appears to be less reactive than the cyclic analog (Scheme 39). Conjugate addition of lithiated α-alkylthio monosulfoxide provides a new route for the synthesis of dihydrojasmine.
2.4.9.3 Alkylation with R—X

The lithio derivatives of 1,3-dithiane react readily with alkyl halides to afford 2-alkylated dithianes in excellent yields. Dithiane anions are useful for the formation of small- and medium-sized rings via alkylation.

The alkylation method has been used for the multistep synthesis of vermiculine, homofemascene, the trail pheromone components of the fire ant Solinopsis invicta, the spiroacetal fragment of milbemycin E, chiral segments of roflumycin, the macrolide glcosoporone, an autoinhibitor of spore germination, antibiotic A23187, calcimycin, a fragment containing the backbone of the antibiotic boromycin, taloromycin B, an acute avian toxin, and baiyunol, an aglycon of a sweat substance.

Alkylation of 2-lithio-2-ethoxycarbonyl-1,3-dithiane with 5-bromo-1,2-pentadiene gave a precursor for the total synthesis of lycorenine alkaloids.

The aliphatic portion of (±)-zearealenone has been synthesized starting from 2,3-dihydropyran and iodo- pentanone ketal by employing dithiane for C—C bond formation via alkylation. The method also proved to be useful for the preparation of long chain alcohols starting from 5-alkyl-2-(1,3-dithianyl)thiophene. Similarly two rigid crown ethers (68), which possess a tripyridine subunit, are prepared by the construction of the middle pyridine moiety via a dithiane precursor (Scheme 40).

\[R = \text{[structure]} \]

Scheme 40

Cyclization of 1,ω-dihalo (or bis(tosyloxy)) alkanes with methyl methylthiomethyl sulfoxide in the presence of a base such as BuLi or KH gave three-, four-, five- and six-membered 1-methylsulhydryl-1-methylthiocycloalkanes that are easily converted to the corresponding ketone by acid hydrolysis. This is applicable to the formation of the key intermediate for the synthesis of isocarbacyclin, a potent prosta- cyclin analog.

Bis(benzenesulfonyl)methane and 1,3-benzodithiole tetroxide are useful formyl anion equivalents for alkylation as well as cycloalkylation reactions.

2.4.9.4 Acylation with Lithiodithianes

Reaction of lithiodithianes with acyl chlorides, esters or nitriles leads to the formation of 1,2-dicarbo- nyl compounds in which one of the carbonyl groups is protected as the thioacetal. Optically active amino ketones of type (69) are prepared via acylation of dithiane with an oxazoline-protected (S)-serine methyl ester (Scheme 41). Optically active (S)-2-alkoxy-1-(1,3-dithian-2-yl)-1-propanones were prepared by the reaction of the corresponding methyl (S)-lactate with 2-lithio-1,3-dithiane, which can be used for the enantioselective synthesis of (−)-trachelanthic acid. Enantioselective synthesis of l-glyceraldehyde involves the acylation of a dithiane glycolic acid derivative followed by bakers' yeast mediated reduction.
The Benzoin and Related Acyl Anion Equivalent Reactions

2.4.9.5 Miscellaneous Reactions of Dithioacetals

Arylation of dithiane can be achieved by the reaction of the anion with activated haloarenes such as halopyridines or haloarylchromium(tricarbonyls).\(^3\)

α-Diketones are prepared either by the reaction of 2-lithio-1,3-dithianes with a nitrile oxide (Scheme 42)\(^{248}\) or by the reaction of 2-lithiodithiolane with iron(pentacarbonyl) followed by alkylation with an alkyl halide.\(^{249}\)

Epoxides and oxetanes react readily with lithiodithiane to give derivatives of β- or γ-hydroxy aldehydes or ketones.\(^{176}\) The method has been used for the multistep synthesis of an inomycin fragment,\(^{250}\) thietane prostaglandin analogs,\(^{251}\) branched-chain nucleoside sugars,\(^{252}\) the southern hexahydrobenzofuran unit avermectin,\(^{253}\) the anti-Gram-positive bacterial elaiphylin\(^{254}\) and syn-1,3-polyols.\(^{255}\)

Allylic anions generated from 2-propenyl-1,3-dithiane and 2-styryl-1,3-dithiane react exclusively at α-carbon atoms either with carbonyl compounds\(^{256}\) or with three- to six-membered cyclic ethers in the presence of BF\(_3\)-Et\(_2\)O.\(^{257}\)

Reaction of dithiolane (70) with BuLi followed by a hindered organoborane gives (71), which after oxidative work-up affords an unsymmetrical ketone in good yield (Scheme 43).\(^{258}\)

Reaction of dithiane with DMF leads to the formation of an aldehyde, a key intermediate for the synthesis of the macrocyclic antibiotic (±)-pyrenophorin.\(^{259,260}\)

2-Diethoxyphosphinyl-2-buten-4-olide reacts with lithiated dithianes followed by an intermolecular Wittig–Horner reaction to produce fused γ-lactones (equation 37).\(^{261}\) The reaction of 2-lithio-1,3-dithianes with nitroarenes gives 2- or 4-[(1,3-dithian)-2'-yl]cyclohexa-3,5(or 2,5-)-diene-1-nitrate compounds (conjugate addition products), free nitroarene radical anions (redox products), 1,3-dithianes and 2,2'-bis(1,3-dithianes).\(^{262}\)
A key step for the synthesis of prostaglandin D$_1$ methyl ester involves the reaction of dithiane (72) with (1-methylthiovinyl)triphenylphosphonium chloride (73; Scheme 44).263

\[
\begin{align*}
\text{(72)} & + \text{(73)} \\
\text{HO} & \text{CO}_2\text{H} \\
\text{S} & \text{S} \\
\text{O} & \text{O} \\
\text{MeS} & \text{CO}_2\text{H}
\end{align*}
\]

Scheme 44

Lithiodithiane is aminated by reaction with a vinyl azide, as shown in equation (38).264

\[
\begin{align*}
\text{Li} & + \text{N}_3 \Rightarrow \text{Bu}^i \\
\text{S} & \text{S} \\
\text{Li} & \text{N} = \text{N} \\
\text{Bu}^i & \text{H}^+ \\
\text{S} & \text{NH}_2
\end{align*}
\]

Equation 38

Methoxy(phenylthio)methane and methoxy(phenylsulfonyl)methane are useful formyl anion equivalents for one-carbon homologation.265 For instance, addition of methoxy(phenylthio)methyl lithium to ketones, followed by rearrangement of the adduct, provides a new method for the preparation of α-(phenylthio) aldehydes (equation 39). The rearrangement is stereospecific.266 This method has been used for the total synthesis of annelated furans such as (+)-euryfuran,267 butenolides such as isoderminin and confertifolin,268 and spirocyclic tetrahydrofurans and butenolides.269

\[
\begin{align*}
\text{PhS} & \text{OMe} \\
i, \text{LDA} & \\
\text{ii}, \text{RCOR}^1 & \\
\text{OH} & \text{SPh} \\
\text{OMe} & \\
\text{SOCl}_2 & \\
\text{Py} & \\
\text{CHO} & \text{R}^1 \text{SPh}
\end{align*}
\]

Equation 39

Alkylation of phenylthiomethyl(trimethyl)silane or phenylthiophenyl(trimethyl)silane with alkyl halides followed by deprotection gave aldehydes270 or ketones271 respectively.
2.4.10 DISELENOACETALS

Diselenoacetals are also useful for the protection or umpolung of the carbonyl group.2,272,273 Bis(alkylseleno)alkanes and arylseleno analogs are prepared by the reaction of carbonyl compounds with selenols and trimethylsilyl selenides in the presence of acid catalysts (conc. HCl, conc. H\textsubscript{2}SO\textsubscript{4}, Lewis acids such as BF\textsubscript{3}-Et\textsubscript{2}O, TiCl\textsubscript{4}, ZnCl\textsubscript{2} or AlCl\textsubscript{3}) or with tris(methylseleno)borane in the presence of LAH and BF\textsubscript{3}-Et\textsubscript{2}O.274

The selenium-stabilized carbanions derived by deprotonation of selenoacetals by strong bases, such as a mixture of KDA—lithium t-butoxide, LiTMP in HMPT/THF or LBDA in THF at -78 °C, react readily with a variety of electrophiles including primary or secondary halides, epoxides, ketones, aldehydes and enones, followed by deprotection, to give ketones, β-hydroxy ketones, α-hydroxy ketones and 1,4-dicarbonyl compounds respectively.2,275,276

Regeneration of the carbonyl group from a diseleno-ketal or -acetal can be carried out by clay-supported iron(III) or copper(II) nitrate.277 HgCl\textsubscript{2}/CaCO\textsubscript{3}/MeCN, (PhSeO)\textsubscript{2}O/THF, NaIO\textsubscript{4}/EtOH–H\textsubscript{2}O, HgOAc/MeCN or CuCl\textsubscript{2}/CuO.275

The presence of DME or HMPT allows the C-3 regio- and stereo-selective 1,4-addition of 1,1-bis(methylseleno)alkanes to methylcyclohexenones (see Scheme 45). The resulting adducts have been stereoselectively transformed into cis- or trans-3-ethyl-2-methylcyclohexanone using Bu\textsubscript{3}SnH and AIBN.278

\[
\begin{align*}
\text{O} & + \text{MeSe} \quad \text{Li}^+ \quad \text{i, THF/HMPT} \\
& + \text{SeMe} \quad \text{SeMe} \quad \text{ii, NH}_4\text{Cl} \\
& \text{1%} \quad \text{(74) 99%}
\end{align*}
\]

\[
\begin{align*}
\text{O} & + \text{MeSe} \quad \text{Li}^+ \quad \text{i, THF/HMPT} \\
& + \text{SeMe} \quad \text{SeMe} \quad \text{ii, MeI–HMPT} \\
& \text{99%} \quad \text{(74) 1%}
\end{align*}
\]

Scheme 45

Selective transformation of the diseleno-substituted cyclohexanone to the corresponding diketone can be carried out from the cis product (74), whereas the trans isomer does not produce the desired diketone but instead leads to a ketovinyl selenide.275

α-Phenylselenyl cyclic ethers prepared by the reactions of either lactols or lactol acetate with benzene-selenol in the presence of a Lewis acid act as acyl anion equivalents, which on deprotonation with BuLi followed by reaction with alkyl halides lead to the formation of alkylated products.279

The lithio reagents generated from silylseleynylmethanes (Me\textsubscript{3}SiCH\textsubscript{2}SePh) and Me\textsubscript{3}SiCH(SePh)CH\textsubscript{2}R are useful synthetic equivalents of a protected formyl anion and an acyl anion respectively.2 Silylseleynylmethanes are valuable reagents for the transformation of halides to aldehydes.2

2.4.11 TOSYL METHYL ISOCYANIDE

Tosylmethyl isocyanide (TosMIC) (75; R = H), a versatile reagent in synthesis, can also be used as an acyl anion equivalent. For instance symmetrical and unsymmetrical diketones were prepared by using this TosMIC synthon (equation 40).280 Ketones are homologated to enones by alkylating the condensation product derived from TosMIC, followed by acid hydrolysis (Scheme 46).281

1-Isocyano-1-tosyl-1-alkenes (76), formed by the reaction of TosMIC with an aldehyde or ketone, react with a primary amine or ammonia to give 1,5-disubstituted (or 5-monosubstituted) imidazoles in high yield (Scheme 47).282
Heteroatom-stabilized Carbanion Equivalents

\[
\text{Ts} \quad \text{R} + \quad \text{Y} \quad \text{Y} + \quad \text{Ts} \quad \text{R}^1 \xrightarrow{i, \text{NaH}} \quad \text{O} \quad \text{O} \quad \text{R} \quad \text{R}^1 \quad \text{ii, H}^+ \\
\text{R}^1 \quad \text{R}^2 \quad \text{NaH} \quad \text{Ts} \quad \text{N} \quad \text{R}^2 \quad \text{R}^3 \quad \text{Ts} \quad \text{Ts} \quad \text{NCHO} \quad \xrightarrow{i, \text{H}^+} \quad \text{R}^1 \quad \text{R}^2 \quad \text{POCl}_3
\]

Scheme 46

\[
\text{R}^1 \text{CHO} + (75) \xrightarrow{\text{NaH}} \text{Ts} \quad \text{R}^1 \quad \text{NH}_3 \quad \text{Ts} \quad \text{R}^2 \quad \text{NH} \quad \text{N} \quad \text{R}^2 \quad \xrightarrow{\text{ii, H}^+} \quad \text{R}^1 \quad \text{R}^2 \quad \text{N}\quad \text{C}^- \\
\text{N}\quad \text{C}^-
\]

Scheme 47

2.4.12 REFERENCES

The Benzoin and Related Acyl Anion Equivalent Reactions

Heteroatom-stabilized Carbanion Equivalents

The Benzoin and Related Acyli Anion Equivalent Reactions

575

2.5 Silicon Stabilization

JAMES S. PANEK
Boston University, MA, USA

2.5.1 INTRODUCTION

2.5.2 CHARACTERISTICS OF ORGANOSILICON COMPOUNDS

2.5.2.1 Inductive Effects
2.5.2.2 Field Effects
2.5.2.3 p-σ π-Bonding
2.5.2.4 Hyperconjugation
2.5.2.5 Nucleophilic Substitution Reactions

2.5.3 SILICON ATTACHED TO PARTICIPATING π-BONDED CARBON NUCLEOPHILES

2.5.3.1 Vinylsilanes
2.5.3.1.1 Regiospecific cyclopentenone annelations: vinylsilane-terminated annelations
2.5.3.1.2 Acetal- and carbonyl-initiated cyclizations
2.5.3.1.3 Effect of vinylsilane double bond configuration
2.5.3.1.4 Acyliminium and iminium ion initiated cyclizations
2.5.3.2 Allenylsilanes: Multifunctional Propargylic Anion Equivalents
2.5.3.2.1 Titanium tetrachloride promoted additions of allenylsilanes to carbonyl compounds
2.5.3.2.2 [3 + 2] annelation strategies involving allenylsilanes
2.5.3.2.3 Additions to α,β-unsaturated carbonyl compounds
2.5.3.2.4 Additions to α,β-unsaturated acylsilanes
2.5.3.2.5 Additions to acyliminium ions
2.5.3.2.6 Additions to aldehydes
2.5.3.2.7 Additions to activated C==N π-bonds
2.5.3.2.8 Additions to tropylum ions
2.5.3.3 Alkynylsilanes: Additions to C==X π-Bonds

2.5.4 SILICON ATTACHED TO ADJACENT PARTICIPATING π-BONDED CARBON SYSTEMS

2.5.4.1 Allylsilanes
2.5.4.1.1 Stereochemistry of addition reactions involving allylsilanes
2.5.4.1.2 Intermolecular additions to aldehydes, ketones and acetics
2.5.4.1.3 Intramolecular additions of allyltrimethylsilanes to aldehydes and ketones
2.5.4.1.4 Stereochemistry of internal allylsilane additions to aldehydes and acetals
2.5.4.2 Propargylysilanes

2.5.5 α-SILYLORGANOMETALLIC REAGENTS

2.5.5.1 General Methods for the Formation of α-Silyl Carbanions
2.5.5.2 The Peterson Reaction: Introduction
2.5.5.2.1 The mechanism of the Peterson reaction
2.5.5.2.2 Stereochemistry of the Peterson reaction
2.5.5.3 Functionalized α-Silyl Carbanions
2.5.5.3.1 Reactions involving ambient silyl-substituted carbanions
2.5.5.3.2 Metallated allylaminosilanes
2.5.5.3.3 Addition reactions of α-silyl anions to C==N π-bonds

2.5.6 REFERENCES
2.5.1 INTRODUCTION

The chemistry of organic silicon compounds is one of the fastest growing fields in synthetic organic chemistry. Consequently, it has become one of the most important areas of research and the development of new methodology which provides general stereoselective reaction processes continues to be actively investigated. This chapter will review the synthetic utility of silicon-stabilized carbanion equivalents and their use in addition reactions to C=X π-bonds. No attempt has been made to provide an exhaustive literature search, rather the discussion focuses on more recent developments in stereoselective bond-forming processes and their practical usage. The chapter has been organized by the various types of stabilized carbanion equivalents, with issues of selectivity being treated in the context of each specific type. Particular attention has been given to the treatment of σ–π-bonded silicon-stabilized carbanions, e.g. vinylsilanes, allenylsilanes, alkynylsilanes, propargylsilanes, allylsilanes and α-metallated organosilanes. Primary emphasis has been placed on practical enantio- and stereo-selective synthetic methods and yields; reaction conditions and proposed mechanisms, however, are frequently discussed. Reactions which have not been judged to be synthetically useful, due to isolation of the desired addition product in low yield, have been neglected.

2.5.2 CHARACTERISTICS OF ORGANO SILICON COMPOUNDS

Organic silicon compounds display a multitude of functions in organic synthesis. The wide applicability of organosilicon reagents in stereoselective bond-forming reactions can be attributed to the large number of functional groups and the variety of reaction conditions that can be accommodated by silicon, and to its ability to function as an electron donor and acceptor. The reactivity and selectivity of reactions involving organosilanes is dependent upon both steric requirements and electronic contributions. The electronic effects associated with silicon include: (i) inductive effects; (ii) field effects; (iii) p–d π-bonding; and (iv) hyperconjugative effects. A brief summary of the physical properties of organosilicon compounds is helpful.

2.5.2.1 Inductive Effects

Inductive effects are generally considered to be transmitted through the σ-framework of a molecule. The electronegativity of an element is usually a measure of its ability to attract σ-electrons. In many synthetic operations selectivity reflects the energy differences between reagents, activated intermediates and transition states. Thus, caution must be exercised when considering the influence of electronic effects on selectivities of reactions involving organosilanes. Through purely inductive effects trialkylsilyl groups are electron donating; however, the inductive effects of silicon are weak and in general only influence atoms directly bonded to it.

2.5.2.2 Field Effects

Field effects describe the polarization of an adjacent π-system to the σ-dipole moment of the entire R3Si group. A π-inductive effect alters a nearby π-system without charge transfer to or from that system. Two types of π-inductive effects have been described. The first is termed πσ and is the result of charge differences in the σ-bonding system, as a consequence of inductive effects. The effect is illustrated in Figure 1, where an electropositive substituent Y induces a partial positive charge at the C-1 position of the benzene ring. This induces redistribution of the π-electron density in a fashion that can be predicted by consideration of the contributing resonance forms in the illustrated structures. In the case of an electron-withdrawing substituent Y, the πσ-effect predicts diminished electronegativity at C-2 and C-3 and increased electron density at C-1 and C-4.

\[
\begin{align*}
&\text{(CH}_2\text{)}_n\text{Y} \\
\text{+} \\
&\text{(CH}_2\text{)}_n\text{Y} \\
\text{+} \\
&\text{(CH}_2\text{)}_n\text{Y} \\
\text{+} \\
&\text{(CH}_2\text{)}_n\text{Y}
\end{align*}
\]

Figure 1
The second \(\pi \)-inductive effect, \(\pi_F \), is the field effect, which arises when the electric dipole of \((\text{CH}_2)_nY\) affects the entire \(\pi \)-system through polarization. This process is illustrated in Figure 2. Both \(\pi_\sigma \) and \(\pi_F \) contribute to the overall \(\pi \)-electron density, but it is difficult to separate these effects when they operate mainly at the C-1 position. For trialkylsilyl groups it is not easy to predict the magnitude of the field effect because although the Si–C bond is polarized such that silicon bears a partial positive charge, the trialkylsilyl group can be electron withdrawing, depending on the alkyl substituents.

\[\text{Figure 2} \]

\[\text{Figure 3} \]

\[\text{Figure 4} \]

\[\text{Figure 5} \]

2.5.2.3 \(p-d \) \(\pi \)-Bonding

The mechanism by which the trialkylsilyl group can function as a \(\pi \)-electron-withdrawing group is influenced by the physical properties of silicon. The most widely recognized explanation is that the low-lying, unoccupied silicon \(d \)-orbitals can participate in \(p-d \) \(\pi \)-bonding, as illustrated in Figure 3.\(^{2,5}\) In this illustration the electron density from the \(p \)-orbital on X can be delocalized onto silicon through a donor-acceptor interaction with the vacant Si 3d-orbital. Pauling was the first to introduce this concept to provide an explanation for the short lengths of silicon–oxygen and silicon–halogen bonds.\(^6\) The \(p-d \) \(\pi \)-bonding model is most easily applied to systems in which electron density in a \(p \)-type orbital adjacent to silicon is transferred onto the silicon atom.

2.5.2.4 Hyperconjugation

When two adjacent molecular orbitals are relatively close in energy and have appropriate symmetry, they can undergo perturbation resulting in the lowering of the energy of one orbital and an increase in the other. This phenomenon is shown in Figure 4 for the interaction of the Si–C \(\sigma^* \)-orbital with a \(\pi \)-orbital.\(^{14,2}\) In this example the \(p \)-orbital is lowered in energy through hyperconjugation, as reflected in the ionization potential. The magnitude of the hyperconjugative interaction is directly proportional to the orbital energy difference and the orbital coefficients.

The hyperconjugation model when applied to carbocation stabilization in organosilane systems is illustrated in Figure 5.
For organosilicon compounds the conformational requirements are well defined; for maximum stabilization of the carbocation β to the silicon group it is necessary for the C—Si bond to be orientated antiperiplanar to the empty p-orbital. Another system that is amenable to the simple hyperconjugation model is the α-silyl carbanion, $\text{R}_3\text{SiCH}_2^-$, as illustrated in Figure 6. Since the C—Si bonding orbital is higher in energy than C—C or C—H bonding orbitals and has a large coefficient on the adjacent carbon atom, through-space hyperconjugative stabilization by silicon is more influential in stabilizing an electron deficient center than that of an alkyl substituent or hydrogen.1a,f2

![Figure 6](image)

2.5.2.5 Nucleophilic Substitution Reactions

In the periodic table a column of elements will exhibit a trend of electronegativity that decreases in magnitude from top to bottom. The same trend is observed for silicon and carbon; the Pauling electronegativity of carbon is 2.5 eV, while that of silicon is 1.8,1b indicating that the C—Si bond is polarized such that silicon is the electron deficient atom and is responsible for accelerating nucleophilic attack at silicon (Figure 7). The reaction rate is in fact accelerated if the group undergoing displacement is a good leaving group.1b As a result, organosilanes are relatively nonpolar compounds compared to other organometallic reagents, so they can tolerate the presence of a wide variety of functional groups and in most cases can be handled without special precaution.

![Figure 7](image)

The α-bonds between silicon and electronegative elements such as the halogens are quite strong. A comparison of the bond dissociation energies between carbon/halogen and silicon/halogen is listed in Table 1.1b

<table>
<thead>
<tr>
<th>Bond</th>
<th>Energy (kJ mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C—F</td>
<td>552</td>
</tr>
<tr>
<td>C—Cl</td>
<td>397 ± 29</td>
</tr>
<tr>
<td>Si—F</td>
<td>552.7 ± 2.1</td>
</tr>
<tr>
<td>Si—Cl</td>
<td>456 ± 42</td>
</tr>
<tr>
<td>C—Br</td>
<td>280 ± 21</td>
</tr>
<tr>
<td>C—I</td>
<td>209 ± 21</td>
</tr>
<tr>
<td>Si—Br</td>
<td>343 ± 50</td>
</tr>
<tr>
<td>Si—I</td>
<td>293</td>
</tr>
</tbody>
</table>

The driving force for many addition reactions involves the formation of a new silicon compound with a stronger bond to the silicon atom. Treatment of the trimethylsilyl ether (1) with fluoride ion (F^-) results in the formation of fluorotrimethylsilane (2) because the derived Si—F bond has a higher bond dissociation energy (BDE) than the Si—O bond undergoing heterolytic bond cleavage (Scheme 1). The facile removal of the silyl group by use of a fluoride ion is commonly referred to as desilylation and is responsible for the extensive use of trialkylsilanes as protecting groups in synthesis.7

![Scheme 1](image)

The result of carbon–silicon σ-bond stabilization of an adjacent carbocation in electrophilic additions to C—X π-bonds is that the reactions normally occur with high levels of stereo- and regio-control. For instance, Lewis acid catalyzed addition reactions of allylsilanes to C—X π-systems proceed with C-3-regiospecificity and electrophilic additions of vinylsilanes occur predominantly at the silicon-bearing carbon. Trapping of the β-carbocation through the loss of the silyl group (or silicon substituent) then gives the addition product.
2.5.3 SILICON ATTACHED TO PARTICIPATING \(\pi \)-BONDED CARBON NUCLEOPHILES

The spectrum of silicon-stabilized carbanions containing \(\sigma \)-bonded silyl groups attached to a participating \(\pi \)-bond (\(\pi \)-nucleophile) and their use in organic synthesis has grown considerably over the last few years. In this context vinylsilanes, alkynylsilanes and allenylsilanes have emerged as remarkably useful and versatile carbon nucleophiles for the regio- and stereo-selective formation of carbon–carbon bonds. This section will discuss the stereochemical aspects of \(\sigma-\pi \)-bonded silicon-stabilized carbanions in addition reactions to \(C-\pi \)-systems. Excellent reviews have appeared covering vinylsilane-18 and alkynylsilane-terminated cyclization reactions.8

2.5.3.1 Vinylsilanes

Vinylsilanes function as vinyl anion equivalents in addition reactions to \(C-\pi \)-systems. The reaction has been successfully conducted under a variety of conditions. The strong \(\sigma \)-donating capability of the silyl group is primarily responsible for directing the initially formed cation along a single reaction pathway. The adjacent carbanion center is stabilized by overlap with the low energy, unoccupied 3d-orbital of silicon or by \(\sigma \rightarrow \sigma^* \) orbital overlap (Figure 8). As a consequence, characteristic regio- and stereo-selectivity are observed in vinylsilane addition reactions; as shown in Figure 9, electrophilic substitution takes place at the silicon-bearing carbon and occurs stereospecifically with retention of configuration.8

![Figure 8](image)

![Figure 9](image)

The intermolecular addition of vinylsilanes to \(C-\pi \)-systems is a well-studied reaction;11,8a,b however, not until 1981 had the intramolecular variant been demonstrated. Thus, coverage of vinylsilane additions in this chapter will focus on the regio- and stereo-selectivity in intramolecular (cyclization) reactions. Two modes of cyclization are possible, as determined by the position of the alkene with respect to the ring system: cyclization can occur in an endocyclic or an exocyclic mode with respect to the vinylsilane group (Figure 10).

![Figure 10](image)
The first report of an intramolecular addition of a vinylsilane came from the Burke laboratory. The reaction was used for the preparation of spiro[4.5]decadienones. As shown in Scheme 2, the addition of the vinylsilane to the intermediate acylium ion generated using titanium tetrachloride resulted in the formation of the enone system (3) → (4).

Kuwajima has reported similar internal addition reactions resulting in the formation of spirocyclic enones. Treatment of the acyl chlorides (5a,b; Scheme 3) with TiCl₄ resulted in the formation of enone systems (6a) and (6b) in good yields.10

Competition studies reported by Kuwajima,10 which also complement the results of Nakai,11 illustrate the limitations of the β-effect as a tool for predicting the outcome of vinylsilane-terminated cyclizations (Scheme 4). Acylium ion initiated cyclizations of (7a) and (7b) gave the expected cyclopentenones (8a) and (8b). However, compound (7c), upon treatment with titanium tetrachloride, gave exclusively the cyclopentenone product (8c) arising from the chemoselective addition on the 1,1-disubstituted alkene followed by protodesilylation of the vinylsilane. The reversal observed in the mode of addition may be a reflection of the relative stabilities of the carbocation intermediates. The internal competition experiments of Kuwajima indicate that secondary β-silyl cations are generated in preference to secondary carbocations (compare Schemes 3 and 4), while tertiary carbocations appear to be more stable than secondary β-silyl carbocations, as judged by the formation of compound (8c).

2.5.3.1.1 Regiospecific cyclopentenone annelations: vinylsilane-terminated annelations

The efficient conversion of a ketone to a fused cyclopentenone of the general type outlined in Scheme 5 has been demonstrated by Paquette and coworkers.12 The overall strategy is illustrated in Scheme 6 and begins with Freidel–Crafts acylation of the cyclic vinylsilane (8) to give the enone (9), which undergoes
tin tetrachloride mediated cyclization to give the fused 5,5-pentenones (10a) and (10b), as a 10:1 mixture of double bond isomers.

![Scheme 5](image)

Scheme 6

Subsequent investigations by Denmark have shown that vinylsilanes can direct the course of Nazarov-type cyclization reactions. Once again the regiochemical outcome is controlled by the β-effect as substitution takes place at the carbon bearing the silyl group (Scheme 7). This clever modification provided a solution to the serious problem of double bond isomerization that is frequently observed in the classical Nazarov reaction. Treatment of the enone (11) with commercially available ‘anhdyrous’ iron(III) chloride (FeCl₃) promoted cyclization to give one double bond isomer of the cis-hydrindinone (12) in excellent yield. Table 2 summarizes a representative collection of cyclization reactions catalyzed by FeCl₃.

![Scheme 7](image)

2.5.3.1.2 Acetal- and carbonyl-initiated cyclizations

In general, carbonyl groups do not function as good initiators in vinylsilane-mediated cyclization reactions and relatively few examples exist. The cyclization of vinylsilanes with ketones or aldehydes as initiators is a highly underdeveloped reaction that holds considerable potential. As reported by Tius and coworkers, treatment of aldehyde (13) with a catalytic amount of p-toluenesulfonic acid gave a mixture of the tetralins (14) and (15) in a combined yield of 53%, with lesser amounts of the enone (16; Scheme 8). The enone system presumably arises from the intramolecular 1,3-hydride transfer of the intermediate α-silyl carbocation (17). Similarly, the vinylsilane (18) undergoes cyclization to produce the disubstituted benzene derivative (19), although yields are low.

Activated carbonyl groups serve as excellent substrates in Lewis acid catalyzed cyclization reactions, with faster reaction rates and higher yields being obtained in related cyclization processes involving acetals and ketals. Thus, treatment of the dimethyl acetals (20a–c) with TiCl₄ at −78 °C afforded the biaryl
Table 2 Iron(III) Chloride Induced Cyclizations of Vinysilanes

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Solvent</th>
<th>Temperature (°C)</th>
<th>Time (h)</th>
<th>Product</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>(CH₂Cl)₂</td>
<td>20</td>
<td>2.5</td>
<td>(12a)</td>
<td>55</td>
</tr>
<tr>
<td>SiMe₃</td>
<td>(11a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>CH₂Cl₂</td>
<td>0</td>
<td>4.0</td>
<td>(12b)</td>
<td>84</td>
</tr>
<tr>
<td>SiMe₃</td>
<td>(11b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>CH₂Cl₂</td>
<td>0</td>
<td>1.0</td>
<td>(12c)</td>
<td>74</td>
</tr>
<tr>
<td>SiMe₃</td>
<td>(11c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>CH₂Cl₂</td>
<td>20</td>
<td>12.0</td>
<td>(12d)</td>
<td>54</td>
</tr>
<tr>
<td>SiMe₃</td>
<td>(11d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>CH₂Cl₂</td>
<td>20</td>
<td>12.0</td>
<td>(12e)</td>
<td>95</td>
</tr>
<tr>
<td>SiMe₃</td>
<td>(11e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* All reactions were run with 1.05 equiv. of FeCl₃ (0.08 M) in vinylsilane. * CH₂Cl₂ gave poor yields.

ring systems (23a-c). It was presumed by the authors that the products arose through the intermediates (21) and (22) (Scheme 9).

2.5.3.1.3 Effect of vinylsilane double bond configuration

Both vinylsilane dimethyl acetics (E)-(24) and (Z)-(24) undergo cyclization to form the substituted cyclohexene (25; Scheme 10).¹⁸ The vinylsilane (Z)-(24) cyclizes nearly twice as fast as the (E)-stereoisomer and in higher yield. This greater efficiency may be due to the lability of the product allyl ether to the Lewis acid catalyst.

Trost has reported the use of dithioacetals as initiators in vinylsilane-terminated cyclizations (Scheme 11).¹⁷ Reaction of the dimethyl thioketal (26) with dimethyl(methylthio)sulfonium tetrafluoroborate (DMTSF)¹⁸ led to the formation of the allylic sulfide (28) via a 2,3-sigmatropic rearrangement of the initially formed sulfonium salt (27a), which may have been catalyzed by complexation with excess DMTSF.
Competition experiments between two \(\pi \)-bonded nucleophiles within the same molecule were studied in an attempt to identify reaction parameters and factors responsible for regioselectivity.\(^{17} \) These experiments, summarized in Scheme 12, demonstrated that the dithioacetal (initiating carbocation) is in competition with two nucleophilic functional groups within the same molecule, a silyl enol ether and a vinylsilane. In this instance, when the thioacetal (29) was treated with DMTSF, complete chemoselectiv-
ity was observed for the addition of the more nucleophilic enol ether to the intermediate thionium ion to give the cyclohexanone derivative (30b). Cyclization product (30a), arising from reaction with the vinylsilane functional group, was not detected. However, cyclization of the corresponding ketone (31) gave the spirocyclic ketone (32). In this case, the first of the two consecutive cyclizations must occur via addition of the vinylsilane moiety, as neither ketone (30b) nor enone (30a) yielded the spirocyclic ketone (32) upon treatment with DMTSF (Scheme 13).
Related cyclizations that occur in an endocyclic mode with respect to the initiating acetal function lead to a variety of different sized oxygen heterocycles, including eight-membered cyclic ethers. As summarized earlier by Blumenkopf and Overman, four modes of oxonium ion promoted cyclizations are possible. The sense of cyclization is dependent on the orientation of the initiating and terminating functional groups (Figure 11; equations 1-4).

\[\text{Equation 1} \]

\[\text{Equation 2} \]

\[\text{Equation 3} \]

\[\text{Equation 4} \]

Figure 11 Oxonium ion initiated cyclization modes of vinylsilanes

An efficient approach to the synthesis of oxygen heterocycles has been described by Overman and co-workers. It utilizes the internal trapping of an oxonium ion, generated by the action of a Lewis acid on methoxymethoxymethyl ether (MEM ether) by a vinyltrimethylsilane, as illustrated in Scheme 14. For instance, 5,6-dihydro-2H-pyranS (34a)-(34d) were prepared as single double-bond regioisomers from the reaction of vinylsilane acetals (33a)-(33d) under Lewis acid catalysis (Table 3). An interesting example is shown in entry (33d). In this case the 1-bromo-1-(trimethylsilyl)alkene, presumably a weaker nucleophile due to the inductive destabilization of the intermediate silyl carbocation by the bromine atom, still underwent cyclization in good yield. More importantly, from a synthetic viewpoint the reaction resulted in the formation of a regiospecifically functionalized pyran system in good yield.

The construction of medium-sized ring systems has been a persistent and difficult problem in organic synthesis. The cyclizations that occur in an exocyclic mode with respect to the vinylsilane terminator have been used to prepare five-, six- and even seven- and eight-membered oxygen heterocycles. As illustrated in Scheme 15, for the construction of pyran systems, acetals (35a) and (35b) underwent cyclization to yield the tetrahydropyrans (36a) and (36b) in excellent yields with high levels of stereoselection (>99.5% retention of stereochemistry about the double bond).

The first stereocontrolled method for the preparation of 3-alkylideneoxepanes was demonstrated using this cyclization strategy. Thus, Lewis acid promoted cyclizations of vinylsilane acetals (37a) and (37b) yielded the seven-membered ring alkylideneoxacycles (38a) and (38b), as illustrated in Scheme 16.

The vinylsilane-terminated cyclization strategy has been extended to the preparation of eight-membered cyclic ethers. Oxocenes (Scheme 17) with \(\Delta^2 \)-unsaturation (3,6,7,8-tetrahydro-2H-oxocins) were prepared efficiently by the SnCl$_4$-catalyzed cyclization of the mixed acetals (39) with complete regiochemical control. Electrophilic addition on the 2-(trimethylsilyl)-1-alkene occurs predominantly at the terminal position of the alkene to form a tertiary \(\alpha \)-silyl, rather than a primary \(\beta \)-silyl, carbocation.
Heteroatom-stabilized Carbanion Equivalents

Scheme 14

Table 3 Preparation of Dihydro-2H-pyrans (34)

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>R'</th>
<th>Lewis acid</th>
<th>Temperature (°C)</th>
<th>Time (h)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(33a)</td>
<td>H</td>
<td>H</td>
<td>SnCl₄</td>
<td>−20</td>
<td>1.0</td>
<td>71</td>
</tr>
<tr>
<td>(33b)</td>
<td>H</td>
<td>(CH₂)₃Ph</td>
<td>SnCl₄</td>
<td>−20</td>
<td>1.0</td>
<td>65</td>
</tr>
<tr>
<td>(33c)</td>
<td>Me</td>
<td>H</td>
<td>TiCl₃(OPr)</td>
<td>−20</td>
<td>2.0</td>
<td>83</td>
</tr>
<tr>
<td>(33d)</td>
<td>H</td>
<td>Br</td>
<td>TiCl₄</td>
<td>−60</td>
<td>2.0</td>
<td>78</td>
</tr>
</tbody>
</table>

Scheme 15

(35a) R = H, R₁ = Buⁿ
(35b) R = Buⁿ, R₁ = H

(36a) 89%
(36b) 92%

Scheme 16

(37a) R = H, R₁ = Buⁿ
(37b) R = Buⁿ, R₁ = H

(38a) 71%
(38b) 57%

Scheme 17
Silicon Stabilization

cis stereochemistry of cyclizations that form 2,8-disubstituted-Δ4-oxocenes of structural type (40) can be rationalized on the basis that cyclization of the more stable (E)-oxonium ion (41) → (42) should occur preferentially in the conformation having the hydrogen (smallest substituent) at the α-carbon in the plane of the partial C—O π-bond (Scheme 18). Alternatively, Overman has suggested that the cis stereochemistry could arise from trapping of the (E)-oxonium ion in an intramolecular ene reaction, which proceeds through a boat–chair bicyclo[3.3.1]nonane transition state, as illustrated in Scheme 19.20b

![Scheme 18](image)

Scheme 18 Oxonium ion trapping via an intramolecular ene reaction

In contrast, vinylsilane acetals (43a)–(43c), with a two-carbon tether between the vinylsilane and the MEM group, cyclize in the presence of tin tetrachloride to form tetrasubstituted alkylidene-tetrahydrofurans (44a)–(44c). However, little or no stereochemical preference for either (E)- or (Z)-alkene stereoisomers was observed in these reactions (Scheme 20 and Table 4).19

![Scheme 20](image)

Scheme 20

Table 4 SnCl4-catalyzed Cyclizations of MEM Ethers

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>R'</th>
<th>Lewis acid</th>
<th>(E):(Z) ratio</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(43a)</td>
<td>Et</td>
<td>Bu'n</td>
<td>SnCl4</td>
<td>40:60</td>
<td>81</td>
</tr>
<tr>
<td>(43b)</td>
<td>Bu'n</td>
<td>Et</td>
<td>SnCl4</td>
<td>40:60</td>
<td>86</td>
</tr>
<tr>
<td>(43c)</td>
<td>Bu'n</td>
<td>H</td>
<td>SnCl4</td>
<td>97:3</td>
<td>81</td>
</tr>
</tbody>
</table>

Through the efforts of the Overman research group, the acetal–vinylsilane cyclization reaction has been shown to be a useful strategy for the stereoselective preparation of a variety of medium-sized oxygen heterocycles. This cyclization strategy has been used successfully in the asymmetric synthesis of the marine natural product (−)-laurenyne (40a), an eight-membered cyclic ether.21 These molecules are members of an unusual class of C-15 nonisoprenoid metabolites.

![Laurenyne](image)

(40a) (−)-Laurenyne
In contrast, the related cyclizations used to form carbocyclic systems have been of limited synthetic value due to the acid sensitive nature of the derived allylic ether product (equation 1; Figure 11). The sensitivity of these carbocycles may be rationalized by considering the poor orbital overlap between the allylic C—O bond with the adjacent π-bond in a five-, six- or seven-membered ring.8a,23

2.5.3.1.4 Acyliminium and iminium ion initiated cyclizations

Activated C=N bonds have been used extensively as initiators in cyclization reactions. In particular, acyliminium and iminium ions serve as reliable initiators in vinylsilane-terminated cyclizations and thus represent an exceptionally useful method for the construction of nitrogen heterocycles.8 As with oxo-nium ions, iminium ions may be generated using similar conditions that are compatible with the terminating vinyltrimethylsilanes. Acyliminium and iminium ions have been applied in key ring-forming reactions in a number of alkaloid syntheses. This section will examine the use of this methodology in stereoselective bond-forming reactions relevant to the synthesis of nitrogen heterocycles (Scheme 21).

An acyliminium ion terminated cyclization served as the key step in a short synthesis of the indolizidine alkaloids elaecanes B (47a) and A (47b).22 The key intermediates and cyclizations are summarized in Scheme 22.

The reported synthesis of the Amaryllidaceae alkaloid (±)-epielwesine (50) also employed an iminium ion-vinylsilane in the key cyclization step (Scheme 23).23 Reaction of the (Z)-vinyltrimethylsilane (48) with TFA generated an intermediate iminium ion, which was trapped by the vinylsilane nucleophile to yield the cis fused heterocycle (49).

The synthesis of the indoloquinolizidine alkaloid deplancheine (52; Scheme 24), using an exocyclic variant of an iminium ion initiated vinylsilane cyclization, has been reported by Malone and Overman.24 Thus, treatment of vinylsilane (51) with formaldehyde resulted in the generation of an intermediate im-
inium ion that underwent smooth cyclization, forming the carbon framework of deplancheine. The (Z)-vinylsilane (51b) also cyclized to the (Z)-stereoisomer of deplancheine (52b) via the corresponding iminium ion to give the tetracyclic ring system in greater than 98% isomeric purity. This series of experiments provides an excellent demonstration of the high levels of stereoselection that can be achieved in vinylsilane cyclization reactions that occur in the exocyclic mode with respect to the attacking nucleophile.

![Scheme 24](image)

A successful enantioselective approach to the pumiliotoxin class of alkaloids has been developed using vinylsilane cyclization strategies. Three members of this class, pumiliotoxin A (55), pumiliotoxin B (56) and pumiliotoxin 251D (57) have been synthesized in optically active forms through the use of iminium ion–vinylsilane cyclization reactions. The strategy employed in these syntheses relied on the chiral pool to provide optical activity. L-Proline was used as the optically active starting material; its (S)-stereocenter became the C-8α stereocenter of the indolidizidine ring system in all three alkaloids. The iminium ion–vinylsilane strategy was employed in constructing the piperidine ring and establishing the Q-stereocchemistry of the alkylidene side chain. The key bond-forming reaction in each synthesis is detailed in Scheme 25 and involved the generation and subsequent trapping of an iminium ion by the vinylsilane. The total syntheses of (+)-geissoschizine (58) and (±)-(Z)-isositsirkine (59) have also been documented. The general strategy is outlined in Scheme 26 below and utilized, as a key step, stereocontrolled formation of the ethylidene side chain by stereospecific cyclization of an (E)- or (Z)-vinylsilane iminium (A) → (B).

![Scheme 25](image)

(53) Pumiliotoxin A
(54) Pumiliotoxin B
(57) Pumiliotoxin 251D
An efficient enantiodivergent synthesis of levorotatory (1S,2R,8aS)-1,2-dihydroxyindolizidine (62a) and its antipode (62b) has been developed starting from commercially available d-isoascorbic acid (61; Scheme 27). This strategy illustrates the complementary use of iminium and N-acyliminium ion inter-
mediates as initiators for the enantiodivergent synthesis of the indolizidinediol alkaloids. The different types of iminium ion initiated cyclizations, and their related electron deficient intermediates, have become some of the most useful methods for the preparation of nitrogen heterocycles. These studies have illustrated the compatibility of iminium ion–vinylsilane cyclizations with complex alkaloids containing sensitive functional groups.8,25–27

2.5.3.2 Allenylsilanes: Multifunctional Propargylic Anion Equivalents

Alkynic intermediates serve as important functional groups in organic synthesis. Many important reactions exploiting the unique and versatile chemistry of the carbon–carbon triple bond have been devised over the last few years.28 A general strategy for the synthesis of substituted alkynes involves substitution and addition reactions of propargylic anion equivalents; this approach is particularly well suited for the preparation of homopropargylic alcohols (Scheme 28).

This methodology has been limited by the tendency of metallated propargylic anions to add to electrophiles to produce a mixture of regiosomers. This lack of regiochemical control results from the fact that these anions exist as an equilibrating mixture of allenic and propargylic anions, which can both add to electrophiles to produce allenic and propargylic alcohols (Scheme 29). Thus, product ratios are determined by the position of the equilibrium between the two organometallic species. Pioneering work by Danheiser and coworkers has resulted in the development of allenylsilanes as useful propargylic anion equivalents.29 Importantly, these readily available organometallic compounds do not participate in the dynamic equilibrium described above and, as a result, undergo additions with virtual regiospecificity. As described in Sections 2.5.4.1 to 2.5.4.8, allenylsilanes have proven to be useful carbon nucleophiles and are known to participate in regio- and stereo-controlled addition reactions to a variety of electrophiles.

2.5.3.2.1 Titanium tetrachloride promoted additions of allenylsilanes to carbonyl compounds

The TiCl₄-mediated addition of allenylsilanes (66; Scheme 30) to aldehydes and ketones provides a general regiocontrolled route to a wide variety of substituted homopropargylic alcohols.29 Importantly, all three types of homopropargylic alcohols (63, 64 and 65) are accessible through allenylsilane methodology.
Heteroatom-stabilized Carbanion Equivalents

\[\text{(63)} \]

\[\text{(64)} \]

\[\text{(65)} \]

\[\text{(66)} \]

\[\text{R}^1 = \text{Me}, \text{R}^2 = \text{R}^3 = \text{H} \]

\[\text{d: R}^1 = \text{R}^3 = \text{H}, \text{R}^2 = -(\text{CH}_2)_2\text{Ph} \]

\[\text{b: R}^1 = \text{Pr}, \text{R}^2 = \text{R}^3 = \text{H} \]

\[\text{e: R}^1 = \text{R}^2 = \text{H}, \text{R}^3 = \text{Me} \]

\[\text{c: R}^1 = \text{R}^3 = \text{H}, \text{R}^2 = \text{Me} \]

\[\text{f: R}^1 = \text{Me}, \text{R}^3 = \text{Et}, \text{R}^3 = \text{H} \]

\[\text{Scheme 30} \]

Reactions of chiral allenes proceed with a preference for the formation of the \textit{syn} diastereomer. The stereochemical outcome of these reactions can be rationalized by invoking an open transition state model for the addition reactions (Figure 12), which depicts an antiperiplanar orientation of the chiral allenylsilane to the aldehyde carbonyl. In this model, steric repulsion between the allenyl methyl and the aldehyde substituent is most likely responsible for the destabilization of transition state (B), which leads to the \textit{anti} (minor) stereoisomer. This destabilizing interaction is minimized in transition state (A). Table 5 illustrates representative examples and summarizes the scope of the regiocontrolled synthesis of homopropargylic alcohols using allenylsilanes.

\[\text{Transition state A} \]

\[\text{Transition state B} \]

\[\text{Figure 12} \]

2.5.3.2.2 \([3 + 2]\) annelation strategies involving allenylsilanes

\([3 + 2]\) annelation tactics involving allenylsilanes as the three-carbon nucleophile have been extensively investigated by Danheiser and coworkers. Their efforts in this area have resulted in the generation of an effective strategy for the preparation of a variety of both carbocyclic and heterocyclic compounds. These processes are summarized in Figure 13 with the illustrated transformations. The allenylsilane (66) reacts with \(\alpha,\beta\)-unsaturated carbonyl compounds to give carbocyclic derivatives (67a)–(69a). Allenylsilanes react with heteroallenophiles, \(e.g.\) aldehydes, acylium, acyliminium, iminium and nitronium ions to yield the corresponding heterocyclic products (70)–(72). Sections 2.5.4.2–2.5.4.8 offer a detailed discussion of these reactions.

2.5.3.2.3 Additions to \(\alpha,\beta\)-unsaturated carbonyl compounds

The reaction of allenylsilanes with electron deficient \(\pi\)-systems constitutes a powerful and general method for the regio- and stereo-selective preparation of substituted cyclopentenes. As first reported, (trimethylsilyl)allenes function as three-carbon nucleophiles in TiCl\(_4\)-promoted (trimethylsilyl)cyclopentene annelations (Scheme 31). The annelation process involves the polarization of an \(\alpha,\beta\)-unsaturated carbonyl compound by TiCl\(_4\) to generate an alkoxyallylic cation. Regiospecific electrophilic substitution of this cation at C-3 of the allenylsilane produces a silicon-stabilized vinyl cation. A 1,2-shift of the tri-
methylsilyl group then yields an isomeric vinyl cation, which is trapped by the titanium enolate to generate the annelated (trimethylsilyl)cyclopentene products (67b).

<table>
<thead>
<tr>
<th>Entry</th>
<th>Carbonyl compound</th>
<th>Allenysilane</th>
<th>Method</th>
<th>Product(s)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cyclohexanecarbaldehyde</td>
<td>66a</td>
<td>A</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>2</td>
<td>PhCH₂CH₂CHO</td>
<td>66a</td>
<td>A</td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>3</td>
<td>Pr³COMe</td>
<td>66a</td>
<td>A</td>
<td></td>
<td>86</td>
</tr>
<tr>
<td>4</td>
<td>PhCH₂CH₂CHO</td>
<td>66b</td>
<td>A</td>
<td></td>
<td>89</td>
</tr>
<tr>
<td>5</td>
<td>Cyclohexanone</td>
<td>66b</td>
<td>A</td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>6</td>
<td>Pr³COMe</td>
<td>66b</td>
<td>A</td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>7</td>
<td>PhCH₂CH₂CHO</td>
<td>66c</td>
<td>B</td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>8</td>
<td>PhCH₂COMe</td>
<td>66c</td>
<td>B</td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>9</td>
<td>Cyclohexanone</td>
<td>66c</td>
<td>B</td>
<td></td>
<td>89</td>
</tr>
<tr>
<td>10</td>
<td>MeCOMe</td>
<td>66d</td>
<td>B</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>11</td>
<td>Cyclohexanone</td>
<td>66d</td>
<td>B</td>
<td></td>
<td>49</td>
</tr>
</tbody>
</table>
Table 5 (continued)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Carbonyl compound</th>
<th>Allenylsilane</th>
<th>Method<sup>a</sup></th>
<th>Product(s)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>PhCH₂CH₂CHO</td>
<td>66e</td>
<td>B</td>
<td></td>
<td>89 (3.1:1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PhCH₂CH₂CHO</td>
<td>66e</td>
<td>B</td>
<td></td>
<td>81 (4.1:1)</td>
</tr>
<tr>
<td>13</td>
<td>Cyclohexanecarbaldehyde</td>
<td>66e</td>
<td>B</td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>14</td>
<td>Cyclohexanone</td>
<td>66e</td>
<td>B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a Method A: TiCl₄ (1.15 equiv.), −78 to 25 °C. Method B: TiCl₄ (1.15 equiv.), −78 to 25 °C then 2.0–2.5 equiv. of KF in DMSO.

![Figure 13](image-url)
<table>
<thead>
<tr>
<th>Entry</th>
<th>α,β-Unsaturated ketone</th>
<th>Allenylsilane</th>
<th>(Trimethylsilyl)cyclopentene product</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Methyl vinyl ketone</td>
<td>66a</td>
<td></td>
<td>68-75</td>
</tr>
<tr>
<td>2</td>
<td>Cyclohexenone</td>
<td>66a</td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>3</td>
<td>Cycloheptenone</td>
<td>66a</td>
<td></td>
<td>90-94 (cis:trans = 83:17)</td>
</tr>
<tr>
<td>4</td>
<td>Cyclopentenone</td>
<td>66a</td>
<td></td>
<td>48</td>
</tr>
<tr>
<td>5</td>
<td>trans-3-Penten-2-one</td>
<td>66a</td>
<td></td>
<td>79</td>
</tr>
<tr>
<td>6</td>
<td>Carvone</td>
<td>66a</td>
<td></td>
<td>87</td>
</tr>
<tr>
<td>7</td>
<td>1-Acetylcyclohexene</td>
<td>66a</td>
<td></td>
<td>91</td>
</tr>
<tr>
<td>8</td>
<td>2-Methylene-α-tetralone</td>
<td>66a</td>
<td></td>
<td>80-84</td>
</tr>
<tr>
<td>Entry</td>
<td>α,β-Unsaturated ketone</td>
<td>Allenylsilane</td>
<td>(Trimethylsilyl)cyclopentene product</td>
<td>Yield (%)</td>
</tr>
<tr>
<td>-------</td>
<td>------------------------</td>
<td>---------------</td>
<td>-----------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>9</td>
<td>Phenyl vinyl ketone</td>
<td>66b</td>
<td></td>
<td>69-73</td>
</tr>
<tr>
<td>10</td>
<td>Cyclohexenone</td>
<td>66b</td>
<td></td>
<td>81-85</td>
</tr>
<tr>
<td>11</td>
<td>Cyclohexenone</td>
<td>66b</td>
<td></td>
<td>17-19</td>
</tr>
<tr>
<td>12</td>
<td>Methyl vinyl ketone</td>
<td>66e</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>13</td>
<td>Cyclohexenone</td>
<td>66e</td>
<td></td>
<td>61-63</td>
</tr>
<tr>
<td>14</td>
<td>Cyclohexenone</td>
<td>66f</td>
<td></td>
<td>79 (cis:trans = 95:5)</td>
</tr>
<tr>
<td>15</td>
<td>Cyclopentenone</td>
<td>66c</td>
<td></td>
<td>68 (cis:trans = 75:25)</td>
</tr>
</tbody>
</table>
Both cyclic and acyclic enone systems participate in the (trimethylsilyl)cyclopentene annelation (Table 6). α-Methylene ketones react to form spiro-fused systems and the intermediates derived from acetylcyclohexanone, cyclohexenone and cyclopentanone cyclize to yield 5,5- and 6,5-fused ring systems.\(^{30}\)

2.5.3.2.4 Additions to α,β-unsaturated acylsilanes

α,β-Unsaturated acylsilanes serve as highly reactive carboxylic acid equivalents in conjugate addition reactions with allenylsilanes.\(^{31}\) The trimethylsilyl acylsilanes provide the basis for a \([3 + 3]\) annelation approach to six-membered carbocycles. By manipulating the trialkylsilyl group of the acylsilane, the course of the annelation reaction can be controlled to produce either five- or six-membered rings (68 and 69; Figure 13 and Scheme 32). α,β-Unsaturated acylsilanes combine with allenylsilanes at \(-78°C\) in the presence of TiCl\(_4\) to produce trimethylsilyl–cyclopentene annelation products in good yield (Table 7).\(^{31}\)
The annelation products derived from 2-alkyl-substituted α,β-unsaturated acylsilanes undergo a rearrangement to β-silylcyclohexanone derivatives when treated with TiCl₄. The proposed mechanism is illustrated in Scheme 33. The annelation process commences with the regiospecific electrophilic substitution at the C(3)-position of the allenylsilane, producing a vinyl carbocation which undergoes a 1,2-cationic trimethylsilyl shift to yield an isomeric vinyl carbocation. Cyclization then gives the [3 + 2] annelation product. Ring expansion of the cyclopentene generates a tertiary carbocation, which undergoes a second 1,2-anionic trimethylsilyl shift to produce the cyclohexanone (69c).

Table 7 Annelations of α,β-Unsaturated Acylsilanes

<table>
<thead>
<tr>
<th>Acylsilane</th>
<th>Allenylsilane</th>
<th>Product</th>
<th>Yield (%)<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure</td>
<td>Structure</td>
<td>Structure</td>
<td>72</td>
</tr>
<tr>
<td>Structure</td>
<td>Structure</td>
<td>Structure</td>
<td>55</td>
</tr>
<tr>
<td>Structure</td>
<td>Structure</td>
<td>Structure</td>
<td>66</td>
</tr>
<tr>
<td>Structure</td>
<td>Structure</td>
<td>Structure</td>
<td>78</td>
</tr>
<tr>
<td>Structure</td>
<td>Structure</td>
<td>Structure</td>
<td>74</td>
</tr>
</tbody>
</table>

^a Reactions were conducted using 1.0–1.5 equiv. of allenylsilane and TiCl₄ (1.5 equiv.) in methylene chloride at −78 °C for 0.5–1.0 h or 30 s in the case of (68e).

2.5.3.2.5 Additions to acyliminium ions

The reactions of sterically encumbered allenylsilanes of structure type (66) with N-acyliminium ions generated by the titanium tetrachloride promoted reaction of ethoxypyrrolidinone produced the nitrogen heterocycle (70), as depicted in Figure 13. In this reaction it is likely the lactam product is generated by a pathway similar to that involved in the [3 + 2] cyclopentene annelation. Thus, a regiospecific electro-
philic substitution of the \(N \)-acyliminium ion derived from substitution at the C-3 position of the allenylsilane produces a vinyl cation stabilized by the hyperconjugative interaction of the adjacent \(\sigma \)-donor silicon group. A 1,2-cationic trialkysilyl shift then occurs, affording an isomeric vinyl cation, which is intercepted by the nucleophilic nitrogen atom to form the new heterocycle (70) as summarized in Table 8.32

<table>
<thead>
<tr>
<th>Allenophile</th>
<th>Allene</th>
<th>Annelation product(s)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OEt</td>
<td></td>
<td></td>
<td>67</td>
</tr>
<tr>
<td>OEt</td>
<td></td>
<td></td>
<td>63</td>
</tr>
<tr>
<td>OEt</td>
<td></td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>OEt</td>
<td></td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>OEt</td>
<td></td>
<td></td>
<td>63</td>
</tr>
</tbody>
</table>

2.5.3.2.6 Additions to aldehydes

A variety of aldehydes can function as heteroallenophiles in this [3 + 2] annelation (Figure 13 and Table 9).32 Reactions of the C(3)-substituted allenylsilanes (66) gave predominantly the cis-substituted dihydrofurans (71). The cis stereochemistry was anticipated, based on the well-documented stereochemical course of Lewis acid catalyzed additions of 3-substituted allylsilanes to aldehydes.32
Table 9 Preparation of Oxygen Heterocycles via [3 + 2] Annellation

<table>
<thead>
<tr>
<th>Allenophile</th>
<th>Allene</th>
<th>Annellation product(s)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeCHO</td>
<td>$\text{CHO} \equiv \equiv \text{SiBu}^\prime \text{Me}_2$</td>
<td>(71a)</td>
<td>76</td>
</tr>
<tr>
<td>PhCHO</td>
<td>$\text{CHO} \equiv \equiv \text{SiBu}^\prime \text{Me}_2$</td>
<td>(71b)</td>
<td>70</td>
</tr>
<tr>
<td>MeCHO</td>
<td>$\equiv \equiv \text{SiBu}^\prime \text{Me}_2$</td>
<td>(71c) 1:4:1</td>
<td>78</td>
</tr>
<tr>
<td>Bu'CHO</td>
<td>$\equiv \equiv \text{SiBu}^\prime \text{Me}_2$</td>
<td>(71d) 7:1</td>
<td>97</td>
</tr>
<tr>
<td>OMeCHO</td>
<td>$\equiv \equiv \text{SiBu}^\prime \text{Me}_2$</td>
<td>(71e)</td>
<td>92</td>
</tr>
<tr>
<td>OMeCHO</td>
<td>$\equiv \equiv \text{SiBu}^\prime \text{Me}_2$</td>
<td>(71f)</td>
<td>88</td>
</tr>
</tbody>
</table>

2.5.3.2.7 Additions to activated C–N π-bonds

A general strategy for the synthesis of five-membered heteroaromatic compounds has been developed which involves the reaction of allenylsilanes with π-bonded electrophilic species of the general type $X \equiv Y^+$ (heteroallenophile). Scheme 34 details a stepwise mechanism to interpret the annelation. Addition of the heteroallenophile at the C-3 carbon of the allenylsilane produces a vinyl carbocation, which rapidly rearranges to the isomeric vinyl cation. The trialkylsilyl group serves two roles in this initial step: (i) it directs the regiochemical course of the electrophilic addition reaction (i.e. β-silicon effect); and (ii)
it promotes the transfer of electrophilic character from the central carbon to the terminus of the three-carbon annelation unit, indicating the high migratory aptitude of silyl groups in cationic rearrangements. Cyclization furnishes the intermediate, which subsequently undergoes proton elimination to generate the aromatic heterocycle.

This [3 + 2] annelation strategy has been employed in a regiocontrolled synthesis of 4-silylisoxazoles. In this instance, nitrosonium tetrafluoroborate functions as a heteroallenophile in the isoxazole annelation (Scheme 35). The electrophilic addition of nitrosonium tetrafluoroborate (NOBF_4) to the C-3 position of the allenylsilane produces the silicon-stabilized vinyl cation. A 1,2-trialkylsilyl shift then occurs affording an isomeric vinyl cation, which is trapped by the nucleophilic oxygen of the nitroso group to form the intermediate (73). Deprotonation yields the aromatized 4-silylisoxazole system (72). This regiocontrolled, one-step annelation method allows access to a wide range of substituted 4-silylisoxazoles.

![Scheme 34](image)

![Scheme 35](image)

2.5.3.2.8 Additions to tropylion ions

A new [3 + 2] annelation route to azulenes has been reported and involves the addition of a tropylion cation to allenylsilanes. The approach is based on the general [3 + 2] annelation strategy used in the preparation of five-membered carbocycles and heterocycles and uses tropylion tetrafluoroborate (TpBF_4) as the tropylion cation source. The proposed mechanism is depicted in Scheme 36 and begins with addition of the tropylion ion to the C(3)-position of the allenylsilane, generating a vinyl cation which rapidly rearranges by a 1,2-shift to the isomeric vinyl cation. Cyclization of the latter cation furnishes the cycloheptyldienyl cation, which undergoes deprotonation to generate the dihydroazulene. Dehydrogenation occurs if a second equivalent of tropylion ion is added to the reaction; hydride abstraction by the tropylion ion generates a more stable (delocalized) tropylion ion derivative, which finally aromatizes by the elimination of the C(3)-proton to yield the product azulene (74). As indicated in Table 10, azulene annelations which employ TBDMS alkenes are more efficient than those involving TMS derivatives, since TMS alkenes undergo desilylation of the intermediate vinyl cations to produce propargyl-substituted cycloheptatrienes as by-products.
606

Heteroatom-stabilized Carbanion Equivalents

![Chemical structures](image)

Scheme 36

Table 10 Synthesis of Substituted Azulenes (see Scheme 36)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Allenylsilane</th>
<th>Method<sup>a</sup></th>
<th>Product</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(66g) R<sup>1</sup> = R<sup>2</sup> = Me</td>
<td>A</td>
<td></td>
<td>52–59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(74a)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(66h) R<sup>1</sup> = Me; R<sup>2</sup> = (CH<sub>2</sub>)<sub>2</sub>Ph</td>
<td>B</td>
<td></td>
<td>57</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(74b)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(66l) R<sup>1</sup> = Me; R<sup>2</sup> = (CH<sub>2</sub>)<sub>3</sub>CH=CH<sub>2</sub></td>
<td>B</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(74c)</td>
<td></td>
</tr>
</tbody>
</table>
Table 10 (continued)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Allenylsilane</th>
<th>Method</th>
<th>Product</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>(66j) $R^1 = \text{cyclohexyl}; R^2 = CH_2Me$</td>
<td>B</td>
<td></td>
<td>44 (58)</td>
</tr>
<tr>
<td>5</td>
<td>(66k) $R^1 = \text{Me}; R^2 = (CH_2)_4Br$</td>
<td>B</td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>(66l) $R^1 = \text{Me}; R^2 = (CH_2)_2(\text{o-BrC}_6\text{H}_4)$</td>
<td>B</td>
<td></td>
<td>63</td>
</tr>
<tr>
<td>7</td>
<td>(66m) $R^1 = \text{Me}; R^2 = \text{H}$</td>
<td>C</td>
<td></td>
<td>22</td>
</tr>
</tbody>
</table>

Method A: TpBF$_4$ (2.0 equiv.) and 158 mg poly(4-vinylpyridine) mmol$^{-1}$ of TpBF$_4$ in MeCN at 25 °C for 24 h. Method B: TpBF$_4$ (4.0 equiv.) MeSi(OMe)$_3$ in MeCN at 25 °C for 48 h. Method C: TpBF$_4$ (3.0 equiv.) and 123 mg poly(4-vinylpyridine) mmol$^{-1}$ of TpBF$_4$ in MeCN/heptane (1:1) at 65 °C for 2.0 h.

2.5.3.3 Alkynylsilanes: Additions to C—X π-Bonds

Alkynylsilanes can function as carbon nucleophiles in addition reactions to electrophilic π-systems. In principle electrophilic addition reactions to alkynylsilanes can occur to produce α- or β-silyl-substituted vinyl cations, as illustrated in Scheme 37. The α-silyl carbocation is not the most stabilized cation, the reason being that the carbon–silicon bond can achieve coplanarity with the vacant orbital on the β-carbocation ion, making possible β-stabilization through hyperconjugation. Depending on the configuration of the carbocation, the developing vacant orbital can exist as a p-orbital, as in structure (75a), or an sp^2-hybrid, as in structure (75b).
Heteroatom-stabilized Carbanion Equivalents

Alkynylsilanes have been used as terminators in allylic alcohol and ketene thioacetal initiated cyclizations. In the late 1970s Heathcock and Johnson independently established the utility of alkynylsilanes in cyclization reactions. The example reported by Heathcock illustrated the electronic effect of silicon in the formic acid promoted transformation of the alkynylsilane \(\text{SiMe}_3 \) to the bicyclic ketone \(\text{88} \) in 76% yield. In contrast cyclization of the analogous alkyne \(\text{87} \) produced the bicyclo[2.2.2]octene \(\text{79} \), as illustrated in Scheme 38.

\[
\begin{align*}
\text{SiMe}_3 & \quad \text{E}^+ & \quad \text{E} & \quad \text{SiMe}_3 \\
\beta\text{-silyl carbocation} & \quad \text{or} & \quad \alpha\text{-silyl carbocation}
\end{align*}
\]

Scheme 37

Johnson et al. have investigated the use of alkynylsilanes as terminators in the synthesis of steroids and triterpenes through biomimetic polyene cyclizations. This strategy was used in the stereospecific synthesis of the tetracyclic ketone \(\text{81} \) using an alkynylsilane as a terminator. Thus, treatment of \(\text{80} \) with trifluoroacetic acid under carefully optimized reaction conditions yielded, after hydrolysis of the ortho ester, the tetracyclic ketone \(\text{81} \) (Scheme 39).

Scheme 38

Clearly the course of these cyclization reactions is dependent upon the silicon group. In this regard, cyclization of \(\text{82} \) affords the steroid nucleus \(\text{83} \); Scheme 40. The formation of \(\text{83} \) was attributed, in part, to a transition state preference for the formation of the linear vinyl carbocation \(\text{84}b \) rather than the bent vinyl cation \(\text{84}a \), which would be produced in an endocyclic cyclization. The formation of \(\text{81} \) was controlled by the generation of the \(\beta\)-silyl carbocation \(\text{85}a \), which may be a precursor to an \(\alpha\)-silyl ketone, which undergoes protodesilylation. It is not known whether the formation of \(\text{81} \) as the major cyclization product occurs through a kinetic pathway or by Wagner–Meerwein rearrangement of the kinetically preferred linear carbocation \(\text{85}b \).

Ketene dithioacetals have also been used as initiators for alkynylsilane-terminated cyclization reactions. Treatment of the thioacetal \(\text{86} \) with trifluoroacetic acid gave the bicyclic ketodithioketal \(\text{87} \) in 76% yield. In this reaction the protonated ketene dithioacetal functions as an acylium ion equivalent, which is trapped by the nucleophilic alkynylsilane.
Silicon Stabilization

Scheme 39

\[
\begin{align*}
\text{HO} & \quad \text{SiMe}_3 \\
\text{(80)} & \quad \xrightarrow{i, \text{TFA, CH}_2\text{Cl}_2} \quad \text{O} \\
& \quad \text{ii, KOH} \\
& \quad \text{H} \\
& \quad \text{H} \\
& \quad \text{H} \\
& \quad \text{H} \\
& \quad \text{(81)}
\end{align*}
\]

Scheme 40

\[
\begin{align*}
\text{HO} & \quad \text{SiMe}_3 \\
\text{(82)} & \quad \xrightarrow{} \quad \text{H} \\
& \quad \text{H} \\
& \quad \text{H} \\
& \quad \text{(83)}
\end{align*}
\]

\[
\begin{align*}
\text{(84a)} & \quad \text{(84b)} \\
\text{(85a)} & \quad \text{(85b)}
\end{align*}
\]

Scheme 41

\[
\begin{align*}
\text{HO} & \quad \text{SiMe}_3 \\
\text{SiMe}_3 & \quad \xrightarrow{\text{TFA/trifluoroethanol}} \\
\text{(86)} & \quad \text{(87)}
\end{align*}
\]
25.4 SILICON ATTACHED TO ADJACENT PARTICIPATING \(\pi \)-BONDED CARBON SYSTEMS

25.4.1 Allylsilanes

Fleming has published a comprehensive review on the chemistry of allylsilanes.\(^{18}\) The following sections will provide an overview of the mechanistic proposals currently used to rationalize the regio- and stereo-selectivities in addition reactions involving allylsilanes, and focus on recent contributions to this important area of research. Allylsilanes have proven to be an exceedingly useful class of organometallic reagents and continue to show enormous potential in stereoselective bond formation reactions. They participate in addition reactions with a wide variety of C—X \(\pi \)-systems. Their use as carbon nucleophiles has received considerable attention due in part to the large number of chemical transformations that can be achieved and the wide range of reaction conditions that can be tolerated by these reagents.

25.4.1.1 Stereochemistry of addition reactions involving allylsilanes

Generally, electrophilic addition reactions to acyclic allylsilanes proceed with anti stereochemistry.\(^{42-44}\) The stereochemistry of these reactions has been interpreted on the basis of ground state conformational energies of the allylsilane. As illustrated in Figure 14, the preferred ground state conformer (88a) versus (88b) orients the smallest substituent, usually hydrogen, in a position eclipsing (inside) the adjacent double bond.\(^{45}\) The bulky silicon group may direct attack of the electrophile to the opposite face of the \(\pi \)-system, generating a secondary carbocation. Subsequent bond rotation orients the CCi bond periplanar to the empty p-orbital, providing stabilization through hyperconjugation to the electron deficient center. Apparently this additional stabilization is responsible for the high levels of selectivity that are observed in the elimination reaction (second step) to form the (E)-double bond, as illustrated for structure (89a).

![Figure 14 Stereochemistry of electrophilic additions to chiral allylic silanes](image)

25.4.1.2 Intermolecular additions to aldehydes, ketones and acetals

C(3)-substituted allylsilanes (crotylsilanes) participate in chelation-controlled addition reactions with aldehydes to give syn addition products as the major stereoisomers.\(^{14,22}\) Generally, the (E)-crotylsilanes are highly selective in the syn sense (>95:5). In contrast, the (Z)-crotylsilanes are much less selective (60–70:40–30 syn:anti; Scheme 42). Hayashi and Kumada have reported a successful approach to optically active homoallyl alcohols using this strategy.\(^{46}\) They have reported that useful levels of asymmetric
induction can be achieved in Lewis acid catalyzed addition reactions of optically active \((R)-(E)\) and \((R)-(Z)\)-crotylsilanes (90) and (92) to achiral aldehydes (Schemes 43 and 44).

![Scheme 42](image)

\(\text{Scheme 43}\)

\(\text{Scheme 44}\)

Table 11 summarizes the important results of asymmetric induction in addition reactions of optically active allylsilanes (90) and (92). The origin of the \(\pi\)-facial selectivity in these reactions can be traced to the \textit{anti} selectivity that is commonly observed for \(\ce{S_{E2'}}\) reactions of allylsilanes (Figure 14).\(^{16,22}\) The \textit{syn} stereochemistry with respect to the double bond configuration (\(E\) or \(Z\)) is also very high even with aldehydes bearing sterically bulky substituent groups, as illustrated by entry \((R)-(Z)-(92b)\).

Table 11 Asymmetric Induction in Additions of Optically Active Allylsilanes \((R)-(E)-(90)\) and \((R)-(Z)-(92)\) to Achiral Aldehydes

<table>
<thead>
<tr>
<th>Allylsilane</th>
<th>(R)</th>
<th>(R'\text{CHO})</th>
<th>((91)) \textit{syn:anti}</th>
<th>((93)) \textit{syn:anti}</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((R)-(E)-(90a))</td>
<td>Me</td>
<td>Bu\text{CHO}</td>
<td>>99:1</td>
<td>>99:1</td>
<td>47</td>
</tr>
<tr>
<td>((R)-(Z)-(92a))</td>
<td>Me</td>
<td>Bu\text{CHO}</td>
<td>27</td>
<td>27</td>
<td>67</td>
</tr>
<tr>
<td>((R)-(E)-(90a))</td>
<td>Me</td>
<td>Pr\text{CHO}</td>
<td>>95:5</td>
<td>>65:35</td>
<td>61</td>
</tr>
<tr>
<td>((R)-(E)-(90b))</td>
<td>Ph</td>
<td>Bu\text{CHO}</td>
<td>>99:1</td>
<td>>99:1</td>
<td>44</td>
</tr>
<tr>
<td>((R)-(Z)-(92b))</td>
<td>Ph</td>
<td>Bu\text{CHO}</td>
<td>>99:1</td>
<td>>99:1</td>
<td>10</td>
</tr>
</tbody>
</table>

The stereochemical outcome of these reactions has been interpreted on the basis of two types of transition state models. These models use very different orientations of the reacting double bonds to explain the stereoselectivities. The first is referred to as an ‘open’ or ‘extended’ antiperiplanar transition state
model, illustrated in Figure 15 for both (E)- and (Z)-crotylsilanes. In this case the carbon nucleophile and the activated carbonyl (aldehyde) are anti to each other and also coplanar. Using this model transition states (I) and (II) are favored due to diminished steric interactions between the aldehyde substituent and the vinylmethyl group. The destabilizing interactions created by these substituents are greatest for transition states (III) and (IV), which place them in a gauche orientation.1a

\[
\text{LA} + \text{R} \rightarrow \text{HO} \quad \text{syn} \quad \text{syn}
\]

\[
\text{LA} + \text{R} \rightarrow \text{HO} \quad \text{anti} \quad \text{anti}
\]

Figure 15 Open transition state models for intermolecular additions of C(3)-substituted allylsilanes

An alternate model using the transition states (V)–(XII) can be used to rationalize the selectivities in these reactions (Figure 16). This model requires synclinal orientation of the reacting double bonds. The transition states (V) or (VI) and (IX) or (X) are favored over (VII), (VIII), (XI) and (XII) because steric interactions between the Lewis acid bonded to the oxygen lone pair anti to the R substituent of the aldehyde and the vinyl methyl group are minimized.

Useful levels of stereoselectivity were obtained in intermolecular addition reactions of C(3)-substituted allylsilanes to chiral aldehydes. Lewis acids that are capable of chelating to heteroatoms have been used to direct the stereochemical course of allylsilane additions to α-alkoxy and α,β-dialkoxy carbonyl compounds. The allylation of α-benzyloxy aldehyde (94) in the presence of TiCl₄ and SnCl₄ furnished products with high levels of syn stereoselection (syn-95).47 In contrast, under nonchelation-controlled reaction conditions (BF₃·OEt₂) allyltrimethylsilane reacted to form predominantly the anti-1,2-diol product (anti-95), as shown in Scheme 45.

Taddei and coworkers reported that chiral allyltrimethylsilanes containing an optically active ligand derived from (-)-myrtenal attached to silicon (96) underwent enantioselective addition reactions with achiral aldehydes (Scheme 46) to give, after acid hydrolysis, optically active homoallyl alcohols (98).48 A variety of Lewis acids were examined to optimize enantiomeric excess, and TiCl₄ was found to be the most effective catalyst. The results of the TiCl₄-promoted additions are reported in Table 12.48

2.5.4.1.3 Intramolecular additions of allyltrimethylsilanes to aldehydes and ketones

Intramolecular addition of allylsilanes performed under chelation-controlled conditions represents an efficient method in which useful levels of stereoselectivity can be achieved. This process has been demonstrated for a variety of α-alkoxy, α,β-dialkoxy and β-dicarbonyl compounds, including β-keto esters, β-keto amides and β-keto lactones.

The use of chelation to direct the stereochemical outcome of intramolecular additions of allylsilanes to β-dicarbonyl compounds can provide excellent levels of diastereoselectivity.49 Cyclizations of this type proceed at low temperature under mild reaction conditions and are highly chemoselective, providing routes to highly functionalized five-, six- and seven-membered rings (100a, 100b and 100c; Scheme 47). For the cases examined, SnCl₄ and FeCl₃ proved to be less effective than TiCl₄ in the cyclization of ethyl 2-alkyl-2-alkanoyl-4-(trimethylsilyl)methyl-4-pentenoate (99; n = 1; Table 13).49
Figure 16 Synclinal transition state model for the intermolecular addition of C(3)-substituted allylsilanes to aldehydes

\[
\text{Me}_2\text{Bu'SiO} \quad \text{H} \quad \text{O} \quad \text{Me}_2\text{Bu'SiO} \quad \text{Me}_2\text{Bu'SiO} \quad \text{Me}_2\text{Bu'SiO}
\]

\text{Leiws acid}

\text{(94)}

\text{syn-(95)}

\text{anti-(95)}

\text{TiCl}_4 > 98% > 98%

\text{SnCl}_4 19% < 2%

\text{BF}_3\text{OEt}_2 81%

Scheme 45

Scheme 46
Table 12 Enantioselective Allylation of Achiral Aldehydes Catalyzed by TiCl₄

<table>
<thead>
<tr>
<th>Aldehyde</th>
<th>Product</th>
<th>Yield (%)</th>
<th>ee (%)<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>HCHO</td>
<td>(98a)</td>
<td>58</td>
<td>46</td>
</tr>
<tr>
<td>HCHO</td>
<td>(98b)</td>
<td>61</td>
<td>40</td>
</tr>
<tr>
<td>PhCHO</td>
<td>(98c)</td>
<td>45</td>
<td>21</td>
</tr>
<tr>
<td>HCHO</td>
<td>(98d)</td>
<td>39</td>
<td>40</td>
</tr>
</tbody>
</table>

^a Enantiomeric excess determination performed by Mesher analysis and literature comparison.

Table 13 Cyclizations of Ethyl 2-Alkyl-2-alkanoyl-4-(trimethylsilyl)methyl-4-pentenoate (99) Catalyzed by Titanium Tetrachloride (Scheme 47)

<table>
<thead>
<tr>
<th>Substrate</th>
<th>R</th>
<th>R¹</th>
<th>Isolated yield of (100) (%)<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>(99a)</td>
<td>Me</td>
<td>Me</td>
<td>88</td>
</tr>
<tr>
<td>(99b)</td>
<td>Me</td>
<td>Et</td>
<td>78</td>
</tr>
<tr>
<td>(99c)</td>
<td>Me</td>
<td>Pr<sup>†</sup></td>
<td>65</td>
</tr>
<tr>
<td>(99d)</td>
<td>Me</td>
<td>Ph</td>
<td>72</td>
</tr>
<tr>
<td>(99e)</td>
<td>Et</td>
<td>Me</td>
<td>78</td>
</tr>
<tr>
<td>(99f)</td>
<td>Pr<sup>†</sup></td>
<td>Me</td>
<td>66</td>
</tr>
<tr>
<td>(99g)</td>
<td>Bu<sup>†</sup></td>
<td>Me</td>
<td>74</td>
</tr>
<tr>
<td>(99h)</td>
<td>Ph</td>
<td>Me</td>
<td>74</td>
</tr>
<tr>
<td>(99i)</td>
<td>Me</td>
<td>H</td>
<td>57</td>
</tr>
</tbody>
</table>

^a Diastereomer ratio was >200:1.

The Lewis acid promoted intramolecular additions of β-allylsiloxyl aldehydes represent an efficient method for the construction of 1,3-stereocenters, as illustrated in Scheme 48.⁵⁰ The sense of 1,3-asym-
metric induction in TiCl₄-catalyzed allylsilane addition to O-allylsilyl-protected aldehydes is opposite (>90% *syn* selection) to that reported for the intermolecular addition to the O-benzyl derivative.

```
\[
\text{Me} \quad \text{Si} \quad \text{CH} \quad \text{O} \quad \text{H} \\
\text{Me} \quad \text{Si} \quad \text{CH} \quad \text{O} \quad \text{H} \\
\text{R} \quad \text{OO} \quad \text{Cl} \quad \text{Cl} \quad \text{H} \\
\text{R} \quad \text{OO} \quad \text{Cl} \quad \text{Cl} \quad \text{H} \\
\text{anti-}(102a) \quad \text{syn-}(102a) \\
\text{anti-}(102b) \quad \text{syn-}(102b)
\]
```

Scheme 48

Reaction of aldehydes (101a) and (101b) containing equivalent amounts of the Lewis acids TiCl₄, SnCl₄ and BF₃·OEt₂ are summarized in Table 14. Interestingly, TiCl₄ and SnCl₄ lead to opposite diastereomers (*syn* versus *anti*). The results of TiCl₄-mediated reactions (Table 14) support the original hypothesis of an internal allyl transfer in which silicon and titanium act as templates. However, as pointed out by Reetz,⁵⁰ the levels of stereoselection do not unequivocally demonstrate an intramolecular pathway.

Table 14 Lewis Acid Catalyzed Intramolecular Additions of β-Allylsiloxy Aldehydes

<table>
<thead>
<tr>
<th>β-Allylsiloxaldehyde</th>
<th>R</th>
<th>Lewis acid</th>
<th>Yield (%)</th>
<th>(102) anti: syn</th>
</tr>
</thead>
<tbody>
<tr>
<td>(101a)</td>
<td>Me</td>
<td>TiCl₄</td>
<td>70</td>
<td>8:92</td>
</tr>
<tr>
<td>(101a)</td>
<td>Me</td>
<td>SnCl₄</td>
<td>70</td>
<td>92:8</td>
</tr>
<tr>
<td>(101a)</td>
<td>Me</td>
<td>BF₃·OEt₂</td>
<td>60</td>
<td>70:30</td>
</tr>
<tr>
<td>(101b)</td>
<td>Bu₅N</td>
<td>TiCl₄</td>
<td>80</td>
<td>10:90</td>
</tr>
</tbody>
</table>

2.5.4.1.4 *Stereochemistry of internal allylsilane additions to aldehydes and acetals*

In view of the importance of stereoselective addition reactions of allylsilanes to C—X π-bonds, the stereochemical course of intramolecular addition reactions involving aldehydes has been investigated by Denmark and coworkers.⁵¹ The results are summarized below in Tables 15 and 16.⁵² In the cases involving additions to aldehydes, the authors have made the assumption that the coordination of the Lewis acid to the carbonyl oxygen generates the '*(E)-complex' (103; Scheme 49), which after cyclization generates the *syn* and *anti* bicyclic alcohols (104). The major steric contribution arises from interaction between the Lewis acid and the trimethylsilylmethyl group. This interpretation suggests that there may

```
\[
\text{Me} \quad \text{Si} \quad \text{CH} \quad \text{O} \quad \text{H} \\
\text{Me} \quad \text{Si} \quad \text{CH} \quad \text{O} \quad \text{H} \\
\text{R} \quad \text{OO} \quad \text{Cl} \quad \text{Cl} \quad \text{H} \\
\text{R} \quad \text{OO} \quad \text{Cl} \quad \text{Cl} \quad \text{H} \\
\text{syn-}(104) \quad \text{anti-}(104)
\]
```

Scheme 49

Table 15 Lewis Acid Catalyzed Cyclization of Aldehyde (103)

<table>
<thead>
<tr>
<th>Lewis acid</th>
<th>Solvent</th>
<th>Temperature (°C)</th>
<th>(104) syn:anti</th>
</tr>
</thead>
<tbody>
<tr>
<td>SnCl₄</td>
<td>CH₂Cl₂</td>
<td>-70</td>
<td>49:51</td>
</tr>
<tr>
<td>Et₂AlCl</td>
<td>CH₂Cl₂</td>
<td>-70</td>
<td>66:34</td>
</tr>
<tr>
<td>FeCl₃</td>
<td>CH₂Cl₂</td>
<td>-70</td>
<td>70:30</td>
</tr>
<tr>
<td>AlCl₃</td>
<td>CH₂Cl₂</td>
<td>-70</td>
<td>79:21</td>
</tr>
<tr>
<td>BF₃·OEt₂</td>
<td>CH₂Cl₂</td>
<td>-70</td>
<td>80:20</td>
</tr>
<tr>
<td>Bu₅NF</td>
<td>THF</td>
<td>67</td>
<td>30:70</td>
</tr>
</tbody>
</table>
be a stereochemical advantage for the synclinal orientation of reactants under electrophilic conditions. Reactions catalyzed by fluoride ions show a reversal of stereoselectivity and most likely involve a different mechanism.

Analogous systems related to the models for allylsilane–acetal cyclizations have been studied. In these cases, however, cyclization of the acetals (105; Scheme 50) forms the corresponding syn and anti bicyclic ethers (106). The authors concluded that the stereochemistry of cyclization of acetal models (105) is dependent upon the mechanism of activation. In the presence of TMS-OTf the acetals (105a–c) reacted through an SN2-type process, while the isopropyl acetal (105d) reacted through prior ionization to oxonium ion (107).

Table 16 Effect of Lewis Acid in the Cyclization of Dimethyl Acetal (105a)

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Temperature (°C)</th>
<th>(106) Syn:anti</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMS-OTf</td>
<td>-70</td>
<td>96:4</td>
<td>100</td>
</tr>
<tr>
<td>TIOH</td>
<td>-70</td>
<td>96:4</td>
<td>62</td>
</tr>
<tr>
<td>Ti(OR)2Cl2</td>
<td>-20</td>
<td>87:13</td>
<td>21</td>
</tr>
<tr>
<td>AlCl3</td>
<td>-20</td>
<td>86:14</td>
<td>33</td>
</tr>
<tr>
<td>BCl3</td>
<td>-70</td>
<td>82:18</td>
<td>57</td>
</tr>
<tr>
<td>BF3·OEt2</td>
<td>-20</td>
<td>77:23</td>
<td>95</td>
</tr>
<tr>
<td>TiCl4</td>
<td>-90</td>
<td>47:53</td>
<td>55</td>
</tr>
<tr>
<td>SnCl4</td>
<td>-70</td>
<td>45:55</td>
<td>35</td>
</tr>
<tr>
<td>SnCl4</td>
<td>-60</td>
<td>71:29</td>
<td>81</td>
</tr>
</tbody>
</table>

For the cases examined, the structure of the acetal had a dramatic effect on the stereochemical outcome of the reaction. Thus, allylsilanes (105a–c) all showed syn selectivity. However, the isopropyl case (105d) showed a slight anti preference. This reversal of selectivity has been interpreted as a change in mechanism rather than a steric phenomenon related to the added steric bulk of the diisopropyl acetal. The results of these experiments are summarized in Table 17.

Table 17 Effect of Acetal Structure on the Stereochemical Outcome of the Cyclization of (105a)–(105d) with TMS-OTF

<table>
<thead>
<tr>
<th>Substrate</th>
<th>R</th>
<th>syn (%)</th>
<th>anti (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(105a)</td>
<td>Me</td>
<td>96</td>
<td>4</td>
</tr>
<tr>
<td>(105b)</td>
<td>Et</td>
<td>92</td>
<td>8</td>
</tr>
<tr>
<td>(105c)</td>
<td>Bu^1</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>(105d)</td>
<td>Pr^1</td>
<td>38</td>
<td>62</td>
</tr>
</tbody>
</table>

*All reactions were run in CH₂Cl₂ (0.05 M) with 1.0 equiv. of TMS-OTF.

2.5.4.2 Propargylsilanes

Propargylsilanes undergo electrophilic addition reactions to generate β-silyl carbocations (109) that can, in principle, react further to give either addition (110) or substitution (111) products, as illustrated in Scheme 51. As in the case of allylsilanes, however, substitution predominates.
The stereochemical course of the addition reactions to propargylsilanes can be rationalized using a mechanism similar to that for allylsilanes (Scheme 52). The propargylsilane would be expected to exist in conformation (113; Scheme 53) with the carbon–silicon bond overlapping with the π-lobes of one of the carbon–carbon π-bonds. The electrophile attacks the π-bond conjugated with the carbon–silicon bond *anti* to the trialkysilane group, generating the stabilized vinyl cation (114). Loss of the trialkysilicon group then affords the expected allene.

Scheme 51

Propargylsilanes show predictable behavior as cyclization terminators. Internal additions of propargylsilanes to acyclic *N*-acyliminium ions promoted by Lewis acids or protic acids yield α-allenic amides or carbamates (Scheme 54).

Scheme 52

The intramolecular acid-catalyzed reaction of 2-propargylsilanes of structural type (117) with *N*-acyliminium ion precursors leads to bridged azabicyclic ring systems (118; Scheme 55) which contain an α-allenic amide function. These bicyclic products serve as intermediates to highly functionalized *trans*-fused ring systems possessing a 1,3-diene moiety.

Scheme 54
2.5.5 α-SILYLORGANOMETALLIC REAGENTS

Silicon is capable of stabilizing an adjacent carbon–metal bond although it is more electropositive than hydrogen or carbon. The origins of this stabilization are discussed in Sections 2.5.2.1–2.5.2.5.

2.5.5.1 General Methods for the Formation of α-Silyl Carbanions

The variety of methods available for the formation of α-silyl carbanions can be divided into four categories.

(i) Deprotonation: alkyllithium reagents (e.g. Bu₄Li) can easily abstract protons adjacent to trialkylsilyl groups (120 → 121; Scheme 56) generating the α-silyl carbanion.⁵⁵

\[
\text{BuLi/TMEDA} \quad \text{Me₃Si} - \text{R} \quad \text{Me₃Si} - \text{R} \quad \text{Li}^+ \\
\]

(120) \hspace{2cm} (121)

Scheme 56

(ii) Metal–halogen exchange: α-halosilanes undergo metal–halogen exchange upon treatment with alkyllithium reagents (122 → 123; Scheme 57).⁵⁶

\[
\text{BuLi} \quad \text{Br} \quad \text{Me₃Si} - \text{R} \quad \text{Me₃Si} - \text{R} \quad \text{Li}^+ \\
\]

(122) \hspace{2cm} (123)

Scheme 57

(iii) Transmetallation: α-selenosilanes are transmetallated in the presence of alkyllithium reagents (124 → 125; Scheme 58).⁵⁷ Included in this category are desilylation of bis(silyl) compounds (126) by fluoride and alkoxide anions.⁵⁸ This procedure has been shown to be a particularly clean method for the generation of α-silyl carbanions (127), as illustrated in Scheme 59.

\[
\text{BuLi} \quad \text{SeR}^1 \quad \text{Me₃Si} - \text{R} \quad \text{Me₃Si} - \text{R} \quad \text{Li}^+ \\
\]

(124) \hspace{2cm} (125)

Scheme 58

(iv) Addition of an organometallic reagent to vinylsilanes: The example provided in Scheme 60 illustrates the ability of silicon to activate and direct the formation of carbon nucleophiles. These addition
Silicon Stabilization

\[
\text{ROLi} + \begin{array}{c}
\begin{array}{c}
\text{Me}_3\text{Si} \\
\text{SiMe}_3
\end{array}
\end{array} \rightarrow \begin{array}{c}
\begin{array}{c}
\text{ROSiMe}_3 \\
\text{Me}_3\text{Si} \quad \text{Li}^+
\end{array}
\end{array}
\]

(126) (127)

Scheme 59

reactions proceed with excellent levels of selectivity, as only α-silyl carbanions are observed; such levels of selectivity are not reached with unsubstituted or unsymmetrical alkenes.\(^{59}\)

\[
R^1\text{Si} \quad + \quad R^2\text{Li} \rightarrow \begin{array}{c}
\begin{array}{c}
\text{Li} \\
\text{R}^1\text{Si} \quad \\
\text{R}^2
\end{array}
\end{array}
\]

(128) (129)

Scheme 60

The directing ability of silicon is further illustrated by the observation that isopropylmagnesium chloride adds to the triethoxyvinylsilane (128) to generate the addition product (129; Scheme 61); however, the triethoxyallylsilane (130) undergoes clean substitution at silicon when treated with isopropylmagnesium chloride to yield the substitution product (131; Scheme 62).

\[
\begin{array}{c}
\begin{array}{c}
\text{Si(OEt)}_3
\end{array}
\end{array} + \text{Pr}^3\text{MgCl} \rightarrow \begin{array}{c}
\begin{array}{c}
\text{Si(OEt)}_3
\end{array}
\end{array}
\]

(128) (129)

Scheme 61

\[
\begin{array}{c}
\begin{array}{c}
\text{Si(OEt)}_3
\end{array}
\end{array} + \text{Pr}^3\text{MgCl} \rightarrow \begin{array}{c}
\begin{array}{c}
\text{Si(OEt)}_2\text{Pr}^1
\end{array}
\end{array}
\]

(130) (131)

Scheme 62

Both organolithium\(^{60}\) and Grignard reagents\(^{61}\) undergo additions to vinylsilanes to yield α-silyl carbanions. This directing effect can be overcome by the influence of a stronger electron-withdrawing group, such as a nitro group, adjacent\(^{62}\) to the silicon group, as illustrated in Scheme 63 with the transformation of (132) to (133).

\[
\begin{array}{c}
\begin{array}{c}
\text{O}_2\text{N}
\end{array}
\end{array} \quad \begin{array}{c}
\begin{array}{c}
\text{SiMe}_3
\end{array}
\end{array} \quad \text{MeMgBr} \quad \rightarrow \quad \begin{array}{c}
\begin{array}{c}
\text{O}_2\text{N}
\end{array}
\end{array} \quad \begin{array}{c}
\begin{array}{c}
\text{SiMe}_3
\end{array}
\end{array}
\]

(132) (133)

Scheme 63

One of the most significant demonstrations of the ability of silicon to promote nucleophilic attack at carbon–carbon bonds was reported by Stork within the context of the development of an improved variant of the Robinson annelation.\(^{63,64}\) Existing annelation methods which depend on conjugate addition of an enolate to an α,β-unsaturated ketone suffer from a variety of drawbacks, which are consequences of the reversible nature of the Michael addition reaction and the ease with which most electrophilic alkenes undergo multiple additions and oligomerization. α-Silylvinyl ketones of structure type (134) are not prone to these problems and thus serve as excellent four-carbon components (Michael acceptors) in the Robinson annelation. The ability of silicon to stabilize adjacent carbanions is shown in Scheme 64 with the α-silyl carbani on and its resonance form (135 and 136). The additional stabilization of the intermediate enolate ion halts the reversibility of the process, ultimately generating the octalone system in good yield with minimum side reactions. The added steric bulk created by the trialkylsilane group diminishes the reactivity of the intermediate enolate, thus providing an increase in chemoselectivity.
2.5.5.2 The Peterson Reaction: Introduction

The use of α-silyl organometallic reagents, principally lithium and Grignard reagents, to convert aldehydes and ketones to alkenes has been applied extensively in organic synthesis. Peterson was the first to investigate this type of reaction sequence and many useful applications were derived from these initial observations and experiments. The reaction has been reviewed by Ager. This section is concerned with the mechanism of the Peterson reaction and some recent applications of the Peterson-type alkenation of carbonyl compounds.

As illustrated in Scheme 65, the intermediate β-silyl alkoxide (138) is subject to either protonation to give the corresponding β-silyl alcohol (139), or elimination of R₃SiO to generate the alkene (140). The pathway leading to the alkene is known as the carbonyl alkenation reaction, or the Peterson reaction.

As a consequence of the presumed irreversibility of the first step of the Peterson reaction, the stereochemistry of the elimination was determined solely by the relative rates (k₁ and k₁') of formation of threo- and erythro-β-silyl alkoxides (141) and (142), as indicated in Scheme 66. Support for the irreversibility of this step comes from the experiments on the nucleophilic opening of the diastereomeric epoxides (143) and (144). Thus, the syn- and anti-epoxides, when treated with lithium dipropyl cuprate, yielded the threo- and erythro-β-silyl alcohols (145) and (146), respectively. Treatment of the threo isomer with base gave the (Z)-alkene exclusively and the erythro isomer gave the (E)-alkene. The high levels of selectivity for this elimination indicated that the initial addition is not reversible. The elimina-
tion was also shown to be stereospecific and only the syn stereoisomer was generated under basic conditions. Under acidic conditions the stereochemistry of the elimination product is inverted. Thus, β-silyl alcohols (143) and (144) yield the (E)-alkene (147) and the (Z)-alkene (148) respectively, resulting from anti elimination (Scheme 66).

Scheme 66 Mechanism of the Peterson reaction

2.5.5.2 Stereochemistry of the Peterson reaction

The (E):(Z) ratio of the derived alkene varied considerably with the size of the silyl group. A transition state model has been developed to rationalize the relative transition state energies. Nucleophilic attack on carbonyl compounds occurs in the plane of the C—O π-bond with a Nu—C—O angle of approximately 109°. The smallest group R, usually a hydrogen, is placed in the least sterically demanding position and attack occurs between the hydrogen and the R substituent of the aldehyde in order to minimize steric repulsion. The remaining substituents are arranged such that the largest group is positioned anti to the R substituent of the aldehyde. Thus, as the steric size of the silyl group increases, transition state (149) becomes more favorable than transition state (150), resulting in the preferential formation of the erythro isomer leading to formation of the (Z)-alkene.

2.5.5.3 Functionalized α-Silyl Carbanions

The addition of trimethylsilylmethyl lithium to enolizable ketones generally gives significant amounts of the enolized carbonyl compound. Johnson and Tait have shown that when the lithium anion is converted to the cerium reagent it gives high yields of the addition product. For example, α-tetralone (151) reacts with trimethylsilylmethyl lithium to give after protonation an ~1:1 mixture of the desired exocyclic
alkene \((152)\) and recovered ketone. In sharp contrast, the corresponding cerium reagent gave a 95:5 ratio of alkene to ketone (see Scheme 67).

\[
\begin{align*}
\textbf{O} & \quad \textbf{Me}_3\text{SiCH}_2\text{Li} & 50 & 50 \\
\textbf{Me}_3\text{SiCH}_2\text{Li/CeCl}_3 & >95 & 5 \\
\end{align*}
\]

Scheme 67

Anions of \(\alpha\)-silyl phosphonates of type \((153)\) also undergo additions to carbonyl compounds. The corresponding addition products, \(\beta\)-silyl alkoxides, can react with ketones to yield the product of the Peterson alkenation or the Wittig reaction. In practice only the Peterson product \((154)\) is obtained, indicating that loss of \(\text{OSiMe}_3\) is faster than elimination of \(\text{O=PPh}_3\) (Scheme 68).\(^{71,72}\) If the \(\alpha\)-silyl carbanion is adjacent to a chlorine atom \((155)\), an internal displacement reaction follows the initial formation of the \(\beta\)-silyl alkoxide, and epoxides \((156)\) are formed (Scheme 69).\(^{73,74}\)

Mixed ketene \(O,S\)-acetal derivatives \((157)\) can be readily prepared from the reaction of \([\text{methoxy(phenylthio)(trimethylsilyl)methyl}]\text{Li}\) generated from the mixed acetal \((158)\), with aldehydes and ketones (Scheme 70).
The lithium reagent of phosphonate (159) reacts with aldehydes and ketones to produce vinylphosphonate (160). These compounds were oxidized (OsO4/NMO) and deprotected to provide a convenient and high yielding route to α-hydroxy acids76 of structure type (161; Scheme 71).

![Scheme 71](image)

2.5.5.3.1 **Reactions involving ambient silyl-substituted carbanions**

The Peterson reaction has been successfully employed using α-silylallyl anions (162a and 162b; Figure 17).

![Figure 17](image)

In addition reactions to carbonyl compounds C-3 attack generally predominates,77-79 as illustrated in Scheme 72 with the formation of vinylsilane (163). C-1 addition also predominates in alkylation and acylation reactions involving α-silylallyl anions when alkyl halides80 and acyl halides81 are used as electrophiles.

![Scheme 72](image)

Interestingly, in the presence of HMPT and magnesium bromide, C-1 attack predominates and is followed by elimination, yielding the 1,3-diene system82 as shown in Scheme 72. Similarly, allylboronates of structural type (164) bearing a vinylsilane at the C-3 position gave predominantly C-1 addition products to form the syn (erythro) isomer (165) as the major diastereomer (Scheme 73).83

Metallation of the bis(silyl) derivative (166) generates a symmetrical carbanion (167), which also reacts stereoselectively with aldehydes to produce anti β-silyl alcohol derivatives (168), which undergo base-catalyzed elimination reactions to generate the (E)/(Z) diene system (169; Scheme 74).84
Heteroatom-stabilized Carbanion Equivalents

\[
\begin{align*}
\text{Me}_3\text{Si} & \quad \text{RCHO} \quad \text{OH} \quad \text{KH} \quad \text{SiMe}_3 \\
\text{(164)} & \quad \text{(165)} & \text{(166)} & \text{(167)} \\
\text{metallation} & \quad \text{RCHO} \\
\text{(168)} & \quad \text{(169)} & \text{(Pr}_2^2\text{N)Me}_2\text{Si} \quad \text{BuLi/TMEDA} \quad \text{ZnCl}_2 \\
\text{(170)} & & \\
\end{align*}
\]

Scheme 73

\[
\begin{align*}
\text{Me}_3\text{Si} & \quad \text{SiMe}_3 \\
\text{(166)} & \quad \text{(167)} \\
\text{metallation} & \quad \text{RCHO} \\
\text{(168)} & \quad \text{(169)} \\
(\text{Pr}_2^2\text{N})\text{Me}_2\text{Si} & \quad \text{BuLi/TMEDA} \quad \text{ZnCl}_2 \\
(\text{170}) & & \\
\end{align*}
\]

Scheme 74

2.5.5.3.2 Metallated allylaminosilanes

The organozinc reagent (170) derived from allyl(diisopropylamino)dimethylsilane reacts with aldehydes to form *anti*-3-silyl-2-alken-4-ols (171), which are further oxidized (KHCO₃/H₂O₂) to *anti*-1-alkene-3,4-diols (172). The use of a sterically bulky Pr₂NMe₂Si group in the zinc reagent was required to suppress the elimination pathway and the formation of conjugated 1,3-diene systems. These allylamino anions thus function as useful α-alkoxyallyl anion equivalents, as illustrated in Scheme 75. The important results of these experiments are summarized in Table 18.

\[
\begin{align*}
\text{RCHO} & \quad \text{i, (170)} \quad \text{ii, Me}_3\text{SiCl} \\
\text{(171)} & \quad \text{OSiMe}_3 \quad \text{30% H}_2\text{O}_2 \quad \text{KF/KHCO}_3 \\
\text{(172)} & \quad \text{OH} \quad \text{OH} \\
\end{align*}
\]

Scheme 75

2.5.5.3.3 Addition reactions of α-silyl anions to C=\text{N} π-bonds

An interesting variant of the Peterson reaction involves the addition of an α-silylbenzylic anion (173) to a carbon–nitrogen double bond such as an imine. In this case the loss of \(\text{RN-SiMe}_3\) occurs less readily than the loss of alkoxytrialkylsilane (O–SiR₃). The initial addition reaction is reversible and the stereochemistry of the elimination reaction is predominantly *trans* (Scheme 76). Both acid- and base-catalyzed elimination reactions lead to the *trans* product (174).
Table 18 Stereoselective Additions of Metallated Aminosilanes to Aldehydes

<table>
<thead>
<tr>
<th>Aldehyde</th>
<th>α-Silyloxy silane</th>
<th>Yield (%)</th>
<th>Diol</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>54</td>
<td></td>
<td>78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>97</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>87</td>
<td></td>
<td>72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75</td>
<td></td>
<td>93</td>
</tr>
</tbody>
</table>

X = SiMe₂(NPr₂)₂.

Scheme 76

![Chemical Reaction](173)

![Chemical Reaction](174)

2.5.6 REFERENCES

21. L. E. Overman and
24. L. E. Overman and T. C. Malone,
25. (a) L. E. Overman and K. L. Bell, J.
27. M.-P. Heitz and L. E. Overman, J.
26. L. E. Overman and
29. (a) R. L. Danheiser, D. J. Carini and C. A. Kwasigroch,
30. (a) R. L. Danheiser, D. J. Carini and A. Basak,
31. R. L. Danheiser and D. M. Fink,
33. R. L. Danheiser and D. A. Becker,
34. D. A. Becker and R. L. Danheiser, J.
32. R. L. Danheiser, C.
35. L. D. Lozar, R. D. Clark and C. H. Heathcock, J.
36. W.
626 Heteroatom-stabilized Carbanion Equivalents
40.
38. For a detailed discussion
42. (a) G. Wickham and W. Kitching,
43. H. Wetter and P. Scherer,
45. (a) M. N. Paddon-Row, N. G. Rondan and K. N.
44.
39. For a review on the use of the trimethylsilyl group
46. R. L. Danheiser and D. M. Fink and A. Basak,
47. T. Hayashi,
48. L. Coppi, A. Mordini and M. Taddei,
10. E. Nakamura, K. Fuzuzaki and I. Kuwajima, J.
13. (a)
15. M. A. Tius,
18. J. K. Kim, M. L. Kline and M. C. Caserio, J.
19. L. E. Overman, A. Castafieda and T. A. Blumenkopf,
20. (a) T. A. Blumenkopf, M. Bratz,
23. R. K. Topsom,
26. L. E. Overman and J.
27. M.-P. Heitz and L. E. Overman, J.
29. For stereocontrolled intramolecular allylsilane additions, see M. T. Reetz, A. Jung and C. Bolm, Tetrahedron, 1988, 44, 3869.
2.6 Selenium Stabilization

ALAIN KRIEF

Facultés Universitaire Notre Dame de la Paix, Namur, Belgium

2.6.1 INTRODUCTION

2.6.2 SYNTHESIS OF ORGANOMETALLICS BEARING A SELENIUM-STABILIZED CARBANION

2.6.2.1 Generalities on Selenium-stabilized Carbanions

2.6.2.1.1 Reaction of alkyl metals with selenides and functionalized selenides

2.6.2.1.2 Stabilization of carbanionic centers by selenium-containing moieties

2.6.2.2 Synthesis by Metallation of Organometallics Bearing a Selenium-stabilized Carbanion

2.6.2.2.1 Synthesis of α-selenoalkyl metals by metallation of selenides

2.6.2.2.2 Stabilization of carbanionic centers by selenium-containing moieties

2.6.2.2.3 Synthesis of α-metalloalkyl selenoxides, selenones and selenonium salts

2.6.2.3 Synthesis of Organometallics Bearing an α-Seleno Carbanion by Selenium-Metal Exchange

2.6.2.3.1 Synthesis of α-selenoalkyllithiums by selenium-lithium exchange

2.6.2.3.2 Synthesis of α-selenovinyl metals by selenium-metal exchange

2.6.2.4 Miscellaneous Syntheses of α-Selenoalkyl Metals

2.6.2.4.1 Synthesis of α-selenoalkyllithiums by selenium-lithium exchange

2.6.2.4.2 Synthesis of α-selenovinyl metals by selenium-metal exchange

2.6.2.4.3 Miscellaneous Syntheses of α-Selenoalkyl Metals

2.6.2.5 Synthesis of Organometallics Bearing an α-Seleno Carbanion by Selenium-Metal Exchange

2.6.2.5.1 Synthesis of α-selenoalkyllithiums by selenium-lithium exchange

2.6.2.5.2 Synthesis of α-selenovinyl metals by selenium-metal exchange

2.6.2.5.3 Miscellaneous Syntheses of α-Selenoalkyl Metals

2.6.2.5.4 Synthesis of organometallics bearing an α-seleno carbanion with carboxylic acid derivatives and related compounds

2.6.3 REACTIVITY OF CARBONYL COMPOUNDS WITH ORGANOMETALLICS BEARING A SELENIUM-STABILIZED CARBANION

2.6.3.1 Generalities

2.6.3.2 Nucleophilicity of α-Selenoalkyllithiums Towards Aldehydes and Ketones

2.6.3.3 Stereochemistry of the Addition of α-Selenoalkyllithiums to Aldehydes and Ketones

2.6.3.4 The Ambident Reactivity of α-Selenoalkyllithiums

2.6.3.5 Control of the Regiochemistry of Addition of α-Selenoalkyl Metals to Enones, Enals and Enoates

2.6.3.5.1 Generalities

2.6.3.5.2 Reactivity of α-selenoalkyl metals, α-selenoxyalkyl-γ-metals and selenonium ylides with enals and enones

2.6.3.5.3 Reactivity of 1,1-bis(seleno)-1-alkyl metals and α-selenocarbonyl compounds with enals and enones

2.6.3.5.4 Reaction of organometallics bearing an α-seleno carbanion with carboxylic acid derivatives and related compounds

2.6.4 β-HYDROXYALKYL SELENIDES AS VALUABLE SYNTHETIC INTERMEDIATES

2.6.4.1 Generalities

2.6.4.2 Reduction of β-Hydroxyalkyl Selenides to Alcohols

2.6.4.3 Reductive Elimination of β-Hydroxyalkyl Selenides to Alkenes

2.6.4.4 Synthesis of Allyl Alcohols

2.6.4.5 β-Hydroxyalkyl Selenides as Precursors of Epoxides and Carbonyl Compounds

2.6.4.5.1 Generalities

2.6.4.5.2 Synthesis of epoxides

2.6.4.5.3 Rearrangement of β-hydroxyalkyl selenides to carbonyl compounds

2.6.4.5.4 Mechanism of epoxide and ketone formation from β-hydroxyalkyl selenides

2.6.4.6 Synthetic Uses of β-Hydroxyalkyl Selenides: Comparison with Well-established Related Reactions

2.6.4.6.1 Generalities

2.6.4.6.2 Synthesis of alcohols

2.6.4.6.3 Synthesis of allyl alcohols

2.6.4.6.4 Synthesis of epoxides, alkenes and carbonyl compounds

2.6.5 MISCELLANEOUS REACTIONS INVOLVING FUNCTIONALIZED α-SELENOALKYL METALS AND CARBONYL COMPOUNDS

2.6.5.1 α-Selenoalkyl and α-Selenoxyalkyl Metals as Vinyl Anion Equivalents

2.6.5.2 1,1-Bis(seleno)alkyl Metals and 1-Silyl-1-selenoalkyl Metals as Acyl Anion Equivalents

629
2.6.1 INTRODUCTION

Over the past 15 years, organoselenium reagents have been increasingly used in organic synthesis, especially for the construction of complex molecules. This is due to the ease with which selenium can be introduced into organic molecules, and the large variety of selective reactions which can be performed on organoselenium compounds. These allow the synthesis of different selenium-free functional groups or molecules. Organometallics bearing a selenium-stabilized carbanion have played an important role in such developments. They are usually readily available and can be particularly good nucleophiles, especially towards compounds bearing an electrophilic carbon atom. In this respect they have been widely used, since they allow the synthesis of more complex organoselenium compounds with the concomitant formation of a new carbon–carbon bond attached at one end to the selenium-containing moiety. This review article deals with the synthesis of selenium-stabilized carbanions and only discloses their reactivity towards carbonyl compounds, especially aldehydes and ketones. Some further transformations of functionalized selenides to selenium-free molecules will also be discussed. We have in most cases chosen examples involving the trapping of organometallics, with aldehydes and ketones, as a definite proof of their existence. In some cases, however, such information was not available and we have therefore described trapping experiments with alkylating agents instead.

2.6.2 SYNTHESIS OF ORGANOMETALLICS BEARING A SELENIUM-STABILIZED CARBANION

2.6.2.1 Generalities on Selenium-stabilized Carbanions

2.6.2.1.1 Reaction of alkyl metals with selenides and functionalized selenides

Organometallics bearing a selenium-stabilized carbanion belong to the well-known family of α-heterosubstituted organometallics which have proved particularly useful in organic synthesis over the past 30 years. Although they share similar features with other members of this family, they possess exceptional properties due to the special behavior of the selenium atom. Several organometallics bearing a seleno moiety and belonging to the aryl- (especially phenyl-) and methyl-seleno series, having their selenium atom in different oxidation states (Scheme 1), such as α-metalloalkyl selenides, α-metalloalkyl selenoxides, α-metalloalkyl selenones and α-metalloalkyl selenonium salts, as well as α-metallovinyl selenides and α-metallovinyl selenoxides, have been prepared, usually by metatllation of the corresponding carbon acid with lithium or potassium amide or with potassium tert-butoxide.

These bases, however, are not strong enough to metallate dialkyl and alkyl aryl selenides. Amylso-
dium and alkyllithiums, which have proved particularly useful for the metallation of the corresponding sulfides and phosphines, are not useful for the metallation of dialkyl or alkyl aryl selenides owing to their tendency to react on the selenium atom and to produce a novel selenide and a novel organometallic (Scheme 2). This latter reaction is easier when carried out in THF than in ether (Scheme...
Selemium Stabilizations

2, a),16,17,43 is faster with s- or t-butyllithium16,43,44 than with n-butyllithium7,16,35,36,38-40,43-50 or methyllithium (Scheme 2, a)43 and delivers the organometallic with the more stable carbanionic center of the three possible carbanions (Scheme 2, compare a with b). Thus butyllithiums react with methyl phenyl selenide and produce butyl methyl selenides and phenyllithium.16,38-40,44 Substitution of the methyl group of methyl phenyl selenide by a group able to stabilize a carbanionic center, such as a vinyl,45 aryl,43,44,46 thio47-49 or seleno7,16,35,36 moiety, not only increases the reactivity of the selenide (the cleavage reaction takes place faster and at lower temperature: Scheme 2; compare a with b) but also dramatically changes the regiochemistry of the reaction. Phenyllithium is no longer produced but instead allyl-,45 benzyl-,43,44,46 thiomethyl-47-49 and selenomethyl-lithiums7,16,35,36 are obtained, respectively, in almost quantitative yield (Scheme 2, b).

This reaction has proven to be of wide applicability: the selenium-metal exchange is a valuable alternative to the hydrogen-metal, halogen-metal or tin-metal exchange. Although less general than the two former methods, it takes advantage of the easy synthesis of selenides and functionalized selenides and of their thermal stability, even in the case of allyl or benzyl derivatives. Moreover, the butyl selenides produced concomitantly with the organometallic and resulting from the C-Se bond cleavage are generally inert in the reaction medium.51,52 This differs markedly from the halogen-metal exchange by butyllithiums, which instead leads to butyl halides that react further with the organometallics present in the reaction medium.51,52

For the synthesis of α-selenoalkyllithiums, the selenium–lithium exchange reaction is a good alternative to the almost impossible metallation of unactivated selenides.7,16,17 Thus it has been found that a large variety of selenoacetals, often readily available from carbonyl compounds and selenols,15,53 react with butyllithiums to provide α-selenoalkyllithiums4,7,9,12,16,17,35,36,40,48,49,54-56 in very high yields (Scheme 2; see also Section 2.6.2.3).

2.6.2.1.2 Stabilization of carbanionic centers by selenium-containing moieties

The seleno moiety, when linked to a carbanionic center, provides17,56-59 an extra stabilization of about 10 pKₐ unit. This is of the same order of magnitude as that provided by the corresponding thio moiety,17 which stabilizes an sp³ carbanion slightly better than does a seleno moiety.17,15,57,60 These results differ greatly from those obtained by calculation,59 which suggest a much higher difference (4 kcal; 1 cal = 4.18 J) and in the reverse order. Recent results from our laboratory7,16,60 seem to show that heteroatom substituents affect the stabilization of an sp³-hybridized carbanionic center much more than the heteroatom itself (S, Se). Thus a phenylseleno group stabilizes a carbanionic center to a higher extent than a
methylseleno or (probably) a methylthio moiety. Results which support the above mentioned tendencies are collected in Schemes 3, 4, 5 and 6.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Conditions</th>
<th>Measured</th>
<th>Sulfur/selenium</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhXCD3</td>
<td>KNH2, NH3, −33 °C</td>
<td>(k_{\text{isotop}})</td>
<td>10</td>
<td>64</td>
</tr>
<tr>
<td>m-CF3C6H5Me</td>
<td>LiTMP, THF, −78 °C</td>
<td>(k_{\text{dep}})</td>
<td>3.8</td>
<td>56</td>
</tr>
<tr>
<td>PhXCH2CH=CH2</td>
<td>LDA, THF, −78 °C</td>
<td>(k_{\text{dep}})</td>
<td>7.5</td>
<td>65</td>
</tr>
<tr>
<td>PhXCH2CN</td>
<td>NaOEt, EtOH, 25 °C</td>
<td>(k_{\text{isom}})</td>
<td>12.6</td>
<td>62, 63</td>
</tr>
<tr>
<td>PhXCH=CN</td>
<td>NaOEt, EtOH, 25 °C</td>
<td>(k_{\text{isom}})</td>
<td>7</td>
<td>62, 63</td>
</tr>
<tr>
<td>PhCOCH2XPh</td>
<td>MeSOCH2Na, DMSO</td>
<td>(K_{\text{eq}})</td>
<td>32</td>
<td>66</td>
</tr>
<tr>
<td>Me2XI</td>
<td>NaOD, D2O, 62 °C</td>
<td>(k_{\text{isotop}})</td>
<td>45</td>
<td>67</td>
</tr>
<tr>
<td>(PhX)2CH2</td>
<td>0 °C</td>
<td>(pK_{\text{S}}/pK_{\text{Se}})</td>
<td>32/35</td>
<td>36</td>
</tr>
</tbody>
</table>

\(a\) Isomerization of propargyl to allenyl selenide. \(b\) Isomerization of allenyl to 1-propynyl selenide. \(c\) \(pK_{\text{S}}=17.1, pK_{\text{Se}}=18.6\)

Scheme 3 Relative kinetic and thermodynamic acidity of sulfides and selenides

The results in Schemes 3 to 6 are derived from kinetic or thermodynamic acidity measurements on functionalized selenides and on the corresponding sulfides (Scheme 3), as well as from equilibration reactions involving 2-phenylseleno-2-propyllithium and 2-phenylseleno-2-phenylthiopropane, and those involving 2-phenylthio-2-propyllithium and 2,2-bis(phenylseleno)propane (Scheme 6).

Surprisingly, for \(sp^2\)-hybridized carbanionic centers the reverse order of stabilization is found. The seleno moiety is now more stabilizing than a thio moiety (Scheme 7, cf. Scheme 3).

Several factors might govern the relative stabilization of a negative charge by sulfur and selenium. The selenium atom is larger and more polarizable than sulfur, and is therefore expected to disperse the charge more efficiently. Sulfur, however, is slightly more electronegative and better stabilizes the charge by an inductive effect. Conjugative interactions via \(d\)-orbitals should be more favorable for sulfur; however, conjugation is less favorable for \(sp^2\)-hybridized carbanions for which the greater polarizability of selenium dominates.
Scheme 6

<table>
<thead>
<tr>
<th>Compound</th>
<th>Conditions</th>
<th>Measured</th>
<th>Sulfur/selenium</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhS<sub>SePh</sub> + PhSe<sub>Ph</sub></td>
<td>i, Bu<sup>Li</sup>, THF, -78 °C, 2 h</td>
<td>PhS<sub>Ph</sub> + PhSe<sub>Ph</sub></td>
<td>68%</td>
</tr>
</tbody>
</table>

Scheme 7

Relative kinetic and thermodynamic acidity of vinyl sulfides and selenides (refs. 17 and 69)

The group attached to the seleno moiety modulates its ability to stabilize a carbanionic center (this effect is often higher than the one produced by the heteroatom itself). Thus a m-CF₃PhSe group enhances the kinetic acidity of a methylene group by approximately a factor of 20 over a PhSe group (Scheme 8), which is in turn a much better stabilizing group than MeSe.

Thus, whereas 1,1-bis[(m-trifluoromethyl)phenylseleno]alkanes^{55,56,71,73} and 1,1-bis(phenylseleno)alkanes^{55,56,71,73} are successfully metallated under various conditions (see below), their methylseleno...
analogs are not.71 1-Phenylseleno- and 1-methylseleno-1-arylethanes exhibit72 a similar tendency, since the former is efficiently metallated with KDA in THF but not the latter (Scheme 9, compare c to f).

\textbf{Scheme 9}

It also has been found that butyllithiums react faster with 2,2-bis(phenylseleno)propane than with its methylseleno analog.60 Thus, addition of n-butyllithium to a 1:1 mixture of 2,2-bis(phenylseleno)propane and 2,2-bis(methylseleno)propane leads selectively to the formation of 2-lithio-2-phenylselenopropane under kinetically controlled conditions, providing the α-selenoalkyllithium with the more stable carbanionic center (Scheme 4). Furthermore, 2-methylselenopropyllithium reacts80 with 2,2-bis(phenylseleno)propane and leads, under thermodynamically controlled conditions, to 2-phenylseleno-2-propyl-lithium, thus demonstrating the better propensity of a phenylseleno moiety over a methylseleno moiety to stabilize a carbanionic center (Scheme 5).

The presence of a group able to delocalize the charge from the carbanionic center favors the synthesis of the carbanion whatever the method used, whereas substitution of the carbanionic center by alkyl groups disfavors it. Thus, whereas methyl phenyl and dimethyl selenide cannot be metallated with LDA at $-78\,^\circ C$ or $0\,^\circ C$, phenylseleno and methylseleno acetates and propionates lead, on reaction with the same base at $-78\,^\circ C$, to the corresponding organometallics (Scheme 10).74,75

\textbf{Scheme 10}

Yet another important difference of reactivity towards n-butyllithium has been found between phenyl selenoacetals derived from aldehydes and ketones.50 This distinction allowed, when the reaction was performed in ether–hexane, the selective synthesis of an α-selenoalkyllithium derived from the phenyl selenoacetal of an aldehyde in the presence of the phenyl selenoacetal of a methyl ketone, which remained untouched (Scheme 11).60

α-Selenoalkyl metals have been prepared7,9,12,16,17 by a large array of methods such as metallation of selenides, selenoxides, selenones and selenonium salts; selenium–metal exchange between selenoacetals and alkylolithiums or metals; halogen–lithium exchange between α-haloalkyl selenides and alkylolithiums; addition of organolithiums to vinyl selenides; and selenophilic addition of organometallics to selones (Scheme 12).

Among these methods, the metallation reaction is the method of choice for selenides bearing electron-withdrawing groups able to stabilize the carbanionic center. This also applies to selenoxides, selenones and selenonium salts.

The reaction of selenoacetals with butyllithiums allows the synthesis of a large variety of α-selenoalkyllithiums whose carbanionic centers are unsubstituted, monoalkyl substituted or dialkyl substituted.
2.6.2.2 Synthesis by Metallation of Organometallics Bearing a Selenium-stabilized Carbanion

2.6.2.2.1 Synthesis of α-selenoalkyl metals by metallation of selenides

Alkyl aryl and dialkyl selenides, aside from the parent compounds methyl phenyl selenide (Scheme 13, a)\(^{36}\) and trifluoromethylphenyl methyl selenide (Scheme 13, b),\(^{36}\) cannot be easily metallated. It was expected that the extra stabilization provided by the cyclopropyl group would be sufficient to permit the metallation of cyclopropyl selenides, but that proved not to be the case.\(^{56,77}\)

Cyclopropyl phenyl selenides are inert towards lithium diisopropylamide (LDA) and lithium tetramethylpiperidide (LiTMP) (Scheme 14, a). Butyllithium instead react on the selenium atom and produce\(^{77}\) butyl cyclopropyl selenides and phenyllithium rather than cyclopropyllithiums and butyl phenyl selenides (Scheme 14, b).

Aryl methyl selenides with the methyl group substituted by an aryl (Scheme 9 and 15),\(^{56,70,72,78,79}\) a vinyl (Schemes 16-18),\(^{56,69,80-90}\) a 1-butadienyl (Scheme 17, d)\(^{91}\) or an ethynyl (Schemes 19 and
Heteroatom-stabilized Carbanion Equivalents

\[
\begin{align*}
\text{ArSe} & \xrightarrow{X} \text{ArSe} \quad \text{Li} \\
\text{R} & \\
\text{Conditions} & \\
\text{Yield (\%)} & \\
\text{Ref.} & \\
(a) & \text{Ph} \quad \text{H} \quad \text{H} \quad \text{Bu}^\text{t} \text{Li-TMEDA, THF, 0 \, ^\circ \text{C}} \quad 38 \quad 38 \\
(b) & 4\text{-CF}_3\text{C}_6\text{H}_4 \quad \text{H} \quad \text{H} \quad \text{LiTMP, THF-hexane, -55 \, ^\circ \text{C}, 2 \, h} \quad 100 \quad 56 \\
(c) & 4\text{-CF}_3\text{C}_6\text{H}_4 \quad \text{H} \quad \text{Me} \quad \text{LiTMP, THF-hexane, -55 \, ^\circ \text{C}, 2 \, h} \quad 0 \quad 56
\end{align*}
\]

Scheme 13

(a) \[R = \text{Bu}^\text{t}, \quad R^1 = \text{H}, \quad R^2 = \text{Me} \]

(b) \[R = \text{Bu}^\text{t}, \quad R^1 = \text{Me}, \quad R^2 = \text{Me} \]

R = Bu\text{t}, R^1 = H, R^2 = Me
R = Bu\text{t}, R^1 = Me, R^2 = Me

Scheme 14

20)\text{56,92,93} group, or a méthoxy (Scheme 21, a),\text{36} a phenylthio (Scheme 22),\text{94} an arylseleno (Scheme 21, b; Scheme 23, a),\text{35,36,49,56,65,71,73,95-97} a silyl (Scheme 24, a–d)\text{56,70,98-100} or a telluryl (Scheme 25, a)\text{101} moiety, some of which provide a further stabilization of the carbanionic center, have been successfully metallated by metalloamides.

As a general trend in this series of compounds, m-trifluoromethylphenyl selenides are more efficiently metallated than phenyl selenides, methylseleno derivatives are scarcely reactive, and the presence of an alkyl substituent on the carbon to be metallated often inhibits the reaction (Scheme 9 and Schemes 13–25).

As far as the basic system is concerned, KDA in THF–hexane (a 1:1 mixture of lithium diisopropylamide (LDA) and potassium tert-butoxide)\text{45,72,73} is by far more efficient than lithium tetramethylpiperidide (LiTMP) (in THF–HMPA)\text{71} or THF–hexane\text{45,56,71,72} which is in fact at least a power of 10 more reactive\text{17,56} than lithium amides (in HMPA or THF–hexane)\text{35,36,41,56,65,70,78-82,84-86,90,92,93,95-97,99,101-103}.

Thus, although bis(phenylseleno)methane\text{35,36} and its bis(m-trifluoromethyl) analogs\text{85} are almost quantitatively metallated with lithium diisobutyramide or LDA in THF, respectively (Scheme 21, b and c);
Selenium Stabilizations

\[
\text{RSe} \stackrel{\text{base}}{\longrightarrow} \text{THF-hexane} \quad \begin{bmatrix} \text{RSe} & \text{R}^1 \end{bmatrix} \quad \text{E} \quad \frac{\text{RSe}}{\text{E}} \quad + \quad \frac{\text{RSe}}{\text{E}}
\]

<table>
<thead>
<tr>
<th>R</th>
<th>R'</th>
<th>Conditions</th>
<th>E</th>
<th>Yield (%)</th>
<th>Ratio</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>Ph</td>
<td>LDA, -78°C, 0.2 h</td>
<td>Ph(CH$_2$)$_2$Br</td>
<td>68</td>
<td>100:0</td>
<td>80</td>
</tr>
<tr>
<td>(b)</td>
<td>Ph</td>
<td>LDA, -78°C, 0.2 h</td>
<td>PhCOMe</td>
<td>70–85</td>
<td>15:85</td>
<td>80</td>
</tr>
<tr>
<td>(c)</td>
<td>Ph</td>
<td>LDA, -78°C, 0.2 h, then Et$_3$Al</td>
<td>PhCOMe</td>
<td>70–85</td>
<td>64:36 (64:36)a</td>
<td>81, 82</td>
</tr>
<tr>
<td>(d)</td>
<td>Ph</td>
<td>LDA, -78°C, 0.2 h</td>
<td>EtCHO</td>
<td>70–85</td>
<td>12:88</td>
<td>81, 82</td>
</tr>
<tr>
<td>(e)</td>
<td>Ph</td>
<td>LDA, -78°C, then Et$_3$Al</td>
<td>EtCHO</td>
<td>70–85</td>
<td>100:0 (81:19)a</td>
<td>81, 82</td>
</tr>
<tr>
<td>(f)</td>
<td>Me</td>
<td>LDA, -78°C, 0.5 h</td>
<td>Bu$_3$SnCl</td>
<td>100</td>
<td>0:100</td>
<td>84</td>
</tr>
<tr>
<td>(g)</td>
<td>Me</td>
<td>LiTMP</td>
<td>PhCHO</td>
<td>76</td>
<td>18:82</td>
<td>45</td>
</tr>
</tbody>
</table>

Threo:erythro ratio

Scheme 16

\[
\text{PhSe} \stackrel{\text{LDA}}{\longrightarrow} \text{THF-hexane} \quad \begin{bmatrix} \text{PhSe} & \text{R} \end{bmatrix} \quad \text{E} \quad \frac{\text{PhSe}}{\text{R}} \quad + \quad \frac{\text{PhSe}}{\text{R}}
\]

<table>
<thead>
<tr>
<th>R</th>
<th>Conditions</th>
<th>E</th>
<th>Yield (%)</th>
<th>Ratio</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>Me</td>
<td>-78°C, 0.6 h</td>
<td>Ph(CH$_2$)$_2$Br</td>
<td>80</td>
<td>100:0</td>
</tr>
<tr>
<td>(b)</td>
<td>Ph</td>
<td>-78°C, 0.1 h</td>
<td>Me$_2$CO</td>
<td>55</td>
<td>100:0</td>
</tr>
<tr>
<td>(c)</td>
<td>SePh</td>
<td>-78°C, 0.1 h</td>
<td>Pr$_3$CHOb</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>(d)</td>
<td>PhSe</td>
<td>i, LDA, THF, ii, Me$_2$CO, iii, H$_2$O$^+$</td>
<td>90$^\circ\text{C}$</td>
<td>71% overall</td>
<td>(ref. 91)</td>
</tr>
</tbody>
</table>

Scheme 17

\[
\text{RSe} \stackrel{\text{base}}{\longrightarrow} \text{THF-hexane} \quad \begin{bmatrix} \text{RSe} & \text{R}^1 \end{bmatrix} \quad \text{E} \quad \frac{\text{RSe}}{\text{R}^1} \quad + \quad \frac{\text{RSe}}{\text{R}^1}
\]

<table>
<thead>
<tr>
<th>R</th>
<th>R'</th>
<th>Conditions</th>
<th>E</th>
<th>Yield (%)</th>
<th>Ratio</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>Ph</td>
<td>LDA, -78°C, <0.1 h</td>
<td>Ph(CH$_2$)$_2$Br</td>
<td>85</td>
<td>100:0</td>
<td>80</td>
</tr>
<tr>
<td>(b)</td>
<td>Ph</td>
<td>LDA, 0$^\circ$C, 0.5 h</td>
<td>Me$_2$PhSiCl</td>
<td>71</td>
<td>100:0</td>
<td>80</td>
</tr>
<tr>
<td>(c)</td>
<td>Me</td>
<td>LiTMP, -78°C, 0.5 h</td>
<td>PhCHO</td>
<td>11</td>
<td>0:100</td>
<td>45</td>
</tr>
<tr>
<td>(d)</td>
<td>Me</td>
<td>LiTMP, -25°C, 0.5 h</td>
<td>PhCHO</td>
<td>47</td>
<td>0:100</td>
<td>45</td>
</tr>
<tr>
<td>(e)</td>
<td>Me</td>
<td>KDA, -78°C, 0.3 h</td>
<td>PhCHO</td>
<td>78</td>
<td>35:65</td>
<td>45</td>
</tr>
</tbody>
</table>

Scheme 18

Scheme 23, a), bis(methylseleno)methane remains untouched71 under these or even under stronger conditions. Higher homologs in the arylseleno series require the concomitant use of LiTMP and HMPT,71 or better, KDA in THF (Scheme 23, b–d).73

In fact, the metallation of some of these compounds can be achieved in minute amounts using even LDA or Bu$^\text{4}$OK, but the equilibrium between the different partners is not in favor of the formation of the
α-selenoalkyl metal. In some cases, however, the equilibrium can be driven to the other side by, for example, trapping the organometallic, once it is formed, with an alkylating agent. This is effectively the case for 3-chloro-1,1-bis(phenylseleno)propane and its bis(methylseleno) analogs, as well as 3-chloro-1,1-bis(phenylseleno)hexane, which produce the corresponding selenoacetals of cyclopropanone on reaction with LDA in THF (Scheme 26, a and b). 3-Chloro-1,1-bis(methylseleno)hexane, however, does not react under similar conditions (Scheme 26, d). Such difference of reactivity between phenylseleno and methylseleno derivatives is also observed when potassium t-butoxide is used as the base. Thus, whereas 3-chloro-1,1-bis(phenylseleno)propane is almost quantitatively cyclized (Scheme 26, b), its methylseleno analogs unexpectedly produce 1,1-bis(methylseleno)-1-propene (Scheme 26, c). 1,1-Bis(phenylseleno)cyclopropane has also been prepared by Reich from 3-tosyloxy-1-phenylseleno-

Scheme 19

\[
\text{PhSe} \quad \text{R}^1 \quad \text{LDA or LiNBU}_3 \quad \text{-78 °C, 0.1-0.2 h} \quad \begin{bmatrix} \text{PhSe} \\ \text{Li} \end{bmatrix} \quad \text{R}^1 \\
\text{R}^1
\]

(a) \(R^1 = \text{H, exclusive} \)

(b) \(R^1 = \text{Me, predominant} \)

Scheme 20

\[
\text{PhSe} \quad \text{Et} \quad \text{OH} \quad \text{MCPBA} \quad \text{CH}_2\text{Cl}_2 \quad \begin{bmatrix} \text{PhSe} \\ \text{OH} \end{bmatrix} \quad \text{Et} \quad \text{O-PhSe} \quad \text{-78 °C} \\
\]

(ref. 93)

59% overall

Scheme 21

<table>
<thead>
<tr>
<th>Base/conditions</th>
<th>Ar</th>
<th>X</th>
<th>R</th>
<th>Yield (%)</th>
<th>Temperature/time</th>
<th>Yield (%)</th>
<th>(Z):(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>i</td>
<td>m-CF\textsubscript{3}C\textsubscript{2}H\textsubscript{4}</td>
<td>OMe</td>
<td>Ph</td>
<td>76</td>
<td>72</td>
<td>46:54</td>
</tr>
<tr>
<td>(b)</td>
<td>ii</td>
<td>Ph</td>
<td>SePh</td>
<td>Ph</td>
<td>95</td>
<td>0 °C, 0.2 h</td>
<td>74</td>
</tr>
<tr>
<td>(ii)</td>
<td>ii</td>
<td>Ph</td>
<td>SePh</td>
<td>Me</td>
<td>92</td>
<td>0 °C, 0.2 h</td>
<td>84</td>
</tr>
<tr>
<td>(iii)</td>
<td>ii</td>
<td>Ph</td>
<td>SePh</td>
<td>Et</td>
<td>98</td>
<td>0 °C, 0.2 h</td>
<td>74</td>
</tr>
<tr>
<td>(iv)</td>
<td>ii</td>
<td>Ph</td>
<td>SePh</td>
<td>Pr1</td>
<td>71</td>
<td>0 °C, 0.2 h</td>
<td>81</td>
</tr>
<tr>
<td>(a)</td>
<td>ii</td>
<td>m-CF\textsubscript{3}C\textsubscript{2}H\textsubscript{4}</td>
<td>m-CF\textsubscript{3}C\textsubscript{2}H\textsubscript{4}Se</td>
<td>Ph</td>
<td>–</td>
<td>20 °C, 3 h</td>
<td>85</td>
</tr>
<tr>
<td>(ii)</td>
<td>ii</td>
<td>m-CF\textsubscript{3}C\textsubscript{2}H\textsubscript{4}</td>
<td>m-CF\textsubscript{3}C\textsubscript{2}H\textsubscript{4}Se</td>
<td>Me</td>
<td>91</td>
<td>20 °C, 3 h</td>
<td>63</td>
</tr>
<tr>
<td>(ii)</td>
<td>ii</td>
<td>m-CF\textsubscript{3}C\textsubscript{2}H\textsubscript{4}</td>
<td>m-CF\textsubscript{3}C\textsubscript{2}H\textsubscript{4}Se</td>
<td>Et</td>
<td>98</td>
<td>20 °C, 3 h</td>
<td>72</td>
</tr>
<tr>
<td>(ii)</td>
<td>ii</td>
<td>m-CF\textsubscript{3}C\textsubscript{2}H\textsubscript{4}</td>
<td>m-CF\textsubscript{3}C\textsubscript{2}H\textsubscript{4}Se</td>
<td>Pr1</td>
<td>98</td>
<td>20 °C, 3 h</td>
<td>79</td>
</tr>
</tbody>
</table>

i, LiTMP, THF, -78 °C, 0.1 h; ii, LDA, THF, -78 °C, 0.5 h (refs. 56 and 65)
Scheme 22

<table>
<thead>
<tr>
<th>Conditions</th>
<th>R</th>
<th>Yield (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Bu\textsubscript{12}NLi, THF, (-78 , ^\circ \text{C}) then (-30 , ^\circ \text{C}), 0.2 h</td>
<td>H</td>
<td>80</td>
<td>35, 36</td>
</tr>
<tr>
<td>(b) LDA, THF–HMPA, (-30 , ^\circ \text{C}) then 20 , ^\circ \text{C}), 0.2 h</td>
<td>Me</td>
<td>74</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>C\textsubscript{6}H\textsubscript{13}</td>
<td>44</td>
<td>71</td>
</tr>
<tr>
<td>(c) LiTMP, THF–HMPA, (-30 , ^\circ \text{C}) then 20 , ^\circ \text{C}), 0.2 h</td>
<td>Me</td>
<td>83</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>C\textsubscript{6}H\textsubscript{13}</td>
<td>86</td>
<td>71</td>
</tr>
<tr>
<td>(d) KDA, THF, (-78 , ^\circ \text{C})</td>
<td>Me</td>
<td>95</td>
<td>73</td>
</tr>
<tr>
<td>(e) PhSe [R = \text{Me}, 90%] PhSe [R = \text{Pr}', 63%] PhSe [R = \text{C}{10}H{21}, 84%] PhSe [R = \text{Me}, 77%]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scheme 23

<table>
<thead>
<tr>
<th>Conditions</th>
<th>R</th>
<th>Yield (%)</th>
<th>Ratio Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Me</td>
<td>H</td>
<td>5</td>
<td>0:100:0:100</td>
</tr>
<tr>
<td>(b) Ph</td>
<td>H</td>
<td>5</td>
<td>100:0:100:0</td>
</tr>
<tr>
<td>(c) Ph</td>
<td>H</td>
<td>30</td>
<td>57:43:100:0</td>
</tr>
<tr>
<td>(d) m-CF\textsubscript{3}C\textsubscript{6}H\textsubscript{4}</td>
<td>H</td>
<td>83</td>
<td>30:70:70:70</td>
</tr>
<tr>
<td>(e) Ph</td>
<td>C\textsubscript{10}H\textsubscript{21}</td>
<td>83</td>
<td>57:43:100:0</td>
</tr>
<tr>
<td>(f) Ph</td>
<td>Ph</td>
<td>77</td>
<td>70:70:70:70</td>
</tr>
<tr>
<td>(g) m-CF\textsubscript{3}C\textsubscript{6}H\textsubscript{4}</td>
<td>Ph</td>
<td>81</td>
<td>70:70:70:70</td>
</tr>
</tbody>
</table>

i, LDA, THF–hexane; ii, C\textsubscript{6}H\textsubscript{13}CHO; iii, H\textsubscript{3}O+
Heteroatom-stabilized Carbanion Equivalents

(a)\[\text{PhSe} \rightarrow \text{TePh} \]

(b)\[\text{PhSe} \rightarrow \text{Li} \rightarrow \text{PhSe} \rightarrow \text{TePh} \]

Scheme 25

(a)

(b)\[\text{O} \rightarrow \text{Cl} \rightarrow \text{SeR} \]

(c)\[\text{O} \rightarrow \text{Cl} \rightarrow \text{SeR} \]

(d)\[\text{O} \rightarrow \text{Cl} \rightarrow \text{SeR} \]

Scheme 26

1-phenyl-selenoxypropane and LDA in THF followed by reduction of the resulting cyclopropyl phenyl selenoxide with, for example, iodide anion (Scheme 27).97

Benzyl selenides exhibit a similar pattern of reactivity. Thus, although the parent aryl benzyl selenides are successfully metallated with LDA at -78 °C,56,72,78,79 their higher homologs, as well as benzyl methyl selenides,72 are not. Use of stronger bases such as LiTMP, or better, KDA, allows the metallation of various aryl benzyl selenides, even those bearing an alkyl substituent at the benzylic site (Scheme 13, c; Scheme 15 a and c; Scheme 23, b–d). They are, however, of limited use in the methylseleno series since the parent compound is the only one to react (Scheme 15, d–f).72

Allylic45,80–82,84,85 and propargylic93 selenides seem to be more acidic. In the phenylseleno series, for example,80,82,84,85 the synthesis of those compounds bearing an alkyl substituent on the carbanionic center has been already achieved with LDA and does not require the use of stronger bases (Schemes 16–20). In the methylseleno series,45 however, the use of LiTMP (Scheme 16, h; Scheme 18, c and d) or KDA (Scheme 18, e compared with c and d) is often needed.

Finally, the metallation is particularly difficult with selenides bearing a methoxymethyl substituent,56 and is only successful56 when a m-(trifluoromethyl)phenyl moiety is attached to the selenium atom (Scheme 21, a).
As already mentioned, LiTMP acts usually as a stronger base than LDA or lithium diethylamide; in some rare cases the reverse order of reactivity has been observed. Thus it has been found\(^{56}\) that the trimethylsilyl substituent reduces the kinetic acidity of CF\(_3\)PhSeCH\(_2\)SiMe\(_3\) as compared with CF\(_3\)PhSeMe towards LiTMP by a factor of 2.8. With LDA as base, however, the silyl substituent has the opposite effect,\(^{56}\) since m-CF\(_3\)PhSeCH\(_2\)SiMe\(_3\) is deprotonated at least 25 times as fast as m-CF\(_3\)PhSeMe (Scheme 24, d). Presumably, steric effects cancel the normal acidifying effect of the trimethylsilyl group when a hindered base such as LiTMP is used.

Phenylselenomethyl phosphonates\(^{102}\) and (phenylseleno)chloromethane\(^{105}\) have been metallated by NaH and Bu\(^{0}\)OK, respectively (Scheme 28, a and b; Scheme 29). The former organometallics react with carbonyl compounds and directly produce vinyl selenides (Scheme 28, a and b),\(^{102}\) whereas the second decomposes to phenylselenomethylene\(^{103}\) which adds stereospecifically to alkenes and leads to phenylselenocyclopropanes in reasonably good yields (Scheme 29).\(^ {105}\)

\[
\begin{align*}
\text{(EtO)}_2\text{P(O)} & \quad \text{SePh} \quad \xrightarrow{\text{base}} \quad \begin{array}{c}
\text{(EtO)}_2\text{P(O)} \\
\text{SePh}
\end{array} \\
& \quad \xrightarrow{\text{PhCHO}} \quad \begin{array}{c}
\text{Ph} \\
\text{CHO}
\end{array}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Conditions</th>
<th>R</th>
<th>Yield (%)</th>
<th>(Z):(E)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) NaH, THF–HMPA (10:1), 80 °C, 1 h</td>
<td>H</td>
<td>80</td>
<td>6:94</td>
<td>90</td>
</tr>
<tr>
<td>(b) NaH, THF–HMPA (10:1), 80 °C, 6 h</td>
<td>Me</td>
<td>86</td>
<td>47:53</td>
<td>–</td>
</tr>
<tr>
<td>(c) NaH, THF–HMPA (10:1), 80 °C, 6 h</td>
<td>Et</td>
<td>70</td>
<td>8:92</td>
<td>–</td>
</tr>
<tr>
<td>(d) Bu(^{0})Li, THF–hexane, –78 °C, 4 h</td>
<td>H</td>
<td>70</td>
<td>16:84</td>
<td>–</td>
</tr>
</tbody>
</table>

\text{Scheme 28}

Bu\(^{0}\)Li, which usually performs the Se–Li exchange\(^ {7,9,12,16,17}\) in selenides, effects the metallation of some functionalized selenides. This is particularly the case of phenylselenomethyl phosphonates\(^ {102}\) and phosphonium salts (Scheme 28, c).\(^ {106,107}\) This is also the case of methyl phenyl selenide (Scheme 13, a compared with Scheme 2, a).\(^ {36}\) Phenyl trimethylsilylmethyl selenide (Scheme 30, a)\(^ {98}\) and bis(phenylseleno)methane (Scheme 30, c and d),\(^ {36,71}\) which are metallated with butyllithium but only in coordinating solvents such as TMEDA,\(^ {36,98}\) dimethoxyethane (DME)\(^ {71}\) or HMPA.\(^ {71}\)

\[
\begin{align*}
\text{PhSe} & \quad \xrightarrow{\text{KOBu}}} \quad \begin{array}{c}
\text{K} \\
\text{X}
\end{array} \\
& \quad \xrightarrow{70\%} \quad \begin{array}{c}
\text{PhSe} \\
\text{Cl}
\end{array}
\end{align*}
\]

\text{Scheme 29}

\[
\begin{align*}
\text{PhSe} & \quad \xrightarrow{\text{Bu\(^{0}\)Li-TMEDA, 25 °C, 1.5 h}} \quad \begin{array}{c}
\text{PhSe} \\
\text{X}
\end{array} \\
& \quad \xrightarrow{83} \quad \begin{array}{c}
\text{X} \\
\text{R}
\end{array}
\end{align*}
\]

<table>
<thead>
<tr>
<th>X</th>
<th>R</th>
<th>Conditions</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Me(_3)Si</td>
<td>H</td>
<td>Bu(^{0})Li–TMEDA, 25 °C, 1.5 h</td>
<td>83</td>
</tr>
<tr>
<td>(b) PhSe</td>
<td>H</td>
<td>Bu(^{0})Li, DME–hexane, –78 °C, 1 h</td>
<td>50</td>
</tr>
<tr>
<td>(c) PhSe</td>
<td>Me</td>
<td>Bu(^{0})Li, DME–hexane, –78 °C, 1 h</td>
<td>25</td>
</tr>
</tbody>
</table>

\text{Scheme 30}

Selenides bearing two groups capable of stabilizing a carbanionic center on the α-carbon are much more acidic than the above mentioned derivatives and both the phenylseleno and the methylseleno derivatives can be readily metallated. Thus, tris(phenylseleno)methane,\(^ {35,36}\) tris(methylseleno)methane (Scheme 31),\(^ {71,108}\) arylbis(phenylseleno)methane and arylbis(methylseleno)methane (Scheme 32)\(^ {72}\) lead to the corresponding methylolithiums with LiDBA,\(^ {35,36}\) LDA,\(^ {71,72,100}\) LiTMP\(^ {72}\) or KDA\(^ {72}\) in THF. Surprisingly, with arylbis(seleno)methanes selenophilic attack of LiTMP\(^ {72}\) and LDA,\(^ {72}\) which produces...
α-selenobenzyllithiums, competes with the metallation reaction (Scheme 32, d and e). This reaction can be prevented if KDA is used instead of LDA (Scheme 32, a and b).

\[
\begin{align*}
X = RSe \\
\xymatrix{
 & RSe \\
 \ar@{-}[r] & RSe \\
 \ar@{-}[r] & RSe }
\end{align*}
\]

This reaction can be prevented if KDA is used instead of LDA (Scheme 32, a and b).72

\[
\begin{align*}
RSe & \xrightarrow{X = MeSe} RSe \xrightarrow{\text{conditions}} \text{yield (\%)} \xrightarrow{\text{ref.}} \\
(a) & \text{Ph} \xrightarrow{\text{LiDBA, THF, -78 °C}} 93 \text{ 35, 36} \\
(b) & \text{Me} \xrightarrow{\text{LDA, THF, -78 °C}} 80 \text{ 71} \\
(c) & \text{MeSe} \xrightarrow{\text{MeSe}} \text{C}_{10}H_{21} \xrightarrow{\text{63\%}} \text{85\% (ref. 108)} \\
(d) & \text{Me}_{2}Si \xrightarrow{\text{Me}_{2}Si}}
\end{align*}
\]

\[
\begin{align*}
\text{X = Me}_{2}Si \\
\xymatrix{
 & \text{Me}_{2}Si \\
 \ar@{-}[r] & \text{Me}_{2}Si \\
 \ar@{-}[r] & \text{Me}_{2}Si }
\end{align*}
\]

i, MeI; ii, C_{10}H_{21}CHO; iii, Ph, Et_{3}N, CH_{2}Cl_{2}, 20 °C, 1 h; iv, EtCHO

Scheme 31

\[
\begin{align*}
\text{Ar} & \xrightarrow{i} \text{SeR} \xrightarrow{\text{Ar}} \text{SeR} + \text{SeR} \xrightarrow{\text{ii, iii}} \text{RSe} \xrightarrow{\text{Ar}} \text{Ph} + \text{Ar} \xrightarrow{\text{OH}} \text{Ph} + \text{SM}
\end{align*}
\]

\[
\begin{align*}
R & \xrightarrow{\text{Ar}} \text{Base} \xrightarrow{\text{Yield (\%)} \xrightarrow{\text{Ratio (ref. 72)}} \\
(a) & \text{Me} \xrightarrow{\text{Ph or 4-MeOC}_{6}H_{4}} \text{KDA} \xrightarrow{79} 100:0:0 \\
(b) & \text{Ph} \xrightarrow{\text{Ph or 4-MeOC}_{6}H_{4}} \text{KDA} \xrightarrow{81} 100:0:0 \\
(c) & \text{Me} \xrightarrow{\text{Ph}} \text{LDA} \xrightarrow{50:0:50} \\
(d) & \text{Me} \xrightarrow{\text{Ph}} \text{LiTMP} \xrightarrow{16:30:54} \\
(e) & \text{Ph} \xrightarrow{\text{Ph}} \text{LDA} \xrightarrow{26:11:50\text{a}} \\
\end{align*}
\]

\(\text{a} \) Other products are formed.

i, base, THF–hexane, -78 °C, 0.3 h; ii, PhCHO; iii, H^+

Scheme 32

It has been noticed that lithium diethylamide is far superior to LDA for the metallation of vinyl-45 and phenyl-(trimethylsilyl)phenylselenomethane (Scheme 33).70 Presumably, the steric hindrance due to the trimethylsilyl group prevents the attack of the bulky LDA.

The situation is clearly different for α-seleno ketones (Schemes 34–36),96,109–111 α-seleno esters (Schemes 10 and 37),36,74,75,112,113 selenolactones (Scheme 38),74,114 α-seleno acids (Scheme 39)96,115 and α-selenonitriles (Scheme 40),116,117 which have been easily metallated according to Rathke’s procedure118,119 using LDA as a base. The reaction is reasonably general and takes place on a large variety of arylseleno and methylseleno derivatives including those that bear an alkyl group in the α-position. In the latter case, however, some competitive C—Se bond cleavage has been observed from time to time.96,111 α-Phenylselenonitroalkanes (Scheme 41)120 and α-phenylseleno-β-lactams (Scheme 42, a) derived from penicillin121 have been transformed to their enolates on reaction with calcium hydroxide and butyllithium, respectively. In the latter case, however, successful metallation has been achieved exclusively on the stereoisomer bearing an endo-phenylseleno moiety (Scheme 42, compare a with b).121
Selenium Stabilizations

(a) \[
\text{PhSe} = \overset{\text{SiMe}_3}{\text{SePh}} \xrightarrow{\text{LiNEt}_2} \text{THF, -78 °C} \xrightarrow{\text{i, Me}_2\text{CO}} \xrightarrow{\text{ii, H}_2\text{O}^+}
\]

(b) \[
\text{PhSe} = \overset{\text{SiMe}_3}{\text{Ph}} \xrightarrow{\text{LiNEt}_2} \text{THF, -78 °C} \xrightarrow{\text{i, AcOOH}} \xrightarrow{\text{ii, Et}_3\text{N}} 80\%
\]

(ref. 85)

Scheme 33

\[
\text{OMe}
\]

\[
\text{SePh}
\]

\[
\text{OMe}
\]

\[
\text{OMe}
\]

i, LDA, THF-HMPA, 0 °C, 0.1 h; ii, Me_2C=CHCH_2Br, 25 °C, 22 h; iii, 30% aq. H_2O_2, THF, 20 °C, 1.5 h

Scheme 34

\[
\text{MeI}
\]

(iii)

\[
\text{PhSe}
\]

\[
\text{Me}_3\text{Si}
\]

\[
\text{Me}_3\text{Si}
\]

\[
\text{PhSiMe}_3
\]

65% overall

Scheme 35
Heteroatom-stabilized Carbanion Equivalents

Scheme 36

\[
\begin{align*}
\text{i, } & \text{ LDA, THF, } -78 \, ^\circ\text{C, 0.2 h; ii, } \text{ EtC} = \text{CCH}_2\text{Br, THF–HMPA, } -78 \, ^\circ\text{C, 2 h, then } 20 \, ^\circ\text{C, 10 h; iii, } 30\% \text{ aq. } \text{H}_2\text{O}_2, \text{ CH}_2\text{Cl}_2; \text{ iv, LDA, THF–HMPA, } -78 \, ^\circ\text{C, 0.5 h, then } 20 \, ^\circ\text{C, 1 h; v, } 30\% \text{ aq. } \text{H}_2\text{O}_2, 20 \, ^\circ\text{C, 1 h; vi, } \text{NaOMe, } 20 \, ^\circ\text{C, 5 h; vii, } \text{H}_2, \text{ BaSO}_4, \text{EtOAc}}
\end{align*}
\]

Scheme 37

\[
\begin{align*}
\text{Overall yields: } R = \text{Me, 66%; } R = \text{Ph, 65%}
\end{align*}
\]

Scheme 38

2.6.2.2.2 Synthesis of \(\alpha\)-selenovinyl metals (1-seleno-1-alkenyl metals) by metallation of vinyl selenides

Metallation of vinyl selenides can be more readily achieved than that of alkyl selenides since two different effects now work in the same direction. Hydrogens linked to an \(sp^2\) carbon are more acidic than those linked to an \(sp^3\) carbon, and the selenium atom stabilizes the resulting \(sp^2\) carbanion to a larger extent than it does in the \(sp^3\) case (see Section 2.6.2.1.2).17,65,68 Except in the special cases of selenophene122 and benzoselenophene (Scheme 43),123 which also belong to that series of compounds, butyllithiums are not suitable metallating agents. Depending upon the solvent and the nature of the vinyl
Selenium Stabilizations

Scheme 39

Scheme 40

selenide different reactions take place. Thus, alkyllithiums in ether or DME add across the carbon-carbon double bond of phenyl vinyl selenide (see Section 2.6.2.5), whereas the C-Se bond cleavage leading to phenyllithium and butyl vinyl selenide occurs when the reaction is performed in THF at
Heteroatom-stabilized Carbanion Equivalents

![Chemical structures and reaction schemes](image)

Scheme 42

Scheme 43

low temperature. Under the latter conditions methyl vinyl selenides are metallated instead on their methyl group.125

Metalloamides are suitable for the synthesis of 1-metallovinyl aryl selenides (Scheme 44)41,65,73 and 1-metalloalleny1 phenyl selenides (Scheme 45)93 from the corresponding vinyl or allenyl selenides. The synthesis of the latter organometallics is even more conveniently achieved93 by metallation of 1-phenylseleno-1-propyne or by a two-step, one-pot sequence of reactions from 2-chloroallyl phenyl selenide (Scheme 45).

![Reaction conditions and yields](image)

Scheme 44
Selenium Stabilizations

LDA in THF41,65 or in THF-HMPT,41 LiTMP in THF65 and KDA in THF73 have all been successfully used for the metallation of phenyl61,65,73 or \textit{m}-(trifluoromethyl)phenyl65 vinyl selenide (Scheme 44). The deprotonation was shown to be reversible65 with LDA in THF and irreversible with LiTMP65 when performed in the same solvent. Extension of this reaction to homologous derivatives proved difficult65,73 since metallation at the allylic sites often competes. Allylic metallation is particularly favorable with aryl 1-propenyl selenides (Scheme 46)65,73 and, whatever the conditions used (LiTMP65 or KDA73), with aryl 1-(2-methyl-1-propenyl) selenides (Scheme 47). In the latter case both the (Z)- and the (E)-methyl groups have been metallated leading to the corresponding α-metalloallyl selenides (Scheme 47).65,73

\[
\begin{array}{c}
\text{Ar} & \text{Time (h)} & \text{Overall yield (%)}^a & \text{Ratio} \\
\text{Ph} & 2 & 42 & 9:73:12 \\
\text{Ph} & 9 & 88 & 4:74:18 \\
\text{m-CF}_3\text{C}_6\text{H}_4 & 1 & 66 & 30:51:7 \\
\text{m-CF}_3\text{C}_6\text{H}_4 & 7 & 93 & 12:68:11 \\
\end{array}
\]

\(^a\) Products resulting from decomposition of the carbanion are also formed.

i, LDA (1.25 equiv.), THF, \(-78 \, ^\circ\text{C}\), times as above; ii, MeI

Increasing the substitution of the alkyl group on the β-carbon of 1-alkenyl phenyl selenides again favors metallation at the vinylic site (Scheme 48).65,73 KDA in THF has proved to be, without contest, the most successful reagent for this purpose.73 The reaction takes place at low temperature (\(-78 \, ^\circ\text{C}\)) and the 1-phenylelenselenoalkenyl metal, produced in almost quantitative yield,73 retains its stereochemistry (Scheme 48, b-d).

Satisfactory deprotonations of 1-(E)-butenyl and 1-(3-methyl-1-(E)-butenyl) selenides in either the phenyl or \textit{m}-(trifluoromethyl)phenyl series cannot be achieved65 with LDA in THF (Scheme 48, compare a, e and g). Even LiTMP does not deprotonate the phenyl vinyl selenides (Scheme 48, a), and complete
deprotonation of the m-CF₃ aryl substituted selenides requires the use of an excess of LiTMP (1.5 equiv.) and a higher temperature (−50 °C instead of −78 °C). Methylation of the resulting organometallics, furthermore, leads to the corresponding vinyl selenides in modest yield and as a mixture of (Z)- and (E)-stereoisomers. These results differ substantially from those obtained with KDA (see above).

Related results have been described from pyridyl alkenyl selenides which, contrary to other aryl alkenyl selenides (see below), are easily metallated at the vinyl site with LDA (Scheme 48, compare i and j with f and h). The ready deprotonation and stereoselective methylation of these selenides have been ascribed to the presence of the nitrogen atom which can reduce the electron density of the double bond and also chelate with the lithium counterion.

Phenyl vinyl selenoxide was expected to be considerably more acidic than the corresponding selenide and it was thought that it might be deprotonated more easily and with greater selectivity at the vinylic carbon. Deprotonation with LDA occurs at −78 °C as well as at −90 °C (Scheme 49), but the decomposition of the resulting α-lithiovinyl selenoxide is so rapid (t½ = 0.5 h at −78 °C in THF) that the methylation product is formed in less than 50% yield (Scheme 49).

\[
\begin{align*}
\text{O} & \quad \text{SePh} \\
\text{LDA, THF} & \quad \left[\begin{array}{c}
\text{O} \\
\text{Li}
\end{array} \right] \\
\text{SePh} & \quad \text{PhSePh} + \text{SePh}
\end{align*}
\]

Scheme 49

2.6.2.2.3 Synthesis of α-metallolalkyl selenoxides, selenones and selenonium salts

Alkyl selenoxides, selenones, and selenonium salts are far more acidic than the corresponding selenides and have been successfully deprotonated by LDA, KDA, or BuOK in THF or DMSO, KOH in DMSO, or NaNH₂ in liquid ammonia.

Alkyl metals are not suitable for the metallation of these compounds. For example, Bu₆Li reacts at −78 °C on the selenium atom of selenonium salts and produces a novel organolithium in which the carbanionic center is more stabilized (Scheme 50, a and b), whereas alkylmagnesium bromides and chlorides unexpectedly lead to decyl bromide and chloride respectively on reaction with decyl phenyl selenone (Scheme 50, c).
Selenium Stabilization

Scheme 50

(i) Metallation of selenoxides

Due to the thermal instability and hygroscopicity of alkyl phenyl selenoxides their metallation is best achieved in the same pot in which they are prepared. Thus, differently substituted selenides have been oxidized at low temperature (-78 °C) with ozone or a stoichiometric amount of m-chloroperoxybenzoic acid and the resulting mixture has been directly subjected to the reaction of 2 equiv. of LDA, which neutralizes the benzoic acid present in the medium and at the same time achieves the desired metallation (Schemes 51-54). This reaction has been used for the synthesis of a large variety of organolithium reagents including those bearing two hydrogens, one alkyl or two alkyl groups on the carbanionic center, as well as those bearing functionalized alkyl substituents there.

Scheme 51

Scheme 52

R = H (66%), R = Et (78%)
Further reaction of these species with carbonyl compounds and hydrolysis of the resulting alkoxide leads to β-oxidoalkyl selenoxides which have been transformed\(^\text{97,127}\) into allyl alcohols on thermal decomposition (Schemes 51, 52 and 54, entry a; see Section 2.6.4.4) or reduced to β-hydroxyalkyl selenides\(^\text{97}\) or to alkenes (Scheme 53).\(^\text{97}\) β-Oxidoalkyl selenoxides derived from cyclobutanones react in a different way since they rearrange\(^\text{127,128}\) to cyclopentanones upon heating (Scheme 54, b, Schemes 120 and 121 and Section 2.6.4.5.3).

(ii) Metallation of selenones

Alkyl phenyl selenones can be metallated with LDA in THF but the reaction is slow and suffers from side reactions attributed to the substitution of the starting material with LDA or with the α-lithioalkyl selenones produced. KDA\(^\text{131}\) and Bu'OK\(^\text{129,130,138}\) are much more efficient. The former base allows for the deprotonation of methyl,\(^\text{131,138}\) n-alkyl\(^\text{129}\) and cyclopropyl\(^\text{130,131}\) phenyl selenones at low temperature (−78 °C), but α-potassioalkyl selenones have to be used immediately upon generation since they are particularly unstable. Otherwise, metallation of phenyl selenones is even more conveniently achieved with Bu'OK in THF, and it even occurs in the presence of carbonyl compounds (Schemes 55 and 56)\(^\text{129,130,138}\) or α,β-unsaturated esters (Schemes 57 and 58)\(^\text{131}\) to provide epoxides and cyclopropyl esters, respectively, in reasonably good yields.

One of the major drawbacks of these reactions is clearly the unavailability of the whole set of alkyl phenyl selenones due to side reactions which occur during their preparations. Methyl, n-alkyl and some cyclopropyl phenyl selenones are available from the corresponding selenides and potassium permanganate,\(^\text{130,139}\) peroxyacrylic acids\(^\text{130,139}\) or hydrogen peroxide/seleninic acids mixtures,\(^\text{131}\) whereas s-alkyl phenyl selenones,\(^\text{139}\) 2,2,3,3-tetramethylcyclopropyl selenone\(^\text{130}\) and benzyl phenyl selenone\(^\text{139}\) are not available in these ways.

Scheme 53

- **PhSe**
- **R**
- **i.** MCPBA, THF, −78 °C
- **ii.** 2 LDA, −78 °C
- **iii.** O
- **iv.** H\(_2\)O\(^+\)
- **v.** NaI

Scheme 54

- **R\(^1\)**
- **R\(^2\)**
- **Overall yield after reduction (%)**
- **H**
- **H**
- **73**
- **H**
- **Me**
- **71**
- **Me**
- **Me**
- **66**

- **R\(^1\) = R\(^2\) = H, 71%**

- **i.** PhSe(OC)\(^\text{R}^1\)\(^\text{R}^2\)Li, THF, −78 °C; **ii.** AcOH, THF; **iii.** 55 °C, 0.1 h, −PhSeOH; **iv.** PhSeOH; **v.** Al–Hg

Scheme 55

- **PhSe**
- **R**
- **i.** MCPBA, THF, −78 °C
- **ii.** 2 LDA, −78 °C
- **iii.** O
- **iv.** H\(_2\)O\(^+\)
- **v.** NaI

Scheme 56

- **PhSe**
- **R**
- **i.** MCPBA, THF, −78 °C
- **ii.** 2 LDA, −78 °C
- **iii.** O
- **iv.** H\(_2\)O\(^+\)
- **v.** NaI

Scheme 57

- **PhSe**
- **R**
- **i.** MCPBA, THF, −78 °C
- **ii.** 2 LDA, −78 °C
- **iii.** O
- **iv.** H\(_2\)O\(^+\)
- **v.** NaI

Scheme 58

- **PhSe**
- **R**
- **i.** MCPBA, THF, −78 °C
- **ii.** 2 LDA, −78 °C
- **iii.** O
- **iv.** H\(_2\)O\(^+\)
- **v.** NaI
(iii) Metallation of selenonium salts

Methyl- and ethyl-selenuranes, prepared from trimethyl-, methyldiphenyl- and ethyldiphenyl-selenonium salts, respectively, and Bu'OK in DMSO, react with aromatic aldehydes and ketones, including those that are α,β-unsaturated, to produce the corresponding epoxides in good yields (Scheme 59).\(^{132}\) Metal-
Heteroatom-stabilized Carbanion Equivalents

Scheme 58

Iolation of trimethylselenonium iodide has been performed at -30 °C using dichloromethyl lithium in DME (Scheme 60), but further reaction with acetophenone leads to oxidomethylstyrene in low yield.

Scheme 59

Interestingly, the same reaction performed on decyldimethylselenonium fluoroborate and benzaldehyde exclusively leads to styrene oxide and decyl methyl selenide (Scheme 61, a). If benzaldehyde is omitted, 1-decene is formed in very good yield (Scheme 61, b). The above mentioned observations, as well as the fact that decyldiphenylselenonium fluoroborate does not produce 1-decene when reacted with potassium t-butoxide, suggests that a syn elimination formally related to the selenoxide syn elimination reaction is taking place on the decylmethylmethyleneselenurane intermediate. Although the selenoxide elimination reaction offers the advantage of taking place in a neutral medium, the ylide elimination reaction offers the advantage of permitting the synthesis of alkylidene cyclopropanes in very high yields from the corresponding selenides (Scheme 62, a), and the synthesis of allylidenecyclopropane (ref. 132) 30%
Selenium Stabilization

from 1-vinylcyclopropyl methyl selenide (Scheme 62, b). These are unavailable via the selenoxide elimination reaction on related derivatives.

\[\text{MeSe}^\text{+} \text{C}_6\text{H}_{17} \rightarrow \text{Me}, \text{Ph} \]

Scheme 61

The regiochemistry of this reaction is reminiscent of the related selenoxide elimination since it mainly leads to the less-substituted alkene (Scheme 63). However, striking differences exist in the case of 1-octylcyclobutyl methyl selenide, where the reaction regioselectively produces octylidenecyclobutane via the ylide route (Scheme 64, a), whereas a 1:1 mixture of octylidenecyclobutane and 1-octylcyclobutene is formed via the selenoxide route (Scheme 64, b).

\[\text{MeX, 20 °C; ii, KOB{\text{Bu}}^\text{t}, \text{solvent, 20 °C}} \]

Scheme 62

Allyldimethyl- and allylmethylphenyl-selenonium salts react under similar conditions with potassium \(t \)-butoxide (THF, 20 °C, 20 h) and lead to homoallyl selenides in very high yields, including the particularly strained alkylidenecyclopropane derivatives (Scheme 65, b). These result from the metallation of...
the methyl group of the selenonium salts, leading to the corresponding ylides which then suffer a [2,3] sigmatropic rearrangement.

\[
\begin{align*}
\text{R}_1\text{SeMe} & \xrightarrow{\text{MeSO}_2\text{F}, \text{ether}} \text{R}_1\text{SeMe}^+ \text{SO}_2\text{F}^- & \xrightarrow{\text{KOBu}', \text{DMSO}, 20^\circ\text{C}, 20\text{h}} & \text{H}_2\text{C}^- & \xrightarrow{\text{R}_2\text{SeMe}^-} \text{R}_1^+ \text{SeMe}^{-} \text{R}_2\text{SeMe}^- \\
\text{R}_1\text{SeMe} & \xrightarrow{\text{MeSO}_2\text{F}, \text{ether}} \text{R}_1\text{SeMe}^+ \text{SO}_2\text{F}^- & \xrightarrow{\text{KOBu}', \text{DMSO}, 20^\circ\text{C}, 20\text{h}} & \text{H}_2\text{C}^- & \xrightarrow{\text{R}_2\text{SeMe}^-} \text{R}_1^+ \text{SeMe}^{-} \text{R}_2\text{SeMe}^- \\
\end{align*}
\]

\[\text{R}' \quad \text{R}^2 \]
\[\begin{align*}
\text{(a)} & & \text{H} & \text{H} & 98\% \\
\text{(b)} & & \text{CH}_2-\text{CH}_2 & 85\%
\end{align*}\]

Scheme 65

Homoallyl selenides are valuable precursors of dienes and allylidene cyclopropanes (Scheme 65). The dienes have been produced using the same sequence of reactions outlined above (Schemes 63 and 64), which involves the alkylation of the homoallyl selenide followed by treatment of the resulting salt with Bu'OK in DMSO (Scheme 65).

Treatment of benzylmethylphenylselenonium tetrafluoroborate with potassium t-butoxide gave a 9:1 mixture of methyl phenyl and benzyl phenyl selenides but no products which would have resulted had the appropriate ylide been formed (Scheme 66, a). This demonstrated that at least this salt is extremely susceptible to nucleophilic attack, even by nucleophiles as hindered as the t-butoxide anion (Scheme 66, a).

\[\begin{align*}
\text{R} = \text{PIX} & \quad \text{R}' = \text{H} \\
\text{X} = \text{BF}_4 & \quad 9:1 \\
\text{Bu'OK} & \quad \text{Bu'O} & \quad \text{Bu'OMe}
\end{align*}\]

\[\begin{align*}
\text{R} = \text{Ph}; & \quad \text{R}' = \text{H} \\
\text{X} = \text{BF}_4 & \quad \text{NaNH}_2/\text{NH}_3 \\
-78^\circ\text{C}, 1.5\text{h} & \quad \text{Bu'OK} \\
\end{align*}\]

\[\begin{align*}
\text{R} = \text{Ph}; & \quad X = \text{BF}_4; \quad R^1 = \text{H}, 17\%; \text{Me}, 38\%; \text{Cl}, 37\% \\
R = \text{Me}; & \quad X = \text{SO}_3\text{F}; \quad R^1 = \text{H}, 43\%; \text{Cl}, 50\%
\end{align*}\]

Scheme 66
Ylide formation has been accomplished, however, through the use of sodium amide in liquid ammonia.\(^{137}\) This reaction has been extended to analogous salts (Scheme 66, b and Scheme 67). \(\alpha\)-Methylbenzyl phenyl and methyl selenides are produced in modest to good yields, respectively, by metallation on the methyl group of the corresponding selenonium salts followed by spontaneous [2,3] sigmatropic rearrangement and rearomatization of the methylidenecyclohexadiene intermediate (4; Scheme 66).\(^{137}\) Stilbenes, probably resulting from metallation at the benzylic site, are also produced in this reaction (Scheme 67, for example).\(^{137}\)

Of special interest were the results obtained from the \(m\)-chlorobenzyl(dimethyl)selenonium fluoroborate since the chlorine appears to direct the attack of the ylide predominantly to the more-hindered position \textit{ortho} to itself (Scheme 67).

![Scheme 67](image)

Phenacylmethyl(dimethyl)selenonium bromide is far more acidic than the selenonium salts presented above since deprotonation can be achieved with aqueous potassium hydroxide (Scheme 68).\(^ {142}\) The resulting ylide is stable at room temperature and decomposes to 1,2,3-triphencyclopropane on irradiation or heating (Scheme 68, a).\(^ {142}\) It reacts with benzalacetophenone in a different manner from methylene(dimethyl)selenurane (Scheme 59, c)\(^ {132}\) and provides, rather than the oxirane, 1-phenyl-2,3-phenacylcyclopropane in very high yield (Scheme 68, b).\(^ {142}\)

![Scheme 68](image)

2.6.2.3 Synthesis of Organometallics Bearing an \(\alpha\)-Seleno Carbanion by Selenium–Metal Exchange

2.6.2.3.1 Synthesis of \(\alpha\)-selenoalkyllithiums by selenium–lithium exchange

Generalities

\(\alpha\)-Selenoalkyllithiums with carbanionic centers bearing hydrogens or alkyl groups and which cannot be synthesized by metallation of selenides (see Section 2.6.2.2.1) have been conveniently prepared from selenoacetals and butyllithiums. This approach relies not only on the great availability of selenoacetals, which are accessible from a wide range of commercially available starting materials, but also on the
Heteroatom-stabilized Carbanion Equivalents

efficiency of the Se–Li exchange. It finally allows wider structural variations on the α-selenoalkyllithium than those possible for related α-heterosubstituted organometallics7 usually prepared by metallation.

Although the work has been routinely carried out with both phenyl and methyl selenoacetals with equal success, the compounds belonging to the last series are, in some specific cases, much more accessible and the resulting organometallic more reactive towards electrophiles in general and towards carbonyl compounds in particular.7,9,12,16,17

(ii) Synthesis of selenoacetals

Selenoacetals are readily available compounds which have been prepared: (i) by selenoacetalization53 of carbonyl compounds with selenols36,40,69,55,143–145 in acidic media, with tris(seleno)boranes53,144,146–148 in neutral or acidic media or with trimethylsilyl selenides and aluminum trichloride (Schemes 69 and 70);53,144 (ii) by trans-selenoacetalization of O,O-acetals with selenols77 or triselenoboranes (Scheme 71);149 (iii) by substitution of dihaloalkanes with selenolates (Scheme 72);36,55,56 (iv) by insertion of carbenes into diselenides (Scheme 73);53,121,150–153 and (v) by addition of selenols to vinyl selenides (Scheme 74),154 by selenenylation of α-selenoalkyl anions (Scheme 75)155,156 and by alkylation of 1,1-bis(seleno)alkyl metals (Schemes 26, 76 and 77).12,35,36,71,73,100,104

The direct selenoacetalization of carbonyl compounds by selenols is by far the shortest and most convenient route to selenoacetals.53 The reaction is usually carried out at 20 °C with zinc chloride (0.5 equiv. versus the carbonyl compound) and delivers rapidly (<3 h) and in reasonably good yields methyl and phenyl selenoacetals derived from aliphatic aldehydes and ketones and cyclic ketones (Scheme 69). Selenoacetalization is more difficult to achieve with hindered ketones, such as adamantane and disopropyl ketone, and with hindered aromatic carbonyl compounds.53 In these cases the reaction is best achieved53 with titanium tetrachloride instead of zinc chloride and is often limited to the methylseleno derivatives (Scheme 78). Tris(methylseleno)borane offers the advantage of not requiring an acid catalyst and is particularly useful for the selenoacetalization of acid labile aldehydes such as citronellal (Scheme 70, e).

Transacetalization in our opinion does not offer a definite advantage over the direct method except for those cases, such as that of cyclopropanone,77 where the O,O-acetal is more accessible than the parent carbonyl compound (Scheme 71). The reaction, however, does not seem to be general (Scheme 71, b).

(a)

\[
\begin{array}{c}
\text{RSeH, ZnCl}_2, 20 ^\circ \text{C, } 3 \text{ h} \\
\text{ref. 53}
\end{array}
\]

Scheme 69
Selenium Stabilization

Conditions	R	Yield (%)	Ref.
(a) RSeH, ZnCl₂, 20 °C, 6 h | Ph | 70 | 53
(a) RSeH, ZnCl₂, 20 °C, 6 h | Me | 85 | 53
(b) B(SeMe)₃, CHCl₃, 20 °C, 31 h | Me | 84 | 53
(c) Me₃SiSeR, AlCl₃, 3 h | Ph | 82 | 53
(c) Me₃SiSeR, AlCl₃, 3 h | Me | 90 | 53

Conditions	Yield (%)	Ref.
(d) MeSeH, ZnCl₂, 20 °C | 0 | 144
(e) B(SeMe)₃, CHCl₃, 20 °C, 5 h | 60 | 144
(f) Me₃SiSeMe, AlCl₃, CHCl₃, 20 °C | 8 | 144

Scheme 70

![Scheme 70]

Scheme 71

![Scheme 71]

The reaction of 1-metallo-1,1-bis(seleno)alkanes with electrophiles is another interesting approach to selenoacetals (Schemes 76 and 77), which *inter alia* allows the synthesis of 1,1-bis(seleno)cyclopropanes (Scheme 26, a, b and d; Scheme 77, c) and also permits the synthesis of functionalized selenoacetals by concomitant C—C bond formation (Scheme 79). Other methods listed above are of limited use. The substitution of dihaloalkanes by selenolates is the method of choice for the synthesis of bis(seleno)methanes (Scheme 72, a), and can be applied to the synthesis of the relatively unhindered selenoacetal of cyclopropanone (Scheme 72, b).
(iii) Synthesis of \(\alpha \)-selenoalkyl metals by selenium–metal exchange

Phenyl and methyl selenoacetals usually react with butyllithiums and produce the corresponding \(\alpha \)-selenoalkyllithiums and butyl selenides. The reaction is usually carried out at \(-78 \, ^\circ\text{C}\) (a temperature at which these organometallics are stable for a long period), with \(n \)-butyllithium in THF or \(s \)-butyllithium in ether. It provides a large variety of \(\alpha \)-selenoalkyllithiums including...
Selenium Stabilization

Scheme 77

<table>
<thead>
<tr>
<th>R'</th>
<th>Yield (%)</th>
<th>R</th>
<th>Yield (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>71</td>
<td>Me</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>C₆H₁₃</td>
<td>61</td>
<td></td>
<td>47</td>
<td>104</td>
</tr>
</tbody>
</table>

Scheme 78

those where the carbanionic center is unsubstituted, monoalkyl or dialkyl substituted, or that bear an aryl or a heteroaryl moiety (Scheme 80).

In general, the Se–Li exchange is easier: (i) when carried out in THF rather than in ether; (ii) when s- or t-butyllithium is used instead of n-butyllithium. Methylithium is almost unreactive in most cases; and (iii) if a better stabilization of the carbanionic center can be achieved. Thus phenyl selenoacetals react more rapidly than their methyl analogs (see Section 2.6.2.1.2), and α-selenoalkyllithiums where the carbanionic center is part of a three-membered cycle or is substituted by an aryl group are more readily obtained than those which are monoalkyl or dialkyl substituted.

The presence of bulky groups around the reactive site does not have a marked effect on the reactivity of selenoacetals derived from aldehydes but it dramatically lowers the reaction rates of those derived from ketones such as adamantancne or diisopropyl ketone. In these cases, the reaction rate is greatly enhanced when s- or t-butyllithium is used in place of n-butyllithium.
Metallation is never a competing reaction even for those selenoacetals derived from aromatic aldehydes (Scheme 81). Only in the case of phenyl selenoacetals derived from formaldehyde and acetaldehyde are the corresponding 1-metallo-1,1-bis(seleno)alkanes produced (Scheme 82). In fact these compounds arise from the metallation of the selenoacetals not by the butyllithium but by the α-selenoacetal-
kyllithium just produced. This side reaction, which does not occur with methylseleno analogs and with higher homologs in the phenylseleno series, can be prevented by slow reverse addition of the reactants (Scheme 82).54

\[
\begin{align*}
RSe & \xrightarrow{\text{BuLi}} RSe + \text{BuH} \\
\text{Scheme 81}
\end{align*}
\]

Except for the case shown in Scheme 83,165,166 α-selenoalkyllithiums are stable intermediates at or below –78 °C.7,16,54 They do not have a high tendency to decompose to carbenes (Scheme 84, a), nor are the phenyl selenoacetals transformed to their ring-metallated isomers (Scheme 84, b) or to the more stable α-alkylselenomethylithiums (methylseleno derivatives) (Scheme 84, c).54 Interestingly, they are not alkylated by the concomitantly produced butyl selenide (Scheme 85, a).54

Reaction of n-butyllithium with 1,1-bis(seleno)-4-t-butyliclohexane,167 or 1,1-bis(methylseleno)-2-methylcyclohexane54 or 1,1-bis(phenylseleno)-3-silyloxybutane167 leads to, in each case, one of the stereoisomers of the α-selenoalkyllithium, as observed by 77Se NMR and trapping experiments (Scheme 86). In the former case, the reaction exclusively produces the axially oriented lithio derivative and in the latter case it leads almost exclusively to the stereoisomer shown in Scheme 86. It has been secured in the case of 1,1-bis(seleno)-4-t-butyliclohexanes, that the C—Se bond cleavage is operating stereoselectively on the axial seleno group.

Only a few functionalized α-selenoalkyllithiums have been synthesized apart from the ones shown in Schemes 11,165 79157 and 86.167

\[
\begin{align*}
\text{PhSe} & \xrightarrow{i, \text{Bu}^\text{t} \text{Li}, \text{THF}} \text{PhSe} \\
\text{ii, MeI} & + \text{PhSe} + \text{PhSe} + \text{PhSe} \\
\text{Scheme 83}
\end{align*}
\]
It has been shown that the methyl selenoacetal resulting from the reaction of 1-lithio-1,1-bis(methylseleno)methane with 5-methyl-2-cyclohexen-1-one and trimethylsilyl chloride is efficiently cleaved by s-butyllithium in THF to afford157 the corresponding \(\alpha\)-selenoalkyllithium in very high yield (Scheme 79). Chemoselective cleavage of a selenoacetal derived from an aldehyde has been achieveda in the presence of a selenoacetal derived from a ketone (Scheme 11). The best results have been observeda in the phenylseleno series when the reaction is carried out at \(-42\) °C in ether–hexane. Under these conditions the difference of reactivity between the two selenoacetals is so high that almost complete discrimination can be achieved (Scheme 87).60

The same selectivity cannot be achieved under similar conditions in the methylseleno series due to the inertness of these selenoacetals. Performing the reaction with \(s\)-butyllithium in THF–hexane (at \(-110\) °C to \(-78\) °C) leads60 to rather poor selectivity (Scheme 88). A somewhat better chemoselection is achieved if the reaction is performed in THF–hexane at \(-78\) °C and then the medium warmed to \(-40\) °C prior to the addition of the electrophile (Scheme 88).60 We believe that under these conditions a thermodynamic
control is operative. Application of these observations has allowed the selective synthesis of 1,7-dienes from 1,1,6,6-tetrakis(phenylseleno)heptane (Scheme 11).

\[
\begin{align*}
\text{SeMe} & \quad \text{MeSe} \\
\text{C}_6\text{H}_3 & \quad \text{C}_6\text{H}_3
\end{align*}
\]

\[
\text{i} - \text{iii}
\]

Conditions

<table>
<thead>
<tr>
<th>Yield (%)</th>
<th>Yield (%)</th>
<th>Chemoselectivity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Bu'Li, ether/hexane, −78 °C, 0.5 h</td>
<td>55</td>
<td>25</td>
</tr>
<tr>
<td>(b) Bu'Li, THF/hexane, −100 °C, 0.5 h</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>(c) Bu'Li, THF/hexane, −78 °C, 0.05 h</td>
<td>37</td>
<td>11</td>
</tr>
<tr>
<td>(d) Bu'Li, THF/hexane, −78 °C, 1 h, then −40 °C, 1 h</td>
<td>63</td>
<td>23</td>
</tr>
<tr>
<td>(e) Bu'Li, THF/hexane, −78 °C, 0.1 h, then −40 °C, 1 h</td>
<td>78</td>
<td>8</td>
</tr>
</tbody>
</table>

\[\text{i, RLi; ii, PhCHO; iii, H}_3\text{O}^+\]

Scheme 88

As already mentioned, α-selenoalkyllithiums are stable for several hours at −78 °C. However, they start to decompose when the temperature is raised to around −50 °C or −40 °C. The exact temperature at which this process begins, the rate of decomposition and the nature of the products formed clearly depends upon the structure of the selenoacetal. Those bearing two alkyl groups on the carbanionic center often decompose below −40 °C. The resulting products are not always identical and in most cases their structures have not been identified. A more detailed work has been carried out on 1-seleno-1-heptyllithiums. In the methylseleno series, whatever the solvent used, only a trace amount of the expected 1-methylseleno-1-heptyllithium is present after standing for 3.5 h at 0 °C; 1-methylselenoheptane, which probably results from the protonation of the organometallic by the solvent, and 1-methylseleno-1-heptene, resulting from a hydride elimination, are produced instead (Scheme 89).54

\[\begin{align*}
\text{SeMe} & \quad \text{SeMe} \\
\text{C}_6\text{H}_3 & \quad \text{C}_6\text{H}_3
\end{align*}\]

\[\text{i or ii} \quad \text{iii, iv}
\]

Conditions

<table>
<thead>
<tr>
<th>Yield (%)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Bu'Li, THF-hexane, −78 °C, 0.2 h, then −78 to 0 °C, then 0 °C, 1 h</td>
<td>25</td>
</tr>
<tr>
<td>(b) Bu'Li, THF-hexane, −78 °C, 0.2 h, then −78 to 0 °C, then 0 °C, 3.5 h</td>
<td>36</td>
</tr>
</tbody>
</table>

\[\text{i, Bu'Li, THF-hexane, −78 °C, 0.2 h, then −78 to 0 °C, then 0 °C, 1 h; ii, Bu'Li, THF−hexane, −78 °C, 0.2 h, then −78 to 0 °C, then 0 °C, 3.5 h; iii, PhCHO; iv, H}_3\text{O}^+\]

Scheme 89

The decomposition takes another course with 1-phenylseleno-1-heptyllithium (Scheme 90).54 In ether and THF the reagent is still present (±20%) after 3.5 h at 0 °C, along with heptylselenophenyllithium resulting from the isomerization of the original organometallic to the more stable aryllithiums (Scheme 90). Heptyl phenyl selenide (15%) arising from the protonation of the organometallic by the solvent and substantial amounts of phenyllithium (trapped as diphenyl carbinoil, ±21%) from unknown origin are also found as by-products when the reaction is carried out in THF-hexane or in ether–hexane, respectively.

The same type of exchange occurs,165,166 but unexpectedly more rapidly and at −78 °C, with the α-selenoaryllithium shown in Scheme 83. At higher temperature (20 °C)165,166 the addition of the β-selenoaryllithium across the carbon–carbon double bond present in the molecule also occurs (Scheme 83, b).

α-Selenoalkyllithiums usually do not have a high tendency to add across carbon–carbon double bonds even intramolecularly. However, it has been found that 1-phenyl-2-methylseleno-2-oct-5-enyllithium cyclizes at 0 °C and leads to the benzylidenecyclopentane shown in Scheme 91.168 The mechanism of this reaction is being investigated.168
Heteroatom-stabilized Carbanion Equivalents

Conditions

(a) | i | 25 | 11 | trace | 15 |
(b) | ii | 21 | 25 | 21 | 0 |

i, BuLi, THF–hexane, −78 °C, 0.2 h, then −78 to 0 °C, then 0 °C, 3.5 h; ii, BuLi, ether–hexane, −78 °C, 0.2 h, then −78 to 0 °C, then 0 °C, 3.5 h; iii, PhCHO; iv, H3O+

Scheme 90

-1

Scheme 91

α-Selenobenzylolithiums are much more prone to add to alkenes. Although they are stable around −78 °C (Scheme 92, a), the addition reaction usually takes place around 0 °C and produces [3.1.0]bicycloclohexanes and [4.1.0]bicycloheptanes in reasonably good yields when a carbon–carbon double bond is present in a suitable position with respect to the organometallic group (Scheme 92, b).

Addition also occurs with ethylene and with activated alkenes, such as styrene, butadiene, trimethylsilylethylene and phenylthioethylene, and provides in all cases the corresponding cyclopropanes in good yield (Scheme 93). Interestingly, the α-selenoalkyllithiums do not react with the C–C bond at lower temperatures so that the anion is still available for reaction with alkyl halides or carbonyl compounds (Scheme 92, compare a with b).

The synthesis of α-selenoalkyl metals reported above is not limited to those compounds which possess alkyl or aryl groups on an sp³ carbanionic center. For example, α-selenoalkyllithiums bearing a vinyl (Scheme 94), furfuryl (Scheme 95), silyl (Scheme 96), methoxy (Scheme 97) or seleno moiety (Schemes 77 and 98) have been obtained in almost quantitative yield from the corresponding functionalized selenoacetals or orthoesters and BuLi. The Se–Li exchange is in all these cases, except that of tris(phenylseleno)methane, exclusively observed even with those compounds which possess a hydrogen susceptible to metallation. The 6,6-bis(phenylseleno)-β-lactam shown
Selenium Stabilization

![Chemical structure](image)

Conditions

<table>
<thead>
<tr>
<th>Conditions</th>
<th>X</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 °C, 1-2 h</td>
<td>H</td>
<td>50</td>
</tr>
<tr>
<td>0 °C, 1-2 h</td>
<td>Me</td>
<td>0</td>
</tr>
<tr>
<td>0 °C, 1-2 h</td>
<td>Ph</td>
<td>60</td>
</tr>
<tr>
<td>-30 °C, 0.2-3 h</td>
<td>CH=CH₂</td>
<td>70</td>
</tr>
<tr>
<td>-30 °C, 0.2-3 h</td>
<td>SiMe₃</td>
<td>81</td>
</tr>
<tr>
<td>-30 °C, 0.2-3 h</td>
<td>SPh</td>
<td>59</td>
</tr>
</tbody>
</table>

i, MeSeH, TiCl₄, 0 °C; ii, Bu"Li, THF; iii, H₂C=CHX

Scheme 93

in Scheme 99 also reacts with n-butyllithium and provides the corresponding 6-lithio-6-phenylseleno derivative (compare to Scheme 42, a) resulting from an attack on the selenium atom rather than on the carbonyl group. Interestingly, methylmagnesium bromide, which is usually inert towards selenoacetals, reacts efficiently with the above mentioned selenoacetal to produce the 6-phenylselenoenolate derivative (Scheme 99, b). This is probably due to efficient stabilization of the carbanionic center by delocalization on the carbonyl group.

Scheme 94

Scheme 95

2.6.2.33 **Synthesis of α-selenovinyl metals by selenium–metal exchange**

1,1-Bis(phenylseleno)alkenes, readily prepared from vinylcarbenes and diselenides (Scheme 100), trimethylsilyl(hydroxyalkyl)orthoselenoacetal, and diselenides (Scheme 31, d), orthoselenoesters and diphosphorus tetraiodide (P₂I₄) or tin tetrachloride (SnCl₄), and from β-hydroxyalkyl orthoesters and P₂I₄ (Scheme 101, b), efficiently react with n-butyllithium in THF and provide, even at
Heteroatom-stabilized Carbanion Equivalents

- 66%
- OH
- 75%
- OH
- R=H
- 54%
- R=Me
- 50%

\((\text{4}(\text{e}))\)
- i, Bu\(_3\)Li, THF, \(-78^\circ\text{C}, 0.1\ h\); ii, C\(_{10}\)H\(_2\)CHO; iii, Bu\(_4\)OK, THF, 55 \(^\circ\)C; iv, POCl\(_3\), Et\(_3\)N, 20 \(^\circ\)C; v, Br\(_2\), CCl\(_4\), 20 \(^\circ\)C; vi, H\(_2\)O\(_2\), THF, 20 \(^\circ\)C; vii, HgCl\(_2\), aq. MeCN, 20 \(^\circ\)C, 12 h (ref. 171)

Scheme 96

- 83% (ref. 56)

- 62%

Scheme 97

- 78 \(^\circ\)C, 1-phenylseleno-\(^\text{173}\) and 1-methylseleno-1-alkenyllithiums\(^\text{176}\) in almost quantitative yields (Scheme 101). The stereochemistry of the reaction is not well defined and the only available results are those concerning the stereochemistry of the compounds resulting from further reaction of these organometallics with electrophiles.\(^\text{173,176}\) Both stereoisomers are formed if the methylselenoalkenyllithium is hydrolyzed\(^\text{176}\) or reacted\(^\text{176}\) with an aldehyde or a ketone, whereas only one stereoisomer of an \(\alpha,\beta\)-unsaturated carbonyl compound is found from 1-methylseleno-1-alkenyllithiums and DMF\(^\text{176}\) and from the 1-phenylseleno-1-alkenyllithiums and phenacyl bromide.\(^\text{173}\)

2.6.2.4 Miscellaneous Syntheses of \(\alpha\)-Selenoalkyl Metals

More recently, lithium naphthalenide, lithium dimethylaminonaphthalenide and lithium 4,4'-dimethoxybiphenylide have been successfully reacted with selenoacetals to produce the corresponding \(\alpha\)-selenoalkyllithiums in moderate yields.\(^\text{168}\) Phenylselenomethyl lithium has been prepared\(^\text{101}\) from (phenylseleno)(phenyltelluro)methane and butyllithium (Scheme 25, b), and \(\alpha\)-phenylselenoalkyllithiums have also been obtained\(^\text{177}\) from \(\alpha\)-bromoalkyl phenyl selenides and \(n\)-butyllithium in THF. The
The halogen–lithium exchange is, however, far less general than the selenium–metal exchange from selenoacetals for the synthesis of α-selenoalkyllithiums. It does not provide α-phenylselenoalkyllithiums from α-chloroalkyl phenyl selenides \(^{177}\) and does not allow the synthesis of methylselenoalkyllithiums from α-haloalkyl methyl selenides.\(^{177}\) It also suffers from the instability of the α-bromoalkyl phenyl selenides, especially those which produce the α-selenoalkyllithiums where the carbanionic center is dialkyl substituted.\(^{177}\) Furthermore the butyl bromide produced concomitantly with the α-selenoalkyllithium

\[
\text{RM} \quad \text{Yield} \quad \text{Ratio} \\
\begin{array}{cccc}
(a) & \text{BuLi, } -78^\circ\text{C} & 40:60 \\
(b) & \text{MeMgBr, } -60^\circ\text{C} & 78 & 97:3 \\
\end{array}
\]
Heteroatom-stabilized Carbanion Equivalents

\[
\begin{align*}
R^1 & \quad R^2 \\
\text{Me} & \quad \text{Me} \\
\text{CH}_2(\text{CH}_2)_3\text{CH}_2 & \\
\end{align*}
\]

Scheme 100

\[
\begin{align*}
\text{O} & \quad \text{H} \\
\text{Ph} & \quad \text{H} \\
\text{Me} & \quad \text{H} \\
\text{Me} & \\
\end{align*}
\]

Scheme 101

\[
\begin{align*}
\text{PhSe} & \quad \text{Br} \\
\text{R}^1 & \quad \text{R}^2 \\
\text{Bu}''\text{Li} & \quad \text{THF}, -78 \degree \text{C} \\
\text{C}_8\text{H}_{17} & \quad \text{CHO} \\
\text{C}_8\text{H}_{17} & \\
\end{align*}
\]

Scheme 102

competes with other electrophiles in further reactions.\(^{177}\) The Br–Li exchange has been successfully used for the synthesis of 2-lithioselenophene\(^{122}\) and 2-lithiobenzoselenophene (Scheme 103).\(^{123}\)
2.6.2.5 Synthesis of α-Selenoalkyl Metals by Addition of Organometallics to Vinyl Selenides, Vinyl Selenoxides and Vinyl Selenones

The reaction of organolithium compounds with phenyl vinyl selenides proceeds by at least three different routes which involve: (i) metallation, which leads to 1-phenylseleno-1-vinylolithium (Section 2.6.2.2.2); (ii) Se-Li exchange, which produces phenyllithium and a novel vinyl selenide (Scheme 104, a); or (iii) addition of the organolithium across the carbon-carbon double bond leading to α-selenoalkyllithium (Scheme 104, b). The choice of the experimental conditions, especially the solvent, is crucial for chemoselective reactions.

\[
\text{Bu}^n\text{Li} + \text{BuSePh} \rightarrow \text{Bu}^n\text{SePh} + \text{PhLi} \quad (\text{ref. 41})
\]

Scheme 104

The addition reaction is particularly favored when carried out in ether or DME (Scheme 104, b; Scheme 105). Addition takes place between 0 °C and 20 °C, under conditions at which the α-phenylselenoalkyllithium isomerizes rapidly to the corresponding aryllithium (Scheme 106). So, further reaction with electrophiles, for example, must be carried out as soon as possible (compare Scheme 106 with Scheme 105). The reaction takes another course when performed in THF since 1-phenylseleno-1-vinylolithium and phenyllithium are produced from, respectively, the metallation and C-Se bond cleavage of the vinyl selenide (Scheme 104, a). Interestingly, the temperature has an important effect on the course of this reaction, since in THF the Se-Li exchange becomes predominant if the reaction is carried out at low temperature (−78 °C instead of 0 °C).

α-(Methylseleno)benzylolithiums also react with phenyl vinyl selenide but surprisingly give 1-phenyl-1-methylselenocyclopropanes. This result has been tentatively rationalized in Scheme 107. A reaction related to those mentioned above involves an addition-cyclization sequence of 2-azaallylolithiums on phenyl vinyl selenide, which leads to seleno-substituted pyrrolidines (Scheme 108). γ-Selenoalkylmetals have been suggested as intermediates in a large array of reactions. Thus organocuprates efficiently add at the C-3 site of α-seleno-α,β-unsaturated ketones to produce enolates which can be further trapped with various alkyl or propargyl halides to give α,β-dialkyl-α-seleno ketones (Scheme 109). These, after proper control of the relative stereochemistry at the α- and β-carbons to the carbonyl group, have been selectively transformed to cycloalkenones (Schemes 36 and 109, a).
Heteroatom-stabilized Carbanion Equivalents

\[\text{SePh} \rightarrow \text{R} - \text{SePh} \]

\[\text{RLi} \rightarrow \text{RLi} - \text{SePh} \]

<table>
<thead>
<tr>
<th>RLi</th>
<th>Conditions</th>
<th>Carbonyl compound</th>
<th>Yield (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bu²Li</td>
<td>Ether, 20 °C, 0.2 h</td>
<td>C₆H₁₃CHO</td>
<td>40</td>
<td>41</td>
</tr>
<tr>
<td>Bu²Li</td>
<td>DME, 0 °C</td>
<td>PhCHO</td>
<td>71</td>
<td>42</td>
</tr>
<tr>
<td>Pr²Li</td>
<td>Ether, 0 °C</td>
<td>Me₂CO</td>
<td>72</td>
<td>81</td>
</tr>
</tbody>
</table>

i, RLi; ii, R¹R²CO; iii, O₃, −78 °C, 0.1 h; iv, Pr²NH, CCl₄, 80 °C, 0.5 h

Scheme 105

\[\text{SePh} \rightarrow \text{Bu}²\text{Li, ether} \rightarrow \text{Bu}²\text{Li} - \text{SePh} \rightarrow \text{C₆H₁₃Se} \]

E = H, 30%; E = C₆H₁₃CHOH, 18%

Scheme 106

\[\text{SePh} + \text{MeSe} \rightarrow \text{PhLi, THF} \rightarrow \text{MeSe} - \text{Li} \rightarrow \text{SeMe} \]

(refs. 169 and 170)

Scheme 107

\[\text{SePh} \rightarrow \text{R}¹\text{R}²\text{N} \rightarrow \text{R}³\text{R}²\text{N} \]

(refs. 181 and 182)

<table>
<thead>
<tr>
<th>R¹</th>
<th>R²</th>
<th>Conditions</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph</td>
<td>H</td>
<td>−40 °C, 22 h</td>
<td>77</td>
</tr>
<tr>
<td>H</td>
<td>Ph</td>
<td>−50 to −10 °C, 6 h</td>
<td>42</td>
</tr>
</tbody>
</table>

Scheme 108

alkylidencycloalkanes (Scheme 109, b)¹⁸³ using the well-established selenoxide syn elimination reaction.

Lithium enolates derived from methyl ketones and acetates successfully add to vinyl selenoxides¹⁸⁴,¹⁸⁵ and to vinyl selenones to give cyclopropyl ketones and esters (Scheme 110).¹⁸⁵,¹⁸⁶ The \(\alpha \)-lithioalkyl selenoxide or selenone intermediates presumably exchange to the lithium enolates which, after displacement of the seleno or selenoxy group, lead to the observed products.

Additions of various nucleophiles to vinyl selenoxides¹⁸⁴,¹⁸⁵,¹⁸⁶ and vinyl selenones¹⁷,¹⁸⁵−¹⁸⁷ have been described. Thus potassium hydroxide¹⁸⁷ and amines¹⁷ add to vinyl selenones and directly produce epoxides and aziridines, respectively, whereas 3-methoxyoxetanes have been obtained from \(\gamma \)-hydroxy-\(\alpha \)-alkenyl selenones and sodium methoxide (Scheme 111).¹⁸⁵
Selenium Stabilization

Scheme 109

Scheme 110

Scheme 111
2.6.3 REACTIVITY OF CARBONYL COMPOUNDS WITH ORGANOMETALLICS BEARING A SELLENOLY-STABILIZED CARBANION

2.6.3.1 Generalities

The organometallics bearing a selenium atom directly attached to the carbanionic center, the synthesis of which has been discussed above, have been reacted with a large variety of electrophiles,1,4,5,7-9,12,13,16,17 Among these electrophiles, aldehydes and ketones occupy a place of choice, usually leading, after hydrolysis, to y-hydroxyselenyl selenides. Some examples are gathered in Schemes 112 to 118.

Examples of organometallics bearing a selenium-stabilized carbanion include: (i) a-selenoalkylhydroxylithiums bearing hydrogens or alkyl groups on the carbanionic center; (ii) a-selenocypropyllithiums7,12,16,17,77,159,160,162,163,166,177,188-206 and a-selenocyclobutylolithiums;7,12,16,136,162,163 (iii) a-selenoallyllithiums (Schemes 16–18, 94 and 119);16,17,45,80-82,84-87,91 (iv) a-selenobenzyllithiums (Schemes 9, 15 and 118, b)54,56,72,164,203 and (phenylselenofurfuryl)methylolithium (Scheme 95);158 (v) 1-phenylenoilyl lithiums (Scheme 44);41,63,73,176 (vi) 1-methoxy-1-phenylenoilyl lithium (Scheme 21, a; Scheme 97);56 (vii) 1-phenylenoilyl-1-thioalkyllithiums (Scheme 22);24 (viii) 1-phenylenoilyl-1-phenylenoilyl lithiums (Scheme 28);102 (ix) 1-seleno-1-silylalkyllithiums (Scheme 24, b and c; Scheme 96),100,171 1-seleno-1-silylalkyllithiums (Scheme 33, a);85 and 1-seleno-1-silylbenzyllithiums (Scheme 33, b);70 (x) 1,1-bis(seleno)alkyllithiums (Scheme 23, e and f);35,36,56,65,71,73,98,108,192 1,1-bis(seleno)benzyllithiums (Scheme 32),72 1,1-bis(seleno)(trimethylsilyl)methylolithium (Scheme 31, d);95 and tris(seleno)methylolithiums (Scheme 31, a–c);36,71,106 (xi) selenonium ylides (Schemes 59 and 60; Scheme 61, a);77,132,206 (xii) a-metalloalkyl selenoxides (Schemes 51–54);97,127,128 (xiii) a-metallocenio selenoxides (Scheme 179);103 (xiv) a-metalloalkyl selenones (Schemes 55 and 56);129,130,138,206 and (xv) a-selenometallocenolates derived from esters (Scheme 10),74 lactones (Scheme 38),74 lactams121,207 including \(\beta \)-lactams121 (Scheme 42, a; Scheme 99), and nitroalkanes (Scheme 41).119 Most of the organometallics listed produce the corresponding alcohols by reaction with aldehydes and ketones and further hydrolysis of the resulting alcohols.

\(\beta \)-Oxoalakylselenonium salts (Schemes 59–61)77,132,206 and \(\beta \)-oxoalaky selenones (Schemes 55 and 56)129,130,138,206 are unstable too, and directly collapse to epoxides even at \(-78{\degree}\text{C}\). The former reaction is limited to nonenolizable carbonyl compounds.132 In the case of acetophenone and trimethylselenonium iodide, for example, polymethylation of the carbanion compound occurs (Scheme 122).132 The results can be rationalized by considering enolate formation and alklylation of the enolate by the selenonium salt.

\(\beta \)-Oxidoalkylselenonium salts bearing a phosphonato (Scheme 28);102 phosphonio106,107 or silyl group (Scheme 24, b and c; Scheme 31, d);95 are unstable too, and have a high tendency to produce vinyl selenides via the well-known Wittig–Horner or Peterson elimination reaction. Lithium alkoxides derived from 1-trimethylsilyl-1-selenoalkyllithiums can be trapped with water and lead to the corresponding alcohols in modest yields (Scheme 96). Their potassium analogs, as well as lithium alkoxides derived from bis(phenylseleno)trimethylsilylethene, however, directly collapse to the corresponding alkenes (Scheme 31, d).

2.6.3.2 Nucleophilicity of a-Selenoalkyllithiums Towards Aldehydes and Ketones

\(\alpha \)-Selenoalkyllithiums, even those where the carbanionic center is monoalkyl, dialkyl55,188,189,193,194 or benzyl substituted,208 are particularly nucleophilic towards carbonyl compounds (Schemes 112–116). There is some evidence that they are far more reactive with carbonyl compounds than with alkyl halides (Scheme 123).12,77

Phenylethanol- and methylseleno-alkyllithiums usually exhibit a closely related reactivity towards carbonyl compounds whether the reaction is performed in THF or in ether. As expected, the nucleophilicity of such species often decreases189 by increasing the substitution around the carbanionic center (6 and 8; Scheme 112), but interestingly they are often far more nucleophilic than the corresponding alkylolithiums.31 However, in some rare cases employing particularly hindered reaction partners there is a significant difference of reactivity between phenyl- and methyl-selenoalkyllithiums when the reactions are performed in THF, since the former reagents are much less nucleophilic than the latter (compare 11 and 12 in Scheme 113 and 17a–17f in Scheme 114). As general trends, \(\alpha \)-methylselenoalkyllithiums are more nucleophilic in ether than in THF (compare 15 in Scheme 113, 17d and 17e in Scheme 114 and 24 in Scheme 116).
β-Hydroxyalkyl selenides have been transformed to epoxides (see Section 2.6.4.5.2)7,16,206 and to alkenes (see Section 2.6.4.3)7,12,16 These are therefore produced from two carbonyl compounds, one of them being activated as a selenoacetal and then as an α-selenoalkyllithium. Best results are obtained

\[
\begin{align*}
R &= \text{Me, 58%, method A} \\
R &= \text{Ph, 78%, method A}
\end{align*}
\]

\[
\begin{align*}
R &= \text{Ph} \\
R' &= \text{n-C}_6\text{H}_{13} \\
Yield &= 75 \% \\
Method &= \text{A} \\
Ref. &= 193
\end{align*}
\]

\[
\begin{align*}
R &= \text{Me} \\
R' &= \text{n-C}_6\text{H}_{13} \\
Yield &= 82 \% \\
Method &= \text{A} \\
Ref. &= 193
\end{align*}
\]

\[
\begin{align*}
R &= \text{Ph} \\
R' &= \text{Et} \\
Yield &= 50 \% \\
Method &= \text{A} \\
Ref. &= 196
\end{align*}
\]

\[
\begin{align*}
R &= \text{Me} \\
R' &= \text{Et} \\
Yield &= 82 \% \\
Method &= \text{A} \\
Ref. &= 55
\end{align*}
\]

\[
\begin{align*}
R &= \text{Me} \\
R' &= (\text{CH}_2)_5 \\
Yield &= 76 \% \\
Method &= \text{A} \\
Ref. &= 55
\end{align*}
\]

\[
\begin{align*}
R &= \text{Me} \\
R' &= \text{Bu}^t \\
Yield &= 79 \% \\
Method &= \text{A} \\
Ref. &= 189
\end{align*}
\]

\[
\begin{align*}
R &= \text{Me} \\
R' &= \text{Bu}^t \\
Yield &= 57 \% \\
Method &= \text{A or B} \\
Ref. &= 189
\end{align*}
\]

\[
\begin{align*}
R &= \text{Ph} \\
R' &= \text{H} \\
R_2 &= \text{Me} \\
Yield &= 74 \% \\
Method &= \text{A} \\
Ref. &= 193
\end{align*}
\]

\[
\begin{align*}
R &= \text{Me} \\
R' &= \text{H} \\
R_2 &= \text{H} \\
Yield &= 71 \% \\
Method &= \text{A} \\
Ref. &= 193
\end{align*}
\]

\[
\begin{align*}
R &= \text{Ph} \\
R' &= \text{H} \\
R_2 &= \text{Ph} \\
Yield &= 80 \% \\
Method &= \text{A} \\
Ref. &= 193
\end{align*}
\]

(5)

(6)

(7)

(8)

(9)

(10)

A = Bu'Li, THF–hexane, \(-78 ^\circ\text{C}\); B = Bu'Li, ether–hexane, \(-78 ^\circ\text{C}\); C = Bu'Li, THF–hexane, \(-78 ^\circ\text{C}\); D = Bu'Li, ether–hexane, \(-78 ^\circ\text{C}\)

Scheme 112
Heteroatom-stabilized Carbanion Equivalents

<table>
<thead>
<tr>
<th>Method A</th>
<th>Method B</th>
</tr>
</thead>
<tbody>
<tr>
<td>R¹</td>
<td>R²</td>
</tr>
<tr>
<td>(a)</td>
<td>H</td>
</tr>
<tr>
<td>(b)</td>
<td>H</td>
</tr>
<tr>
<td>(c)</td>
<td>Me</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method A</th>
<th>Method B</th>
</tr>
</thead>
<tbody>
<tr>
<td>R¹</td>
<td>R²</td>
</tr>
<tr>
<td>(a)</td>
<td>H</td>
</tr>
<tr>
<td>(b)</td>
<td>H</td>
</tr>
<tr>
<td>(c)</td>
<td>Me</td>
</tr>
</tbody>
</table>

0% by method A, C or D (ref. 188)

<table>
<thead>
<tr>
<th>Method</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>189, 206</td>
</tr>
<tr>
<td>(b)</td>
<td>189, 206</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>160</td>
</tr>
<tr>
<td>(b)</td>
<td>160</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>190, 191</td>
</tr>
<tr>
<td>(b)</td>
<td>190, 191</td>
</tr>
</tbody>
</table>

A = Bu°Li, THF–hexane, −78 °C; B = Bu°Li, ether–hexane, −78 °C; C = Bu°Li, THF–hexane, −78 °C; D = Bu°Li, ether–hexane, −45 °C

Scheme 113

when the less hindered or the less enolizable of the two carbonyl compounds is transformed to the α-selenoalkyllithium (compare 8b and 8c in Scheme 112 to 14 in Scheme 113).

α-Selenoalkyllithiums react efficiently with highly hindered carbonyl compounds such as 2,2,6-trimethylcyclohexanone (see 17; Scheme 114),12,77,188,189 2,2,6,6-tetramethylcyclohexanone (see 11 and 12; Scheme 113),12,77,188,189 permethylcyclobutanone,190,191 permethylcyclopentanone (see 16; Scheme 113)190,191 and di-tert-butyl ketone (see 14; Scheme 113). However, they do not add to 2,2,6,6-tetraphenylcyclohexanone (see 13; Scheme 113).189 Their reactivity towards highly enolizable carbonyl com-
Selenium Stabilization

<table>
<thead>
<tr>
<th>R</th>
<th>R'</th>
<th>R2</th>
<th>Yield (%)</th>
<th>Ax: eq *</th>
<th>Method</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>92</td>
<td>18:82</td>
<td>A</td>
</tr>
<tr>
<td>(b)</td>
<td>Me</td>
<td>H</td>
<td>H</td>
<td>85</td>
<td>31:69</td>
<td>D</td>
</tr>
<tr>
<td>(c)</td>
<td>Me</td>
<td>Me</td>
<td>Me</td>
<td>85</td>
<td>95:5</td>
<td>A or C</td>
</tr>
<tr>
<td>(d)</td>
<td>Me</td>
<td>Me</td>
<td>Me</td>
<td>48</td>
<td>33:67</td>
<td>A</td>
</tr>
<tr>
<td>(e)</td>
<td>Me</td>
<td>Me</td>
<td>Me</td>
<td>85</td>
<td>95:5</td>
<td>D</td>
</tr>
<tr>
<td>(f)</td>
<td>Ph</td>
<td>Me</td>
<td>Me</td>
<td>0</td>
<td>–</td>
<td>A</td>
</tr>
<tr>
<td>(g)</td>
<td>Ph</td>
<td>Me</td>
<td>Me</td>
<td>84</td>
<td>95:5</td>
<td>D</td>
</tr>
</tbody>
</table>

A = Bu'Li, THF-hexane, –78 °C; B = Bu'Li, ether–hexane, –78 °C; C = Bu'Li, THF-hexane, –78 °C; D = Bu'Li, ether–hexane, –78 °C.

* Axial alcohol:equatorial alcohol.

Scheme 114

<table>
<thead>
<tr>
<th>R</th>
<th>R'</th>
<th>R2</th>
<th>Yield (%)</th>
<th>Method</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>H</td>
<td>H</td>
<td>85</td>
<td>75:25</td>
<td>A</td>
</tr>
<tr>
<td>(b)</td>
<td>H</td>
<td>H</td>
<td>75</td>
<td>69:31</td>
<td>D</td>
</tr>
<tr>
<td>(c)</td>
<td>H</td>
<td>Me</td>
<td>70</td>
<td>90:10</td>
<td>A</td>
</tr>
<tr>
<td>(d)</td>
<td>H</td>
<td>Me</td>
<td>79</td>
<td>90:10</td>
<td>D</td>
</tr>
<tr>
<td>(e)</td>
<td>Me</td>
<td>Me</td>
<td>75</td>
<td>100:0</td>
<td>A or D</td>
</tr>
</tbody>
</table>

A = Bu'Li, THF–hexane, –78 °C; D = Bu'Li, ether–hexane, –78 °C

Scheme 115

- Deoxybenzoin, a particularly enolizable derivative, is efficiently transformed to β-hydroxyalkyl selenides (19 in Scheme 115; 24 in Scheme 116), whereas β-tetralone and cyclopentanone are partially enolized (20 and 21; Scheme 115).
- α-Selenoalkyllithiums exhibit towards carbonyl compounds a nucleophilicity almost identical to that of the corresponding α-thiaalkyllithiums but slightly superior to that of α-metalloalkyl selenoxides and several orders of magnitude superior to that of selenium and sulfur ylides. The reasons for such exceptional nucleophilicity are not yet understood. Reactions involving single-electron transfer could take place but experimental support is not available.
- α-Selenoalkyllithiums which bear another heteroatomic moiety on the carbanionic center are still valuable nucleophiles towards carbonyl compounds but they are not as efficient as the α-selenoalkyllithiums reported above. Even so, the presence of a trimethylsilyl substituent on the carbanionic center substantially decreases the reactivity of these organometallics (Scheme 96), whereas a phospho-
Heteroatom-stabilized Carbanion Equivalents

<table>
<thead>
<tr>
<th>n</th>
<th>R</th>
<th>R'</th>
<th>Yield (%)</th>
<th>Method</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Me</td>
<td>C({10}H{21})</td>
<td>72</td>
<td>A</td>
<td>12, 77</td>
</tr>
<tr>
<td>0</td>
<td>Ph</td>
<td>c-C({8}H{11})</td>
<td>63</td>
<td>A</td>
<td>12, 77</td>
</tr>
<tr>
<td>0</td>
<td>Me</td>
<td>c-C({8}H{11})</td>
<td>73</td>
<td>A</td>
<td>12, 77</td>
</tr>
<tr>
<td>1</td>
<td>Ph</td>
<td>C({10}H{21})</td>
<td>71</td>
<td>D</td>
<td>136, 156</td>
</tr>
<tr>
<td>1</td>
<td>Me</td>
<td>C({10}H{21})</td>
<td>90</td>
<td>D</td>
<td>136, 156</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>R</th>
<th>Yield (%)</th>
<th>Method</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ph</td>
<td>54</td>
<td>A</td>
<td>12, 77</td>
</tr>
<tr>
<td>0</td>
<td>Me</td>
<td>69</td>
<td>A</td>
<td>136</td>
</tr>
<tr>
<td>1</td>
<td>Ph</td>
<td>70</td>
<td>A</td>
<td>136</td>
</tr>
<tr>
<td>1</td>
<td>Me</td>
<td>78</td>
<td>A</td>
<td>136</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>R</th>
<th>Yield (%)</th>
<th>Method</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ph</td>
<td>61</td>
<td>A</td>
<td>12, 77</td>
</tr>
<tr>
<td>0</td>
<td>Me</td>
<td>56</td>
<td>A</td>
<td>12, 77</td>
</tr>
<tr>
<td>0</td>
<td>Me</td>
<td>70</td>
<td>B</td>
<td>12, 159</td>
</tr>
<tr>
<td>1</td>
<td>Me</td>
<td>68</td>
<td>A</td>
<td>12, 77</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>R</th>
<th>Yield (%)</th>
<th>Method</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ph</td>
<td>47</td>
<td>A</td>
<td>12, 77</td>
</tr>
<tr>
<td>0</td>
<td>Me</td>
<td>64</td>
<td>C</td>
<td>12, 159</td>
</tr>
<tr>
<td>0</td>
<td>Ph</td>
<td>35</td>
<td>A</td>
<td>12, 159</td>
</tr>
<tr>
<td>1</td>
<td>Me</td>
<td>54</td>
<td>A</td>
<td>12, 159</td>
</tr>
<tr>
<td>1</td>
<td>Me</td>
<td>68</td>
<td>C</td>
<td>12, 159</td>
</tr>
</tbody>
</table>

58%, method A (refs. 12 and 77)
60%, method B (refs. 12 and 77)

<table>
<thead>
<tr>
<th>n</th>
<th>R</th>
<th>Yield (%)</th>
<th>Method</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ph</td>
<td>81%</td>
<td>method C (ref. 160)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Me</td>
<td>85%</td>
<td>method C (ref. 160)</td>
<td></td>
</tr>
</tbody>
</table>

71%, method A (refs. 12 and 77)

\(A = \text{Bu}^t\text{Li, THF–hexane, } -78 \, ^\circ\text{C}; \ B = \text{Bu}^t\text{Li, ether–hexane, } -78 \, ^\circ\text{C}; \ C = \text{Bu}^t\text{Li, THF–hexane, } -78 \, ^\circ\text{C}; \ D = \text{Bu}^t\text{Li, ether–hexane, } -78 \, ^\circ\text{C}\)

Scheme 116
Selenium Stabilization

<table>
<thead>
<tr>
<th>R^1</th>
<th>R^2</th>
<th>Yield (%)</th>
<th>Method</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>Me</td>
<td>90</td>
<td>A</td>
<td>222</td>
</tr>
<tr>
<td>Ph</td>
<td>Me</td>
<td>66</td>
<td>A</td>
<td>223</td>
</tr>
<tr>
<td>Ph</td>
<td>n-C6H${13}$</td>
<td>68</td>
<td>A</td>
<td>223</td>
</tr>
<tr>
<td>Me</td>
<td>Me</td>
<td>85</td>
<td>A</td>
<td>222</td>
</tr>
<tr>
<td>Ph</td>
<td>Me</td>
<td>78</td>
<td>A</td>
<td>221</td>
</tr>
</tbody>
</table>

Selenium stabilization

<table>
<thead>
<tr>
<th>R^3</th>
<th>R^4</th>
<th>Yield (%)</th>
<th>Method</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr</td>
<td>Me</td>
<td>74</td>
<td>B</td>
<td>223</td>
</tr>
<tr>
<td>Pr</td>
<td>Et</td>
<td>74</td>
<td>B</td>
<td>223</td>
</tr>
<tr>
<td>H</td>
<td>Me</td>
<td>55</td>
<td>A</td>
<td>221</td>
</tr>
<tr>
<td>Me</td>
<td>Me</td>
<td>45</td>
<td>A</td>
<td>221</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>R^1</th>
<th>R^2</th>
<th>Yield (%)</th>
<th>Method</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me</td>
<td>n-C6H${13}$</td>
<td>64</td>
<td>A</td>
<td>222</td>
</tr>
<tr>
<td>1</td>
<td>Me</td>
<td>Me</td>
<td>55</td>
<td>A</td>
<td>221</td>
</tr>
<tr>
<td>1</td>
<td>Ph</td>
<td>Me</td>
<td>83</td>
<td>B</td>
<td>225</td>
</tr>
<tr>
<td>2</td>
<td>Me</td>
<td>Me</td>
<td>57</td>
<td>B</td>
<td>225</td>
</tr>
<tr>
<td>2</td>
<td>Ph</td>
<td>Me</td>
<td>51</td>
<td>B</td>
<td>225</td>
</tr>
<tr>
<td>7</td>
<td>Me</td>
<td>Me</td>
<td>54</td>
<td>B</td>
<td>225</td>
</tr>
<tr>
<td>1</td>
<td>Me</td>
<td>CH$_2$-CH$_2$</td>
<td>86</td>
<td>A</td>
<td>12, 77</td>
</tr>
<tr>
<td>1</td>
<td>Ph</td>
<td>CH$_2$-CH$_2$</td>
<td>88</td>
<td>A</td>
<td>12, 77</td>
</tr>
</tbody>
</table>

14%, method A
46%, method B (ref. 225)

A = ButLi, THF–hexane, –78 °C; B = ButLi, ether–hexane, –78 °C; C = ButLi, THF–hexane, –78 °C; D = ButLi, ether–hexane, –78 °C

Scheme 117

ni$_1^{106, 107}$ or a phosphonato$_1^{102}$ group dramatically lowers its reactivity. For example, α-phosphonio- and α-phosphonato-α-selenoalkyl metals$_{102}$ efficiently react with aldehydes$_{102, 106}$ but not with ketones.$^{102, 106, 107}$

2.6.3.3 Stereochemistry of the Addition of α-Selenoalkyllithiums to Aldehydes and Ketones

The reactions of α-selenoalkyllithiums with aliphatic and aromatic aldehydes and ketones are not usually stereoselective regardless of the solvent used (ether or THF). Even in the most favorable cases, such as that of 1-methylseleno-2,2-dimethylpropyllithium and heptanal, in which well-differentiated bulky groups are involved, the stereoisomeric ratio ranges from 1:1 to 3:2 (Scheme 124).$^{188, 206}$ However, in the case shown in Scheme 86, b.170 in which the lithium can coordinate to the silyloxy group, only one of the two stereoisomeric β-hydroxyalkyl selenides is formed.

α-Selenoalkyllithiums react stereoselectively with rigid cyclohexanones such as 4-tert-butylcyclohexanone (17; Scheme 114)210 and 2,2,6-trimethylcyclohexanone (18; Scheme 114).$^{188, 189}$ In most cases the axial alcohols resulting from the equatorial attack of the organometallic are produced (either in THF or
2.6.3.4 The Ambident Reactivity of α-Selenoallyllithiums

α-Metalloallyl selenides are ambident nucleophiles which can react\(^\text{30}\) at their α- and γ-sites with electrophiles. The regiochemistry of the reaction not only depends upon the nature and the number of substituents present on the allylic or vinylic carbons but also upon the nature of the metallic counterion. Thus aldehydes (Scheme 16, e)\(^\text{45,81,82}\) and ketones (Scheme 16, c),\(^\text{80}\) except cyclopentenone (Scheme 127, a),\(^\text{83,90}\) exhibit a high propensity to react at the γ-site of the parent phenylseleno-\(^\text{80-82,90}\) and methylseleno-allyllithiums.\(^\text{45}\)

The presence of one alkyl\(^\text{80}\) or vinyl\(^\text{91}\) group at the γ-site usually inverts the regiochemistry of the reaction which now takes place almost exclusively at the α-site (Scheme 17, b–d), except in the case of

\[
\text{RSe}=\underset{\text{X}}{\text{SeR}} \xrightarrow{\text{LDA, THF, } -78^\circ\text{C}} \left[\begin{array}{c}
\text{RSe}=\underset{\text{X}}{\text{SeR}} \\
\text{RSe}=\underset{\text{Li}}{\text{SeR}} \\
\end{array} \right] \xrightarrow{\text{PhCHO}} \text{PhSe} \\
\]

\[
\text{RSe}=\underset{\text{X}}{\text{SeR}} \xrightarrow{\text{PhCHO}} \left[\begin{array}{c}
\text{RSe}=\underset{\text{X}}{\text{SeR}} \\
\text{RSe}=\underset{\text{Li}}{\text{SeR}} \\
\end{array} \right] \xrightarrow{\text{LDA, THF, } -78^\circ\text{C}} \text{PhSe} \\
\]

\[
\text{R} = \text{Ph}; \ X = \text{H}; 71\%; 50:50 \\
\text{R} = \text{Me}; \ X = \text{SeMe}; 81\%; 61:39 \\
\]

Scheme 119
shown in Scheme 94, a87 1-Lithio-1-seleno-3-methylpropene45,87 reacts exclusively from its α-site with benzaldehyde (Scheme 18, c and d), whereas a mixture of the two regioisomers is produced when the potassium analog is used instead (Scheme 18, e)45 Presumably the metal coordinates to the less-hindered carbon and the reaction takes place through a six-membered cycle, implying a precoordination of the oxygen of the carbonyl compound with the metal counterion.

Although carbonyl compounds add at the γ-site of phenylselenoallyllithium, the reversed regioselectivity is realized81,82 by using a triethylaluminum ate complex (Scheme 16, compare b with c and d with e; Scheme 128). Unfortunately, with benzaldehyde and acetophenone the degree of regiochemical convergence is not so high,82 presumably owing to the steric effect of the carbonyl group. The three
Heteroatom-stabilized Carbanion Equivalents

\[
\text{MeSe} \quad \text{OH} \quad \text{Bu}^t \quad \text{n-C}_6\text{H}_{13} \quad \begin{array}{c}
\text{MeSe} \\
\text{Bu}^t \\
\text{OH}
\end{array}
\]

i. TLC, SiO2, ether/pentane; ii. MeSO\textsubscript{3}F, ether; iii. 10% KOH, ether

isomer is predominantly produced and results82 probably from the trans geometry of the intermediate ate complex. This reaction has been successfully applied82 to the synthesis of 9,11-dodecadien-1-yl acetate, a pheromone of Disparosis castanea (Scheme 128). The reaction is highly chemoselective, since ordinary organic halides, trimethylsilyl chloride and trimethylsilyl acetates, which usually react80 with the lithium derivative, are unreactive towards the aluminum ate complex.82

\[
\begin{array}{ccc}
\text{Me} & \text{H} & 93 \\
\text{Me} & \text{Me} & 91 \\
\text{Ph} & \text{Me} & 86 \\
\end{array}
\]

Scheme 125

\[
\begin{array}{ccc}
\text{SeR} & \text{Bu}^t\text{Li} & \text{THF, } -78 \degree \text{C} \\
\text{C}_6\text{H}_{13} & \text{CHO} & \\
\text{R} & \text{R}' & \text{Yield (\%)} \\
\text{Me} & \text{H} & 71 \\
\text{Ph} & \text{H} & 65 \\
\text{Me} & \text{Me} & 81 \\
\end{array}
\]

(ref. 162)
Selenium Stabilization

Scheme 126

\[
\text{Conditions} \quad \text{Yield} (%) \quad \text{(stereoisomeric ratio)} \\
(a) \quad i, \text{THF}, -78 \degree C; ii, H^+ \quad 46 (48:52) \quad 16 (48:52) \quad 10 \quad 8 (41:59) \\
(b) \quad i, \text{THF-HMPA}, -78 \degree C; ii, H^+ \quad - \quad - \quad 81 (54:46) \quad 5
\]

Scheme 127

\[
\begin{align*}
\text{PhSe} & \quad \text{Li} \\
\text{Li} & \quad \text{PhSe} \\
i, \text{Et}_3\text{Al} & \\
\text{i, Et}_3\text{Al} & \\
\text{PhSe} & \quad \text{OH} \\
\text{ii, } \text{AcO(CH}_2\text{)}_3\text{CHO} & \\
\text{iii, } \text{H}_2\text{O}^+ & \\
\end{align*}
\]

70% overall 86:14 (syn:anti)

\[
\begin{align*}
\text{SePh} & \quad \text{OH} \\
\text{TsOH} & \quad \text{pentane reflux 12 h} \\
\text{np} & \quad \text{nAc} \\
\end{align*}
\]

77% (E):(Z) = 86:14

pheromone of Diparopsis castanea (E:Z ~ 90:10)

Scheme 128

\(\alpha\)-Heterosubstituted allyl metal–boronate complexes\(^{82}\) usually behave like their aluminum analogs. This is not the case of allyl metals bearing a seleno moiety.\(^{217}\) These in fact undergo a facile migration
from boron to the α-carbon. The allylic rearrangement of the resulting boron–selenium complex (33 to 34; Scheme 129) is slow217 in comparison with the usual allylic boranes rearrangement. Thus the trialkylborane–α-phenylselenoallyllithium complex produced at −78 °C rapidly leads to the ate complex (33) after 1 h at 0 °C and to the complex (34) after 12 h at 20 °C. Each one reacts regioselectively with carbonyl compounds at the position where the boron was attached (Scheme 129). Otherwise, 1-lithio-1,3-bis(phenylseleno)-2-propene bearing an α-trimethylsilyl group regioselectively reacts with acetone at the γ-carbon (Scheme 33, a),85 whereas a mixture of regioisomers is produced from benzaldehyde and 1,1,3-tris(methylseleno)propene (Scheme 130).87

\[\text{Scheme 129} \]

\[\text{Scheme 130} \]

2.6.3.5 Control of the Regiochemistry of Addition of α-Selenoalkyl Metals to Enones, Enals and Enoates

2.6.3.5.1 Generalities

The control of the regiochemistry of addition of organometallic α-enones, α-enals and α-ene esters has attracted the attention of many chemists from the early age of organic chemistry. Not only have α-selenoalkyllithiums not escaped the rule, but fundamental discoveries made at the occasion of this work have been successfully extended to other organometallics.7
The structure of the organometallic and of the α,β-unsaturated carbonyl compound, as well as the experimental conditions, play a crucial role in controlling the regiochemistry of the reaction. In general, enals possess a higher tendency to react at their C-1 site than enones and ene esters and increasing the substitution around the C-1 (or the C-3) site favors the reaction at the C-3 (or at the C-1) site of the enones. Furthermore, the compounds which possess either a privileged cisoid conformation, or the lowest half-wave potential of electrolytic reduction, or the lower level of their LUMO orbitals react predominantly at the C-3 site (PhCH=CHC(=O)Me ≫ MeCH=CHC(=O)Ph ≫ MeCH=CHC(=O)Me).

Performing the reaction at a higher temperature and in a more polar solvent usually increases the amount of the C-3 over the C-1 adduct. The C-1:C-3 ratio is also highly dependent upon the nature of the α-selenoalkyllithium. In this respect, organometallics where the carbanion is directly linked to a selenium atom can be classified into three different categories, each of which behaves differently towards α,β-unsaturated carbonyl compounds: (i) α-selenoalkyllithiums bearing hydrogens or alkyl groups on the carbanionic center which possess, whatever the solvent and the conditions used, the highest propensity to add at the C-1 site of enones; (ii) 1,1-bis(seleno)-1-alkyllithiums where the C-1:C-3 reactivity can be adjusted under kinetically controlled conditions by the proper choice of the solvent; and (iii) enolates derived from α-seleno esters which possess a tendency to add at the C-1 site of α,β-unsaturated carbonyl compounds under kinetically controlled conditions and at the C-3 site under thermodynamic control.

2.6.3.5.2 Reactivity of α-selenoalkyl metals, α-selenoxy-γ-alkyl metals and selenium ylides with enals and enones

α-Selenoalkyllithiums bearing hydrogen or alkyl groups on the carbanionic center possess the highest tendency to react at the C-1 site of enals (Schemes 117, 131 and 132) and enones (Schemes 117, 133 and 134). They usually provide stereoisomeric mixtures of β-hydroxy-γ-alkenyl selenides in good yields.

The reaction takes another course with chalcone since a mixture of β-hydroxyalkyl selenides and γ-selenoalkyl phenyl ketones resulting from C-1 and C-3 attack, respectively, is produced (Scheme 135, compare b and c with a). This enone is the only one among those tested to react in such a way. Interes-
Heteroatom-stabilized Carbanion Equivalents

Scheme 132

(a) \[\text{R} = \text{Ph, Pr (ref. 12)} \]

(b) \[\text{R} = \text{Ph, Pr (ref. 12)} \]

i, THF, -78 °C; ii, TsOH, wet benzene, 80 °C; iii, PI, Et3N, CH2Cl2, 20 °C; iv, Bu3OOH, Al2O3, THF, 55 °C; v, Mel (neat), 20 °C; vi, aq. KOH, ether, 20 °C

Scheme 133

i, PhSeCMc2Li, THF, -78 °C; ii, PhSeCH(C5H11)Li

i, THF, -78 °C; ii, TsOH, wet benzene, 80 °C; iii, PI, Et3N, CH2Cl2, 20 °C; iv, Bu3OOH, Al2O3, THF, 55 °C; v, Mel (neat), 20 °C; vi, aq. KOH, ether, 20 °C

Scheme 132

i, THF, -78 °C; ii, TsOH, wet benzene, 80 °C; iii, PI, Et3N, CH2Cl2, 20 °C; iv, Bu3OOH, Al2O3, THF, 55 °C; v, Mel (neat), 20 °C; vi, aq. KOH, ether, 20 °C

Scheme 133

i, THF, -78 °C; ii, TsOH, wet benzene, 80 °C; iii, PI, Et3N, CH2Cl2, 20 °C; iv, Bu3OOH, Al2O3, THF, 55 °C; v, Mel (neat), 20 °C; vi, aq. KOH, ether, 20 °C
Selenium Stabilization

THF, \(R = \text{Me}, 65\% \)
ether, \(R = \text{Ph}, 83\% \)
cis:trans = 1:2

Scheme 134

\[
\begin{align*}
\text{Ph} & \quad \text{MeSeLi} & \quad \text{R}^1 \quad \text{R}^2 \\
\rightarrow & & \rightarrow \\
\text{Ph} & \quad \text{MeSeLi} & \quad \text{R}^1 \quad \text{R}^2
\end{align*}
\]

\[R^1 \quad R^2 \quad \text{Yield (\%)} \quad \text{Ratio} \]
(a) Me H 87 100:0
(b) Ph H 70 50:50
(c) Ph Me 68 30:70

Conditions: THF, \(-78^\circ\text{C}, \text{or THF, } -78\text{ to } 20\text{ }^\circ\text{C, or ether } -78\text{ }^\circ\text{C} \)

Scheme 135

\[
\begin{align*}
\text{Ph} & \quad \text{Ph} \quad \text{Se(0)Ph} \\
\rightarrow & & \rightarrow \\
\text{Ph} & \quad \text{Ph} \quad \text{Se(0)Ph}
\end{align*}
\]

\[\text{i, } \Delta; \text{ ii, EtCO}_2\text{H, P(OOMe)}_3; \text{ iii, MsCl, } \text{Et}_3\text{N} \]

Scheme 136
A great deal of attention has been paid to the addition of \(\alpha \)-selenoalkyl metals at the C-3 site of enones. Performing the reaction in the presence of the copper iodide–dimethyl sulfide complex does not lead to the expected results, although a novel species is produced\(^\text{135}\) which exhibits different behavior from \(\alpha \)-selenoalkyllithiums towards, for example, allyl halides.\(^\text{135}\) This novel species, which has even been observed\(^\text{135}\) by \(^{77}\text{Se} \) NMR, does not react at \(-78^\circ \text{C}\) with enones and decomposes in THF or in ether at around \(-45^\circ \text{C}\) with no addition to enones. In fact, \(\alpha \)-selenoalkyllithiums react at low temperature with the copper iodide–dimethyl sulfide complex in THF or ether to provide\(^\text{16,135,228}\) around \(-45^\circ \text{C}\), alkenes resulting formally from the reductive coupling of the organometallic followed by elimination of the two seleno moieties present on the adjacent carbons (Scheme 137). This reaction is reasonably general since it allows the synthesis of \(\alpha,\beta \)-disubstituted and tetrasubstituted alkenes as mixtures of stereoisomers from \(\alpha \)-selenoalkyllithiums bearing one or two alkyl substituents on the carbanionic center. The reaction takes another course when the putative \(\alpha \)-selenoalkylcuprate is reacted\(^\text{229}\) with the enone in the presence of trimethylsilyl chloride (Scheme 138, compare c with a, b and d), since after hydrolysis the C-3 adducts are obtained from \(\alpha \)-selenoalkyllithiums with carbanionic centers that are monoalkyl substituted. Unfortunately, this reaction is not general and those organometallics which bear two alkyl groups on the carbanionic center do not react with enones under such conditions.\(^\text{229}\)

\[
\begin{align*}
\text{O} & \quad \text{H} \quad \rightarrow \quad \text{Li} \quad \text{SeR} \quad \rightarrow \quad \text{R} = \text{Me}, 85\% \\
\text{C}_6\text{H}_{13} \quad \text{SeR} & \quad \text{R} = \text{Ph}, 40\%
\end{align*}
\]

\[
\begin{align*}
\text{O} & \quad \text{Bu} \quad \rightarrow \quad \text{Bu} \quad \text{Li} \quad \text{SeMe} \quad \rightarrow \quad \text{R} = \text{H}, 90\% \text{ (E)} \\
\text{Bu} & \quad \text{Bu} \quad \text{R} \quad \text{R} \quad \text{Bu} \quad \text{Bu}
\end{align*}
\]

\[
\begin{align*}
\text{O} \quad \text{H} \quad \rightarrow \quad \text{SeMe} \quad \text{Li} \quad \rightarrow \quad \text{i} \quad 75\%
\end{align*}
\]

\[
\begin{align*}
\text{O} \quad \text{H} \quad \rightarrow \quad \text{Li} \quad \text{SeMe} \quad \rightarrow \quad \text{i} \quad 93\%
\end{align*}
\]

\[
\begin{align*}
\text{i}, \text{CuI} \cdot \text{SMe}_2 \text{ (0.5 equiv.)}, \text{ether}, \text{78 to 20 } \text{C}
\end{align*}
\]

\[
\text{Scheme 137}
\]

\subsection{2.6.3.5.3 Reactivity of 1,1-bis(seleno)-1-alkyl metals and \(\alpha \)-selenocarbonyl compounds with enals and enones}

(i) \textbf{Generalities}

\(\alpha \)-Selenoalkyl metals with carbanionic centers that are substituted with another seleno moiety\(^\text{7,73,230-234}\) or an electron-withdrawing group such as an ester\(^\text{112,113}\) or a nitrile\(^\text{117}\) behave differently. In these cases the nature of the solvent, the seleno moiety attached to the carbanionic center and the metal have an influence on the regiochemical outcome of the reaction. However, whereas the temperature does not affect the regioisomeric ratio with 1-metallo-1,1-bis(seleno)alkanes,\(^\text{230-232}\) it plays an especially crucial role with ester enolates derived from \(\alpha \)-seleno esters.\(^\text{112,113,157}\)
Furthermore, although similar behavior will be often observed with these two classes of compounds, some fundamental differences exist. In fact with 1,1-bis(seleno)alkyllithiums regiochemical control both at C-1 and C-3 has been achieved under kinetically controlled conditions, whereas the ester enolates tend to add at C-1 under kinetically controlled conditions and at C-3 under thermodynamic control. The case of 1-lithio-1-(phenylseleno)cyanoalkanes is somewhat different, since they already react at -78 °C in THF with, for example, cyclohexenone to give the C-3 adduct exclusively (Scheme 40, c), and C-1 attack has not yet been achieved.

(ii) Reactivity of 1,1-bis(seleno)-1-alkyl metals with enals and enones

(a) Generalities. 1,1-Bis(seleno)alkyl metals are valuable synthetic intermediates which inter alia play the role of acyl anion equivalent. Some synthetic uses of these intermediates are displayed in Schemes 139 and 140, whereas various results concerning the reactivity of such species with enals and enones are gathered in Schemes 141-147.

(b) Control of the C-1 attack. The formation of the C-1 over the C-3 adduct is usually favored if the reactions are carried out: (i) in the less polar and basic solvent compatible with the formation of the organometallic (compare Scheme 140, a to b in Scheme 142, a to b; Scheme 143, a to b; Scheme 144, a to b, c and d; Scheme 145, a with Scheme 146, c and d) THF–hexane is often reasonably good, but ether–hexane is even better (Schemes 140, a; Scheme 141; Scheme 144, a; Scheme 145). Generally the better overall yields are obtained when the reactions are carried out in the less polar solvent and at the
lowest temperature; (ii) with 1,1-bis(methylseleno)alkyllithiums rather than their phenylseleno analogs (compare Scheme 147, a with Scheme 146, c); and (iii) when potassium rather than lithium salts are involved (compare Scheme 147, a and c).

Enals\(^{232}\) have the highest propensity to react (Scheme 142, a; Scheme 143, a; compare to Scheme 144, b) at C-1 than straight chain ketones,\(^{157}\) and this is also the case for cyclohexenones (Scheme 146)\(^{230,231}\) as compared to cyclopentenones\(^{157}\) and cycloheptenones.\(^{157}\) Chalcone, however, is a very special compound. It apparently shows a different behavior since the C-1 adduct is undoubtedly favored in the more basic solvents (Scheme 148).\(^{234}\) In all the cases cited above it has been proven\(^{231}\) that the reactions proceed under kinetic control, so that once the C-1 adduct is formed it is stable and does not produce the C-3 adduct if the temperature of the medium is raised or if a more basic solvent is added before hydrolysis of the alcolohate.

(c) Control of the C-3 attack. In general, the C-3 adducts can be produced when the reactions are carried out in a more polar or basic solvent, such as THF containing at least 1.1 equiv. of HMPA per mol of organometallic (Scheme 139, b; Scheme 140, b-e; Scheme 141; Scheme 142, b; Scheme 143, b; Scheme 144, c and d; Scheme 146, b, d and f; Scheme 147, b).\(^{230,231}\) Use of more HMPA, which usually increases the C-3:C-1 ratio, often leads,\(^{231}\) due to competing enolation, to a much lower yield of γ-oxo selenoacetal (Scheme 141).

HMPA is not the only additive which leads to the formation of the C-3 adduct. Performing the reaction in ether but in the presence of an 18-crown-6 ether (Kryptofix, trade name (Merck) for hexaoxa-4,7,13,16,21,24-diaza-1,10-bicyclo[8.8.8]hexaisoxane) or in DME also favors the formation of the C-3 adduct. However, HMPA is by far the best and the more reliable alternative.

The conditions mentioned above are applicable to various enals (Scheme 139, compare b to a; Scheme 141, compare e to d; Scheme 142, compare b to a; Scheme 143, compare b to a)\(^{157,225,233}\) and straight chain ketones (Scheme 144, compare c and d to a and b),\(^{157,233}\) although the regiochemical control is less spectacular than with cyclic enones, especially cyclopentenones and cyclohexenones (Scheme 140, compare b-e with a; Scheme 146, compare b, d and f with a, c and e; Scheme 147, compare b to c; Scheme 149).\(^{157,230,231,233}\) Surprisingly, 1-metallo-1,1-bis(methylseleno)alkanes are more prone than their phenylseleno analogs to react under these conditions at the C-3 site of enals\(^{232}\) when the reactions are carried out in THF-HMPA, although the reverse was found with cyclohexenone in THF (compare Scheme 147, b with Scheme 146, c; and Scheme 142, c and d with b). Finally, and surprisingly, the addition of 1-lithio-1,1-bis(seleno)alkanes at the C-3 site of chalcone can be achieved\(^{234}\) if the reaction is performed in a less basic solvent (Scheme 148, compare a to b).

The addition of 1,1-bis(seleno)alkyllithiums at the C-3 site of enals and enones produces enolates which can be trapped with various electrophiles (Scheme 140, b-d; Schemes 149 and 150).\(^{157,230,233}\) Silylation of the lithium enolates with trimethylsilyl chloride leads to the corresponding silyl enol ethers (Scheme 140, c),\(^{157,230}\) which can then be subjected to further reactions.

Methylation of the lithium enolates derived from cyclohexen-2-one and 1,1-bis(methylseleno)ethyl lithium takes place\(^{230}\) regioselectively but requires the use of more than one equivalent of HMPA (5 equiv., 0 °C, 1 h). The product consists\(^{230}\) quite exclusively of the trans stereoisomer (99%) with a trace (1%) of the cis (Scheme 140, d and e). The latter can be obtained as a single stereoisomer on hydrolysis of the adduct resulting from the reaction of the same organometallics with 2-methylcyclohexen-2-one.
Unfortunately, the methylation of the lithium enolate derived from cyclopentenone is less regioselective (Scheme 150). The reaction between 1,1-bis(methylseleno)-1-propyllithium and other methylcyclohexenones has also been investigated (Scheme 151). No adduct was obtained from 3-methylcyclohexen-2-one whatever the conditions used (THF–HMPA or DME), whereas γ-keto selenoacetals are produced from 4-, 5- and 6-methyl-2-cyclohexen-2-ones in yields ranging from 58 to 76% when the reactions are carried out in THF–HMPA (Scheme 151). Yields are lowered by 10% when DME is used instead.

Most of the above mentioned derivatives have been reduced by tributyltin hydride to methyl-3-ethylcyclohexanones. These have been produced with a stereochemical control often superior to that observed from the copper chloride catalyzed addition of ethylmagnesium bromide in ether to the same ketones (Scheme 149, b; Scheme 151, a). Reaction of the C-1 and C-3 adducts with copper chloride (1
Heteroatom-stabilized Carbanion Equivalents

\[
\text{MeSe} \text{SeMe} + \text{R}^1\text{O} = \text{R}^2 \rightarrow \text{MeSe} \text{MeSe} + \text{MeSe} \text{MeSe}
\]

Conditions

<table>
<thead>
<tr>
<th>Yield (%)</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) 80</td>
<td>98:2</td>
</tr>
</tbody>
</table>

(b) Et\textsubscript{2}O, HMPA (0.5 equiv.)

(c) Et\textsubscript{2}O, Kryptofix 2.2.2

(d) THF

(e) THF–HMPA (1:1.1)

(f) THF–HMPA (1:4.4)

(g) THF–Kryptofix 2.2.2

(h) THF–Kryptofix 1.1.1

(i) THF–Ph\textsubscript{3}PO

(j) THF–TPPTc

(k) DME

(l) DME–HMPA (1:1.1)

* Hexane present in each case. b Refers to the additive:organometallic ratio.

c TPPT = tripyrrolidinophosphorimid.

Scheme 141157, 231

\[
\text{RSe} \text{SeR} + \text{R}^2\text{O} = \text{i or ii} \rightarrow \text{OH} \text{RSe} \text{SeR} \text{R}^1 \text{Pr} + \text{R}^2 \text{SeR}
\]

Conditions

<table>
<thead>
<tr>
<th>Yield (%)</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Me Me Pr</td>
<td>74</td>
</tr>
<tr>
<td>Me Me Ph</td>
<td>74</td>
</tr>
<tr>
<td>(b) Me Me Pr</td>
<td>63</td>
</tr>
<tr>
<td>Me Me Ph</td>
<td>67</td>
</tr>
<tr>
<td>(c) Ph H Pr</td>
<td>55</td>
</tr>
<tr>
<td>(d) Ph Me Pr</td>
<td>60</td>
</tr>
</tbody>
</table>

i, THF, 178 °C, 0.2 h; ii, THF, HMPA (1.1 equiv.), 178 °C, 0.2 h; iii, NH\textsubscript{4}Cl, 178 °C

Scheme 142118, 157

\[
\text{MeSe} \text{SeMe} + \text{Li} \rightarrow \text{OH} \text{MeSe} \text{MeSe} + \text{MeSe} \text{MeSe}
\]

Conditions

<table>
<thead>
<tr>
<th>Yield (%)</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) THF, 178 °C, 0.2 h</td>
<td>80</td>
</tr>
<tr>
<td>(b) THF, HMPA (1.1 equiv.), 178 °C, 0.2 h</td>
<td>56</td>
</tr>
</tbody>
</table>

Scheme 143

Equivalents (4 equiv.) and copper oxide (4 equiv.) in aqueous acetone (1%) allows the synthesis of the corresponding α-hydroxy-β,γ-unsaturated carbonyl compounds73, 233 or γ-ketocarbonyl compounds.233 Therefore,
Selenium Stabilization

1,1-bis(seleno)alkyl metals play the role of valuable acyl anion equivalents (Scheme 139; Scheme 140, a, b and e; Scheme 149, b).

Regiochemical control of the addition of 1-phenylselenoallyllithium to cyclopentenone has been achieved\(^{83,90}\) in a manner similar to that mentioned above. In THF alone the C-1 adducts resulting from the attack of the ambident nucleophile at its α- and γ-sites prevail (Scheme 127, a),\(^{83,90}\) whereas the C-3 adducts resulting from the almost exclusive reaction of the α-selenoallyllithium at its α-site are produced\(^{83,90}\) if the reaction is performed instead in the presence of HMPA (Scheme 127, b). Therefore, this solvent mixture allows the simultaneous control of the sites of attack of these two ambident species.

(iii) Reactivity of enolates derived from α-selenocarbonyl compounds

Lithium enolates derived from α-seleno esters have a marked tendency to produce the C-3 adduct, and in fact the C-1 adducts are the most difficult to obtain. Representative results are collected in Schemes 152–154.

The best control of addition of these organometallics at the C-1 site of enones is achieved\(^{157,231}\) by performing the reaction in a less basic solvent, such as ether or THF, at a lower temperature (−110 or −78 °C), and within a shorter time, so that not only the formation of the C-1 adducts is favored, but also there is a lower chance of them isomerizing to the more stable C-3 adducts (Scheme 152, compare f to g; Scheme 153, compare a with b–d; Scheme 154, compare c to a). This control is particularly efficient with cyclohexenone (Scheme 153, a and b)\(^{112,157}\) and straight chain enones (Scheme 152, e)\(^{112}\) and particularly poor with cyclopentenone (Scheme 154, a and b).\(^{157}\) Such control cannot be achieved with chalcone (Scheme 152, a–d).\(^{112}\)

The formation of the C-3 adduct relies on the fact that the α,β-unsaturated alcoholate, produced, as mentioned above, by attack of the organometallic at the α-site of the α,β-unsaturated carbonyl compound, can rearrange to the enolate resulting from C-3 attack. This isomerization has been more conveniently achieved by raising the temperature to 20 °C (Scheme 153, compare d to b; Scheme 154 compare c to b).\(^{112}\) It has also been performed by adding HMPA\(^{112}\) to the medium (Scheme 152, g; Schemes 153 and 154).\(^{157}\) Otherwise, the C-3 adduct can be obtained directly, and even at −78 °C, by using potassium
Heteroatom-stabilized Carbanion Equivalents

\[
\begin{align*}
\text{MeSe} & \quad \text{SeMe} \\
\text{Li} & \quad + \quad \text{R} \\
\text{O} & \quad \text{MeSe} \quad \text{SeMe} \\
\text{or ii} & \quad \longrightarrow \\
\text{MeSe} & \quad \text{SeMe} \\
\text{C-1} & \quad \text{C-3} \\
\end{align*}
\]

\(R \quad \text{Conditions} \quad n \quad \text{Yield} \quad \% \quad \text{C-1} : \text{C-3} \)

\begin{align*}
(a) & \\
H & \text{i} & 1 & 55 & 75:25 \\
H & \text{i} & 2 & 75 & 92:8 \\
H & \text{i} & 3 & 67 & 87:13 \\
(b) & \\
H & \text{ii} & 1 & 75 & 0:100 \\
H & \text{ii} & 2 & 78 & 0:100 \\
H & \text{ii} & 3 & 29 & 20:80 \\
(c) & \\
Me & \text{i} & 1 & 31 & 70:30 \\
Me & \text{i} & 2 & 63 & 73:27 \\
Me & \text{i} & 3 & 50 & 80:20 \\
(d) & \\
Me & \text{ii} & 1 & 78 & 0:100 \\
Me & \text{ii} & 2 & 78 & 0:100 \\
Me & \text{ii} & 3 & 72 & 11:89 \\
(e) & \\
\text{C}_6\text{H}_{13} & \text{i} & 1 & 22 & 40:60 \\
\text{C}_6\text{H}_{13} & \text{i} & 2 & 63 & 100:0 \\
(f) & \\
\text{C}_6\text{H}_{13} & \text{ii} & 1 & 68 & 0:100 \\
\text{C}_6\text{H}_{13} & \text{ii} & 2 & 59 & 100:0 \\
\end{align*}

\(i, \text{THF, } -78 \ ^\circ\text{C, 0.2 h} \); \(ii, \text{THF-HMPA (1:1.1), } -78 \ ^\circ\text{C, 0.2 h} \)

Scheme 146

\[
\begin{align*}
\text{PhSe} & \quad \text{SePh} \\
\text{M} & \quad + \\
\text{O} & \quad \text{PhSe} \quad \text{SePh} \\
\text{or ii} & \quad \longrightarrow \\
\text{PhSe} & \quad \text{SePh} \\
\text{C-1} & \quad \text{C-3} \\
\end{align*}
\]

\(M \quad \text{Conditions} \quad n \quad \text{Yield} \quad \% \quad \text{Ratio} \quad \text{Ref.} \)

\begin{align*}
(a) & \\
\text{Li} & \text{i} & 2 & 56 & 0:100 & 94 \\
\text{Li} & \text{i} & 3 & 80 & 0:100 & 94 \\
(b) & \\
\text{Li} & \text{ii} & 2 & 94 & 0:100 & 94 \\
\text{Li} & \text{ii} & 3 & 80 & 0:100 & 94 \\
(c) & \\
\text{K} & \text{ii} & 2 & 76 & 100:0 & 73 \\
\end{align*}

\(i, \text{THF, } -78 \ ^\circ\text{C, 0.2 h} \); \(ii, \text{THF, HMPA (1.1 equiv.), } -78 \ ^\circ\text{C, 0.2 h} \)

Scheme 147

instead of lithium enolates derived from \(\alpha \)-seleno esters (Schemes 152, d; Scheme 153, e and f; Scheme 154, d).

The mechanism of this C(1)–C(3) isomerization has been investigated,113 starting from the alcohols resulting from the hydrolysis of the C-1 adducts of cyclohexenone. Reaction of these alcohols with bases leads to the alcoholates which then rearrange to the C-3 adducts. This rearrangement takes place113 almost instantaneously with potassium alcoholates and is substantially less efficient with the lithium analogs (Scheme 155). In the latter case it is faster113 with phenylseleno than with methylseleno derivatives and with adducts bearing an alkyl group on the carbon next to the ester group (Scheme 155, compare a to b).

Each of the two stereoisomeric C-1 adducts shown in Scheme 156, when subjected to the reactions mentioned above, leads to a different ratio of the C-3 stereoisomers (Scheme 156, a).113 It was also found
that the C(3)–C(1) isomerization involves the dissociation of the C-1 adduct to cyclohexenone and α-metallo-α-seleno esters.113 Since the isomerization is performed in the presence of chalcone the ester enolate moiety is transferred to the latter enone (Scheme 156, b).113
Heteroatom-stabilized Carbanion Equivalents

\[
\begin{align*}
\text{O} & \quad + \quad \text{MeSe} \quad \text{SeMe} \quad \text{Li} \\
\text{i, ii} & \quad \rightarrow \quad \text{O} \quad \text{SeMe} \quad \text{SeMe} \\
\text{iii} & \quad \rightarrow \quad \text{O} \quad \text{Et} \\
\end{align*}
\]

(ref. 230)

4-Me 5-Me 6-Me

58%, 95:5* 76%, 13:87 74%, 32:68

74% 90% 85%

* The first number in the ratio refers to the compound shown.

i, THF-HMPA (1:1.1), −78 °C; ii, aq. NH₄Cl; iii, Bu₃SnH (3 equiv.), AIBN (0.1 equiv.), toluene, 0.3 h

Scheme 151

2.6.3.5.4 Reaction of organometallics bearing an α-seleno carbanion with carboxylic acid derivatives and related compounds

(i) Reactions involving α-selenoalkyllithiums and α-selenoxyalkyllithiums

α-Selenoalkyllithiums have also been reacted with other carbonyl compounds such as esters,235 acid chlorides,235,236 carboxylic anhydrides,235 dimethylformamide,12,162,235,237 and nitriles,42 as well as chlorocarbonates,235 carbonic anhydride (Scheme 157, a–d; Scheme 158)12,77,235 and α,β-unsaturated lactones.238 In the last case the C-3 adduct, produced when the reaction is performed in THF–HMPA, has been successfully used in an efficient synthesis of pederin (Scheme 159).238 Finally, it is possible to acylate98 α-selenoxyalkyllithiums but, except for special cases, yields are unsatisfactory (Scheme 157, e).

(ii) Reactions involving 1,1-bis(seleno)alkyllithiums

1,1-Bis(seleno)alkyllithiums exclusively add232 at the C-1 site of α,β-unsaturated esters in THF (Scheme 160, a).157 The reaction does not in fact stop at that stage since the organometallic reacts further on the α',α'-bis(seleno)-α-enone intermediate to give an α-seleno-α-enone and 1,1,1-tris(methylseleno)-

\[
\begin{align*}
\text{R}^1 & \quad \text{CO}_2\text{Me} \\
\text{RSe} & \quad \text{M} \\
\end{align*}
\]

(refs. 113, 157)

\[
\begin{align*}
\text{M} & \quad \text{Conditions} & \quad \text{R} & \quad \text{R}^1 & \quad \text{Yield (\%)} \\
(a) & \quad \text{Li} \quad \text{THF,} -78 \ ^\circ \text{C,} 0.2 \ h & \quad \text{Me} & \quad \text{H} & \quad 80 \\
b) & \quad \text{Li} \quad \text{THF,} -78 \ ^\circ \text{C,} 0.2 \ h & \quad \text{Me} & \quad \text{Me} & \quad 89 \\
c) & \quad \text{Li} \quad \text{THF,} -78 \ ^\circ \text{C,} 0.2 \ h & \quad \text{Ph} & \quad \text{H} & \quad 74 \\
d) & \quad \text{K} \quad \text{THF,} -78 \ ^\circ \text{C,} 0.2 \ h & \quad \text{Me} & \quad \text{Me} & \quad 75 \\
e) & \quad \text{Li} \quad \text{Ether,} -78 \ or \ -100 \ ^\circ \text{C} & \quad \text{Ph} & \quad \text{Me} & \quad 70 \\
\end{align*}
\]

(Condition Yield (%) Ratio (ref. 112)

(f) THF, −78 °C, 0.5 h 45 81:19
(g) THF–HMPA, −78 °C, 0.5 h 41 15:85

Scheme 152
alkane after hydrolysis.157 If the reaction is performed instead in THF–HMPA or in DME, an alkyl γ,γ-(dimethylseleno)alkylcarboxylate, resulting from the addition of the organometallic at the C-3 site of the α,β-unsaturated ester, is produced exclusively (Scheme 160, b).157

Otherwise, α-selenoxyalkyllithiums have been reacted with aromatic esters,97,98 and 1-metallo-1-selenonoalkenes efficiently react with acyl bromides,173 dimethylformamide (Schemes 43 and 101),122,123,176 chlorocarbonates176 and carbonic anhydride (Schemes 101 and 103).65,123,176
Heteroatom-stabilized Carbanion Equivalents

\[\text{Scheme 155} \]

\[\begin{align*}
R & \quad R' \\
(a) & \quad \text{Ph} \quad \text{H} \\
(b) & \quad \text{Ph} \quad \text{Me} \\
& \quad \text{Ph} \quad \text{Me} \\
& \quad \text{Ph} \quad \text{Me} \\
\text{Temperature (°C)} & \quad \text{Time (h)*} \\
-25 & \quad 1 \\
-60 & \quad 0.2 \\
-40 & \quad 0.1 \\
-25 & \quad \text{Instantaneous}
\end{align*} \]

* Minimum required for complete C(1)–C(3) isomerization.

\[\text{Scheme 156} \]

2.6.4 β-HYDROXYALKYL SELENIDES AS VALUABLE SYNTHETIC INTERMEDIATES

2.6.4.1 Generalities

β-Hydroxyalkyl selenides are valuable intermediates for the synthesis of various selenium-free compounds. Although typical reactions of alcohols and selenides can often be achieved on such functionalized derivatives, some other reactions involve at the same time both functionalities. In fact, β-hydroxyalkyl selenides can be viewed as 'super' pinacols, since they possess two very well differentiated functionalities. The oxygen atom is hard and is linked to a hydrogen, whereas the selenium atom is softer and is attached to an alkyl or an aryl group. Typical reactions of β-hydroxyalkyl selenides, including those that are functionalized, are displayed in Schemes 96 and 161–167. β-Hydroxyalkyl selenides have been, amongst other things: (i) oxidized to α-selenocarbonyl compounds, β-hydroxyalkyl selenoxides (precursors of allyl alcohols) and β-hydroxyalkyl selenones (precursors of epoxides or rearranged...
Selenium Stabilization

(a)

(b)

(c)

(d)

(e)

Scheme 157

\[\text{Scheme 157} \]

\[\begin{array}{c|c|c}
R & \text{Yield} (%) & R' & \text{Yield} (%) & \text{Yield} (%) \\
\hline
\text{Ph} & 74 & \text{Ph} & 89 & 91 \\
\text{Me} & 86 & \text{Me} & 86 & 80 \\
\text{Me} & 78 & \text{Ph} & 86 & 81 \\
\end{array} \]

\[n = 1, \ R = \text{Ph}, \ 42\% \text{ (ref. 97)}; \ n = 2, \ R = \text{Ph}, \ 88\%; \ R = \text{Me}, \ 79\% \text{ (ref. 94)} \]

Scheme 158

\[n = 1, \ R = \text{Ph}, \ 42\% \text{ (ref. 97)}; \ n = 2, \ R = \text{Ph}, \ 88\%; \ R = \text{Me}, \ 79\% \text{ (ref. 94)} \]
Heteroatom-stabilized Carbanion Equivalents

Scheme 159

C₆H₁₁\[\text{SeMe}\] + (MeSe)₂CMe

Scheme 160

ketones; (ii) reduced to alcohols; (iii) transformed to halohydrins, \(\beta\)-haloalkyl selenides, vinyl selenides, alkenes, epoxides and rearranged ketones; and (iv) transformed to \(\beta\)-hydroxyalkylselenonium salts (precursors, \textit{inter alia}, of epoxides).

Although some reactions, such as the transformation of \(\beta\)-hydroxyalkyl selenides to \(\beta\)-haloalkyl selenides (Scheme 161, b)\(^7\) or to vinyl selenides,\(^7\) enones (Scheme 161, f),\(^7,240\) \(\alpha,\alpha\)-dihalocyclopropanes (Scheme 162, f)\(^98\) or \(\beta\)-hydroxyalkyl halides (Scheme 161, h; Scheme 162, g),\(^223,241\) have been occasionally described or found only with specific types of \(\beta\)-hydroxyalkyl selenides, especially those having a strained ring [e.g. their transformation to allyl selenides (Scheme 163, b),\(^12,161\) \(1\)-selenocyclobutanes (Scheme 163, c),\(^12,161\) and cyclobutanones (Scheme 163, f),\(^12,159,160,163\)] others are far more general. This is particularly the case of their reductions to alcohols (Scheme 161, a; Scheme 162, a; Scheme 163, a; Scheme 164, a; Scheme 165, a)\(^7,188,189,246\) or alkenes (Scheme 161, c; Scheme 162, c; Scheme 163, d; Scheme 164, c; Scheme 165, a; Scheme 166, c)\(^7,188,189,194,239\) their transformation to allyl alcohols (Scheme 161, e; Scheme 162, b; Scheme 164, b; Scheme 166, b)\(^18,195\) epoxides (Scheme 161, g; Scheme 162, d; Scheme 163, e; Scheme 164, d; Scheme 165, d; Scheme 166, d)\(^7,188,189,206\) and rearranged carbonyl compounds (Scheme 162, e; Scheme 164, e; Scheme 165, a, c; Scheme 166, e)\(^188,198,244\) as well as oxidation to \(\alpha\)-selenocarbonyl compounds (Scheme 161, d),\(^240,242,248-251\)
Reduction of β-Hydroxyalkyl Selenides to Alcohols

The reduction of β-hydroxyalkyl selenides to alcohols has been achieved\(^7,12,188,189,247,254\) by lithium in ethylamine (Scheme 161, a; Scheme 162, a; Scheme 163, a; Scheme 167)\(^246\) or triphenyl- or tributyl-tin hydride in toluene,\(^148,247,254\) with or without AIBN. Most of these reactions proceed through radicals. The reactions involving tin hydrides can be carried out thermally around 120 °C\(^247\) or photochemically at much lower temperature (0–20 °C).\(^148,252\) The cleavage of the C—SePh bond is faster\(^255\) than that of the

(a) \[\text{R} = \text{Me} \]

Li, H\(_2\)NEt, −10 °C, 0.2 h
Bu\(_3\)SnH, benzene, 80 °C, 24 h

(b) \[\text{SOCl}_2, \text{CCl}_4, 20 ^\circ\text{C} \]

(c) \[\text{Conditions} \]

<table>
<thead>
<tr>
<th>(\text{R})</th>
<th>(\text{Yield} (%))</th>
<th>(\text{R})</th>
<th>(\text{Yield} (%))</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTSA, pentane, reflux, 7 h</td>
<td>Me</td>
<td>62</td>
<td>Ph</td>
<td>70</td>
</tr>
<tr>
<td>HClO(_4), ether, 20 °C, 7 h</td>
<td>Me</td>
<td>85</td>
<td>Ph</td>
<td>94</td>
</tr>
<tr>
<td>(CF(_3)CO(_2))(_2)O, Et(_3)N, CH(_2)Cl(_2), 20 °C, 15 h</td>
<td>Me</td>
<td>75</td>
<td>Ph</td>
<td>65</td>
</tr>
<tr>
<td>Im(_2)CO, 110 °C, 18 h</td>
<td>Me</td>
<td>85</td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>Im(_2)CS, 80 °C, 8 h</td>
<td>Me</td>
<td>75</td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>Ph(_3)N, CH(_2)Cl(_2), −78 to 0 °C, 0.2 h</td>
<td>Me</td>
<td>80</td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>SOCl(_2), Et(_3)N, CH(_2)Cl(_2), 20 °C, 3 h</td>
<td>Me</td>
<td>88</td>
<td></td>
<td>194</td>
</tr>
</tbody>
</table>

(d) \[\text{R} = \text{Me}; \text{R}^1 = \text{C}_{10}H_{21}; \text{R}^2 = \text{H} \]

i, NOS, Me\(_2\)S; ii, benzene, 6 h; iii, Et\(_3\)N
or Ph\(_3\)BiCO\(_3\), CH\(_2\)Cl\(_2\), 50 °C, 48 h

70% (ref. 240)
80% (ref. 242)

(e) \[\text{H}_2\text{O}_2, \text{THF}, 20 ^\circ\text{C}, 3 \text{ h} \]

or Bu'OOH, Al\(_2\)O\(_3\), 55 °C, 3–7 h

R = Ph; \(\text{R}^1 = \text{C}_2\text{H}_{11}; \text{R}^2 = \text{C}_6\text{H}_{13} \)
66% (ref. 243)

R = Ph; \(\text{R}^1 = \text{C}_2\text{H}_{11}; \text{R}^2 = \text{C}_6\text{H}_{13} \)
50% (refs. 195, 243)

R = Me; \(\text{R}^1 = \text{Et}; \text{R}^2 = \text{Pr} \)
73% (refs. 195, 243)

(f) \[\text{CrO}_3 - \text{H}_2\text{SO}_4, \text{THF}, 60 ^\circ\text{C}, 0.5 \text{ h} \]

on the lithium alcoholate

\[\text{C}_9\text{H}_{21} \rightarrow \text{C}_6\text{H}_{13} \]

>50%

(ref. 240)

Scheme 161
C—SeMe and the C—Cl bonds and often faster than that of the C—Br bond. The reduction is highly chemoselective and leads to alcohols usually in almost quantitative yield (Scheme 161, a; Scheme 164, a; Scheme 168, a and b). In rare cases, however, such as when a carbon–carbon double or triple bond is present in a suitable position, the formation of a five- or six-membered ring takes place by trapping of the radical intermediate (Scheme 118). Tin hydride reduction has been advantageously extended to β-hydroxy-γ-alkenyl and β-hydroxy-α-alkenyl selenides displayed in Scheme 166 (a) and Scheme 168 (a and b) and derived from α-selenoalkyllithiums and enenones, and from 1-seleno-1-alkenyl metals and carbonyl compounds, respectively.

2.6.4.3 Reductive Elimination of β-Hydroxyalkyl Selenides to Alkenes

β-Hydroxyalkyl selenides are valuable precursors of alkenes. This reduction reaction, the mechanism of which is tentatively presented in Scheme 169, is observed when the hydroxy group is transformed to a better leaving group and occurs by formal anti elimination of the hydroxy and selenyl moieties. It takes advantage of: (i) the difference in reactivity between the hard oxygen and the soft selenium atom which allows the selective activation of the hydroxy group when a hard electrophile is used; (ii) the high propensity of the selenium atom to favor the substitution of the oxygen-containing moiety by participation, thus allowing the intermediate formation of a seleniranium ion; and (iii) the attack of an exogenous nucleophile on the charged selenium atom of the seleniranium ion which finally leads to the alkene.

This reaction has been performed on various β-hydroxyalkyl selenides bearing a phenylseleno (Scheme 21, b; Scheme 33, a; Schemes 38, 39, 53 and 128; Scheme 136, b and c; Scheme 161, c; Scheme 170), p-chlorophenylseleno (Scheme 170), m-trifluoromethylphenylseleno (Scheme 128), or a methylseleno moiety (Scheme 31, c; Scheme 98, b–d; Schemes 125 and 131; Scheme 132, b; Scheme 140, c; Scheme 161, c; Scheme 162, c; Scheme 163, d; Scheme 164, c; Scheme 165, a; Scheme 166, c; Scheme 168, c; Schemes 169 and 170), in the presence of an amine or trimethylsilyl chloride, perchloric or p-toluenesulfonic acids in pentane or ether, as well as mesyl chloride, thionyl chloride, trifluoroacetic anhydride, phosphorus oxychloride, or diphosphorus tetraiodide or phosphorus triiodide in acetonitrile. The reactions usually proceed at room temperature with the above reagents (Scheme 158, a and b; Scheme 161, c; Scheme 162, c; Scheme 163, d; Scheme 164, c), but require heating to 50 °C or to 110 °C when p-toluenesulfonic acid (Scheme 128; Scheme 161, c; Scheme 165, a) or carbonyl or thiocarbonyl diimidazole (Scheme 161, c; Scheme 163, d), respectively, is used.
Selenium Stabilization

Except in rare cases which will be discussed below, all these methods work equally well and allow the synthesis of almost all of the different types of alkene such as terminal, α,α- and α,β-disubstituted, tri- and tetra-substituted, including alkylidenecyclobutanes and alkylidenecyclohexanes (Scheme 162, c), especially those that are particularly hindered, as depicted in Scheme 164. Specific examples are gathered in: Scheme 53; Scheme 125; Scheme 140, c; Scheme 158, a and b; Scheme 161, c; Scheme 162, c; Scheme 163, d; Scheme 164, c; Scheme 165, a; Scheme 166, c; Scheme 170 and Scheme 171.
The reactions are usually easier with methylseleno\cite{199} than with phenylseleno,\cite{39,199} p-chlorophenylseleno,\cite{74} or (p-trifluoromethyl)phenylseleno,\cite{39,56} derivatives, and allenes\cite{176} and alkylidene cyclopropanes\cite{159} are much more difficult to synthesize than other alkenic compounds. Thus, although allyl selenides resulting from selective elimination of the hydroxy and the methylseleno moiety are usually produced from β-(methylseleno)-β′-(phenylseleno) alcohols,\cite{77,162,199} in the case of 1-seleno-1-(1′-hydroxy-2′-seleno)-
Selenium Stabilization

cyclopropanes the elimination takes place away from the cyclopropane ring and exclusively leads to 1-seleno-1-vinylcyclopropanes, and not to alkylidene cyclopropanes, whatever the nature of the seleno moiety (Scheme 125; Scheme 158, a and b).

(a)

\[
\begin{align*}
\text{i, Bu}_3\text{SnH (1.1 equiv.)} & \quad \text{AIBN (0.1 equiv)} \\
& \quad \text{80 °C, 0.2 h}
\end{align*}
\]

\[
\begin{align*}
R^3 &= H; R = Me, R^1 = R^2 = H; R = R^1 = R^2 = Me \quad \text{quantitative} \\
R^3 &= Me; R = Me, R^1 = R^2 = H; R = R^1 = R^2 = Me \quad \text{quantitative}
\end{align*}
\]

(b)

\[
\begin{align*}
\text{ii, Bu'OOH (4 equiv.)} & \quad \text{Al}_2\text{O}_3 (8 \text{ equiv.}) \\
& \quad \text{THF, 55 °C, 3 h}
\end{align*}
\]

\[
\begin{align*}
R &= R^3 = Me \\
& \quad \text{85%} \\
R &= Me; R^3 = H \\
& \quad \text{94%}
\end{align*}
\]

(c)

\[
\begin{align*}
\text{iii or iv} & \quad R = Me
\end{align*}
\]

\[
\begin{align*}
\text{iii, SOCl}_2, \text{Et}_3\text{N, CH}_2\text{Cl}_2, 20 \text{ °C} & \quad R^1 = H, R^2 = R^3 = Me; R^1 = R^2 = R^3 = Me \quad 63\% \\
& \quad \text{(ref. 189)}
\end{align*}
\]

\[
\begin{align*}
& \quad \text{or iv, PI}_3, \text{Et}_3\text{N, CH}_2\text{Cl}_2, 20 \text{ °C} \\
R^1 &= R^2 = R^3 = H \\
R^1 &= R^2 = H; R^3 = Me \\
R^1 &= H; R^2 = R^3 = Me \\
R^1 &= R^2 = \text{CH}_2\text{CH}_2; R^3 = H \\
& \quad 75\% \\
& \quad \text{(ref. 159)}
\end{align*}
\]

(d)

\[
\begin{align*}
\text{v, vi or} & \quad \text{vii, viii}
\end{align*}
\]

\[
\begin{align*}
\text{v, MeSO}_4 \text{ (neat); vi, 50% aq. KOH, CH}_2\text{Cl}_2 & \quad R^1 = R^2 = R^3 = H \quad 96\% \\
& \quad 55\%
\end{align*}
\]

\[
\begin{align*}
R^1 &= H; R^2 = Me; R^3 = H \\
& \quad 89\%
\end{align*}
\]

\[
\begin{align*}
R^1 &= R^2 = Me; R^3 = H \\
& \quad 0\%
\end{align*}
\]

\[
\begin{align*}
& \quad \text{or vii, MeSO}_3\text{F, ether, -78 to 20 °C; viii, 10% aq. KOH, ether} \\
R^1 &= R^2 = R^3 = H \\
R^1 &= R^3 = H; R^2 = Me \\
R^1 &= R^2 = Me; R^3 = H \\
R^1 &= R^2 = R^3 = Me \\
R^1 &= R^2 = Me; R^2 = \text{C}_8\text{H}_13 \\
& \quad 92\%
\end{align*}
\]

Scheme 164
Acidic conditions are, in most cases, as good as others but they have, at least in the case of \(\beta \)-hydroxyalkyl selenides bearing two alkyl substituents at the selenium-bearing carbon, a tendency to produce rearranged compounds besides the expected alkenes (Scheme 165, a). These become the exclusive compounds obtained when 1-seleno-1-(1'-hydroxyalkyl)cyclopropanes are involved (Schemes 132, a; Scheme 163, f-h). This behavior is general for almost all cyclopropylcarbinols bearing a heterosubstituent (e.g. OR, NR\(_2\), SR, SeR) at that position on the cyclopropane ring (see Section 2.6.4.5.3).

In general, the best combination, at least in our hands, involves phosphorus triiodide or diposphorus tetraiodide and \(\beta \)-hydroxyalkyl methyl selenides. These conditions allow the high yield synthesis of: (i) highly hindered alkenes derived from, for example, bulky selenoalkyllithiums such as those bearing two alkyl groups on the carbanionic center, and particularly hindered 2,2,6-trimethylcyclohexanone, 2,2,6,6-tetramethylcyclohexanone (Scheme 164) and di-\(t \)-butyl ketone; (ii) highly strained and hindered alkylidenecyclopropanes derived from 1-methylselenocyclopentyllithium and ketones including 2,2,6-trimethylcyclohexanone (Scheme 163, d); and (iii) allenes from \(\beta \)-hydroxyalkenyl methyl selenides derived from 1-seleno-1-alkenylicthiums (Scheme 167, c).

These successful conditions take advantage of (i) the high affinity of trivalent phosphorus for oxygen; (ii) the ease with which a methylseleno moiety (compared to phenylseleno) is able to participate in order
Selenium Stabilization

(a) Bu₃SnH (1.1 equiv.)
AIBN (0.1 equiv.)
R = R¹ = Me, R² = H
Bu'OOH (4 equiv.)
Al₂O₃ (8 equiv.)
THF, 55 °C, 3 h
R = R¹ = R² = Me

(b) R = Me, R¹ = C₆H₁₃, R² = H
OPCl₃, Et₃N, 20 °C
41%

(c) R = Me, R¹ = C₆H₁₃, R² = H
Et₃N, 20 °C
79%

(d) MeI, 25 °C

(e) 5.5 equiv. TlOEt
CHCl₃, 20 °C
R = Ph, R¹ = R² = H
64%

(f) 5.5 equiv. TlOEt
CHCl₃, 20 °C
R = R¹ = Me, R² = H
66%

Scheme 166

to expel the activated oxygen-containing group; and (iii) the softness of the iodide counterion which favors its reaction on the selenium atom rather than on the carbon atom of the intermediate seleniranium ion (see, for example, Scheme 169).

The reductive elimination reported above allows the stereoselective synthesis of each of the two stereoisomers of several alkenes, including those that are disubstituted, trisubstituted and functionalized, from each of the two stereoisomers of β-hydroxyalkyl selenides (Schemes 170–172).

The reductive elimination has been successfully applied to the synthesis of various functionalized alkenes such as: (i) dienes, including α,ω-dienes (Scheme 11) and 1,3-dienes (Schemes 128 and 131; Scheme 132, d; Scheme 136, a and c); (ii) vinyl ethers (Scheme 21, a; Scheme 97); (iii) vinylsilanes (Scheme 96); (iv) vinyl selenides (Scheme 21, b and c; Scheme 98, b–d); and 1,3-dienyl selenides (Scheme 33, a); (v) ketene selenoacetals (Scheme 31, c); (vi) allyl sulfides; (vii) allylsilanes; (viii) allyl selenides (Scheme 125; Scheme 158, a and b); and (ix) α,β-unsaturated esters (Schemes 39 and 170) and lactones (Scheme 38).

Particularly interesting results have been observed from β-hydroxy-α-trimethylsilylalkyl selenides since vinylsilanes are exclusively produced under conditions where both the selenyl and the silyl moieties are removed with the hydroxy moiety. Apparently the selenyl moiety seems to stabilize a β-carbenium ion to a better extent than a silyl group.
Heteroatom-stabilized Carbanion Equivalents

\[
\begin{align*}
\text{Conditions (1)} & \quad \text{Yield (\%)}^a & \text{Conditions (2)} & \quad \text{Yield (\%)}^c \\
\text{H} & \text{H} & \text{THF, } -78^\circ\text{C}, 1 \text{ h} & 68, 85:15 & \text{MeMgI, ether} & 95, 56:44 \\
\text{H} & \text{Me} & \text{Ether, } -78^\circ\text{C}, 2 \text{ h} & 78, 100:0 & \text{EtMgBr, ether} & 80, 68:12 \\
\text{Me} & \text{Me} & \text{Ether, } -78^\circ\text{C}, 2 \text{ h} & 75, 100:0 & \text{Pr'MgBr, ether} & 47, 83:17 \\
\text{MeLi, ether} & & & & \text{Bu'MgCl} & 22, 100:0
\end{align*}
\]

\(^a\) Yield is (A) + (C), ratio is (A):(C). \(^b\) Yield is (B) + (D), ratio is (B):(D), from reactions (A) to (B) and (C) to (D). \(^c\) Yield is (B) + (D), ratio (B):(D).

Scheme 167 210

(a)

(b)

(c)

i, Bu\(^{\text{t}}\)Li, THF; ii, R\(^1\)R\(^2\)CO; iii, H\(_2\)O\(^+\); iv, Bu\(_3\)SnH, AIBN, toluene, 110 °C, 3 h; v, P\(_2\)I\(_4\), Et\(_3\)N, 20 °C, 1.5 h

Scheme 168

Scheme 169

(ref. 194)
The elimination is completely chemoselective with 1-(1-hydroxyalkyl)-5-lactones\(^7\) and with methyl \(\beta\)-hydroxy-\(\alpha\)-selenoalkylcarboxylates (precursors of (E)-\(\alpha\),\(\beta\)-unsaturated methyl carboxylates; Scheme 39, b and Scheme 170),\(^56,74\) but not with the other stereoisomer which produces a mixture of (Z)-\(\alpha\),\(\beta\)-unsaturated methyl carboxylates (by formal selenenic elimination) and \(\alpha\)-seleno-\(\alpha\),\(\beta\)-unsaturated methyl carboxylates (by formal elimination of water).

Elimination of water is particularly favored from \(p\)-chlorophenyl\(^7\) and \((p\)-trifluoromethyl)phenyl\(^56\) selenides, whereas elimination of seleninic acid is mainly observed from methylseleno derivatives. Here, two different effects work in the same direction. The arylseleno group, more than the methylseleno group, makes the \(\alpha\)-hydrogen acidic, and has at the same time a lower tendency to stabilize a \(\beta\)-carbenium ion via the formation of a seleniranium ion.

\[R_{FB} - R_{FA} = 0.1 - 0.2; \text{SiO}_2, \text{ether-pentane (2:8)} \]

\(i, \text{LDA, THF, } -78 \, ^\circ\text{C}; ii, \text{C}_6\text{H}_{13}\text{CHO; iii, OPICl, Et}_3\text{N, } 20 \, ^\circ\text{C, } 2\, \text{h}\)

Scheme 170

--

\[^*\] Refers to the yield after separation of the 1:1 mixture of stereoisomers

\(i, -78 \, ^\circ\text{C, } 1-1.5\, \text{h}; ii, \text{H}_2\text{O}^+; iii, \text{separation by TLC; iv, PI}_3, \text{Et}_3\text{N}\)

Scheme 171\(^189\)
Heteroatom-stabilized Carbanion Equivalents

(a) $\text{PrC(SeMe)(Me)Li, THF, } -78 \, ^\circ\text{C; ii, } H_2O^+; \text{ iii, separation (SiO}_2, \text{ hexane-ethyl acetate); iv, PI}_3, \text{ Et}_3N,$

CH$_2$Cl$_2$ on each stereoisomer; v, EtC(SeMe)(Me)Li, THF, $-78 \, ^\circ\text{C; vi, } H_3O^+; \text{ vii, separation; viii, MeSO}_2F;$

ix, aq. KOH, ether; x, H_3O^+

Scheme 172

2.6.4.4 Synthesis of Allyl Alcohols

β-Hydroxyalkyl selenoxides directly available from α-lithioalkyl selenoxides or by oxidation of β-hydroxyalkyl selenides are valuable precursors of allyl alcohols (Schemes 51 and 52; Scheme 54, a; Scheme 105; Scheme 161, c; Scheme 162, b; Scheme 164, b; Scheme 166, b; Schemes 173 and 174). In the former case the reaction is usually performed on thermolysis at around $70 \, ^\circ\text{C in carbon tetrachloride}$ and in the presence of an amine able to trap the selenenic acid concomitantly produced.

In general, the elimination reaction is easier: (i) with arylseleno derivatives bearing an electron-withdrawing group at the ortho or para position of the phenyl ring than with their phenylseleno or methylseleno analogs; and (ii) when it provides a relatively more-substituted carbon–carbon double bond.

On β-hydroxyalkyl phenyl selenides, the oxidation–elimination is best achieved with an excess of 30% aqueous hydrogen peroxide according to the original description of Sharpless (Scheme 174, c and d). Although 1-(1'-hydroxyalkyl)cyclohexyl phenyl selenide produces under these conditions a hydroperoxide (Scheme 174, a), the desired elimination reaction has been successfully achieved with sodium periodate in ethanol (Scheme 174, b).

The above conditions are not suitable for β-hydroxyalkyl methyl selenides (Scheme 175, a) or for β-hydroxyalkyl phenyl selenides bearing a primary hydroxy group (Scheme 176, a). Several other conditions including ozone and t-butyl hydroperoxide are not efficient for that purpose (Schemes 175 and 176). The best reagent is t-butyl hydroperoxide supported on basic alumina. The reaction takes place at reflux in THF, and allows the synthesis from β-hydroxyalkyl methyl selenides of a large variety
of allyl alcohols, even those bearing a primary hydroxy group (Scheme 161, e; Scheme 162, b; Scheme 164, b; Scheme 174, c; Scheme 175, c; Scheme 176, c).193

This reaction, which is related to the well-known amine oxide pyrolysis,262 involves a syn elimination of the selenenic acid, but proceeds under milder conditions (20 °C to 60 °C instead of 400 °C). It is more regioselective, takes place away from the oxygen and leads to allyl alcohols instead of enols, except when the only available hydrogen is the one α to the hydroxy group (Scheme 173, b).97

Selenoxides normally show97 a preference for elimination towards the least-substituted carbon (Scheme 173, c), and for the formation of conjugated over unconjugated alkenes.

In the case presented in Scheme 51 the differences in behavior of the β-hydroxyalkyl selenoxides of different origin may be due to different diastereoisomeric ratios the equilibration of which is hampered by steric crowding. Therefore, there is a pronounced stereocentric effect on the regiochemistry of selenoxide syn elimination reactions. This elimination reaction leads to allyl alcohols where the α,β-disubstituted double bond possesses exclusively the (E)-stereochemistry when reasonably bulky groups are present (Scheme 52; Scheme 105, c; Scheme 174, d).7,40,42,97,195,243 Those substituted with smaller groups such as a primary hydroxy group (Scheme 176, e), or an ethynyl moiety (Scheme 173, d)97 lead, however, to a mixture of stereoisomers in which the (E)-isomer prevails.

This reaction allows the synthesis of: (i) β,β'-dienols by oxidation of β-hydroxy-γ-alkenyl selenenides239,245 or more conveniently from α-lithioalkyl selenoxides and enones (Scheme 136 and 166);97 (ii) β,β'-dienols from 1-lithio-3-alkenyl phenyl selenoxides and carbonyl compounds (Scheme 177);97 and (iii) 2-(1'-hydroxyalkyl)-1,3-butadienes from 1-methylselenocyclobutylithium and carbonyl compounds (Scheme 178).136 α,β-Unsaturated alcohols bearing a methylselenoxy or a phenylselenoxy group at the α-position do not lead on thermolysis to propargyl alcohols; however, those bearing a (trifluoromethylphenyl)selenoxy moiety at the α-position are valuable precursors of such compounds (Scheme 179).103
Finally, 1-(1-selenoalkyl)cyclobutanols provide the expected 1-(1'-alkenyl)cyclobutanols (Scheme 54, a), 127,128 whereas a ring enlargement reaction leading to a mixture of cyclopentanones and α-phenylselenocyclopentanones (Scheme 54, b) occurs with the corresponding alcoholates. 127,128 The last reaction is strictly limited to strained compounds such as cyclobutanols and cyclopropanols, and does not take place with higher homologs.

Finally, 1-(1-selenoalkyl)cyclobutanols provide the expected 1-(1'-alkenyl)cyclobutanols (Scheme 54, a), 127,128 whereas a ring enlargement reaction leading to a mixture of cyclopentanones and α-phenylselenocyclopentanones (Scheme 54, b) occurs with the corresponding alcoholates. 127,128 The last reaction is strictly limited to strained compounds such as cyclobutanols and cyclopropanols, and does not take place with higher homologs.

Finally, 1-(1-selenoalkyl)cyclobutanols provide the expected 1-(1'-alkenyl)cyclobutanols (Scheme 54, a), 127,128 whereas a ring enlargement reaction leading to a mixture of cyclopentanones and α-phenylselenocyclopentanones (Scheme 54, b) occurs with the corresponding alcoholates. 127,128 The last reaction is strictly limited to strained compounds such as cyclobutanols and cyclopropanols, and does not take place with higher homologs.
2.6.4.5 β-Hydroxyalkyl Selenides as Precursors of Epoxides and Carbonyl Compounds

Generalities

The presence of two potential leaving groups β to each other makes β-hydroxyalkyl selenides valuable candidates for epoxide synthesis,206a as well as for pinacol-type rearrangement.206b These concurrent transformations, which usually require the selective activation of the selenyl moiety to a better leaving
group, have been successfully achieved by three distinct ways: (i) by alkylation to β-hydroxyalkyl selenium salts; (ii) by oxidation to β-hydroxyalkyl selenones; and (iii) by complexation with metal salts where the metal is a soft acceptor. The first two methods can provide either the epoxide or the rearranged carbonyl compounds, whereas the last one exclusively leads to rearranged carbonyl compounds only when the carbon bearing the seleno moiety is alkyl disubstituted.

2.6.4.5.2 Synthesis of epoxides

The transformation of β-hydroxyalkyl selenides to epoxides (Schemes 124, 132b, 134a, 161g, 162d, 163e, 164d, 165b, 166d and 180–185) has been achieved under three different sets of conditions: (i) by alkylation of the selenium atom, leading to stable β-hydroxyalkylselenonium salts, with MeI,55,136,163,206,221,236,239,263 \(\text{Me} - \text{AgBF}_4 \), \(\text{Me}_2 \text{SO}_4 \), \(\text{Et}_2 \text{OBF}_4 \) or \(\text{MeFSO}_3 \); (ii) by reaction of dichlorocarbene, generated from chloroform and thallous ethoxide \((5.5 \text{ equiv. TlOEt, CHCl}_3, 20 ^\circ \text{C, } 8-24 \text{ h}) \); and (iii) by oxidation to \(\alpha\)-hydroxyalkyl selenones \((2.5 \text{ equiv. MCPBA, CHCl}_3) \) which are cyclized in the presence of a base \(\text{Bu'OK/DMSO, KOH/CHCl}_3 \) or \(\text{Bu'OK/DMSO, KOH/CHCl}_3 \). All these reactions proceed stereoselectively by complete inversion of the configuration at the substituted carbon.206,236,263,264,266

The reaction involving the alkylation of β-hydroxyalkyl selenides to give β-hydroxyalkylselenonium salts which are then cyclized with a base is by far the most general. It allows the synthesis of a large variety of epoxides such as terminal, α,α- and α,β-disubstituted, \(\text{tri-, tetra-} \) and \(\text{oxa-} \) as well as \(\text{oxygen-} \) and \(\text{octane-} \) salts. The most successful combination involves methylseleno derivatives as starting materials, methyl iodide (neat) as the alkylation agent and 10% aqueous potassium hydroxide solution in ether as the base.188 In some difficult cases, such as those involving hindered β-hydroxyalkyl selenides,188 the reaction can be improved by the use of 50% aqueous KOH/ether.130 All these reactions proceed stereoselectively as detailed in the configurations at the substituted carbon.206,236,263,264,266

The most successful combination involves methylseleno derivatives as starting materials, methyl iodide (neat) as the alkylation agent and 10% aqueous potassium hydroxide solution in ether as the base.188 In some difficult cases, such as those involving hindered β-hydroxyalkyl selenides,188 the reaction can be improved by the use of 50% aqueous KOH/ether.130 All these reactions proceed stereoselectively as detailed in the configurations at the substituted carbon.206,236,263,264,266

<table>
<thead>
<tr>
<th>Conditions</th>
<th>(R')</th>
<th>(R'')</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>i, ii</td>
<td>(\text{OH})</td>
<td>Me</td>
<td>81</td>
</tr>
<tr>
<td>iii, iv</td>
<td>H</td>
<td>Me</td>
<td>81</td>
</tr>
<tr>
<td>iii, v</td>
<td>H</td>
<td>C(_9)H(_19)</td>
<td>67</td>
</tr>
<tr>
<td>iv, (\text{Bu'OK/DMSO})</td>
<td>H</td>
<td>H</td>
<td>65</td>
</tr>
<tr>
<td>v, 10% KOH, ether, 20 °C; vi, cyclobutanone</td>
<td>C(_{10})H(_21)</td>
<td>H</td>
<td>65</td>
</tr>
<tr>
<td>vi, MeI*AgBF(_4)</td>
<td>H</td>
<td>C(_9)H(_19)</td>
<td>67</td>
</tr>
</tbody>
</table>

Scheme 180
Selenium Stabilization

Seleno moiety is linked to a cyclohexane ring or to a primary alcohol (Scheme 164, d; Schemes 182 and 183), the consecutive use of methyl fluorosulfonate and aqueous potassium hydroxide in ether or pentane is required in order to avoid the concomitant formation of carbonyl compounds, allyl alcohols or alkenes which are observed when other conditions are used.

Scheme 181

Scheme 182

Scheme 183

Methylseleno derivatives offer the advantage of being more easily methylated than their phenylseleno analogs (MeI instead of MeI–AgBF4) and allowing the synthesis of a wide range of β-hydroxyalkylselenonium salts, including those which have two alkyl groups on the carbon bearing the selenium atom. These are unavailable from phenylseleno derivatives; therefore, tetrasubstituted epoxides can only be produced from methylseleno compounds.

The reaction involving dichlorocarbene also provides a wide range of epoxides, including terminal, α,α- and α,β-dialkyl-substituted and trialkyl-substituted compounds, from a large variety of β-hydroxyalkyl methyl and phenyl selenides (Scheme 162, d). The thallous ethoxide reaction, although it takes place more slowly (especially with phenylseleno derivatives) than under phase transfer catalysis conditions, has to be in several instances preferred since it avoids the concomitant formation of carbonyl compounds.
alkenic or dihalocyclopropane derivatives often observed under the latter conditions. This reaction is less general than that involving the discrete formation of \(\beta \)-hydroxyalkylselenonium salts since it takes another course with \(\beta \)-hydroxyalkyl selenides where the carbon bearing the seleno moiety is dialkyl substituted, and instead delivers rearranged ketones (see Section 2.6.4.5.3). This method, therefore, does not allow the synthesis of tetraalkyl-substituted epoxides (Scheme 162, compare d and e). However it offers the definite advantage of taking place in one step and avoiding the use of expensive silver tetrafluoroborate or triethyloxonium tetrafluoroborate.

The reaction involving \(\beta \)-hydroxyalkyl selenones is by far the less attractive route to epoxides among those cited above due to the difficulties usually encountered in the oxidation step and the easy rearrangement of the \(\beta \)-hydroxyalkyl selenones to carbonyl compounds (Scheme 184, b and c). This method is, however, particularly useful for the synthesis of oxaspiropentanes (Scheme 163, e; Scheme 185), which cannot be obtained under other conditions.

\[
\text{Conditions} \\
\text{(b) MCPBA (3 equiv.), CH}_2\text{Cl}_2, 20^\circ\text{C, 3 h} \\
\text{(c) excess K}_2\text{CO}_3, \text{MCPBA (3 equiv.), CH}_2\text{Cl}_2, 20^\circ\text{C, 3 h} \\
\text{Yield (\%)} \\
\text{4} \quad \text{21} \quad \text{56} \\
\text{44} \quad \text{--} \quad \text{9}
\]

Scheme 184

\[
\text{Conditions} \\
\text{(a) MCPBA, CH}_2\text{Cl}_2, 20^\circ\text{C, 4 h} \\
\text{R} = \text{Me, 30\%} \\
\text{R} = \text{Ph, 44\%}
\]

Scheme 184

2.6.4.5.3 Rearrangement of \(\beta \)-hydroxyalkyl selenides to carbonyl compounds

The rearrangement of \(\beta \)-hydroxyalkyl selenides to carbonyl compounds has been carried out under different conditions, which have to be chosen with regard to the structure of the starting material and especially the substitution pattern around the carbon bearing the seleno moiety. The rearrangement of \(\beta \)-hydroxyalkyl selenides possessing two hydrogen atoms on the carbon bearing the seleno moiety has not yet been achieved. However, the rearrangement of monoalkyl-substituted derivatives takes place on oxidation with \(m \)-chloroperoxybenzoic acid (2.5 equiv. of MCPBA in CHCl\(_3\)) or in MeOH (Scheme 184), and the rearrangement of dialkyl-substituted compounds occurs on reaction with silver tetrafluoroborate in dichloromethane and chloroform or silver tetrafluoroborate supported on basic alumina in the same solvents (Scheme 162, e; Scheme 186, a; Scheme 187), or silver nitrate with dichlorocarbene generated from chloroform and thallous ethoxide or a 50% aqueous solution of potassium hydroxide in the presence of a phase transfer catalyst (PhNEt\(_3\)Cl, TEBAC)
The above conditions allow the synthesis of a large variety of α,α-dialkyl substituted ketones including spiro derivatives and cyclopentanones, cyclohexanones, cycloheptanones and cyclododecanones bearing two alkyl groups at the α-position (Scheme 162, e; Scheme 165, c; Scheme 166, e; Scheme 186, a and b; Scheme 187; Scheme 188, a; Scheme 189, a and b).160,198,204,244

The reactions are less selective when the dichlorocarbene is generated from bromodichloromethane223 and lead to gem-dichlorocyclopropanes if the dichlorocarbene is produced from chloroform and potassium t-butoxide (Scheme 162, f; Scheme 188, b; Scheme 189, c).198

Particularly crowded or strained derivatives lead to carbonyl compounds under special conditions. Thus, β-hydroxyalkylselenonium salts, obtained on alkylation of particularly hindered β-hydroxyalkyl selenides and the selenium-bearing carbon of which is dialkyl substituted, have been rearranged166,188 to ketones by heating or by simple dissolution in dichloromethane (Scheme 164, e; Scheme 186, c).

Strained β-oxidoalkyl phenyl selenoxides, such as 1-oxido-1-(1'-phenylselenoxyalkyl)cyclopropanes, derived from oxaspiropentanes with tetraalkyl-substituted oxirane rings,268 and 1-(1'-hydroxyalkyl)-1-selenoxycyclobutanes,127~128 obtained on oxidation of the corresponding selenides or on reaction of α-thioalkyl selenoxides with cyclobutenones, possess a high propensity to rearrange to cyclobutanones.
Heteroatom-stabilized Carbanion Equivalents

(a) $\text{HO} \quad \text{Bu'OK (10 equiv.), CHX}_3 \text{ (20 equiv.)}$

(b) $\text{pentane, exothermic}$

$X = \text{Cl}; n = 3, 39\%; n = 4, 50\%; n = 12, 40\%$

$i, \text{TIOEt (5.5 equiv.), CHCl}_3, 20 ^\circ \text{C}, 8 \text{ h}; ii, 50\% \text{aq. KOH, CHCl}_3, \text{TEBAC, 20 } ^\circ \text{C, 1 h}$

Allyl alcohols also produced (4–13%)

Scheme 188

Conditions R n Yield (%) Ratio

(a)	Ph	1	87	100	0	0	0	198, 244
(b)	Ph	2	92	100	0	0	0	198, 244
(c)	Me	1	91	78	22	0	0	198

(i, TIOEt (5.5 equiv.), CHCl$_3$, 20 °C, 8 h; ii, 10% aq. KOH, CHCl$_3$ (3 equiv.), TEBAC, CH$_2$Cl$_2$, 20 °C; iii, Bu’OK (10 equiv.), CHCl$_3$ (10 equiv.), pentane, 20 °C)

Scheme 189

(Scheme 190268 and cyclopentanones (Schemes 54b and 121),127,128 respectively, rather than produce the corresponding allyl alcoholes via the well-established seleninic acid elimination (Section 2.6.4.4). The latter reaction, however, becomes important with oxaspiropentanes where the oxirane ring is trialkyl substituted (Scheme 191),268

Conditions Yield (\%) Ratio

| (a) | PhSeNa, EtOH, then MCPBA | 48 | 4:96 |
| (b) | LiBF$_4$ | 61 | 100:0 |

Scheme 190
The stereochemistry of the spirocyclobutanones shown in Scheme 190 seems to be determined by the rate of the ring expansion compared with that of bond rotation. Indeed, in several cases high stereoselectivity is observed (Scheme 190, a) which is quite opposite to that found with lithium tetrafluoroborate (Scheme 190, b).

Finally, 1-(1'-hydroxyalkyl)-1-(methylseleno)cyclopropanes and some rare phenylseleno analogs belonging to the phenylcarbinol series produce cyclobutanones on reaction with p-toluenesulfonic acid in a similar manner to the phenylthio analogs. This reaction has allowed the synthesis of a large variety of cyclobutanones, including those that are polyalkylated (Scheme 163; f–h), aryl substituted or vinyl substituted (Scheme 132, a; Scheme 186), by selective migration of the more-substituted carbon (Scheme 163, compare h with f).

The conditions involving dichlorocarbene generated from chloroform and thallium ethoxide give the best chemoselectivity, yields and reproducibility. The reactions are usually carried out at room temperature and require at least 8 h to go to completion. They are faster with methylseleno than with phenylseleno derivatives when performed at a higher temperature. The reactions performed under phase transfer catalysis conditions are valuable owing to the simplicity of the reagents used and the particularly rapid reaction rate (20 °C, 1–2 h). They lead, however, to appreciable amounts of allyl alcohol (5–20%) besides the rearranged ketones. They are valuable for the synthesis of the most water soluble and volatile ketones, such as 2,2-dimethylcyclopentanone, since they avoid the presence of ethanol and chloroform, difficult to remove from the desired compounds. The same transformation can also be performed with silver tetrafluoroborate or silver tetrafluoroborate supported on basic alumina. The latter conditions are usually better than the former since they avoid the presence of fluoroboric acid, responsible for the concomitant formation of alkenes (by formal elimination of RSeOH).

When two different groups are susceptible to migrate on reaction of β-hydroxyalkyl selenides with dichlorocarbene or silver salts, the tendency to migrate follows the order CH2SiMe3 < H < Ph < alkyl (Scheme 192; Scheme 165, c). In general, the more alkyl substituted carbon possesses the highest propensity to migrate whatever the conditions used (Scheme 192). In the case of 2-methylocyclohexanols, however, low selectivity has been observed with thallium(1) ethoxide (Scheme 192, a and b) and, surprisingly, when the reaction is instead performed with silver tetrafluoroborate, the less-substituted carbon has the highest tendency to migrate (Scheme 192, c).

The case of β-hydroxy-γ-alkenyl selenides merits further comment. The rearrangement efficiently takes place using the thallium(I) ethoxide method and the presence of an additional double bond in the reactant does not introduce a serious problem associated with unwanted reaction with the dichlorocarbene intermediate. This is not the case when silver tetrafluoroborate is used.

The thallium ethoxide method almost selectively provides α,α-dialkyl-β-enones by vinyl migration in sterically unconstrained straight chain derivatives whereas alkyl migration leading to α-enones takes place almost exclusively with the 2-cyclohexen-1-ol derivatives shown in Scheme 194. This is probably due to interrelationships of steric and conformational influences associated with proper anti perpendicular alignment of the RSeCClH leaving group. However, such high selectivity in favor of the alkyl over the vinyl migration is not observed with 2-cycloalken-1-ols of lower (2-cyclopenten-1-ols) and of higher (2-cycloocten-1-ols) ring size (Scheme 194), and although the alkyl migration is favored with 6-alkyl-substituted 2-cyclohexen-1-ols, the vinyl migration is observed if the cyclohexene ring is substituted at the 2- or 3-position (Schemes 134 and 195).
Heteroatom-stabilized Carbanion Equivalents

\[
\text{HO} \quad \text{SeMe} \quad \text{i or ii or iii} \quad \text{R} \quad \text{R} \quad \text{+} \quad \text{R} \quad \text{Conditions} \quad n \quad \text{Yield (\%)} \quad \text{Ratio} \quad \text{Ref.}
\]

\begin{tabular}{|c|c|c|c|c|}
\hline
R & Conditions & n & Yield (\%) & Ratio & Ref. \\
\hline
(a) & H & i & 2 & 76 & 90:10 & 197, 244 \\
H & i & 3 & 77 & 60:40 & 197, 244 \\
H & i & 4 & 65 & 78:22 & 197, 244 \\
(b) & H & ii & 2 & 69 & 92:8 & 197 \\
H & ii & 3 & 58 & 62:38 & 197 \\
H & ii & 4 & 56 & 84:16 & 197 \\
(c) & H & iii & 2 & 74 & 90:10 & 204 \\
H & iii & 3 & 54 & 22:78 & 204 \\
H & iii & 4 & 49 & 72:28 & 204 \\
(d) & Me & i & 3 & 81 & 100:0 & 197, 244 \\
Me & i & 4 & 81 & 99:1 & 197, 244 \\
(e) & Me & ii & 3 & 54 & 100:0 & 197 \\
Me & ii & 4 & 52 & 99:1 & 197 \\
(f) & Me & iii & 3 & 65 & 100:0 & 204 \\
Me & iii & 4 & 55 & 70:30 & 204 \\
\hline
\end{tabular}

i. TiOEt (5.5 equiv.), CHCl₃, 20 °C; ii. 10% aq. KOH, CHCl₃, TBEAC, 20 °C; iii. AgBF₄-Al₂O₃, CH₂Cl₂, 20 °C

*Scheme 192

2.6.4.5.4 Mechanism of epoxide and ketone formation from \(\beta\)-hydroxyalkyl selenides

Striking differences exist between silver tetrafluoroborate and dichlorocarbene mediated reactions since they proceed differently in several instances. Although the dichlorocarbene reaction takes place with almost all kinds of \(\beta\)-hydroxyalkyl selenides, the silver tetrafluoroborate mediated reaction only works with those \(\beta\)-hydroxyalkyl selenides which possess two alkyl groups on the carbon bearing the seleno moiety and on the condition that no unsaturation is present around the active site. Furthermore, detailed investigations carried out on the \(\beta\)-hydroxyalkyl selenides (35) and (36) shown in Scheme 196 shed some light on the intimate mechanism of these reactions and on the subtle differences which exist between dichlorocarbene and silver tetrafluoroborate mediated reactions, although both often lead to identical products from the same starting materials.

Thus, the \(\beta\)-hydroxyalkyl selenides (35a) and (35b) react with dichlorocarbene and stereoselectively lead to trans- and cis-9,10-epoxyoctadecene (37a and 37b; Scheme 196). Under similar conditions the \(\beta\)-hydroxyalkyl selenide (36a) regio- and stereoselectively leads to the cycloheptanone (38a) resulting from the migration of the most-substituted carbon, and its diastereoisomer (36b) produces a mixture of the regioisomeric cycloheptanones (38b) and (39a) in which the latter, arising from the migration of the least-substituted carbon, prevails (Scheme 196, c and e).

Thus, both the reactions take place apparently in a concerted manner with inversion of the configuration at the substituted carbon and in the

\[
\begin{align*}
\text{MeSe} & \xrightarrow{\text{TiOEt (5.5 equiv.), CHCl₃}} \text{R}^1 \text{OH} + \text{Pr} \\
\text{R}^1 & = \text{Me, 43\%}, 100:0 \\
\text{R}^1 & = \text{Et, 71\%}, 78:22 \\
\text{PhSe} & \xrightarrow{\text{TiOEt (5.5 equiv.), CHCl₃}} \text{PhO} \\
\text{98\%} & \xrightarrow{\text{(ref. 226)}} \text{(ref. 226)}
\end{align*}
\]

*Scheme 193
Selenium Stabilization

\[
\text{HO} \quad \text{SeR} \quad \text{TIOEt (5.5 equiv.), CHCl}_3
\]

\[
\text{O} \quad \text{O} \quad \text{O}
\]

\[
\begin{array}{ccc}
\text{n} & \text{R} & \text{Yield (\%)} & \text{Ratio} \\
(a) & 1 & \text{Me} & -- & 43:57 \\
(b) & 2 & \text{Me} & 68 & 9:1:9 \\
(b) & 2 & \text{Ph} & 84 & 95:5 \\
(a) & 3 & \text{Me} & 69 & 51:49 \\
(b) & 3 & \text{Ph} & 88 & 56:44 \\
(a) & 8 & \text{Me} & 87 & 42:58 \\
\end{array}
\]

Scheme 194

\[
\text{HO} \quad \text{SeR} \quad \text{TIOEt (5.5 equiv.), CHCl}_3
\]

\[
\text{O} \quad \text{O} \quad \text{O}
\]

\[
\begin{array}{ccc}
\text{n} & \text{R} & \text{Yield (\%)} & \text{Ratio} \\
(c) & 1 & \text{Ph} & 95 & 80:20 \\
(d) & 2 & \text{Me} & 80 & 90:10 \\
\end{array}
\]

Scheme 195

The reactions of the same \(\beta\)-hydroxyalkyl selenides (35) and (36) with silver tetrafluoroborate take a somewhat different course. Although cycloheptanones are produced from (36), (35) is unreactive and gives only the starting materials on heating (Scheme 196). Furthermore, with the \(\beta\)-hydroxyalkyl selenides (36) the structure and stereochemistry of the cycloheptanones obtained are different from those disclosed when the reaction is carried out with dichlorocarbene. Not only the least-substituted carbon now migrates, regardless of whether (36a) or (36b) is involved, but also the ring enlargement proceeds with almost complete racemization from (36b) (leading to a mixture of 39a and 39b; Scheme 196) and with apparent complete retention of configuration from (36a) (leading to 39a; Scheme 196). The latter might be the result of two consecutive inversions involving the intermediate formation of an epoxide, but this remains to be confirmed.

The reaction of dichlorocarbene with \(\beta\)-hydroxyalkyl selenides is believed to take place selectively on the selenium atom, thus producing the corresponding \(\beta\)-hydroxyalkyldichloromethylene selenium ylide (40; Scheme 197). This, after an intramolecular proton transfer leading to (41; Scheme 197), which probably occurs in a six-membered transition state, collapses selectively to the epoxide or to the carbonyl compound depending upon the substitution pattern around the substituted carbon. The regiochemistry of the latter reaction depends upon the stereochemistry of the starting material, and the regioisomeric ratio without doubt reflects the ratio of the two conformers (43 and 44; Scheme 197).
which have the different groups involved in the rearrangement properly aligned for antiparallel migration. These two conformations are not isoenergetic and will not be attained with equal probability.
2.6.4.6 Synthetic Uses of β-Hydroxyalkyl Selenides: Comparison with Well-established Related Reactions

2.6.4.6.1 Generalities

The combination of reactions described above (Sections 2.6.4.2 to 2.6.4.5) allows the selective synthesis of a large variety of alcohols, allyl alcohols, alkenes, epoxides and carbonyl compounds from β-hydroxyalkyl selenides. These products often can be obtained from two carbonyl compounds by activation of one of them as an α-selenoalkyllithium (Schemes 161–196).

2.6.4.6.2 Synthesis of alcohols

The whole process involving the reaction of an α-selenoalkyllithium with a carbonyl compound and further reduction of the C-Se bond in the resulting β-hydroxyalkyl selenide leads to an alcohol which can be directly produced from an alkyl metal and the same carbonyl compound (Section 2.6.4.2). This two-step procedure offers, in some cases, interesting advantages due to the larger size of α-selenoalkyllithiums, which favors a better stereochemical control (see, for example, Scheme 167 for comparison between the two approaches).²¹⁰

2.6.4.6.3 Synthesis of allyl alcohols

 Allyl alcohols have been prepared from α-selenoalkyllithiums or from α-selenoxyalkyllithiums and carbonyl compounds (Section 2.6.4.4). Although the former route is less connective than the latter, it usually provides allyl alcohols in similar yields (Scheme 198) and offers the advantage of a higher nucleophilicity of the organometallic, which becomes valuable for the more-hindered carbonyl compounds (Scheme 164, b). Both α-selenoalkyllithiums and α-selenoxyalkyllithiums in these processes are synthetically equivalent to vinyl anions. The principal advantage over the classical alkenyllithium route is in the availability of the starting materials (selenoacetals and alkyl selenides), in contrast to the difficulty of obtaining the simplest vinyl halides. Furthermore, since allyl alcohols can be obtained via the selenoacetal route from two carbonyl compounds, the activation of each of the two derivatives allows the regioselective synthesis of one of the two isomeric allyl alcohols (Scheme 174, b and c).²⁴⁹

2.6.4.6.4 Synthesis of epoxides, alkenes and carbonyl compounds

 Alkenes, epoxides and carbonyl compounds have been conveniently prepared from β-hydroxyalkyl selenides (Sections 2.6.4.3 and 2.6.4.5). These often can, in turn, be obtained from two carbonyl compounds by activation of one of them as an α-selenoalkyllithium. Although each of the two carbonyl compounds can be formally transformed to an α-selenoalkyllithium, in practice a judicious selection is often of some value and even in some cases crucial for the success of the transformations. The following rules might help for the choice. It is better to transform to an α-selenoalkyllithium the carbonyl com-
pound which is: (i) the most readily available; (ii) the least substituted; (iii) the least hindered; and (iv) not aryl or vinyl substituted. Since α-selenoalkyllithiums belong to the well-known family of α-hetero-substituted organometallics,7 some of them, such as phosphorus ylides7,25,269-275 or α-silylalkyllithiums,7,16,31,276 sulfur ylides7,25,32,33 or α-thioalkyllithiums,7,16,33 and diazoalkanes277 have been intensively and successfully used for the one-pot synthesis from carbonyl compounds of alkenes and epoxides, as well as for the ring enlargement of cyclic ketones. The selective synthesis of the same compounds can also be achieved from α-selenoalkyllithiums by the multistep sequences already discussed, which involve the formation of the same bonds (shown in bold in Scheme 199).

![Scheme 199](image)

Although in many instances the well-established, one-step procedures presented above are very efficient and should be preferred to the α-selenoalkyllithium route, there remain several cases for which the latter approach offers definite advantages.

The synthesis of the starting α-selenoalkyllithiums is, as already mentioned, easy and straightforward. Differently substituted reagents, including those bearing two alkyl groups on the carbanionic center, are available from carbonyl compounds and via a sequence of reactions which regioselectively allow the replacement of the carbonyl oxygen atom by the seleno moiety and the lithium atom. This compares very well to the synthesis of: (i) phosphorus and sulphur ylides, which require the use of lengthy procedures when s-alkyl-phosphonium7,25,32,33 (with the exclusion of 2-propyl and cyclopropyl derivatives) are needed; and (ii) α-silyl7,16,31,276 or α-thio-alkyllithiums7,16,33 which is limited to the unsubstituted and monoalkyl-substituted derivatives.

The high nucleophilicity of α-selenoalkyllithiums towards carbonyl compounds, even those that are the most hindered or enolizable, such as 2,2,6-trimethyl- and 2,2,6,6-tetramethyl-cyclohexanone (Schemes 113 and 164),188 di-t-butyl ketone,189 permethylcyclobutanone,190,191 permethylcyclopentanone (Schemes 113 and 187),190,191 and deoxybenzoin (Schemes 115, 116 and 165),159,194,196,223 allows the synthesis of related alkenes, epoxides and rearranged ketones which are not available from the same carbonyl compounds on reaction with phosphorus or sulfur ylides278,279 or diazoalkanes.206a

The high tendency of α-selenoalkyllithiums, even those that bear alkyl substituents on the carbanionic center, to add at the C-1 site of enones allows the high yield synthesis of vinyl oxiranes (Schemes 132, 134 and 166).221*239 These cannot be prepared from sulfur ylides since they add across the carbon-carbon double bond of enones to produce cyclopropyl ketones (Scheme 200).220

![Scheme 200](image)

In the rearrangement reaction, the multistep sequence offers the definite advantage of avoiding the polyhomologation of cyclic ketones, often encountered with diazoalkanes277 due to the presence of the reagent with both the starting and rearranged ketone.

The stereoisomeric mixture of β-hydroxyalkyl selenides resulting from the reaction of the α-selenoalkyllithium and the carbonyl compound has been often cleanly and easily separated into its constituents by liquid chromatography on silica gel (Schemes 124, 133, 134, and 170-172).200,206,222,226,229,258,259 This has, therefore, allowed the synthesis of each of the two stereoisomers of various di- and tri-substituted alkenes (Schemes 124, 170 and 171; Scheme 172, a) and epoxides (Scheme 124; Scheme 172, b),206 which are otherwise obtained as intractable mixtures of stereoisomers through the conventional phosphorus or sulfur ylide methods. Last but not least, 2-lithio-2-methylselenopropane can be used as the precursor of various compounds bearing gem dimethyl substituted carbons, such as squalene,222 oxidosqualene,206,222,229 lanosterol222 and cholesterol.222 Use of commercially available perdeuterated or 14C1 or 14C2 acetone allows the straightforward synthesis of the corresponding labelled compounds (Schemes 131 and 201), which otherwise would have required a more lengthy synthetic route.
2.6.5 MISCELLANEOUS REACTIONS INVOLVING FUNCTIONALIZED α-SELENOALKYL METALS AND CARBONYL COMPOUNDS

2.6.5.1 α-Selenoalkyl and α-Selenoxyalkyl Metals as Vinyl Anion Equivalents

α-Selenoalkyllithiums and α-selenoxyalkyllithiums have at several occasions played the role of vinylithium equivalents. Thus, various β-seleno-232 and β-selenoxy-carbonyl298 compounds have been transformed to α,β-unsaturated carbonyl compounds by taking advantage of the well-established elimination of the corresponding selenoxide (Scheme 157, c, d and e).

2.6.5.2 1,1-Bis(seleno)alkyl Metals and 1-Silyl-1-selenoalkyl Metals as Acyl Anion Equivalents

2.6.5.2.1 1,1-Bis(seleno)alkyl metals as acyl anion equivalents

1,1-Bis(seleno)alkyl metals are valuable acyl anion equivalents. Thus β-hydroxybis(seleno)alkanes,281 as well as β-hydroxy-y,δ-unsaturated bis(seleno)alkanes or γ-oxobis(seleno)alkanes, selectively obtained on reaction of enals, or enones and 1-metallo-1,1-bis(seleno)alkanes in ether or THF–HMPA, immediately react73,94,233,281 with copper chloride–copper oxide in acetone and lead, respectively, to β-hydroxy-β,γ-unsaturated carbonyl73,94,233 compounds or γ-diketones (Scheme 139; Scheme 140, a, b and e; Scheme 149, b).94,233 In some rare cases (see Scheme 140, e), the reaction proceeds233 differently and instead leads to a vinyl selenide, which can be further transformed to a carbonyl compound when reacted with mercury(II) chloride.
2.6.5.2.2 1,1-Silyl-1-selenoalkyl metals as acyl anion equivalents

α-Hydroxycarbonyl compounds have also been synthesized171 from β-hydroxy-α-silylalkyl selenides and hydrogen peroxide (Scheme 96, d). The reaction proceeds smoothly under mild conditions and might involve a Pummerer-type rearrangement.

2.6.5.3 Homologation of Carboxyl Compounds from α-Heterosubstituted-α-selenoalkyl Metals

α-Selenoalkyl metals bearing on the carbanionic center a phosphono,106 phosphonato (Scheme 28),102 silyl (Scheme 96, e)171 or seleno moiety (Scheme 98, b) allow the homologation of carbonyl compounds. The three former reagents immediately lead to vinyl selenides on reaction with carbonyl compounds, whereas the latter requires the reductive elimination of the β-hydroxybis(seleno)alkane intermediate to provide the same vinyl selenides (Scheme 98, b).108 These have been later transformed to carbonyl compounds on reaction with mercury(II) chloride.11,102,106,108,171

2.6.5.4 Conclusion

Most of the reactions described in this section have not been carried out on a large array of compounds. It is therefore difficult to compare their scope to the related reactions which use other α-hetero-substituted alkyl metals.7

2.6.6 GENERAL CONCLUSION

In conclusion, α-selenoalkyllithiums and α-selenoxyalkyl metals are versatile building blocks, readily available, and particularly prone to produce β-hydroxyalkyl selenides and β-hydroxyalkyl selenoxides which, after proper activation, have allowed the selective synthesis of various selenium-free compounds.

2.6.7 REFERENCES

Selenium Stabilization

3.1 Alkene Synthesis

SARAH E. KELLY

Pfizer Central Research, Groton, CT, USA

3.1.1 INTRODUCTION

3.1.2 METHYLENATION REACTIONS: INTRODUCTION

3.1.3 SILICON-STABILIZED METHYLENATION: THE PETERSON ALKENATION

3.1.4 SULFUR-STABILIZED METHYLENATION: THE JOHNSON (N-METHYLPHENYLSULFONIMIDOYL)METHYLLITHIUM METHOD

3.1.5 TITANIUM-STABILIZED METHYLENATION: THE TEBBE REACTION

3.1.6 TITANIUM-ZINC METHYLENATION

3.1.7 OTHER METHODS OF METHYLENATION

3.1.8 ALKENE FORMATION: INTRODUCTION

3.1.9 PHOSPHORUS-STABILIZED ALKENATION

730

731

731

731

731

734

734

734

737

737

737

738

738

738

738

741

742

742

743

743

746

748

749

749

749

749

749

750

750

750

750

751

751

755

755

755

755

757
3.1.9.3 Phosphonates: the Horner–Wadsworth–Emmons Reaction

3.1.9.3.1 Mechanism

3.1.9.3.2 Formation of (E)-alkenes

3.1.9.3.3 (E)-Selectivity, effect of phosphonate size

3.1.9.3.4 Formation of (Z)-alkenes

3.1.9.3.5 Effect of bases

3.1.9.3.6 Asymmetric Horner–Wadsworth–Emmons

3.1.9.4 Phosphine Oxides: the Horner Reaction

3.1.9.4.1 Elimination

3.1.9.4.2 Erythro selectivity, cis-alkene

3.1.9.4.3 Threo selectivity, trans-alkene

3.1.9.4.4 Disubstituted alkenes

3.1.9.4.5 Trisubstituted alkenes

3.1.9.4.6 Alternative approaches

3.1.10 SILICON-MEDIATED ALKENE FORMATION

3.1.10.1 Anion Formation

3.1.10.2 Elimination

3.1.10.3 Mechanism

3.1.10.4 Alkene Formation

3.1.10.5 Heteroatom Substitution

3.1.10.5.1 Silicon

3.1.10.5.2 Sulfur

3.1.10.5.3 Phosphorus

3.1.10.6 Synthesis of Conjugated Alkenes

3.1.10.7 Lewis Acid Catalysis

3.1.11 SULFUR-STABILIZED ALKENATIONS: THE JULIA COUPLING

3.1.11.1 (E)-/(Z)-Selectivity

3.1.11.2 Reductive Cleavage

3.1.11.3 The Synthesis of (E)-Disubstituted Alkenes: Comparison with the Wittig Reaction

3.1.11.3.1 The synthesis of pseudomonol acid C

3.1.11.3.2 Other examples

3.1.11.4 (E)-Trisubstituted Alkene Synthesis

3.1.11.4.1 The milbemycins and avermectins

3.1.11.4.2 FK-506

3.1.11.5 Diene Synthesis

3.1.11.5.1 X-14547 A

3.1.11.5.2 The diene portions of avermectin and milbemycin

3.1.11.5.3 The double elimination of the sulfone and the hydroxy component

3.1.11.6 Reaction with Esters

3.1.11.6.1 Alkene formation

3.1.11.6.2 Vinyl sulfone formation

3.1.11.6.3 Alkynie formation

3.1.11.7 Lewis Acid Catalyzed Additions of Sulfone Anions to Carbons

3.1.12 METHODS OF ALKENE FORMATION BY METAL CARBENE COMPLEXES

3.1.12.1 Chromium

3.1.12.1.1 Alkenyl halides

3.1.12.1.2 Substituted examples

3.1.12.2 Titanium–Zinc

3.1.13 REFERENCES

3.1.1 INTRODUCTION

In this chapter, the various methods of converting a carbonyl derivative to an alkene are discussed. Particular focus has been given to recently developed methods and their use in the context of natural product synthesis. Formally this volume in the series is devoted to nonstabilized carbanion additions, but this mechanistic definition has not been strictly adhered to in this chapter. The methods are categorized according to the type of alkene synthesized, and the stabilizing group attached to the anion or carbene. In addition, all of the methods discussed involve the addition of a carbon unit to the carbonyl, followed by some type of elimination or cleavage to the alkene. To further narrow the scope of this chapter, the added carbon unit and the original carbonyl carbon must form the units of the alkene, as shown in Scheme 1.
Aldehydes, ketones, esters and lactones, and amides and lactams are all featured in these sections, depending on the synthetic method being discussed.

$$\text{O} \quad + \quad \text{M}^+ \quad - \quad \text{R}^2 \quad \text{R}^3$$

Scheme 1

3.1.2 METHYLENATION REACTIONS: INTRODUCTION

The methylenation of ketones and aldehydes by the Wittig reaction is a well-established and selective methodology. Unlike addition–elimination methods of alkene formation, the Wittig proceeds in a defined sense, producing an alkene at the original site of the carbonyl. The Wittig reaction is not considered here, but is used as the standard by which the methods discussed are measured. The topics covered in the methylenation sections include the Peterson alkenation, the Johnson sulfoximine approach, the Tebbe reaction and the Oshima-Takai titanium-dihalomethane method.

3.1.3 SILICON-STABILIZED METHYLENATION: THE PETERSON ALKENATION

The conversion of a carbonyl to an alkene can be effected by the addition of a α-silyl-substituted alkyl anion to an aldehyde or ketone, followed by either alkoxide attack on the silicon and elimination of silanolate, or acid-catalyzed elimination (Scheme 2).

$$\text{SiR}_3^+ \quad + \quad \text{O} \quad \rightarrow \quad \text{SiR}_3 \quad \rightarrow \quad \text{R}^2 \quad \text{R}^3$$

Scheme 2

In the case of base-induced elimination, the Peterson alkenation relies on the strong bond formed between silicon and oxygen, and the ready propensity for silicon to be attacked by alkoxide, to drive the reaction. In the original study by Peterson, the β-silylcarbinols were prepared by the addition of (trimethylsilyl)methylmagnesium chloride to the carbonyl. The carbinols were subsequently eliminated by treatment with sodium or potassium hydride or with sulfuric acid to form the methylene derivatives in excellent yield. The Peterson reaction has proven to be of general utility in the synthesis of alkenes.

3.1.3.1 Methylenation in Comparison with the Wittig Reaction

The Peterson reagent is more basic and is sterically less hindered than the phosphorus ylide. Therefore, the reagent has the advantage of being more reactive than the Wittig reagent and the side product, hexamethyldisiloxane, is simpler to remove than the various phosphorus by-products of the Wittig reaction. One of the most frequently cited comparisons of the Wittig reaction with the Peterson is the synthesis of β-gorgonene (2) by Boeckman and coworkers, where the Wittig failed and the Peterson methodology was successful (equation 1).
Transformation of the Carbonyl Group into Nonhydroxylic Groups

In an interesting comparison of the propensity for alkoxide attack on silicon, given the option of elimination in the direction of phosphorus or silicon, it is the silicon elimination that prevails, to give the vinylphosphonium salt (Scheme 3). For use with enolizable carbonyls, the basicity of the reagent can be greatly reduced by the use of cerium chloride, as discussed in Section 3.1.3.4.2.

\[
\begin{array}{c}
\text{Ph} - \text{Ph} + \text{Ph}_2\text{P} = \text{SiMe}_3 \\
\xrightarrow{i, \text{LiCH}_2\text{SiMe}_3} \text{Ph}_2\text{P} = \text{SiMe}_3 \\
\xrightarrow{\text{ii}, \text{DDQ, THF}} \text{Ph} = \text{SiMe}_3 \\
\end{array}
\]

Scheme 3

3.1.3.2 Elimination Conditions

As Peterson outlined in his preliminary communication of the method, either basic (KH, KOBu or NaH) or acidic conditions (acetic acid, sulfuric acid or boron trifluoride etherate) may be utilized to effect the elimination of the silylcarbinol. Alternatively the initial adduct may be treated \textit{in situ} with thionyl or acetyl chloride. This procedure may be advantageous in cases where isomerization of the alkene is problematic, and is particularly useful in the synthesis of terminal alkenes. As discussed in Section 3.1.3.4.2, the Johnson group has successfully employed aqueous HF to effect the elimination and this method may also have advantages in situations complicated by base-catalyzed isomerization.

3.1.3.3 Variation of the Metal Anion

The most prevalent applications of the Peterson methodology are with the readily available lithium or magnesium anions, which have similar reactivity with both aldehydes and ketones. Recent examples of the Peterson methylation in organic synthesis are presented in Table 1.

In addition to the examples in Table 1, the Peterson methylation has been used in several interesting natural product syntheses, as the examples in equation (2)–(6) indicate. Danishefsky and coworkers used the Peterson reaction in an approach to mitomycins (4; equation 2). This application demonstrated the use of unique elimination conditions. The hydroxysilane intermediate was stable to direct Peterson elimination. Therefore, the removal of the silyl protecting group and the elimination of the silyloxy group were carried out with DDQ in quantitative yield.

\[
\begin{array}{c}
\begin{array}{c}
\text{Et}_3\text{SiO} \\
\text{MeO} \\
\text{O} \\
\text{N} \\
\text{Me} \\
\text{OR} \\
\text{OMe} \\
\end{array} \\
i, \text{LiCH}_2\text{SiMe}_3, \text{high yield} \\
\xrightarrow{\text{ii}, \text{DDQ, THF}} \\
\text{MeO} \\
\text{O} \\
\text{N} \\
\text{Me} \\
\text{OMe} \\
\end{array}
\]

(3) \(R = \text{H, Me} \)

(4)

The Peterson methodology has seen wide application in the synthesis of carbohydrates. The preparation of 3-C-methylene sugars (6) was demonstrated by Carey and coworkers, with the methylation proceeding without elimination of the anomeric alkoxy group (equation 3). A more recent example of Peterson methylation of a carbohydrate is the synthesis of a deoxyamino sugar (8) by Fraser-Reid (equation 4). In this case, the carbonyl failed to react with the methyletenetriphenylphosphorane at room temperature, and forcing conditions resulted in decomposition. Application of the Oshima-Takai-Lombardo method also failed. The Peterson reagent added in excellent yield, and the elimination resulted in the formation of the desired methylene (8a) as well as the vinylsilane (8b).

\[
\begin{array}{c}
\begin{array}{c}
\text{Ph} \text{O} \\
\text{O} \\
\text{R} \text{OMe} \\
\end{array} \\
i, \text{Me}_3\text{SiCH}_2\text{MgCl}; 90\% \\
\xrightarrow{\text{ii}, \text{KH, THF}; 58\%} \\
\text{Ph} \text{O} \\
\text{O} \\
\text{HO} \text{OMe} \\
\end{array}
\]

(5) \(R = \text{OCOPh} \)

(6)

Further examples of the Peterson methylation successfully being applied when other techniques failed are shown in equations (5) and (6). In the synthesis of bicyclomycin, a diazabicyclooctadecane dione,
both the Wittig and the Tebbe procedures failed20. (Trimethylsilyl)methylmagnesium chloride was added to ketone (9) in 52\% yield. The usual elimination procedures failed. The trifluoroacetate was formed, and this derivative was treated with Bu\textsubscript{n}4NF to effect the elimination. Following deprotection, the desired methylene derivative (10) was isolated in 81\% yield (equation 5). In studies directed toward the synthesis of senoxepin (12), CH\textsubscript{2}Br\textsubscript{2}/Zn/TiCl\textsubscript{4} methylation destroyed the oxepin21. The Peterson reagent was successfully added, and further elaboration of the ring skeleton was carried out to complete the synthesis (equation 6).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Methylenation by the Addition of Lithium or Magnesium Trimethylsilylmethyl Anion to Carbonyls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate</td>
<td>Conditions</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>i, LiCH\textsubscript{2}SiMe\textsubscript{3}; ii, KH, THF; iii, Bu\textsubscript{n}4NF</td>
</tr>
<tr>
<td></td>
<td>i, ClMgCH\textsubscript{2}SiMe\textsubscript{3}; ii, SO\textsubscript{2}Cl\textsubscript{2}</td>
</tr>
<tr>
<td></td>
<td>i, LiCH\textsubscript{2}SiMe\textsubscript{3}; ii, NCS, AgNO\textsubscript{3}</td>
</tr>
<tr>
<td></td>
<td>i, ClMgCH\textsubscript{2}SiMe\textsubscript{3}; ii, H\textsubscript{2}SO\textsubscript{4}, THF; iii, HF, MeCN</td>
</tr>
<tr>
<td></td>
<td>i, ClMgCH\textsubscript{2}SiMe\textsubscript{3}; ii, cat. oxalic acid, MeOH</td>
</tr>
<tr>
<td></td>
<td>i, ClMgCH\textsubscript{2}SiMe\textsubscript{3}; ii, MeCOCl, MeCO\textsubscript{2}H</td>
</tr>
<tr>
<td></td>
<td>i, ClMgCH\textsubscript{2}SiMe\textsubscript{3}, 84%; ii, KH, THF, 89%</td>
</tr>
</tbody>
</table>

* Yield of product methylenated at side chain carbonyl only.
Transformation of the Carbonyl Group into Nonhydroxylic Groups

\[
\begin{align*}
\text{PivO} & \quad \text{CbzNH} \\
\text{O} & \quad \text{N} \\
\text{C} & \quad \text{O} \\
\text{O} & \quad \text{M} \\
\text{Bu} & \quad \text{O} \\
\text{(7)} \quad \text{Cbz} = \text{benzylxocarbonyl}
\end{align*}
\]

\[
\begin{align*}
\text{i, } \text{Me}_3\text{SiCH}_2\text{MgCl; } 90\% & \quad \text{PivO} \\
\text{ii, SOCl}_2, \text{pyridine; } 86\% & \quad \text{CbzNH} \\
\end{align*}
\]

\[
\begin{align*}
\text{OSiMe}_2\text{Bu} & \quad \text{OSiM} \\
\text{Bu} & \quad \text{O} \\
\text{Bu} & \quad \text{O} \\
\text{(8a) } R = \text{H; } 75\% & \quad \text{R} \\
\text{(8b) } R = \text{Me}_3\text{Si; } 25\%
\end{align*}
\]

\[
\begin{align*}
\text{O} & \quad \text{N} \\
\text{O} & \quad \text{M} \\
\text{Bu} & \quad \text{O} \\
\text{Bu} & \quad \text{O} \\
\text{Bu} & \quad \text{O} \\
\text{(9)} \\
\end{align*}
\]

\[
\begin{align*}
\text{i, } \text{Me}_3\text{SiCH}_2\text{MgCl; } 52\% & \quad \text{O} \\
\text{ii, (CF}_3\text{CO})_2\text{O, then } & \quad \text{O} \\
\text{Bu}^\text{a} & \quad \text{NF}, \text{KF, MeOH; } 81\% & \quad \text{Bu} \\
\end{align*}
\]

\[
\begin{align*}
\text{(10)} \\
\end{align*}
\]

\[
\begin{align*}
\text{O} & \quad \text{N} \\
\text{O} & \quad \text{M} \\
\text{Bu} & \quad \text{O} \\
\text{Bu} & \quad \text{O} \\
\text{Bu} & \quad \text{O} \\
\text{(11)} \\
\end{align*}
\]

\[
\begin{align*}
\text{i, } \text{Me}_3\text{SiCH}_2\text{MgCl; } 48\% & \quad \text{O} \\
\text{ii, MCPBA; } 82\% & \quad \text{O} \\
\text{iii, NBS, AIBN, then } & \quad \text{N} \\
\text{NaI, acetone; } 22\% \\
\end{align*}
\]

\[
\begin{align*}
\text{(12)} \\
\end{align*}
\]

3.1.3.4 Chemoselectivity

3.1.3.4.1 Titanium

Recently, the chemoselective addition of the α-silylmethyl anion to aldehydes has been accomplished with titanium (equation 7). In studies by Kauffmann, the Grignard derivative was treated with TiCl₄ to prepare the titanium species in situ.²² As indicated in Table 2,²² this reagent added in good yield to aldehydes to produce the desired methylene compounds but was ineffective for the conversion of ketones to the corresponding methylene compound.²³

\[
\begin{align*}
\text{O} & \quad \text{H} \\
\text{O} & \quad \text{H} \\
\text{TiCl}_4, \text{Me}_3\text{SiCH}_2\text{MgCl} & \quad \text{Et}_2\text{O} \\
\end{align*}
\]

\[
\begin{align*}
\text{Table 2} \quad \text{Titanium Peterson Methylenation}^{22}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Yield (%)</th>
<th>Substrate</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexanal</td>
<td>60</td>
<td>Benzaldehyde</td>
<td>59</td>
</tr>
<tr>
<td>Heptanal</td>
<td>65</td>
<td>3,3-Dimethyl-3-butanone</td>
<td>0</td>
</tr>
<tr>
<td>Octanal</td>
<td>59</td>
<td>4-tert-Butylcyclohexanone</td>
<td>8</td>
</tr>
<tr>
<td>Nonanal</td>
<td>61</td>
<td>Acetophenone</td>
<td>3</td>
</tr>
</tbody>
</table>

3.1.3.4.2 Cerium

Johnson has studied the cerium modification of the Peterson methylenation.²⁴ (Trimethylsilyl)methyl-lithium was added to CeCl₃ and the addition carried out in the presence of TMEDA (equation 8). The cerium lithium reagent proved to be superior to the lithium, magnesium or cerium magnesium mixed
species on reaction with base sensitive aldehydes and ketones. The addition is chemoselective for aldehydes and ketones in the presence of amides, esters and halides. The elimination was carried out with HF or KH. Aqueous hydrogen fluoride (with or without pyridine) gave superior yields of the desired products without isomerization. Several examples are listed in Table 3.

$$\text{Alkene Synthesis}$$

$$\text{Table 3 Cerium Modification of the Peterson Methylenation}^{24}$$

<table>
<thead>
<tr>
<th>Carbonyl</th>
<th>Me_3SiCH_2Li</th>
<th>Me_3SiCH_2Li/CeCl_3</th>
<th>HF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>78%</td>
<td>93%</td>
<td>84%</td>
</tr>
<tr>
<td></td>
<td>0%</td>
<td>82%</td>
<td>80%</td>
</tr>
<tr>
<td></td>
<td>6%</td>
<td>83%</td>
<td>87%</td>
</tr>
<tr>
<td></td>
<td>78%</td>
<td>91%</td>
<td>94%</td>
</tr>
<tr>
<td></td>
<td>56%</td>
<td>86%</td>
<td>93%</td>
</tr>
</tbody>
</table>

In addition, this approach has been utilized in the synthesis of allylsilanes, as shown in Scheme 4. An ester was reacted with an excess of the reagent prepared from TMSCH_2MgCl and CeCl_3 to give the bis(silylmethyl)carbinol (16). Treatment with silica gel resulted in the formation of the allylsilane (17). Examples are listed in Table 4.

$$\text{Scheme 4}$$

As in the work by Johnson, a distinct difference was noted in the magnesium- and lithium-derived cerium species. The lithium/cerium complex has been used by Fuchs and coworkers to synthesize allylsilane derivatives (20) from acyl chlorides (18; Scheme 5). This work is summarized in Table 5.
Transformation of the Carbonyl Group into Nonhydroxylic Groups

Table 4 Reaction with Esters

<table>
<thead>
<tr>
<th>Ester</th>
<th>Yield of allylsilane (%)</th>
<th>Ester</th>
<th>Yield of allylsilane (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTHPO</td>
<td>90</td>
<td>benzyl carbonate EtO</td>
<td>93</td>
</tr>
<tr>
<td>OMe</td>
<td>95</td>
<td>benzyl carbonate EtO</td>
<td>92</td>
</tr>
</tbody>
</table>

\[
\begin{array}{c}
\text{O} \\
\text{Me3Si} \\
\text{OH} \\
\text{Me3SiMe3}
\end{array}
\]

\[
\begin{array}{c}
\text{R} \\
\text{SiMe3} \\
\text{R} \\
\text{SiMe3}
\end{array}
\]

Scheme 5

Table 5 The Addition of the Cerium Peterson Reagent to Acid Chlorides to Form Allylsilanes

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Me3SiCH2MgCl</th>
<th>Me3SiCH2Li</th>
<th>Me3SiCH2Li/CeCl3</th>
</tr>
</thead>
<tbody>
<tr>
<td>C9H19OCl</td>
<td>20%</td>
<td>61%</td>
<td>87%</td>
</tr>
<tr>
<td>PhO2Cl</td>
<td>0%</td>
<td>40%</td>
<td>72%</td>
</tr>
<tr>
<td>benzyl OCl</td>
<td>22%</td>
<td>40%</td>
<td>90%</td>
</tr>
<tr>
<td>benzyl OCl</td>
<td>7%</td>
<td>64%</td>
<td>80%</td>
</tr>
</tbody>
</table>

Interestingly, the lithium/cerium reagent was not effective on reaction with esters. Besides the differences in counterion, the Fuchs and Bunnelle groups utilized different methods for forming the cerium complex. Johnson and Bunnelle formed the cerium Peterson reagent by heating CeCl3•7H2O to 140-150°C under high vacuum for 2 h.24,27 The flask is cooled and THF is added. The CeCl3 in THF is stirred at room temperature for 2 h, then cooled to -78°C, and the lithium or magnesium Peterson reagent is added. After this solution has been stirred for 30 min to 1 h the carbonyl derivative is added. The Fuchs anion is derived from commercially available CeCl3.28 It is stirred at room temperature in THF for 12-24 h, and then the solution is cooled and the Peterson anion added. It is unknown what effect the different preparations has on the additions to the various carbonyl derivatives. The cerium reagent has
proven to be highly advantageous for the synthesis of allylsilanes from esters or acid chlorides that are sterically hindered, without competitive enolization.

3.1.3.5 Substitution on Silicon\(^{29}\)

(Phenyldimethylsilyl)methylmagnesium chloride has recently been demonstrated to be an effective alternative to the trimethylsilyl derivative.\(^{30}\) This reagent has been used in the methylation of pyranosides (21). It forms a stable α-hydroxysilane that can be purified by silica gel chromatography. The intermediate may be oxidized to the diol or quantitatively cleaved to the methylene derivative (22; equation 9).

![Scheme 1](image)

3.1.3.6 Other Reactions

α,β-Epoxysilanes can be synthesized directly from an aldehyde or a ketone by the addition of chloromethyl(trimethylsilyl)lithium (Scheme 6).\(^{31}\) This functional group can be used to form the homologated aldehyde or ketone (24), or, as discussed in Section 3.1.10, additions may be carried out on the epoxide, and the β-hydroxysilane eliminated to form the alkene (25).

![Scheme 2](image)

3.1.4 SULFUR-STABILIZED METHYLENATION: THE JOHNSON (N-METHYLPHENYLSULFONIMIDOYL) METHYLLITHIUM METHOD

In 1973, Johnson reported the use of (N-methylphenylsulfonimidoyl)methyllithium (26) for addition to carbonyls, followed by reductive elimination to produce the methylene derivative (28; Scheme 7).\(^{32}\) As with the Tebbe and Oshima procedures discussed in Sections 3.1.5 and 3.1.6, this method can be applied to enones, ketones and, with comparatively diminished efficiency, aldehydes.\(^{33}\) The anion appears to be more nucleophilic than methylenetriphenylphosphorane, and there are several examples, detailed below, in which the Wittig reaction failed but the Johnson procedure succeeded. The addition and reductive cleavage can be combined into a single operation without isolation of the β-hydroxysulfoximine.\(^{33}\)

![Scheme 3](image)
3.1.4.1 Reductive Elimination

In addition to aluminum amalgam, several other methods were explored for the elimination of the β-hydroxysulfoximine. Acetylation, followed by attempted elimination under a variety of conditions, was not effective, and therefore reducing agents were explored. Of the various metals investigated, magnesium amalgam, zinc and chromium did not have high enough oxidation potentials to give good ratios of the desired alkene. While sodium, magnesium, aluminum and aluminum amalgam were all effective, only the latter reagent, in the presence of acetic acid, was high yielding and gave acceptable ratios of alkene to alcohol. The proposed mechanism of reductive cleavage entails a two-electron transfer from the aluminum to the sulfoximine. Collapse of this intermediate results in a carbanion and the sulfinamide. The sulfur derivative may be further reduced to thiophenol and the carbanion can either be protonated to yield the alcohol or eliminated to yield the alkene. It was found that the methylation of aryl aldehydes is complicated by the reaction of the styrene with the thiophenol produced in the reduction to give the sulfide. While this side reaction can be abated by the use of less aluminum amalgam, this gave diminished yields, so the best choice would be an alternative method of methylation.

\[
\begin{align*}
\text{(29)} & \quad \overset{\text{Al(Hg), THF, AcOH}}{\longrightarrow} \quad \text{(30)} \\
\text{(31)} & \quad + \quad \text{(32)} \\
& \quad \overset{\text{Scheme 8}}{\longrightarrow} \quad \text{(33)}
\end{align*}
\]

3.1.4.2 Examples of the Johnson Methylenation Procedure

Examples of the Johnson methylenation procedure are outlined in Table 6. As the examples indicate, the methodology is compatible with a wide variety of ethers, as well as amides and esters.

3.1.4.3 Comparison with the Wittig Procedure

Of particular note in comparison with the Wittig procedure is Boeckman’s total synthesis of gascardic acid. It was found that direct Wittig methylation was low yielding in the reaction with the esters. It was hypothesized that this was because of interference with the two-carbon side chain. The problem was solved by hydrolyzing the esters, followed by addition and elimination of the sulfoximine and reesterification to obtain the desired adduct in 70% overall yield. The Johnson method was also utilized to selectively methylene the less-hindered ketone in the synthesis of (−)-picrotoxinin.

\[
\begin{align*}
\text{(34)} & \quad \overset{\text{Ar} \quad \overset{\text{Ar}}{\longrightarrow} \quad \overset{\text{Ar}}{\longrightarrow} \quad \text{(35)}}{\quad \text{equation 10}}
\end{align*}
\]

3.1.4.4 Resolution

The tremendous advantage of this method of methylene formation over the various other procedures is that it is capable of producing optically pure material through the addition of an enantiomer of (methyl-
Table 6 Reaction of N-Methylphenylsulfonimidoymethyl Anion with Ketones

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Reagent</th>
<th>Yield of RR'CCCH₂ (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me₃SiO</td>
<td>BrMgCH₂SOPhNMe</td>
<td>75</td>
<td>34</td>
</tr>
<tr>
<td>2</td>
<td>MeO^+</td>
<td>LiCH₂SOPhNMe</td>
<td>R = COPh</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R = CH₂Ph</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>THPO</td>
<td>LiCH₂SOPhNMe</td>
<td>72</td>
<td>36</td>
</tr>
<tr>
<td>4</td>
<td>OTHP</td>
<td>LiCH₂SOPhNMe</td>
<td>66</td>
<td>37</td>
</tr>
<tr>
<td>5</td>
<td>Bu'Me₂SiO</td>
<td>LiCH₂SOPhNMe</td>
<td>67</td>
<td>38</td>
</tr>
</tbody>
</table>

As demonstrated in the synthesis of (-)-β-panasinsene (43), the diastereomers (41) and (42) can be separated (frequently by simple column chromatography) and taken on to the enantiomeric methylenes (43) and (44). Johnson observed excellent facial diastereoselectivity in the addition of the sulfoximine to the racemic ketone (40; Scheme 9). In another interesting comparison to the Wittig reaction, the same ketone was reported to be unreactive to the Wittig reagent in DMSO.
Transformation of the Carbonyl Group into Nonhydroxylic Groups

In addition to synthesizing optically pure alkenes, this method can be utilized to produce chiral ketones and alcohols as shown in Scheme 10. The intermediate sulfoximine (45) can either be reduced with Raney nickel to the chiral alcohol (46) or, because it is not stable to thermolysis, heated to revert back to the ketone (47).

As detailed in Scheme 11, Paquette has taken advantage of both the methylenation and the thermolysis in studies concerning the nucleus of cerorubenic acid. Since the absolute configuration of the natural product was unknown, the route made use of the symmetry of the diketone (48) to produce either enantiomer of the ketoalkenes (52) and (53). Paquette observed the same high facial selectivity that Johnson had observed on the addition of the sulfoximine to the ketone. The diastereomers produced, (49) and (50), could be readily separated by silica gel chromatography, reduced with Raney nickel and
dehydration with the Burgess reagent. Although the reductive cleavage with Al(Hg) was attempted, in this example it proved unsuccessful. The overall efficiency of the process was improved by first carrying out the Wittig reaction to produce methylene (51), followed by the addition of the sulfoximine. Once again the diastereomers could be separated and, having served its purpose of resolution, the sulfoximine was cleaved thermally back to the ketoalkenes (52) and (53).

Besides serving as a useful tool for resolution, the sulfoximine addition adduct can be utilized to direct such reactions as the Simmons-Smith cyclopropanation and OsO₄ addition to an alkene.

3.1.4.5 Halogen Incorporation

Finch has demonstrated that the sulfoximine approach is a viable alternative for fluoromethylenation (Scheme 12). The fluorosulfoximine (54) is deprotonated with LDA in THF and the aldehyde or ketone added to the anion. Conversion to the alkene is carried out with the standard aluminum amalgam procedure to yield a 1:1 mixture of (E)- and (Z)-alkenes (56). The reaction is very effective for aromatic and aliphatic aldehydes and aliphatic and alicyclic ketones, but, while aromatic and α,β-unsaturated ketones give good yields of the addition adduct, the reductive elimination results in a variable amount of product formation. This method was applied to the synthesis of prostaglandin 9-fluoromethylene (58; equation 13).

![Diagram of Alkene Synthesis](image-url)
Transformation of the Carbonyl Group into Nonhydroxylic Groups

3.1.4.6 Di-, Tri- and Tetra-substituted Alkenes

The Johnson procedure may not be applied to tetrasubstituted alkenes. The explanation is that the reduced nucleophilicity of the sulfoximine causes it to function as a strong base, rather than add to the ketone. The reaction of higher analogs of the methyl sulfoximine may be applied to the synthesis of di- and tri-substituted alkenes but, while the reactions proceed to give trans-alkene as the major product, the trans/cis selectivity is not high. An excellent comparison between the sulfoximine and Wittig reactions is found in the synthesis of 6a-carbaprostaglandin I2 (60; equation 14). Initial attempts to incorporate the top portion by a Wittig reaction were complicated by apparent enolization of the carbonyl (59). While this was effectively solved by employing the more nucleophilic Johnson sulfoximine procedure, the trans/cis ratio was approximately 1:1. It was subsequently discovered that the difficulties encountered with the Wittig could be solved if an excess of the ylide was utilized.

It has been demonstrated that the mechanism (see Section 3.1.4.1) for the reductive cleavage of the sulfoximine explains the mix of alkenes. Other effects, such as interconversion of the hydroxysulfoximines, alcohol elimination or equilibration of the alkenes, were experimentally eliminated as the cause of the trans/cis ratios.

3.1.4.7 Phenylphosphinothioic Amide

In addition to the sulfoximines, Johnson has studied phosphinothioic amides as alkene precursors. This reagent has not achieved the popularity of the sulfoximines. It can be utilized for ketone methylation with resolution, as well as for the synthesis of more highly substituted alkenes. Rigby has found that in the synthesis of guaianolides this reagent was effective where Peterson and Wittig reactions gave only β-elimination.
3.15 TITANIUM-STABILIZED METHYLENATION: THE TEBBE REACTION

The application of Wittig technology to higher oxidation state carbonyls, such as esters and amides, is complicated by the undesired cleavage of the ester or amide bond. In addition, any basic method of alkene formation has the inherent possibility of enolizing a sensitive carbonyl derivative. In the course of studies directed toward reagents for the alkene metathesis reaction, a secondary observation was made by Schrock that lead to the discovery of higher oxidation state metal analogs of the Wittig reagent. These alkylidene complexes have filled an important gap in synthetic methodology.

Schrock discovered that the t-butylalkylidene complex of tantalum (and in lower yield, niobium) was a structural analog to the phosphorus ylide. The complex proved to be a reagent for t-butylalkene formation. Of the Wittig-type reactions tried, most notable was the ability of the complex to react with esters and amides to form the corresponding t-butylalkenes in good yields.

3.15.1 Methylenation

Stimulated by these findings, the titanium methylenation reagent, known as the Tebbe reagent (61), was first introduced in 1978 and has been widely used for the one-carbon homologation of carbonyls. As discussed in a footnote in the Tebbe paper, the reagent reacts with aldehydes, ketones and esters to produce the methylene derivatives. This observation was expanded by Evans and Grubbs to include a wide range of both esters and lactones. It was observed that the rate of reaction was increased by the presence of donor ligands such as THF and pyridine. This effect has been noted in the reaction of the Tebbe reagent with alkenes. The explanation provided is that the Lewis acid removes MeAlCl from the metallocycle, allowing the reactive [Cp2TiCH2] fragment to be trapped by the carbonyl or alkene. In addition, Evans and Grubbs discovered that the Tebbe reagent tolerated ketal and alkene functionality. The stereochemical integrity of unsaturated carbonyls is maintained. Pine and coworkers found that the reactivity of the reagent towards ketones was higher than that towards esters, allowing for selective methylenation of dicarbonyl compounds. In addition to ester functionality, the reaction can be performed on amides to produce the corresponding enamines. The methylenation reaction is summarized in Scheme 13. Inspection of Tables 7–10 reveals the wide variety of substrates and functional groups with which the reaction is compatible.

\[
\text{Cp}_2\text{TiCl} \quad \text{AlMe}_2
\]

(61)

\[
\begin{array}{c}
\text{R}_1 \\
\text{R}_2 \\
\text{R}_3
\end{array}
\begin{array}{c}
\text{O} \\
\text{X}
\end{array}
\xrightarrow{\text{Cp}_2\text{TiCH}_2\text{AlClMe}_2}
\begin{array}{c}
\text{R}_1 \\
\text{R}_2 \\
\text{R}_3
\end{array}
\begin{array}{c}
\text{O} \\
\text{TiCp}_2
\end{array}
\rightarrow
\begin{array}{c}
\text{R}_1 \\
\text{R}_2 \\
\text{R}_3
\end{array}
\begin{array}{c}
\text{X} \\
\text{X}
\end{array}
+ \text{[Cp}_2\text{Ti} = \text{O}]_n
\]

Scheme 13

If the reaction is applied to anhydrides or acid chlorides, however, another reaction pathway predominates. In cases where a good leaving group is attached to the carbonyl, the enolate is formed (Scheme 14) and, after work-up, the methyl ketone is isolated in moderate yield. Grubbs found that the enolate was best formed with titanocyclobutane (see Section 3.1.5.3), instead of the Tebbe reagent itself. With a 50% excess of the acid chloride, the enolates are synthesized in high yield and do not isomerize. These enolates can be used directly in the aldol condensation. In addition to failing to transfer a methylene in these cases, the method also fails with extremely hindered ketones such as (-)-fenchone. In some cases, as depicted in Scheme 15, α,α-disubstitution results in enolate formation rather than methylene transfer. Anhydrides form enolates as well, but, unlike the products from acid chlorides, they are not efficiently utilized in subsequent reactions. The anhydride enolates can react with starting materials, resulting in mixtures of products.
Table 7 Tebbe Reaction on Lactones

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Solvent</th>
<th>Yield of R'CH₂ (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Toluene/THF</td>
<td>n = 1 85</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>n = 2 85</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>THF/DMAP</td>
<td>Not isolated 55</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Bu'Me₂SiO</td>
<td>Toluene/THF</td>
<td>76 56</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Bu'R</td>
<td>Toluene/THF/pyridine</td>
<td>Not isolated 57</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Toluene/THF</td>
<td>85 58</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>RO</td>
<td>Toluene/THF/pyridine</td>
<td>R = CH₂Ph 82</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
<td>R = SiMe₃ 54</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
<td>R = SiEt₃ 86</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PhMe₂SiO</td>
<td>Toluene/THF/pyridine</td>
<td>70 59</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Toluene/THF/pyridine</td>
<td>92 60</td>
<td></td>
</tr>
<tr>
<td>9a</td>
<td></td>
<td>Toluene/THF/pyridine</td>
<td>Not isolated 60</td>
<td></td>
</tr>
</tbody>
</table>
Table 7 (continued)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Solvent</th>
<th>Yield of RR'CCH₂ (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10b</td>
<td></td>
<td>Toluene/THF/pyridine</td>
<td>Not isolated</td>
<td>60</td>
</tr>
</tbody>
</table>

* R, R' = Me, H. b R = H, Me.

![Scheme 14](image)

Scheme 14

![Scheme 15](image)

Scheme 15

Succinimides (62) react to form the corresponding mono- (63) or di-methyleneated products (64). If two alkyl substituents are present in the α-position, a high degree of regioselectivity is observed for reaction at the less-hindered carbon. All of the diaddition compounds have the potential of isomerization to the pyrrole (65; Scheme 16). Piperidinediones (66), however, react predominantly by the enolization pathway to give (67; equation 15).
Table 8 Tebbe Reactions on Ketones

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Solvent</th>
<th>Yield of R'R'CCH₂ (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Toluene</td>
<td>65</td>
<td>51</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Toluene/THF</td>
<td>73</td>
<td>54</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Toluene/THF</td>
<td>73</td>
<td>54</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Toluene/THF</td>
<td>67</td>
<td>54</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>THF</td>
<td>93</td>
<td>67</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>THF/pyridine</td>
<td>45</td>
<td>61</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Et₂O/DMAP</td>
<td>93</td>
<td>62</td>
</tr>
</tbody>
</table>

3.1.5.2 Metals Other Than Aluminum

The AlMe₃ used in the production of the Tebbe reagent (61) is thought to inhibit decomposition of Cp₂TiMe₂. Further, the use of Al dictates the abstraction of the hydrogen from the methyl group rather than the cyclopentadienyl. Other metals have been utilized in conjunction with [Cp₂TiCH₂], including Me₂Zn, CH₂(ZnI)₂, and MgBr₂. In addition Grubbs has studied a variety of metal complexes with the Cp₂TiCH₂ system. These complexes provide interesting mechanistic information on the Tebbe reaction. Some of the reagents exhibit modified reactivity compared to the original reagent. For example, Eisch's Zn compound does not form the methyl ketone as the major product when reacted with acid
Table 9 Tebbe Reactions on Esters

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Yield (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph−O−Ph</td>
<td>94</td>
<td>52</td>
</tr>
<tr>
<td>2</td>
<td>Ph−O−Me</td>
<td>81</td>
<td>52</td>
</tr>
<tr>
<td>3</td>
<td>Ph−O−Et</td>
<td>90</td>
<td>52</td>
</tr>
<tr>
<td>4</td>
<td>Ph−O−Et</td>
<td>87</td>
<td>52</td>
</tr>
<tr>
<td>5</td>
<td>Ph−O−cyclohexene</td>
<td>96</td>
<td>52</td>
</tr>
<tr>
<td>6</td>
<td>R−O−Et</td>
<td>R = Me</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R = Ph</td>
<td>96</td>
</tr>
<tr>
<td>7</td>
<td>Ph−MeO</td>
<td>79</td>
<td>52</td>
</tr>
<tr>
<td>8</td>
<td>cymol−O−Et</td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>9</td>
<td>CN−O−O</td>
<td>No yield</td>
<td>63</td>
</tr>
<tr>
<td>10</td>
<td>NC−O−O</td>
<td>No yield</td>
<td>63</td>
</tr>
<tr>
<td>11</td>
<td>Et−O−Bu</td>
<td>86</td>
<td>64</td>
</tr>
</tbody>
</table>

All reactions were carried out in toluene/THF
Table 10 Tebbe Reactions with Amides

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Solvent</th>
<th>Yield (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Benzene/toluene</td>
<td>X = CH₂ 76</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X = O 67</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Benzene/toluene</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Benzene/toluene</td>
<td></td>
<td>97</td>
</tr>
</tbody>
</table>

chlorides. By and large, these modified reagents do not appear to offer any significant synthetic advantage over the Tebbe reagent, and have not found application in organic synthesis.

3.1.5.3 Metallacyclobutane Complexes

Grubbs discovered that the reaction of the Tebbe reagent (61) with alkenes to form metallacycles that can then be used for methylene transfer, has distinct advantages over the Tebbe reagent itself. These complexes are stable to air and are more easily handled than the Tebbe reagent. In addition, the aqueous work-up required in the Tebbe reaction (it is typical to quench with a 15% aqueous NaOH solution) can result in isomerization. A comparative study on the two methods found that similar yields were obtained with both. Grubbs applied both types of reactivity to a synthesis of capnellene. As depicted in Scheme 17, the Tebbe reagent (61) first reacts with the alkene to form the metallacycle (69). Heating the reaction results in the ring opening to the alkene alkylidene (70). The i-butyl ester is then trapped intramolecularly to form the cyclobutene enol ether (71).

![Scheme 17](image)
3.1.5.4 Methylene versus Alkylidene Transfer

Unfortunately the Tebbe reagent (61) cannot be extended to higher alkyl analogs. When the complex is formed with β-hydrogens present on the aluminum reagent, alternative products are formed.\(^75\) Tebbe found that the use of Et\(_3\)Al resulted in a bridged cyclopentadienyl group in a dimeric complex.\(^76\) Although the problems of higher order complex synthesis can be circumvented,\(^78\) these reagents do not react with the high conversion of the Tebbe reagent, and have not been utilized in total synthesis.\(^77\) As discussed in Section 3.1.12, there are many metals that form alkylidene complexes.\(^78\) The Tebbe reagent has proven to be of widespread generality and use in organic synthesis. Schwartz has developed a Zr alkylidene reagent that will add to carbonyls in analogy to the Tebbe reaction in high yield.\(^31\) Many of these complexes require special techniques for synthesis. Takai has discovered that alkylidenation occurs with a dibromoalkyl in the presence of TiCl\(_4\), Zn and TMEDA \textit{in situ}, resulting in the preparation of (Z)-alkenyl ethers.\(^79\) This reagent is discussed in Section 3.1.12.2

3.1.5.5 Miscellaneous Reactivity

As originally pointed out by Evans and Grubbs, one of the advantages of the Tebbe reagent is the facile preparation of the intermediate allyl vinyl ethers for the Claisen rearrangement.\(^52\) It has also been observed that the Tebbe reagent itself can behave as a Lewis acid catalyst for the rearrangement.\(^60\) Negishi and Grubbs have studied the ability of the Tebbe reagent to form allene derivatives.\(^81\)

3.1.6 TITANIUM–ZINC METHYLENATION\(^82\)

A reaction that appears to be mechanistically similar to the Tebbe reaction was developed by Oshima in 1978.\(^83\) Diiodomethane or dibromomethane in the presence of zinc is treated with a Lewis acid to form, presumably, a divalent complex (72), which reacts with aldehydes and ketones to produce the corresponding methylene derivative (73; Scheme 18).\(^84\) This reagent complements the reactivity of the Tebbe reagent, in that the zinc methylation is not reactive towards esters or lactones.\(^85\) Because it is an electrophilic reagent, it is suitable for the methylation of enolizable ketones and aldehydes.

\[
\begin{align*}
R & \quad \text{CH}_2\text{Br}_2, \text{Zn, TiCl}_4 \\
\text{THF, CH}_2\text{Cl}_2 & \quad \text{ZnBr} \\
R = R' = H, Ar, alkyl & \quad \text{ZnBr} \\
& \quad (72) \\
\rightarrow & \quad R \quad \text{R}' \\
& \quad (73)
\end{align*}
\]

\textbf{Scheme 18}

3.1.6.1 Other Lewis Acids

In addition to titanium tetrachloride, a variety of Lewis acids have been utilized by Oshima.\(^86\) The choice centers around the type of reactivity desired, and this is further discussed below in Section 3.1.6.2. Dibromomethane and zinc combined with TiCl\(_4\) is the most commonly used reagent for the methylation of ketones.\(^87\) Lombardo discovered, during work on the gibberellins (74; equation 16), a method of synthesizing the CH\(_2\)Br\(_2\)/Zn/TiCl\(_4\) reagent that results in an extremely active catalyst that can be stored in the freezer.\(^87\) Lombardo's catalyst may have advantages over the original procedure for
Transformations of the Carbonyl Group into Nonhydroxylic Groups

Compounds that are sensitive to titanium tetrachloride, but no comparative study of the catalyst formed by the two methods has been done.

3.1.6.2 Chemoselectivity

It is possible to exclusively methylenate a ketone in the presence of an aldehyde by precomplexing the aldehyde (e.g. 76) with Ti(NEt$_2$)$_4$, followed by treatment with the usual methylene zinc/TiCl$_4$ reagent (equation 17). Takai also studied the chemoselective methylation of aldehydes (78) in the presence of ketones, and found the use of diiodomethane, zinc and titanium isopropoxide or trimethylaluminum to be effective (equation 18).

\[
\begin{align*}
\text{(76)} & \xrightarrow{i, ii} \text{CH$_2$Cl$_2$; ii, CH$_2$I$_2$, Zn, TiCl$_4$, THF} \text{CHO} \quad (77) \\
\text{i, Ti(NEt$_2$)$_4$, CH$_2$Cl$_2$; ii, CH$_2$I$_2$, Zn, TiCl$_4$, THF} \\
\text{(78)} & \rightarrow \text{CH$_2$I$_2$, Zn, Ti(OR)$_4$, 83%; CH$_2$I$_2$, Zn, Me$_3$Al, 96%}
\end{align*}
\]

3.1.6.3 Examples of the Reaction with Aldehydes

It is advantageous to utilize either titanium isopropoxide or trimethylaluminum complexes with aldehydes in general, because pinacol-coupled diols form with the Zn/CH$_2$Br$_2$/TiCl$_4$ systems as minor side products. No evidence of Simmons-Smith-type side products was observed with any of the methylation reagents. Additional examples of the reaction with aldehydes are presented in Table 11.

3.1.6.4 Examples of the TiCl$_4$/CH$_2$X$_2$/Zn Reaction Compared with the Wittig

Some of the more intriguing examples of the use of the TiCl$_4$/CH$_2$X$_2$/Zn reagent are in cases where the Wittig or other methods of methylation have failed, and the Oshima method has proved a successful solution. Specific examples are outlined in Table 12.

3.1.6.5 Examples of the TiCl$_4$/CH$_2$Br$_2$/Zn Reaction with Ketones Where Stereochemistry is Preserved

As the examples indicate, the reaction is compatible with a wide range of functional groups, including alcohols, esters, acetates, carboxylic acids, ethers, halogens, silyl groups, acetylides, lactones, alkenes, ketals and amines. The methylation proceeds with allylic carbonyls, without loss of stereochemistry. One of the tremendous advantages of the TiCl$_4$/CH$_2$X$_2$/Zn reaction is that sensitive ketones can be methylated without loss of stereochemistry. Additional examples of the reactions of ketones with the reagent are summarized in Table 13. The CH$_2$Br$_2$/Zn/TiCl$_4$ reagent has proven to be of broad utility in natural products synthesis.

3.1.6.6 Isotopic Labeling

When the methylation reagent is generated using zinc, CD$_2$Br$_2$ or CD$_2$Cl$_2$, and titanium tetrachloride, it can be utilized to synthesize the deuterated analogs (82). In addition, Trost has demonstrated that a 13C label may be incorporated in a ketone (81) using H$_2^{13}$Cl$_2$ (Scheme 19).
Table 11 Zinc, CH$_2$X$_2$ Reaction with Aldehydes

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Reagent</th>
<th>Yield of RR'CCH$_2$ (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>TiCl$_4$-CH$_2$Br$_2$-Zn</td>
<td>60-75</td>
<td>89</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>TiCl$_4$-CH$_2$Br$_2$-Zn</td>
<td>—</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>TiCl$_4$-CH$_2$Br$_2$-Zn</td>
<td>70</td>
<td>91</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>TiCl$_4$-CH$_2$Br$_2$-Zn</td>
<td>35, 2 steps</td>
<td>92</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>AlMe$_3$-CH$_2$I$_2$-Zn</td>
<td>75, >99% ee</td>
<td>93</td>
</tr>
</tbody>
</table>

3.1.6.7 Halogen Incorporation

The zinc procedure has been extended to CF$_3$CCl$_3$ to form 2-chloro-1,1,1,-trifluoro-2-alkenes (84; equation 19). and α-fluoro-α,β-unsaturated carboxylic acid methyl esters (87) with methyl dichlorofluoroacetate (85; equation 20). Both of these transformations are carried out with zinc and acetic anhydride. Several variations of this reaction have appeared in the literature. The mechanism appears to be dramatically different from the Oshima methylenation. In this case, the reaction proceeds through the alcohol intermediate, which is converted to the acetate and reductively cleaved.

3.1.7 OTHER METHODS OF METHYLENATION

3.1.7.1 Samarium-induced Methylenation

Inanaga has studied the use of SmI$_2$ deoxygenation of aldehydes and ketones. The reaction proceeds by a two-step mechanism, where SmI$_2$ and CH$_2$I$_2$ react with the carbonyl to form an O-SmIX species (88), which is converted to a better leaving group and reductively eliminated with SmI$_2$. As the examples depicted in Scheme 20 indicate, no studies of chemoselectivity have been undertaken.
Transformation of the Carbonyl Group into Nonhydroxylic Groups

Table 12 Examples of TiCl₄–CH₂Br₂–Zn Reaction Compared with Wittig

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Solvent</th>
<th>Product</th>
<th>Yield (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MEMO H₂SiMe₂Bu'</td>
<td>THF, CH₂Cl₂</td>
<td>MEMO H₃SiMe₂Bu'</td>
<td>99a</td>
<td>94</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>CH₂Cl₂</td>
<td>CO₂Me</td>
<td>87</td>
<td>95</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>CH₂Cl₂</td>
<td>CO₂Me</td>
<td>98c</td>
<td>96</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>THF</td>
<td>CO₂Et</td>
<td>40d</td>
<td>97</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>THF, CH₂Cl₂</td>
<td>CO₂Me</td>
<td>95e</td>
<td>98</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>75f</td>
<td>99</td>
</tr>
</tbody>
</table>

a Wittig and Johnson sulfoxime fail. b Wittig results in retro Michael (poor recovery). c Wittig 70%, capricous.
d Wittig and acetalization conditions fail. e Wittig yield only 22%. f Wittig fails.
<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Yield (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>![Substrate Image]</td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>![Substrate Image]</td>
<td>85</td>
<td>101</td>
</tr>
<tr>
<td>3</td>
<td>![Substrate Image]</td>
<td>86</td>
<td>102</td>
</tr>
<tr>
<td>4</td>
<td>![Substrate Image]</td>
<td>used CH\textsubscript{2}I\textsubscript{2}</td>
<td>62</td>
</tr>
<tr>
<td>5</td>
<td>![Substrate Image]</td>
<td>78</td>
<td>104</td>
</tr>
<tr>
<td>6</td>
<td>![Substrate Image]</td>
<td>84</td>
<td>105</td>
</tr>
</tbody>
</table>
Table 13 (continued)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Yield (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>(\text{OSiMe}_2\text{Bu}^t)</td>
<td>75</td>
<td>106</td>
</tr>
<tr>
<td>8</td>
<td>(\text{Fe(CO)}_3)</td>
<td>80</td>
<td>107</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\text{MeO}_2\text{C} & \quad \text{MeO}_2\text{C} \\
\text{CH}_{13}\text{CH}_2 & \quad \text{Zn, TiCl}_4 \\
(81) & \quad (80) \\
\text{Zn, TiCl}_4 & \quad \text{Zn, TiCl}_4 \\
\rightarrow & \quad \rightarrow \\
\text{MeO}_2\text{C} & \quad \text{MeO}_2\text{C} \\
\text{MeO}_2\text{C} & \quad \text{CD}_2 \\
(82) & \quad (82) \\
\end{align*}
\]

Scheme 19

\[
\begin{align*}
\text{Ph} & \quad \text{Ph} \\
\text{O} \quad \text{O} & \quad \text{CH}_2\text{Cl}_2 \quad \text{Sml}_2 \\
(83) & \quad (88) \\
\text{THF} & \quad \text{THF} \\
& \quad \text{R'} = \text{Me}(\text{CH}_2)_{10}, \text{R} = \text{H} \quad 73\% \\
& \quad \text{R, R'} = -(\text{CH}_2)_{10}^-, \text{R} = \text{H} \quad 80\% \\
\end{align*}
\]

Scheme 20
3.1.7.2 Tin-induced Methylenation

In direct analogy to the Peterson methylenation, the triaryl- and trialkyl-stannylmethyllithium reagent (91) can be added to aldehydes and ketones (90), followed by elimination of the hydroxystannane (92) to obtain the methylene derivative (93; Scheme 20). This reaction, like the titanium and cerium modifications of the Peterson methylenation of Kaufmann and Johnson, may prove advantageous, in comparison to the Wittig reaction, for enolizable substrates.

3.1.8 ALKENE FORMATION: INTRODUCTION

Many of the methods discussed in the previous sections may be extended to more complex substitution patterns. The sections covering alkene formation are divided according to the stabilizing substituent on the anion component. For each stabilizing element, its application to the synthesis of alkenes with precise geometries is discussed.

3.1.9 PHOSPHORUS-STABILIZED ALKENATION

The Wittig reaction is one of the most effective and general methods of alkene formation from carbonyl derivatives. Prior to the development of phosphorus-stabilized anion addition and elimination, the synthesis of an alkene from a carbonyl entailed anion addition and subsequent elimination with non-specific alkene position and configuration. The Wittig reaction proceeds with defined positional selectivity, in addition to chemo- and stereo-selectivity. It has become the standard by which all subsequent methodology is judged. This section is organized according to the type of Wittig reagent used. Section 3.1.9.1 discusses phosphonium ylides and is further subdivided depending on the presence of stabilizing or conjugating functionality in the Wittig reagent. Phosphoryl-stabilized carbanions are covered in Sections 3.1.9.2, 3.1.9.3 and 3.1.9.4; this discussion includes the phosphonate and phosphine oxide carbanions. Since the Wittig reaction has been the subject of many excellent reviews, this section will briefly discuss expected stereochemical trends and will emphasize new methods, with particular focus on attaining (E)- and (Z)-selectivity.

3.1.9.1 Phosphonium Ylides

The general representation of the classic Wittig reaction is presented in equation (21). The (E)- and (Z)-selectivity may be controlled by the choice of the type of ylide (95), the carbonyl derivative (94), the solvent and the counterion for ylide formation. As a general rule, the use of a nonstabilized ylide (95; X and Y are H or alkyl substituents and R3 is phenyl) and salt-free conditions in a nonprotic, polar solvent favors the formation of the (E)-alkene isomer (96) in reactions with an aldehyde. A stabilized ylide with strongly conjugating substituents such as an ester, nitrile or sulfone forms predominantly the (E)-alkene.

\[
\begin{align*}
\text{R}^2\text{R}_1\text{O} & + \text{R}_3^3\text{P} = \text{X}^\text{Y} \\
(94) & & (95) \\
\rightarrow & \\
\text{R}^2\text{R}_1^\text{Y} & + \text{R}_3^3\text{P} = \text{O} \\
(96) & & (97)
\end{align*}
\] (21)

3.1.9.1.1 Mechanism

Mechanistic studies have been the subject of a great deal of recent work. Although at one time the Wittig reaction was thought to occur through the formation of zwitterionic betaine intermediates (100) and (101), the reaction of a nonstabilized triphenylphosphorus ylide (99) with an aldehyde forms observable (by NMR) 1,2-oxaphosphetanes (104) and (105), which eliminate to produce the alkene (102) and phosphine oxide (103) (Scheme 21).
There are two steps to the reaction that define the stereochemical outcome. The first is the initial addition of ylide and carbonyl, with inherent preferences for the formation of cis- and trans-oxaphosphetane intermediates (104) and (105), and the second is the ability of the intermediates to equilibrate. Maryanoff has studied numerous examples in which the final (E)/(Z) ratio of the alkene (102) produced does not correspond to the initial ratios of oxaphosphetanes (104) and (105) and has termed this phenomenon 'stereochemical drift'. The intermediate oxaphosphetanes are thought to interconvert by reversal to reactants (98) and (99), followed by recombination. In this case the final ratio of alkene can be substantially different from the initial addition ratio.

Interconversion and the intermediacy of betaine structures (100) and (101) are still matters of debate and ongoing research. There are distinct differences in the reactions of aliphatic and aromatic aldehydes, and also of aromatic and aliphatic phosphonium ylides, with regard to reversibility of the initial addition adducts. Vedejs and coworkers have evidence that salt-free Wittig reactions with unbranched aliphatic aldehydes occur with less than 2% equilibration and are therefore under kinetic control. These studies suggest the (Z):(E) alkene ratios correspond to the kinetic selectivity of the initial addition step. While cis-oxaphosphetanes can equilibrate, the more stable trans isomer does not. Elimination of phosphine oxide occurs stereospecifically syn. Factors that are known to enhance equilibration of the cis-oxaphosphetane are the presence of an alkyl or donor ligand on phosphorous, lithium salts, and steric hindrance in either the aldehyde or ylide. Mechanistic studies have been done largely on nonstabilized ylides, due to the fact that intermediates can be followed by NMR. Vedejs has developed a unified theory to explain the stereoselectivity of stabilized and nonstabilized Wittig reactions. Nonstabilized ylides add in an early transition state to give a high ratio of cis- to trans-oxaphosphetanes, while stabilized ylides have a later transition state and a larger portion of trans isomer. Equilibration is thought to occur only under special circumstances, and both reactions are thought to be under kinetic control.
3.1.9.2 Nonstabilized ylides

(i) Nonstabilized ylides giving (Z)-stereoselectivity

Typically, nonstabilized ylides are utilized for the synthesis of (Z)-alkenes. In 1986, Schlosser published a paper summarizing the factors that enhance (Z)-selectivity. Salt effects have historically been defined as the response to the presence of soluble lithium salts. Any soluble salt will compromise the (Z)-selectivity of the reaction, and typically this issue has been resolved by the use of sodium amide or sodium or potassium hexamethyldisilazane (NaHMDS or KHMDS) as the base. Solvent effects are also vital to the stereoselectivity. In general, ethereal solvents such as THF, diethyl ether, DME and tert-butyl methyl ether are the solvents of choice. In cases where competitive enolate formation is problematic, toluene may be utilized. Protic solvents, such as alcohols, as well as DMSO, should be avoided in attempts to maximize (Z)-selectivity. Finally, the dropwise addition of the carbonyl to the ylide should be carried out at low temperature (−78 °C). Recent applications of phosphonium ylides in natural product synthesis have been extensively reviewed by Maryanoff and Reitz.

(ii) α-Oxygenated substrates

As discussed in the following sections, there are notable exceptions to the general rules of selectivity in the Wittig reaction. Carbonyl derivatives with α-oxygenation reverse normal selectivity with stabilized ylides. This effect does not predominate in the reactions of nonstabilized ylides. A systematic study of Wittig reactions of ethylidenetriphenylphosphorane and derivatives of hydroxyacetone was undertaken by Still. Optimal (Z)-selectivity was obtained with KHMDS as the base with 10% HMPA in THF (equation 22). This procedure was applied to the synthesis of α-santalol, with alkene formation proceeding in 85% yield and greater than 99% stereochemical purity (equation 23). Other recent examples of successful (Z)-alkenations in the presence of oxygenated substrates are the syntheses of isoquinuclidines by Trost, in which alkenation of an epoxy ketone occurred to produce only the (Z)-isomer, and of the C(7)–C(13) fragment of erythronolide by Burke, in which a pyran derivative was homologated to the ethylene with high (Z)-selectivity.

\[
\begin{align*}
\text{O} & \quad \text{Ph}_3\text{PCHMe} \\
\text{OR} & \quad \text{KHMDMS, HMPA} \\
\text{THF} & \quad \text{R} \\
\text{OR'} & \quad \text{(106)} \\
\end{align*}
\]

\[
\begin{align*}
\text{R} = \text{H}, \text{R}' = \text{CH}_2\text{Ph}; (Z):(E) = 12:1 \\
\text{R} = \text{H}, \text{R}' = \text{SiMe}_2\text{Bu}^+; (Z):(E) = 14:1 \\
\text{R} = \text{H}, \text{R}' = \text{THP}; (Z):(E) = 41:1, 83\% \\
\text{R} = \text{Me}, \text{R}' = \text{THP}; (Z):(E) = 200:1, 95\% \\
\end{align*}
\]

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\text{Me} & \quad \text{Me} \\
\text{O} & \quad \text{85\%} \\
\text{PPh}_3 & \quad \text{(108)} \\
\text{ii, H}_2\text{O}^+ & \quad \text{(109)} \\
\text{>99\% (Z)} \\
\end{align*}
\]
(iii) \((E) \)-Selective alkenation

Application of the Wittig reaction of a nonstabilized ylide to the synthesis of an \((E) \)-alkene is practically and effectively carried out by the Schlosser modification.\(^{123} \) Alternatively, the use of a trialkylphosphonium ylide can produce high ratios of \((E) \)-alkene.\(^{116} \) Recently, Vedejs has developed a reagent using dibenzophosphole ylides (110) to synthesize \((E) \)-disubstituted alkenes (111) from aldehydes (equation 24).\(^{124} \) The initial addition of ylide occurs at \(-78^\circ C\), but the intermediate oxaphosphetane must be heated to induce alken formation. The stereoselectivity in the process is excellent, particularly for aldehydes with branched substitution \(\alpha \) to the reacting center. Both the ethyl and butyl ylides have been utilized.

\[
\begin{align*}
\text{Ph}_3\text{P} & \rightarrow \text{Bu} \quad \text{O} \\
\text{R} & \rightarrow \text{Pr} \\
\text{THF, sealed tube} & \\
\text{O} & \\
\text{R} & \rightarrow \text{Pr}
\end{align*}
\]

\(\text{R} = \text{CH}_2\text{CH}_2\text{Ph}; \ (E):(Z) = 20:1, 66\% \)
\(\text{R} = \text{CM}_2\text{CH}_2\text{Ph}; \ (E):(Z) = 12:1, 82\% \)
\(\text{R} = \text{CHMeC}_9\text{H}_1; \ (E):(Z) = 124:1, 91\% \)
\(\text{R} = \text{c-C}_6\text{H}_{11}; \ (E):(Z) = 84:1, 97\% \)

The presence of an oxido, carboxy or amide group in the ylide (112) can shift selectivity to produce \((E) \)-alkenes. The effect of various nucleophilic groups at different distances away from the phosphorus has been systematically studied by Maryanoff.\(^{116} \) There is an optimal chain length for the nucleophile in order to maximize \((E) \)-alkene formation. In the case of oxido ylides, short chain lengths and the use of lithium as the counterion maximized \((E) \)-selectivity. Oxido ylides form significant amounts of \((E) \)-alkene with both benzaldehyde \((E):(Z) = 94:6 \) and hexanal \((E):(Z) = 52:48 \) relative to an ylide that does not possess an nucleophilic group. Carboxy ylides, on the other hand, only showed dramatic increases in \((E) \)-selectivity with benzaldehyde \((E):(Z) = 93:7 \). In addition, the effect of short chain length was critical, but interestingly the selectivity was not strongly dependent on the type of counterion. Significant effects with amino substitution on the ylide were observed if 2 equiv. of base were added to generate the amido species \((E):(Z) = 87:13 \) with benzaldehyde.

\[
\begin{align*}
\text{Ph}_3\text{P} & \rightarrow \text{Br} \\
\text{R} & \\
(112) & \text{R} = \text{OH, CO}_2\text{H, CONH}_2
\end{align*}
\]

3.1.9.1.3 Semistabilized ylides

As a general rule, ylides with allylic or benzylic functionality do not proceed with a high degree of stereoselectivity.\(^{125} \) There have been recent examples of arachidonic acid derivatives in which the coupling of an allylic phosphonium salt with an unsaturated aldehyde resulted in \((Z) \)-selective alkenation.\(^{126} \) As in the case of nonstabilized ylides, replacing aromatic phosphorus substituents with allylic (113; equation 25) or alkyl (115; equation 26) groups dramatically increases the production of the \((E) \)-alkene.\(^{127} \)

\[
\begin{align*}
\text{Ph} & \rightarrow \text{P} \\
\text{Ph} & \rightarrow \text{RCHO} \\
\text{R} & \rightarrow \text{Ph}
\end{align*}
\]

\(\text{R} = \text{Ph, NaNH}_2 \text{ as base}; \ (E):(Z) = 15:1, 93\% \)
\(\text{R} = \text{c-C}_6\text{H}_{11}, \text{NaNH}_2 \text{ as base}; \ (E):(Z) = 40:1, 99\% \)
In cases were the allylic fragment is inexpensive, the phosphonium salt is formed by reacting lithiated diphenylphosphine with 2 equiv. of the allylic bromide. Alternatively, diphenylmethylphosphonium salts can be selectively deprotonated in the allylic position. The highest ratios were obtained with sodium/ammonia as the base, but KOBu' in THF provides a practical and selective route to (E)-1,3-dienes. Tamura and coworkers have demonstrated that allylic nitro or acetate compounds (117) can be converted to allylic tributylphosphonium ylides by palladium(0) catalysis. This procedure may be carried out in one pot by forming the ylide in methanol and THF, followed by addition of KOBu' and the aldehyde (equation 27). These reactions proceed in good overall yield, and stereoselectivity is high for bulky phosphonium ylides and a range of aldehydes. A comparison of the selectivity of tributyl- and triphenyl-phosphonium ylides has been carried Le Corre has demonstrated the use of diphenylphosphinopropanoic acid in the semistabilized Wittig reaction. Enhanced ratios of (E)-isomer were observed and because of the increased water solubility of the phosphine oxide produced, work-up is simplified.

\[
\begin{align*}
\text{NO}_2 & \quad \text{i, PBu}_3, \ Pd(PPh)_3, \ \text{MeOH, THF} \\
\text{II, KOBu'}, \ R\text{CHO} & \quad \rightarrow \\
\end{align*}
\]

\(R = \text{Ph}; (E):(Z) = 95:1, 83\%\)
\(R = \text{Me(CH}_2)_2\text{CHO}; (E):(Z) = 93:7, 82\%\)

3.1.9.1.4 Stabilized ylides

Ylides which have conjugating functionality present tend to produce (E)-alkenes stereoselectively. A significant departure from this anticipated selectivity is the reaction of \(\alpha\)-alkoxy substrates with stabilized phosphonium ylides to produce (Z)-conjugated esters. In an application of the Wittig reaction to aldehydosesugars (119), two important factors were noted to obtain high selectivity. The sugars which had polar groups, such as ether substituents with lone pairs, cis to the aldehyde in the \(\beta\)-position formed (Z)-alkenes (120; equation 28). This stereoselectivity is solvent dependent and (Z)-alkene formation can be minimized by using DMF and maximized in methanol. Several comparative studies have been carried out with sugar derivatives. It is important that the \(\alpha\)-oxogated functionality be protected as an ether. The reaction of stabilized ylides with \(\alpha\)-hydroxy ketones forms the normal (E)-alkene. Wilcox and coworkers have studied the reaction of lactols and found that in dichloromethane the lactol (121) selectively produced the (Z)-isomer (122), while the methyl ether (123) formed the corresponding trans-alkene (124) (Scheme 22).
Transformation of the Carbonyl Group into Nonhydroxylic Groups

Although this reaction is general for ester-stabilized Wittig reagents, (formylmethylene)triphenylphosphorane was reacted with a pyranose (125) to form the expected (E)-alkene (126; Scheme 23). Reduction of (126) and (127) supplied (E)- and (Z)-allylic alcohols selectively. Precise rules for the prediction of (E)- and (Z)-selectivity with α-oxygenated substrates are difficult to formulate.

The synthesis of conjugated (Z)-enones (129) can be undertaken with a stabilized ylide (128) and an aliphatic aldehyde. The reactivity of the ylide is altered by in situ deprotonation with 2 equiv. of NaH in THF with a small amount of water (equation 29). Stereoselectivity was approximately 9:1 in favor of the (Z)-isomer. This ratio could be improved with aldehydes with α-branched substitution. As discussed
with the nonstabilized and semistabilized ylides, substitution of phenylphosphonium ylides with alkyl functionality has been studied on stabilized ylides.137 Both the ylide and the dianion species demonstrate enhanced reactivity with ketones to produce (E)-alkenes (131; equation 30). Replacement of the phenyl ligands on the phosphorus by alkyl groups increases the proportion of (E)-alkene, even in the absence of stabilizing functionality, by increased reversibility of the cis-oxaphosphetane for these substrates.116

\[
\begin{align*}
\text{(130)} & \quad \text{CN} \\
\text{(131)}
\end{align*}
\]

\[
\begin{align*}
\text{Ph}_3\text{PCH}_2\text{CN, Bu}^\text{t} \text{Li, THF; 6}\%} \\
\text{Ph}_2\text{P(CH}_2\text{CN})_2, \text{Bu}^\text{t} \text{Li, THF; 81}\%}
\end{align*}
\]

3.1.9.2 Phosphoryl-stabilized Carbanions

The use of anions derived from a phosphine oxide (132) or a diethyl phosphonate (133) to form alkenes was originally described by Horner.138 Although these papers laid the foundations for the use of phosphoryl-stabilized carbanions for alkene synthesis, it was not until Wadsworth and Emmons published a more detailed account of the general applicability of the reaction that phosphonates became widely used.139 Since the work of Wadsworth and Emmons was significant and crucial to the acceptance of this methodology, the reaction of a phosphonate carbanion with a carbonyl derivative to form an alkene is referred to as a 'Horner–Wadsworth–Emmons' reaction (abbreviated HWE).114 The phosphine oxide variation of the Wittig alkenation is called the 'Horner' reaction.

\[
\begin{align*}
\text{(132)} & \quad \text{(133)}
\end{align*}
\]

3.1.9.3 Phosphonates: the Horner–Wadsworth–Emmons Reaction

Phosphonates are the most commonly used phosphoryl-stabilized carbanions.140 These reagents are more nucleophilic than the corresponding phosphonium ylides. Additional advantages of the HWE reagents are that the by-products of the alkenation are water soluble and reaction conditions can be altered to yield either the (E)- or the (Z)-isomer. The disadvantage of the phosphonate reagents is that a stabilizing group must be present in the α-position, unless a two-step addition and elimination strategy is employed. The stabilizing functionality is frequently a carboxyl derivative; however, aryl, vinyl, sulfide, amine and ether functionalities have also proven to stabilize the anion sufficiently for alkene formation to take place.

3.1.9.3.1 Mechanism

The mechanism of phosphonate anion (135) addition to carbonyl derivatives is similar to the phosphonium ylide addition; however, there are several notable features to these anion additions that distinguish the reactions from those of the classical Wittig. The addition of the anion gives a mixture of the erythro (136 and 137) and threo (139 and 140) isomeric β-hydroxyphosphonates (Scheme 24). In the case of phosphine oxides, the initial oxyanion intermediates may be trapped. The anion intermediates decompose by a syn elimination of phosphate or phosphinate to give the alkene. The elimination is stereospecific, with the erythro isomer producing the cis-alkene (138), and the threo addition adduct producing the
trans-alkene (141). The ratio of (E)- to (Z)-alkene is dependent on the initial ratio of the erythro and threo adducts formed, as well as the ability of these intermediates to equilibrate.

\[R^1\text{O} \quad + \quad R^2\text{P} - \quad X \quad (135) \]

\[R^1\text{O} \quad + \quad R^2\text{P} - \quad Y \quad (136) \]

\[R^1\text{O} \quad + \quad R^2\text{P} - \quad Y \quad (137) \]

\[R^1\text{O} \quad + \quad R^2\text{P} - \quad X \quad (138) \]

\[R^1\text{O} \quad + \quad R^2\text{P} - \quad Y \quad (139) \]

\[R^1\text{O} \quad + \quad R^2\text{P} - \quad Y \quad (140) \]

\[R^1\text{O} \quad + \quad R^2\text{P} - \quad X \quad (141) \]

Scheme 24

3.1.9.3.2 Formation of (E)-alkenes

The most common applications of the HWE reaction are in the synthesis of disubstituted (E)-alkenes. The stereoselectivity of the reaction can be maximized by increasing the size of the substituents on the phosphoryl portion. In cases where the stabilizing functionality is a carboxy group, the size of the ester may be ‘tuned’ to enhance (E)-alkene formation.

The HWE reaction can be carried out on a ketone, but often the stereoselectivity is not as good as the reaction of a substituted phosphonate carbanion with the corresponding aldehyde. Because of the greater reactivity of the phosphonate reagent relative to the phosphonium carbanion, the HWE reaction has proven to be effective with hindered ketones that were unreactive toward classical Wittig ylides.

3.1.9.3.3 (E)-Selectivity, effect of phosphonate size

Several studies have described the successful enhancement of the (E)-selectivity in alkene formation by increasing the steric requirements of the phosphonate. This selectivity may be derived by increasing the selective formation of the threo-β-hydroxyphosphonate.

Kishi and coworkers noted the importance of the phosphonate structure in the synthesis of monensin, where a methyl phosphonate was used to maximize (Z)-alkene formation. These observations were expanded upon in the synthesis of rifamycin S. Several interesting Wittig reactions from this synthesis are presented in Table 14.

| Table 14 Rifamycin S Studies by Kishi and Coworkers |
|----------------|-------------------------|------------------------|
| Carbonyl | Reagent | (Z):(E) ratio |
| BnO-CHO | Ph3PCH2CO2Et, CH2Cl2, 0 °C | 1:7 |
| | (PrO)2POCH2CO2Et, KOBu, THF, -78 °C | 5:95 |
| | (MeO)2POCH2CO2Me, KOBu, THF, -78 °C | 3:1 |
| Ph-CHO | Ph3PCH(Me)CO2Et, CH2Cl2, r.t. | 5:95 |
| | Ph3PCH(Me)CO2Et, MeOH, r.t. | 15:85 |
| | (MeO)2POCH(Me)CO2Me, KOBu, THF, -78 °C | 95:5 |
| | (MeO)2POCH(Me)CO2Et, KOBu, THF, -78 °C | 90:10 |
| | (EtO)2POCH(Me)CO2Et, KOBu, THF, -78 °C | 60:40 |
| | (PrO)2POCH(Me)CO2Et, KOBu, THF, -78 °C | 10:90 |
| | (PrO)2POCH(Me)CO2Pr, KOBu, THF, -78 °C | 5:95 |
In order to maximize the (E)-selectivity, it was found best to use the bulky isopropyl substituent on the phosphonate as well as on the stabilizing ester. Alternatively, in the case of an aromatic aldehyde, the stabilized phosphonium ylide provided high (E)-alkene formation. When the (Z)-isomer was desired, it was best to use a methyl substituent on the phosphonate and ester functionalities. Strongly dissociating basic conditions and a hindered aldehyde can result in reversal of the normal (E)-selectivity of a phosphonate. This effect is strongly dependent on the reactants and is further discussed in Section 3.1.9.3.4. The importance of steric effects were exemplified in the synthesis of the C-D fragment of amphotericin B by Masmune and coworkers. The methyl and ethyl phosphonates, respectively, formed 1:1.2 and 1.75:1 ratios of (E)- to (Z)-alkenes. By using isopropyl or 3-pentyl phosphonates, the (E)-isomer was formed exclusively. The yield of the reaction was improved by using lithium tetramethylpiperidide in THF (equation 31). The diisopropyl phosphonate was recently applied to the synthesis of brefeldin C. In this example, the (E)-alkene was selectively synthesized without epimerization (equation 32).

\[
\begin{align*}
\text{Et}_3\text{SiO} &\quad \text{OSiMe}_2\text{Bu}^t \\
\text{CHO} &\quad \text{O} \\
\text{(R)}_2\text{P} &\quad \text{O} \\
\text{CO}_2\text{Et} &\quad \text{Et}_3\text{SiO} \quad \text{OSiMe}_2\text{Bu}^t \\
\text{CHO} &\quad \text{O} \\
\text{(R)}_2\text{P} &\quad \text{O} \\
\text{CO}_2\text{Et} &\quad \text{Et}_3\text{SiO} \quad \text{OSiMe}_2\text{Bu}^t \\
\end{align*}
\]

(142) \(R = \text{Pr}^t, \text{CH}_2\text{Et} \)

(144) 68%

(31)

3.1.9.3.4 Formation of (Z)-alkenes

As noted in the discussion of (E)-selective alkene formation, Kishi has found that \(\alpha \)-substituted aldehydes reacted with trimethylphosphonopropionate and KOBu\(^t\) to produce the (Z)-alkene selectively. A strongly dissociating base is critical to this approach. In addition to the examples already presented in the discussion of (E)-alkene formation, the (Z)-selective reaction has recently been applied to the synthesis of macrolide antibiotics. In this example, a trisubstituted alkene was formed and closed to the lactone (148; equation 33). In an application to diterpenoids, Piers encountered an example of how substrate-specific the alkene formation can be. With \(\alpha \)-dimethoxyphosphoryl-\(\gamma \)-butyrolactone (150), the reactions with simple aldehydes proceeded with very high selectivity \[(Z):(E) = 99:1 \]. On application of the reaction to the more complex aldehyde (149) the (Z):(E) stereoselectivity dropped to 3:1 in 58% yield (equation 34). No selectivity was observed on reaction with benzaldehyde. Although for hindered substrates, strongly basic conditions with a dimethyl phosphonate can be a simple and effective method for the synthesis of (Z)-isomers, the reaction is not general. In 1983, Still and coworkers introduced methodology that used bis(trifluoroethyl)phosphonooesters (153) to provide a facile approach to (Z)-alkenes (154) when reacted with aldehydes (equation 35).

\[
\begin{align*}
\text{H} &\quad \text{O} \\
\text{O} &\quad \text{H} \\
\text{CHO} &\quad \text{OH} \\
\text{Bn} &\quad \text{i, (MeO)}_2\text{P} \quad \text{CO}_2\text{Me} \\
\text{NaH, THF} &\quad \text{ii, K}_2\text{CO}_3, \text{MeOH} \\
\text{MPMO} &\quad \text{O} \\
\text{O} &\quad \text{H} \\
\text{OBn} &\quad \text{i, (MeO)}_2\text{P} \quad \text{CO}_2\text{Me} \\
\text{NaH, THF} &\quad \text{ii, K}_2\text{CO}_3, \text{MeOH} \\
\text{MPMO} &\quad \text{O} \\
\text{O} &\quad \text{H} \\
\text{OBn} &\quad \text{i, (MeO)}_2\text{P} \quad \text{CO}_2\text{Me} \\
\end{align*}
\]

(147)

(148)

The (Z)-selectivity is presumed to occur because of rapid elimination of the \(\beta \)-hydroxyphosphonate before equilibration can take place. Several base and solvent combinations were explored, including tripton B, \(\text{K}_2\text{CO}_3 \) and KOBu\(^t\), but potassium hexamethyldisilazide with 18-crown-6 in THF gave the most
Transformation of the Carbonyl Group into Nonhydroxylic Groups

\[
\text{(150) } + \text{PhCHO; } (Z):(E) = 1:1, 91% \\
\text{(150) } + \text{Bu}^\prime \text{CHO; } (Z):(E) = 99:1, 86\% \\
\text{(150) } + n\text{-C}_8\text{H}_1\text{CHO; } (Z):(E) = 99:1, 94\% \\
\]

consistent and highest (Z)-selectivities. A comparison was carried out with trimethyl phosphonoacetate under the same conditions and (Z)-alkene formation occurred to a high degree \([(Z):(E) = 12:1]\) in the reaction with cyclohexanal, which was consistent with the observations of Kishi and coworkers. This was the only instance in which the trimethyl phosphonate formed the (Z)-alkene with higher selectivity than the trifluoroethyl analog. The diminished selectivity for α-alkyl-substituted aldehydes does not appear to be general, as two recent syntheses by Baker and Roush demonstrate. Baker synthesized macbecin 1 using a Still phosphonate to form the (Z)-alkene (156) and a standard stabilized ylide to form the \((E):(Z)\) selectivity was at least 10:1 (equation 36).149

\[
\begin{align*}
\text{(152)} & \quad \text{CHO} \\
\text{(153) } R = H, \text{Me} \\
\text{(154)} & \quad \text{CO}_2\text{Me} \\
\end{align*}
\]

\[
\text{(155)} \quad \text{Ar} \\
\text{(156)} \quad \text{CHO} \\
\text{(157)} \quad \text{CO}_2\text{Et} \\
\]

\[
\text{Scheme 25}
\]

\[
\text{(158)} \quad \text{CHO} \\
\text{(159)} \quad \text{CO}_2\text{Me} \\
\]

\[
\begin{align*}
\text{(155) } & \quad \text{OSiMe}_2\text{Bu}' \\
\text{(156) } & \quad \text{CHO} \\
\text{(157) } & \quad \text{CO}_2\text{Et} \\
\end{align*}
\]

\[
\begin{align*}
\text{KHMDs, 18-crown-6, THF, 99\%} & \quad \text{i, reduce} \\
\text{KHMDs, 18-crown-6, THF, 99\%} & \quad \text{ii, oxidize} \\
\end{align*}
\]

\[
\begin{align*}
\text{(155) } & \quad \text{Ar} \\
\end{align*}
\]
An aldehyde with α-ether functionality was used in the synthesis of N-acetylneuraminic acid by Danishefsky (equation 37). A series of cis- and trans-alkenes with α-oxygen functionality were synthesized by Cinquinin and coworkers. Of the examples generated, the HWE reaction proceeded in the expected (E)-selective manner (164), while the trifluoroethyl phosphonate was used to form the (Z)-alkenes (163) selectively (Scheme 26). Interestingly, 18-crown-6 was not used for (Z)-alkene formation.

Scheme 26

Several examples are presented in Table 15 which indicate that α-heteroatom substitution is compatible with this reagent. The tremendous advantage of the trifluoroethyl phosphonate reagent is the selective formation of (Z)-alkene with aromatic aldehydes, while the trimethyl phosphonate gives the normal selectivity.

The trifluoroethyl phosphonate reagent is effective with a number of carbanion-stabilizing groups, including carboalkoxy, cyano and vinylogous cyano. Liu and coworkers have utilized a conjugated nitrile phosphonate (166) to synthesize all-cis-retinal (167; equation 38). In this example, the Wittig reaction gives a mixture of products that were separated by HPLC. The crude yield was 45%, with 72% of the product having the cis configuration at the alkene formed. The type of ester stabilizing the phosphonate does not appear to have an large effect on the selectivity. Both the methyl and ethyl esters are routinely used. Recently, Boeckman used the allyl ester in the synthesis of (+)-ikarugamicin to produce the desired (Z)-alkene (169), the (Z):(E) ratio being 19:1 (equation 39).

Still’s original communication demonstrated that this approach was effective for the synthesis of trisubstituted alkenes by the reaction of a methyl-substituted Wittig reagent with an aldehyde. Examples of the synthesis of methyl-trisubstituted alkenes are presented in Table 16.

Fuchs has published a comparative study of the methyl, ethyl, isopropyl and trifluoroethyl phosphonates, stabilized with either an ester or nitrile, in reaction with an α-amino aldehyde (170; equation 40). Although the use of strongly basic conditions improved the ratio of (Z)-alkene produced with methyl phosphonate, the (Z):(E) ratios were 2:3 with either potassium or sodium anions. Interestingly, the HWE reagent stabilized with a nitrile demonstrated far less sensitivity to the size of the phosphonate functionality. With sodium hydride as the base, the diisopropyl phosphonate gave higher (Z)-selectivity (7:1) than that of the corresponding ethyl derivative (3.3:1). Fuchs hypothesized that the sterically less demanding nitrile produces a higher ratio of the erythro intermediate than the ester-stabilized phosphonate. The trisubstituted alkene was best prepared by using the trifluoroethyl phosphonate, (Z):(E) = 70:1,
Table 15 Synthesis of Disubstituted Alkenes by Trifluoroethyl Phosphonate Esters in THF with KHMDS and 18-Crown-6

<table>
<thead>
<tr>
<th>Carbonyl</th>
<th>Yield (%)</th>
<th>(Z):(E) ratio</th>
<th>Notes</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeO$_2$C$_6$H4NHBOC${CHO}$</td>
<td>>80</td>
<td>All (Z)</td>
<td></td>
<td>152</td>
</tr>
<tr>
<td>CHO</td>
<td>78</td>
<td>7:1</td>
<td></td>
<td>153</td>
</tr>
<tr>
<td>OsSiEt$_3$</td>
<td>70</td>
<td>All (Z)</td>
<td>In Et$_2$O</td>
<td>143</td>
</tr>
<tr>
<td>OsSiMe$_2$Bu'</td>
<td>56</td>
<td>All (Z)</td>
<td>(E) with Ph$_3$PCHCO$_2$Me, CHCl$_3$, 90%, (Z):(E) = 1:12</td>
<td>154</td>
</tr>
<tr>
<td>CHO</td>
<td>>61</td>
<td>9.4:1</td>
<td></td>
<td>155</td>
</tr>
<tr>
<td>OHC</td>
<td>75</td>
<td>All (Z)</td>
<td>(E) with Ph$_3$PCHCO$_2$Et, toluene, 95%</td>
<td>156</td>
</tr>
<tr>
<td>CH(OMe)$_2$</td>
<td>94</td>
<td>5:1</td>
<td></td>
<td>157</td>
</tr>
<tr>
<td>OTHP</td>
<td>75</td>
<td>15:1</td>
<td>No 18-Crown-6, 1:1</td>
<td>158</td>
</tr>
<tr>
<td>CHO</td>
<td>75</td>
<td>7:1</td>
<td></td>
<td>159</td>
</tr>
<tr>
<td>O-C${15}$H${31}$</td>
<td>77</td>
<td>9% (E)</td>
<td></td>
<td>160</td>
</tr>
<tr>
<td>OHC</td>
<td>>87</td>
<td>(Z) >65%</td>
<td></td>
<td>161</td>
</tr>
<tr>
<td>BOC-N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>5:1</td>
<td>In Et$_2$O with NaH</td>
<td></td>
<td>162</td>
</tr>
</tbody>
</table>
Table 15 (continued)

<table>
<thead>
<tr>
<th>Carbonyl</th>
<th>Yield (%)</th>
<th>(Z):(E) ratio</th>
<th>Notes</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me₃SiCHO</td>
<td>>62</td>
<td>25:1</td>
<td></td>
<td>163</td>
</tr>
<tr>
<td>BnOCHO</td>
<td>80</td>
<td></td>
<td></td>
<td>164</td>
</tr>
</tbody>
</table>

* Exceptions to these reaction conditions are noted.

![Chemical Structures](image)

even in the absence of a crown ether. Marshall and coworkers investigated the extension of the trifluoroethyl phosphonate to trisubstituted alkenes with more complex substitution patterns. The reaction of aldehydes lacking α-substitution with methyl α-(dimethylphosphono)propionate and KHMDS/18-crown-6 gave an increased percentage of (Z)-isomer, but still gave predominantly the (E)-alkene. In examining Kishi’s conditions, Marshall found it critical to have a large excess of phosphonate for optimum (Z)-selectivity. Alkyl substituents larger than methyl appear to slow the rate of phosphonate oxide elimination. This in turn increases the amount of equilibration that occurs and compromises the (Z)-selectivity. The best results observed were for the trifluoroethyl phosphonate (172), which formed the (Z)-alkene (173) on reaction with nonanal in 94% yield and (Z):(E) = 87:13 (equation 41).

Several other examples of highly substituted applications of the Still phosphonate have appeared. In work very similar to Marshall’s, a substituted methyl phosphonate directed toward furanocembranolides demonstrated a (Z):(E) selectivity of 4:5, while the trifluoroethyl phosphonate gave 4:1. Recently an application to squalinoids was demonstrated with a (Z)-selectivity similar to Marshall’s examples [(Z):(E) = 6.5:1]. Marshall has also investigated an intramolecular ring closure for formation cembranolides and in this application the Still phosphonate did not have any inherent advantage over an alkyl phosphonate in terms of yield or (E)-selectivity. Recently, two other examples of substituted phosphonate applications have appeared. Oppolzer has used the methodology to generate an allylic acetate with excellent yield and high (Z)-selectivity (equation 42).

In an application of (Z)-selective alkene formation to enolizable aldehydes, it was noted that the combination of LiCl and DBU was effective for deprotonation by lithium complexation of the Still phosphonate. In this example, the cyclopropyl aldehyde (176) reacted chemoselectively in the presence of the ketone (equation 43). In addition, the (E)-alkene could be synthesized by lithium coordination with a standard HWE methyl phosphonate. As this example illustrates, the trifluoroethyl phosphonate can fill an important void by providing trisubstituted alkenes with sensitive substrates in good selectivity. From the examples of Marshall and Oppolzer it appears that the application of the reaction to higher order trisubstituted alkenes is selective for the (Z)-isomer. The magnitude of the selectivity is substrate specific and dependent on the rapid rate of erythro-α-oxyphosphonate decomposition.
Table 16 Synthesis of Trisubstituted Alkenes by (CF$_3$CH$_2$O)$_2$POCH(Me)CO$_2$R in THF with KHMDS and 18-Crown-6

<table>
<thead>
<tr>
<th>Carbonyl</th>
<th>Yield (%)</th>
<th>(Z):(E) ratio</th>
<th>Notes</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCHO</td>
<td>60</td>
<td>58% (Z)</td>
<td></td>
<td>167</td>
</tr>
<tr>
<td>CHO</td>
<td>68</td>
<td>99:1</td>
<td></td>
<td>168</td>
</tr>
<tr>
<td>OCH</td>
<td>71</td>
<td>>99% (Z)</td>
<td></td>
<td>169</td>
</tr>
<tr>
<td>CHO</td>
<td>93</td>
<td>98:2</td>
<td>(E) with Ph$_3$PC(Me)CO$_2$Me, 86%, (E) only</td>
<td>170</td>
</tr>
<tr>
<td>CHO</td>
<td>63</td>
<td>91:9</td>
<td>In situ DIBAL and Wittig (E) with diethyl phosphonate, 77%, 18:82 (Z):(E)</td>
<td>171</td>
</tr>
<tr>
<td>CHO</td>
<td></td>
<td>78 (4 steps)</td>
<td></td>
<td>172</td>
</tr>
<tr>
<td>CHO</td>
<td>77</td>
<td>All (Z)</td>
<td></td>
<td>173</td>
</tr>
</tbody>
</table>

* Exceptions to these conditions are noted.

(170) $Ar = Ts, Bn$

(171) $\text{(Z):(E) = 70:1, 79\%}$

(172) (40)

(173) $\text{(Z):(E) = 87:13, 94\%}$
Alkene Synthesis

\[\text{(174)} \xrightarrow{i-iii} \text{(175)} \]

\((Z)/(E) = 94:6 \quad 86\% \)

i, KHMDS, 18-crown-6, THF, Ph(CH₂)₂CHO; ii, DIBAL-H; iii, Ac₂O, Et₃N

\[\text{(176)} \quad \text{CHO} + \text{MeO₂C} \text{+} \text{MeO₂C} \rightarrow \text{MeO₂C} \]

\(R = \text{Me; LiHMDS, DME; } (Z)/(E) = 14:86, 100\% \)

\(R = \text{CF₃CH₂; DBU, LiCl, MeCN; } (Z)/(E) = 75:25, 100\% \)

3.1.93.5 Effect of bases

As noted in the work of Seyden-Penne, and demonstrated in numerous examples such as those by Still and Kishi, higher (Z)-selectivity is observed by using base systems that have minimally complexing counterions in order to increase the rate of elimination relative to equilibration. Coordination has been used to advantage by Massamune and Roush, who found that the addition of lithium chloride to a phosphonate formed a tight complex (180; equation 44) that could be deprotonated with a weak base such as DBU or diisopropylethylamine. This method is a mild and extremely effective modification for substrates in which racemization or β-elimination are processes competitive with alkene formation. Rathke and coworkers have demonstrated that TEA and LiBr or MgBr₂ may also be used to form a reactive HWE reagent. Acetonitrile and THF are the most frequently used solvents. These conditions do not alter the normal course of stereoselectivity for alkene formation. As noted above, the method was utilized with the Still phosphonate to produce (Z)-alkenes. There is some indication that this technique may enhance inherent (E)-stereoselectivity in alkenations with a standard HWE reagent. Other stabilizing functionalities are compatible with this method. As outlined in Table 17, ester, ketone, sulfone, amide and allylic ketone groups have been demonstrated to be effective as stabilizing functionalities.

\[\text{(179)} \xrightarrow{\text{LiCl}} \text{(180)} \]

This reaction has been utilized in the context of natural product synthesis. A recent example is the synthesis of colletodiol by Keck, shown in equation (45). In this example, no problems were encountered with epimerization or ester cleavage. The desired (E)-ester (182) was synthesized in 80% yield. Two examples are outlined (in equations 46 and 47) in which epimerization was a substantial problem with sodium or potassium salts, while the LiCl/amine method effectively suppressed this side reaction. When the phosphonate was allowed to react with the cyclohexanal derivative (183), the sodium salt gave epimerized material. Use of LiCl and diisopropylethylamine gave an 88% yield of alkene (184), free of epimer (equation 46). In the synthesis of norsecurinine, Heathcock found that the phosphonate anion
Table 17 Synthesis of Alkenes Utilizing LiX and Amine Base

<table>
<thead>
<tr>
<th>Carbonyl</th>
<th>Phosphonate</th>
<th>Comments</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>OHC</td>
<td>(EtO)2P—SO2Ph</td>
<td>LiCl, Pr2NEt, 63%, (E)</td>
<td>184</td>
</tr>
<tr>
<td>BzO</td>
<td>(EtO)2P—CO2Et</td>
<td>LiCl, DBU, 60%, (E)</td>
<td>185</td>
</tr>
<tr>
<td>OHC</td>
<td>(MeO)2P—CO2Et</td>
<td>LiCl, Pr2NEt, 99%, (E)</td>
<td>186</td>
</tr>
<tr>
<td>MeO—CHO</td>
<td></td>
<td>LiCl, DBU, 89%, (E)</td>
<td>187</td>
</tr>
<tr>
<td>OHC</td>
<td>(EtO)2P—CO2Et</td>
<td>LiCl, DBU, 90%, (E)</td>
<td>189</td>
</tr>
<tr>
<td>PhCHO</td>
<td>(EtO)2P—CO2Et</td>
<td>LiBr, Et3N, 85%, 83:7 (E)</td>
<td>190</td>
</tr>
<tr>
<td>Pr3CHO</td>
<td>(MeO)2P—SiMe2Bu'</td>
<td>LiCl, DBU, 87%, >95% (E)</td>
<td>191</td>
</tr>
</tbody>
</table>
generated with KOBl gave an excellent (96%) yield of the desired alkene (186), but the material was racemic. Use of DBU and LiCl produced (186) in 84% yield and 93% ee (equation 47).
Transformation of the Carbonyl Group into Nonhydroxylic Groups

As with all reactions with phosphonates, these conditions are sensitive to the steric environment of the carbonyl and phosphonate. In a reaction directed at intermediates for synthesis of the erythronolides, Paterson and coworkers found that the unsubstituted phosphonate (188) added in 82% yield in the presence of molecular sieves (equation 48). When R was methyl the reaction failed with DBU because of competitive elimination of OSiMe₂Bu⁺. Model studies with the phosphonate and isopropyl aldehyde were successful, providing the alkene in 78% yield in an (E):(Z) ratio of 8:1. The Roush–Masamune modification of the HWE reaction was utilized by Heathcock and coworkers in the synthesis of mevinic acids. The coupling was very clean and resulted in 35–60% yields of alkene (192), along with 35–50% of recovered aldehyde (191; equation 49). This methodology is also effective for macrolide synthesis by intramolecular ring closure. An example of the utility of this approach is the synthesis of amphotericin B by Nicolaou. In this example, the macrolide could be formed from (193) either with potassium carbonate and 18-crown-6, or with LiCl and DBU at 0.01 M in 70% yield to form the (E)-alkene. Other applications of intramolecular cyclization have appeared for the cembranolides and rubradirins.

\[
\text{OSiMe}_2\text{Bu}^+ \quad + \quad \text{R}^-\text{PO(OMe)}_2 \quad \xrightarrow{\text{LiCl, Pr}_2\text{NET, MeCN}} \quad 4 \text{ Å sieves} \quad R = \text{H, (E) only, 82%}
\]

\[
\text{OSiMe}_2\text{Bu}^+ \quad \xrightarrow{\text{LiCl, DBU, MeCN}} \quad \text{Bu}^+\text{Me}_2\text{SiO} \quad \text{MeO}_2\text{C} \quad \text{PO(OMe)}_2 \quad \text{CHO} \quad \text{MeO}_2\text{C} \quad \text{OSiMe}_2\text{Bu}^+ \quad \text{DBU, MeCN} \quad (192) \quad 35–60\%
\]
Hanessian and coworkers have prepared a homochiral bicyclic phosphonamide (194) that reacted with cyclohexanone derivatives to form \((E)\)-ethylenes with good optical purity. The phosphonamide (194) was deprotonated with KDA in THF and reacted with 4-t-butylcyclohexanone (195) to give a 82% yield of 90% optically pure alkene (196; Scheme 27). Either the \((R,R)\)- or the \((S,S)\)-phosphonamide (194) can be synthesized, and on reaction with \((+)-3\)-methylcyclohexanone (197) it is possible to obtain \((E),(3R)\)-alkene (198) with \((R,R)\)-reagent and \((Z),(3R)\)-alkene with the \((S,S)\)-phosphonamide. Gais and Rehwinkel have demonstrated the use of a chiral phosphonate in which the stabilizing carbonyl is an 8-phenylmenthyl ester. This methodology was applied to the synthesis of carbacyclins (200 and 201; equation 50). Whereas a methyl phosphonate gives a 1:1 mixture of \((E)\)- and \((Z)\)-alkenes, the presence of a chiral ester gives good selectivity for either the \((E)\)- or \((Z)\)-alkene, depending on the enantiomer of the phenylmenthyl chosen. This reaction is temperature sensitive and, if heated, the \((E)\)-alkene predominates. The choice of solvent is not as critical a factor as temperature, and better ratios were observed with potassium as the counterion. Other esters were examined, including \((+)-menthyl and \((-)-trans-2\)-phenylcyclohexyl, but the phenylmenthyl ester proceeded with higher selectivity. This reaction has been applied to achiral ketones to produce diastereomeric esters.

3.1.9.3.6 Asymmetric Horner–Wadsworth–Emmons

In Homer’s original work, phosphine oxides (202) were treated with potassium \(t\)-butoxide or sodamide and allowed to react with an aldehyde or ketone to form the alkene (203) directly (Scheme 28). Homer observed that the use of a lithium anion resulted in the isolation of the \(\beta\)-hydroxyphosphine oxide (204). In addition, he found that the intermediate hydroxyphosphine oxide could be obtained by LAH reduction of the ketophosphine oxide. Warren and coworkers have utilized and expanded upon these techniques by isolating and separating the diastereomeric, frequently crystalline, \(\beta\)-hydroxyphosphine...
Transformation of the Carbonyl Group into Nonhydroxylic Groups

\[
\text{Bu'OK, KHMDS or Bu''Li} \rightarrow R^1\text{O} R^2 = \text{OSiMe}_2\text{Bu}', R^3 = (+)-8\text{-phenylmenthyl}; \ (E)/(Z) = 86:14, 95% \\
R^1 = \text{SiMe}_2\text{Bu}', R^2 = \text{OSiMe}_2\text{Bu}', R^3 = (\pm)-8\text{-phenylmenthyl}; \ (E)/(Z) = 23:77, 89% \\
R^1 = H, R^2 = \text{H}, R^3 = (+)-8\text{-phenylmenthyl}; \ (E)/(Z) = 86:14, 92% \\
R^1 = H, R^2 = \text{H}, R^3 = (+)-8\text{-phenylmenthyl}; \ (E)/(Z) = 15:85, 95%
\]

Scheme 28

Oxides (206) and (207). The erythro and threo adducts are then subjected to syn elimination, with the erythro isomer producing the (Z)-alkene (208), and the threo the (E)-isomer (209; Scheme 29).

Unlike the Peterson alkenation, which is in principle similar, the phosphine oxide anion addition can be controlled to produce predominantly the erythro isomer (206). The threo isomer can be obtained by selective reduction of the \(\alpha\)-ketophosphine oxide (210), allowing highly stereoselective alkene formation. Since a two-step sequence is employed, this reaction does not require a stabilizing functionality to be conjugated to the phosphine oxide in order to produce the alkene. In fact, unlike the phosphonate HWE reagents, the reaction of \(\alpha\)-ketophosphine oxide (211) with a carbonyl derivative does not occur to produce the unsaturated carbonyl (213; Scheme 30). The addition step is presumably too rapidly reversible and the elimination of phosphine oxide too slow.

The use of diphenylcyanomethylphosphine oxide is effective for the synthesis of \((E)\)-\(\alpha,\beta\)-unsaturated nitriles. Phosphine oxides can be used to synthesize a variety of functionalized alkenes, including vinyl ethers (215; equation 51), vinyl sulfides (217; equation 52), allylic amines (219) and amides (equation 53), ketene acetics (221; equation 54) and ketene thioketals (223; equation 55).

In the examples of \(\alpha\)-thio substitution, the alkenes are formed directly.

3.1.9.4.1 Elimination

The intermediate \(\beta\)-hydroxyphosphine oxide is isolated only if lithium is used to deprotonate the phosphine oxide. Sodium or potassium anions eliminate \textit{in situ} to form the alkene directly. Eliminations of
Alkene Synthesis

\[\text{Ph}_2\text{P} - \text{O} \quad + \quad \text{Ph} - \text{H} \quad \xrightarrow{\text{Bu}^\text{tLi}} \quad \text{Ph}_2\text{P} - \text{O} - \text{Ph} \quad + \quad \text{Ph}_2\text{P} - \text{O} - \text{Ph} \]

(205) \rightarrow (206) 78\% \text{ erythro} \quad (207) 11\% \text{ threo}

\[\text{i, Bu}^\text{tLi} \quad \text{ii, } \text{EtOCOPh} \quad \text{or} \quad \text{ii, ClCOPh} \]

66-82\%

\[\text{Ph}_2\text{P} - \text{O} \quad \xrightarrow{\text{NaBH}_4} \quad \text{etOH} \]

(208) \rightarrow (209)

\[\text{(206) 11\% \text{ erythro} \quad (207) 89\% \text{ threo}} \]

Scheme 29

\[\text{(211) \quad \leftrightarrow \quad (212) \quad \rightarrow \quad (213)} \]

Scheme 30

\[\text{Ph}_2\text{P} - \text{OMe} \quad \xrightarrow{\text{i, LDA} \quad \text{ii, } n\text{-C}_6\text{H}_{13}\text{CHO; 85\%} \quad \text{iii, separate} \quad \text{iv, NaH, THF 95\%}} \quad \text{MeO} - \text{n-C}_6\text{H}_{13} - \text{H} \]

(214) \rightarrow (215)

\[\text{(216)} \quad \xrightarrow{\text{i, Bu}^\text{tLi} \quad \text{ii, CHO}} \]

(2117) \((E,E)/(E,Z) = 9:1, 96\%\)

\[\text{(218)} \quad + \quad \text{C} \quad \xrightarrow{\text{i, Bu}^\text{tLi; 70\%} \quad \text{ii, NaH, DMF; 76\%}} \quad \text{(219)} \]
Transformation of the Carbonyl Group into Nonhydroxyllic Groups

Transformation of the Carbonyl Group into Nonhydroxyllic Groups

The transformation of the carbonyl group into nonhydroxyllic groups is a critical process in organic chemistry. Nonhydroxyllic groups are those that do not contain a hydroxyl group, which can significantly affect the reactivity and stability of the resulting compounds. This transformation often involves the use of strong bases and solvents to promote the reaction.

The transformation can be illustrated with the following example:

\[\text{Ph}_2\text{P} = \text{OEt} \quad \text{Ph}_2\text{P} = \text{OEt} \]

This reaction involves the addition of a phosphine oxide to a carbonyl group, followed by a series of transformations to yield the desired product. The use of bases such as LDA or Bu'OK can facilitate this process, often leading to high yields.

The reaction of cyclohexanone with Bu'OK in 90% yield illustrates the efficacy of this method:

\[\text{cyclohexanone} \quad \text{Bu'OK} \quad 90\% \]

The resulting product is shown in the image.

The transformation can also be extended to the synthesis of more complex compounds, as shown in the following examples:

\[\text{S} \quad \text{S} \quad \text{Ph}_2\text{P} \quad \text{O} \quad \text{Bu}^\text{IL} \quad 80\% \]

This reaction involves the use of a different base and solvent, leading to the formation of a different product.

The erythro selectivity, cis-alkene

The selection of the erythro or threo isomers is a critical aspect of this transformation. Erythro selectivity refers to the formation of the erythro isomer, which is the cis-isomer of the alkene. The selectivity can be affected by various factors, including solvent, base, and temperature.

The solvent, base, and temperature can be modified to maximize the erythro isomer formation. In nonpolar solvents, the addition proceeds with virtually no selectivity. Substantial improvements are seen by the use of ethers, and the highest ratios of erythro adducts are obtained in THF with the lithium complexing reagent TMEDA present at -78 °C or lower temperatures.

Substituent effects are also important to the selectivity. Branching α to the phosphine oxide can significantly erode the ratios of erythro to threo intermediates. For example, changing the α-substituent from methyl to isopropyl gives a 64:36 ratio of erythro to threo isomers on reaction with benzaldehyde. Increasing the branching of the aldehyde component also diminishes the selectivity, but the effect is smaller.

Cyclohexanal combines with the lithium anion of ethylphosphine oxide to give a 79:21 mixture of erythro to threo adducts in 79% yield. Although the elimination of phosphine oxide to form the alkene is syn, a certain amount of (E)-alkene is formed from erythro intermediates with a conjugating functionality α to the phosphine oxide. This loss of selectivity is thought to occur by cleavage back to the starting anion and the carbonyl, resulting in equilibration to higher ratios of threo adduct and therefore (E)-alkene.

The equilibration can be minimized by using a polar solvent such as DMF or DMSO and higher temperatures to ensure rapid elimination of phosphinate. An additional solution is demonstrated in the selective synthesis of (Z)-stilbene using dibenzophosphole oxide in the Horner reaction (Scheme 31).

Substituent effects are also important to the selectivity. Branching α to the phosphine oxide can significantly erode the ratios of erythro to threo intermediates. For example, changing the α-substituent from methyl to isopropyl gives a 64:36 ratio of erythro to threo isomers on reaction with benzaldehyde. Increasing the branching of the aldehyde component also diminishes the selectivity, but the effect is smaller.

Cyclohexanal combines with the lithium anion of ethylphosphine oxide to give a 79:21 mixture of erythro to threo adducts in 79% yield. Although the elimination of phosphine oxide to form the alkene is syn, a certain amount of (E)-alkene is formed from erythro intermediates with a conjugating functionality α to the phosphine oxide. This loss of selectivity is thought to occur by cleavage back to the starting anion and the carbonyl, resulting in equilibration to higher ratios of threo adduct and therefore (E)-alkene.

The equilibration can be minimized by using a polar solvent such as DMF or DMSO and higher temperatures to ensure rapid elimination of phosphinate. An additional solution is demonstrated in the selective synthesis of (Z)-stilbene using dibenzophosphole oxide in the Horner reaction (Scheme 31).

Substituent effects are also important to the selectivity. Branching α to the phosphine oxide can significantly erode the ratios of erythro to threo intermediates. For example, changing the α-substituent from methyl to isopropyl gives a 64:36 ratio of erythro to threo isomers on reaction with benzaldehyde. Increasing the branching of the aldehyde component also diminishes the selectivity, but the effect is smaller.

Cyclohexanal combines with the lithium anion of ethylphosphine oxide to give a 79:21 mixture of erythro to threo adducts in 79% yield. Although the elimination of phosphine oxide to form the alkene is syn, a certain amount of (E)-alkene is formed from erythro intermediates with a conjugating functionality α to the phosphine oxide. This loss of selectivity is thought to occur by cleavage back to the starting anion and the carbonyl, resulting in equilibration to higher ratios of threo adduct and therefore (E)-alkene.

The equilibration can be minimized by using a polar solvent such as DMF or DMSO and higher temperatures to ensure rapid elimination of phosphinate. An additional solution is demonstrated in the selective synthesis of (Z)-stilbene using dibenzophosphole oxide in the Horner reaction (Scheme 31).

The cyclophosphine oxide shifts the equilibrium so that phosphinate elimination is favored relative to the reverse aldol process. This is because of the marked acceleration of elimination when phosphorus is incorporated in a five-membered ring. The erythro adduct was generated by ring-opening the epoxide. Elimination with NaH in DMSO gives a 91% yield with a (Z):(E) ratio of 89:11. This ratio can be dramatically improved to >99:1 by using DBU.

Warren has also studied dibenzophosphole oxides. The ketophosphine oxide substrate can be formed and selective reduction to either the erythro or threo adducts carried out. The normal NaBH₄ conditions were used for reduction to the threo isomer and CeCl₃ was added to obtain the erythro adduct. This methodology was applied to the synthesis of (E)- and (Z)-isosafrol (232) and...
Alkene Synthesis

Scheme 31

(234), respectively, from a single ketophosphine oxide intermediate (230; Scheme 32). The application of this approach to diphenylphosphine oxides would provide a method by which either alkene isomer could be readily obtained from a single intermediate. Unfortunately, the Luche reduction, which is vital to this strategy, is highly substrate specific.216b

Scheme 32

3.1.9.43 Threo selectivity, trans-alkene

Trans-alkenes can be synthesized by the Horner reaction from the ketophosphine oxide, which is reduced selectively to the threo adduct.217 This intermediate is typically formed by reaction of the phosphine oxide with an ester or acid chloride. Alternatively, the keto intermediate may be obtained by oxidation of β-hydroxyphosphine oxides. This sequence was applied to the synthesis of the pure (E)-triene (237) by Warren (equation 57).217

Unlike the elimination of erythro adducts, the elimination of the threo intermediate is stereospecific for aromatic and aliphatic substituents. A study of various methods of reduction found that NaBH₄ in EtOH gave the best combination of threo selectivity and yield.218

This methodology has been applied to the synthesis of oudemansins by Kalimerten.219 In this example, the Wittig alkenation gave mixtures of (E)- and (Z)-products, as well as epimerizing the ether position. These problems were solved by acylating the phosphine oxide (239) and carrying out reduction and
elimination to (240) with LiBH₄ (Scheme 33). It was not anticipated that the reduction conditions would also cause elimination. It is unknown whether this effect is general for conjugated alkenes. Recently, Warren has studied the effect of additional chiral centers on the reduction of the ketophosphine oxide intermediate. In simple alkyl-substituted cases (241) it is possible to reduce the intermediate with high diastereoselectivity to produce (E)-alkenes (242). Alternatively an anion addition can be carried out on the ketophosphine oxide (243) to synthesize trisubstituted alkenes (245). Yields of these processes are good and alkene ratios are high (Scheme 34).

3.1.9.4.4 Disubstituted alkenes

For the synthesis of disubstituted alkenes by the Horner reaction, there are general guidelines that can be followed to maximize selectivity, as shown in structure (246). It is best to have the larger of the two substituents of the double bond to be formed derived from the carbonyl moiety. This is particularly important if the substituent is anion-stabilizing since this will erode the selectivity at the elimination. These rules can be followed, regardless as to the stereochemistry of the alkene desired.
The Wittig and Horner processes can be combined in a cyclic process to form \((E,Z)\)-dienes (249; Scheme 35).\(^{222}\) The initial Wittig process proceeded in 63\% yield with 68:32 to \((Z)\)-selectivity. Deprotonation of the phosphine oxide (248) and reaction with benzaldehyde gave exclusively the \textit{erythro} isomer in 82\% yield. The phosphine oxide was eliminated with NaH in DMF to give the \((E,Z)\)-1,6-diene in an isomer ratio of 92:8 with the \((E,E)\)-diene.

![Scheme 35](image)

The Homer–Wittig process has been utilized in the synthesis of vitamin D and its metabolites. Recently, a process was developed for the synthesis of hydrindanols by the 1,4-addition of the phosphine oxide to cyclopentenone.\(^{223}\) After further elaboration, the phosphine oxide formed (250) can be utilized to incorporate side chains (251; equation 58).

![Equation 58](image)

Recently, the Horner coupling was utilized by Smith and coworkers in the total synthesis of milbemycin (equation 59).\(^{224}\) In an excellent example of the sensitivity of the alkene stereochemistry to the base utilized, when the phosphine oxide anion (253) was generated with NaH as the base the \((E):(Z)\) ratio was 7:1, but epimerization occurred at the aldehyde methine (252) and the yield was only 15\%. Switching to KHMDMS, the yield improved to 74\% but virtually a 1:1 ratio of alkenes formed. Use of sodium hexamethyldisilazide solved these difficulties, forming the desired \((E)\)-diene (254) in a 7:1 ratio with the \((Z)\)- in 85–95\% yield. Additional examples of the use of phosphine oxides in the synthesis of milbemycins and FK-506 are presented in Section 3.1.1.4.1.

Warren has applied the Homer reaction to the synthesis of isoxazoles (equation 60).\(^{225}\) Either the 3-alkyl or the 5-alkyl substitution is effective, and in either case good yields of \((E)\)-alkenes are obtained. The isoxazoles can be cleaved with Mo(CO)\(_6\). The Horner reaction can be utilized in the synthesis of polyenes. For example, Nicolaou utilized this methodology in the synthesis of a pentaene (equation 61).\(^{226}\) The addition was carried out with LDA and the elimination effected with KOBu\(^+\) to give the \((E)\)-isomer (258).

3.1.9.4.5 Trisubstituted alkenes

The Horner reaction can be applied to the synthesis of trisubstituted alkenes. As in the case of HWE reactions, the yield obtained by adding a disubstituted phosphine oxide to an aldehyde is frequently higher than that obtained by adding an anion to a ketone. This methodology was applied to the synthesis
Transformation of the Carbonyl Group into Nonhydroxylic Groups

\[
\text{OMe} \quad \text{N-} \quad \text{i, BuLi} \quad \text{N-} \quad \text{ii, PhCHO} \quad 78\% \quad (255)
\]

\[
\text{ButPh}_2\text{SiO} \quad \text{OSiPh}_2\text{Bu'} \quad (257)
\]

\[
\text{Ph}_2\text{P} = \text{O} \quad (258)
\]

\[
\text{Bu'}\text{Ph}_2\text{SiO} \quad \text{OSiPh}_2\text{Bu'} \quad (259)
\]

\[
\text{Bu'}\text{Ph}_2\text{SiO} \quad \text{OSiPh}_2\text{Bu'} \quad (260)
\]

\[
\text{Bu'}\text{Ph}_2\text{SiO} \quad \text{OSiPh}_2\text{Bu'} \quad (261)
\]

As stated above, heteroatom substitution is compatible with the formation of alkenes by phosphine oxide. This technique has been used by Ley and coworkers to synthesize intermediates for spiroketal formation (263; equation 63). The Horner coupling has been utilized by many groups for the synthesis of the diene portion of vitamin D and its metabolites (266; equation 64). These reactions occur with excellent stereoselectivity for the diene formation.
Alternative approaches

In analogy to the Peterson alkenation, the intermediate hydroxyphosphine oxides (269) can be prepared by addition to epoxide derivatives (268; Scheme 36). Overall yields are high for this process, and this sequence can be applied to the synthesis of phosphonate intermediates as well. Warren has studied hydroxy-directed epoxidation. Provided the allylic phosphine oxide is trisubstituted, as is (270) in equation (65), these oxidations proceed with good selectivity. Ring opening can then be undertaken to generate the hydroxyphosphine oxide.

Acylated phosphine oxides have been used as intermediates to unsaturated acids such as (276; Scheme 37). These compounds cannot be formed by the direct addition of an acid derivative of the phosphine oxide to a carbonyl (273). Instead, the ketophosphine oxide (274) is reduced and the lactones (275) are separated. The sequence is completed by treatment with KOH in aqueous THF followed by elimination.
Transformation of the Carbonyl Group into Nonhydroxylic Groups

in DMSO. The application of the Horner reaction to the synthesis of homo-allylic alcohols (279) was studied by Warren and coworkers.232 These derivatives were formed by an intramolecular acyl transfer to the ketophosphine oxide (278; Scheme 38). The acyl group may be alkyl or aromatic and the reduction of the ketone, followed by elimination to the alkene, takes place under the standard protocol. This reaction was also applied to systems with chiral centers present in the phosphine oxide chain.233 The intermediate phosphine oxide can also be converted to a hydroxy ketone and a cyclopropyl ketone by treatment with base. An alternative approach to erythro-phosphine oxides is to add the phosphine imide anion (280) in a selective manner to the aldehyde and hydrolyze to the hydroxyphosphine oxide (282; Scheme 39).234 In comparing the imide to the phosphine oxide, the erythro selectivity of the phosphine imide addition was higher (98:2 \textit{versus} 88:12 for the methyl- and phenyl-substituted alkene), and it remains to be demonstrated whether this alternative will prove to have practical applications in organic synthesis.

\[\text{Scheme 37} \]

\[\text{Scheme 38} \]

\[\text{Scheme 39} \]

3.1.10 SILICON-MEDIATED ALKENE FORMATION

In Section 3.1.3.1, the advantages of the Peterson alkenation in comparison to the Wittig reaction were detailed. The by-product (hexamethyldisiloxane) is volatile and is easier to remove than the phosphine
oxides, and it is a more basic and more reactive anion. On the other hand, the anion can be more arduous to obtain than the Wittig anion for more complex applications, and the stereochemistry of the elimination is such that control of alkene isomers requires separation of the β-silylcarbinols.

3.1.10.1 Anion Formation

The α-silyl carbanions necessary to apply the Peterson reaction to higher substituted examples are limited by the ability to efficiently produce the anion. A clever example of an alternative to the Wittig reaction for ethylidene formation to give (285) with α-(trimethylsilyl)vinylithium was utilized by Jung in the synthesis of coronafacic acid (Scheme 40).235

As a general rule, unless an anion-stabilizing group, such as phenyl, or a heteroatom such as sulfur is present, the alkylsilane is not readily deprotonated.236 The α-halosilane can be deprotonated but, unlike the readily available chloromethyltrimethylsilane, there are few general methods to this approach. Alkyllithium reagents add to vinylsilanes (286) to produce the carbanion (287).237 Silyl derivatives with heteroatoms, such as sulfur, selenium, silicon or tin, in the α-position (288) may be transmetallated (Scheme 41).4d Besides the difficulty in synthesizing the anion, alkene formation lacks specificity for simple di- and tri-alkyl-substituted alkenes. As a result, the Peterson reaction of an α-silyl carbanion with a carbonyl has found the greatest utility in the synthesis of methylene derivatives, (as discussed in Section 3.1.3), heterosubstituted alkenes and α,β-unsaturated esters, aldehydes and nitriles.

3.1.10.2 Elimination

In a study by Hudrlik, the elimination was demonstrated to be stereospecific.238 Diastereomeric β-hydroxysilanes were synthesized by the reduction of the corresponding ketones. In this way, each distinct
diastereomer (290) and (293) was monitored in the elimination reaction. The elimination of the silane was stereospecific, with the acid-promoted eliminations being anti and the base-induced reaction following the syn pathway (Scheme 42).

![Scheme 42](image)

The implication of this observation is that if one can form the silylcarbinol selectively, the ratios of cis- and trans-alkenes should be controllable and high. Unfortunately, the addition of the silyl anion to a carbonyl does not result in formation of a single carbinol. Unlike the Wittig reaction, the initial addition step is not reversible (the reaction is under kinetic control), therefore the inherent ratios in the addition step define the ratio of cis- to trans-alkenes produced. The reaction is not influenced significantly by solvent, counterion effects, added salts or temperature. Because of these combined factors, the Peterson alkenation generally yields equal amounts of cis- and trans-alkenes. To take advantage of the stereospecific elimination, either the substrate must be synthesized by an approach other than anion addition to the carbonyl, or the diastereomeric β-silylcarbinols must be separated.

Examples of successful formation of the stereodefined carbinol are the selective reduction of the α-silyl carbonyl (294; equation 66), the addition of an alkyl anion to an α-silyl carbonyl (296; equation 67), the addition of a silyl anion to an epoxide (298; equation 68) and the ring opening of a silyl epoxide (300; equation 69).
The term 'Peterson alkenation' has been used to describe the elimination of a functionalized organo-silicon compound with alkene formation for substrates synthesized by these methods. In accordance with the mechanistic definition outlined in the introduction to this chapter, such topics are not considered in detail in this review. For the purpose of this discussion, the Peterson alkenation will be considered as the addition of an anion derivative to a carbonyl compound, followed by elimination to the alkene.

3.1.10.3 Mechanism

As mentioned in the previous section, the Peterson reaction proceeds by an irreversible addition of the silyl-substituted carbanion to a carbonyl. It has generally been assumed that an intermediate β-oxidosilane is formed and then eliminated. In support of this mechanistic hypothesis, if an anion-stabilizing group is not present in the silyl anion, the β-hydroxysilanes can be isolated from the reaction, and elimination to the alkene carried out in a separate step. Recent studies by Hudrlik indicate that, in analogy to the Wittig reaction, an oxasiletane (304) may be formed directly by simultaneous C—C and Si—O bond formation (Scheme 43). The β-hydroxysilanes were synthesized by addition to the silyl epoxide. When the base-induced elimination was carried out, dramatically different ratios of cis- to trans-alkenes were obtained than from the direct Peterson alkenation. While conclusions of the mechanism in general await further study, the Peterson alkenation may prove to be more closely allied with the Wittig reaction than with β-elimination reactions.

\[
\begin{align*}
\text{O} & \quad + \quad \text{M} - \text{SiMe}_3 \\
& \quad \rightarrow \quad \text{O} - \text{SiMe}_3 \\
& \quad \rightarrow \quad \text{O} - \text{SiMe}_3
\end{align*}
\]

(R = H, Z = SiMe₃)

Scheme 43

The stereochemistry of the elimination of the β-hydroxysilane at silicon has been investigated. In studies by Larson and coworkers, the β-hydroxyalkyl(1-naphthyl)phenylmethylsilanes (307) and (309) were isolated and subjected to elimination conditions to ascertain the stereochemistry of the elimination on the silyl group (Scheme 44). The acid-catalyzed eliminations proceed with inversion of stereochemistry at silicon, while the base-catalyzed elimination occurred with retention. These results are in agreement with the mechanism proposed of anti elimination under acidic conditions and syn elimination under basic. While the optically pure silicon was useful for determining the course of the elimination, it could not be utilized in asymmetric synthesis. Addition of the anion to various carbonyls afforded virtually no diastereoselectivity, and it was not possible to separate the diastereomers formed either by crystallization or by chromatography.

\[
\begin{align*}
\text{NpPhMeSi} & \quad \rightarrow \quad \text{R} \\
& \quad \rightarrow \quad \text{ retention} \\
& \quad \rightarrow \quad \text{O}
\end{align*}
\]

(R = Bu', CH=CH₂)

Scheme 44
3.1.10.4 Alkene Formation

The Peterson reaction, as shown in equation (70), has been applied to the synthesis of alkenes that are hindered and difficult to form by the Wittig reaction. In the case of trisubstituted alkenes (311) in which R¹ and R² are components of a ring or are identical, the reaction may prove to be the method of choice.

\[
\begin{align*}
\text{O} & \quad + \quad \text{Me}_3\text{Si} \quad \text{M} \\
\text{R}^1 \quad \text{R}^2 & \quad \xrightarrow{\text{reaction}} \quad \text{R}^1 \quad \text{R}^2 \quad \text{R}^3
\end{align*}
\]
(310)
(311)

An example is the preparation of allylidene cyclopropanes (Scheme 45).²⁴⁸ The 1-(trimethylsilyl)cyclopropane (312) is reductively lithiated with lithium 1-(dimethylamino)naphthalenide (LDMAN) followed by addition of an aldehyde to form the β-silylcarbinol (314).²⁴⁹ This method of anion formation is general²⁷⁻¹ but has seen greatest application in the synthesis of cyclopropyl compounds. The intermediate can be eliminated in situ with KOBu to form the alkene (315). Yields are good but, as discussed in the mechanistic section, in unsymmetrical cases a mixture of products results. This reaction has been extended by Halton and Stang to the synthesis of cycloproparanes.²⁵⁰

\[
\begin{align*}
\text{R}^3 & \quad \text{Me}_3\text{Si} \\
\text{Bu}^\text{t} & \quad \xrightarrow{\text{Bu}^\text{t}\text{OK}} \\
\text{R}^2 & \quad \text{OLi}
\end{align*}
\]
(312)
(313)
(314)
(315)

Scheme 45

3.1.10.5 Heteroatom Substitution

3.1.10.5.1 Silicon

The Peterson reaction can be used to synthesize a number of heterosubstituted alkenes. Methoxydimethyl(methyl(trimethylsilyl)methyl lithium (316) can be added to aldehydes and ketones, including enolizable substrates, to form the vinylsilane (317; equation 71). Modest (E):(Z)-selectivity was observed in unsymmetrical cases. This reagent may represent an improvement over the bis(trimethylsilyl)methyl anion, which is ineffective for enolizable substrates.

\[
\begin{align*}
\text{Me}_2\text{SiOMe} & \quad + \quad \text{R}^1 \quad \text{R}^2 \\
\text{Li} & \quad \xrightarrow{\text{reaction}} \quad \text{R}^1 \quad \text{R}^2 \quad \text{SiMe}_3
\end{align*}
\]
(316)
(317)

3.1.10.5.2 Sulfur

In the original study by Peterson, the alkenation procedure was found to be compatible with sulfur and phosphorus substitution.²⁵¹ The alkenation reaction has been applied successfully to a variety of substituted alkenes.²⁵² Because of the anion-stabilizing nature of the thiophenyl, the β-hydroxysilane is not isolated and the elimination to the alkene takes place directly to form a 1:1 mixture of (E)- and (Z)-isomers. Ager studied the reaction of the lithio anions of phenyl (trimethylsilyl)methyl sulfides (318) with a variety of carbonyl compounds (equation 72).¹⁴ Yields of this process were good, and addition occurred even with enolizable substrates. This reaction was extended to vinyl sulfones. In contrast to the sulfide case, the substituted sulfone silyl anion behaves as a base, leading to undesired enolization. The best yields were observed for the case where R¹ is a hydrogen or phenyl.
Ley and coworkers have done studies with phenyl (trimethylsilyl)methyl sulfones (320; equation 73). The lithio anion was generated with Bu₄Li in DME to form vinyl sulfones (321) in good to excellent yields as isomeric mixtures. There is some indication that the reaction should best be carried out in DME at -78 °C, rather than in THF as in the initial Ager work. Trapping the intermediate alkoxide as the acetate, followed by attempts at stereospecific elimination did not prove to be successful in forming a single alkene isomer.

Addition of sulfides and sulfones to acid derivatives has been investigated by Agawa. Phenyl and methyl (trimethylsilyl)methyl sulfides and sulfones added to amides (323) to produce the aminovinyl sulfides (324; equation 74) and sulfone (326; equation 75). The reactions proceeded in good yield with some examples of stereocontrolled synthesis of the (E)-isomer. Other acid derivatives such as esters, carbonates and ureas were investigated, but gave inconsistent results.

In studies directed toward intermediates for the synthesis of quadrone, Livinghouse demonstrated the utility of lithiated methoxy(phenylthio)(trimethylsilyl)methane (327) for the conversion of aldehydes and ketones to ketene O,S-acetals (328) in good to excellent yields (Scheme 46). These Peterson alkenations gave predominantly the (E)-double bond isomer. As the example depicted in the scheme demonstrates, this procedure may be used to homologate a carbonyl to the phenyl thioester (329) in excellent yields.
The use of sulfur in the Peterson reaction can be extended to the optically pure lithio anion of S-phenyl-S-(trimethylsilyl)methyl-N-tosylsulfoximine (330; equation 76). Unlike most Peterson alkenations this reaction is selective for the formation of the (E)-alkene isomer (331) with aldehydes. In addition, the stereochemistry of the sulfoximine is maintained.

$$\begin{align*}
\text{RIR}^\text{â} & \text{CO} \\
\text{Ph} & \text{S} \text{Me} \text{Li} \\
\text{TnN} & \text{NTs}
\end{align*}$$

(E):(Z) > 93:7

60–70%

(330) $R^1, R^2 = \text{H, Me, Ph, Pr', Bu', etc.}$ (331)

3.1.10.5.3 Phosphorus

As in the case of sulfur-substituted analogs to the Peterson alkenation, the compatibility of the reaction with a phosphorus substituent was demonstrated in the original work of Peterson. An in situ procedure for the preparation and reaction of the lithio anion of (trimethylsilyl)alkylphosphonates has been developed (333; Scheme 47). The phosphonate (332) was treated with 2 equiv. of LDA followed by TMS-Cl and after warming to $-20 \, ^\circ\text{C}$, the aldehyde. The overall yields were good, but (E):(Z) selectivities for this reaction were low. Zbiral and coworkers developed a method for the homologation of a carbonyl compound to an α-hydroxy ester with a silylphosphonate derivative (335; Scheme 48). The reactions produced a 1:1 mixture of alkene isomers (336). The intermediate vinylphosphonate was oxidized with OsO$_4$ to form the α-hydroxy ester (337). Recently, both sulfur and phosphorus functionalities were combined in a Peterson reagent. The lithium anion of the (methylthio)phosphonate (338) reacted with high (E)-selectivity with aldehydes (equation 77). The reaction was ineffective with ketones.

$$\begin{align*}
\text{EtO}^\text{â} & \text{PO} \\
\text{EtO}^\text{â} & \text{PO} \\
\text{Me}_3\text{SiCl} & \text{LDA}
\end{align*}$$

Scheme 47

$$\begin{align*}
\text{EtO}^\text{â} & \text{PO} \\
\text{EtO}^\text{â} & \text{PO} \\
\text{SiMe}_3 & \text{Li}
\end{align*}$$

Scheme 48

$$\begin{align*}
\text{EtO}^\text{â} & \text{PO} \\
\text{EtO}^\text{â} & \text{PO} \\
\text{SiMe}_3 & \text{Li}
\end{align*}$$

(338)

(339) $R = \text{H, Me, Ph}$
3.1.10.6 Synthesis of Conjugated Alkenes

In the application of the Peterson alkenation to the synthesis of α,β-unsaturated esters, the full advantage of the greater reactivity of the silyl-stabilized anion as well as the ease of by-product removal can be realized. In addition, the Peterson reagent can be directly formed by deprotonation if an activating group, in these cases a carbonyl or similar conjugating functionality, is present, making the anion readily accessible. Selectivity for (E)- and (Z)-alkene isomers is highly substrate specific and no general predictive rule can be stated, but selectivity is enhanced by increasing the steric bulk of the silyl substituent, and in some instances by altering the counterion, as the following examples illustrate.

The reaction of a silylacetate derivative with an aldehyde or ketone was initially studied by Rathke and Yamamoto. Rathke and coworkers studied the addition of the lithium anion of t-butyl (trimethylsilyl)acetate (340) with a variety of aldehydes and ketones (equation 78). The anion can be formed directly from the silyl compound on treatment with LDA. The reaction proceeded to give the conjugated alkenes in excellent yields. Unsaturated compounds reacted via 1,2-addition. No discussion of alkene geometry was presented. In the Yamamoto work, the ethyl (trimethylsilyl)acetate derivative (342) was used in a variety of reactions with aldehydes and ketones (equation 79). The anion was formed with dicyclohexylamine in THF. It was stated in the experimental section that the (E):(Z) ratios of alkenes were dependent on the reaction conditions. In all the examples presented in this work, the (E)-isomer was predominantly formed.

The ability to define the alkene geometry by modification of the anion was investigated by Debal. In this work, the intermediate β-hydroxysilanes were either isolated and the elimination carried out with BF$_3$·Et$_2$O to synthesize the (E)-isomers (347), or the addition adduct (formed in the presence of MgBr$_2$) was treated with HMPT and eliminated in situ to give predominantly the (Z)-isomer (346), as shown in Scheme 49.

![Equation 78](image1)

![Equation 79](image2)

![Scheme 49](image3)
Transformation of the Carbonyl Group into Nonhydroxylic Groups

Comparative examples of the Wittig reaction and the Peterson alkenation with ketones (353; equation 82) and (355; equation 83), epoxy ketones (351; equation 81), or protected α-hydroxy ketones (348; equation 80) have appeared. The reactions can proceed with high kinetic control for the (Z)-isomer and, as a result, the Peterson technology may form complementary isomers to the Wittig reaction.

The reaction has been extended to α-silyl lactones and lactams. Other stabilizing groups have been demonstrated to be effective. For example, the Peterson reagent formed from bis(trimethylsilyl)propyne (357) and that formed from α-silyl acetonitrile derivatives (358) both give the (Z)-alkene as the predominant product (equation 84).
Increasing the steric bulk of the silyl group enhances the ratios of (Z)- to (E)-alkene isomers. The size of the ester group can also affect the (E):(Z) ratios of alkenes. An example is the synthesis of butenolides (360) by Peterson alkylation of α-keto acetals (359; equation 85). Increasing the ester from methyl to isopropyl and t-butyl resulted in a corresponding increase in (Z)-alkene formation.

Boeckman and coworkers studied the reaction of bis(trimethylsilyl) ester (361) with aldehydes to form the silyl-substituted unsaturated ester (362; equation 86). The anion was formed with potassium or lithium diisopropylamide. Other metals, such as magnesium or aluminum, were introduced by treating the lithium anion with Lewis acids. The addition step produced a single diastereomer, enabling the effects of counterion and steric bulk on the elimination to be ascertained. Excellent selectivity for the (E)-isomer (362) may be obtained by using K or Li cations and a sterically hindered aldehyde. In studies directed toward the synthesis of substituted pseudomononic acid esters, the Peterson alkenation was utilized to form a mixture of (Z)- and (E)-alkene isomers, one example of which (365) is depicted in equation (87). In this example the conditions were optimized to form the highest degree of selectivity for the (Z)-alkene.

A comparison of the Wittig and Peterson alkenation procedures for the conversion of an aldehyde to its α,β-unsaturated vinylog was carried out by Schlessinger (Scheme 50). The Wittig methodology was more effective for the base-sensitive lactone substrate (366), while the Peterson reaction was the preferred method for the hindered aldehyde (368). An additional comparative example of the Peterson and Wittig methods to synthesize an unsaturated aldehyde is found in studies on the streptogramin antibiotics by Meyers (Scheme 51). Higher yields and (E)-alkene isomer selectivity (371) were obtained with the Wittig reagent. The Schlessinger method was recently used in the synthesis of FK-506 by Mills and coworkers (equation 88). Addition to the hindered aldehyde (372) produced the α,β-unsaturated aldehyde (373) in 78% yield and an (E):(Z) ratio of >100:1.

While these examples point to the possible use of the Wittig and the Peterson reactions as complementary methods for (Z)- and (E)-alkene formation in cases with conjugating functionality, it must be emphasized that no systematic predictive rule can be applied to the possible selectivity, and this area remains one of active research.
Transformation of the Carbonyl Group into Nonhydroxylic Groups

\[
\begin{align*}
\text{CHO} & \quad \text{or} \\
\text{Et}_3\text{Si} \quad \text{N} & \quad \text{Bu}^1 \quad \text{or} \\
(366) & \quad (367)
\end{align*}
\]

Scheme 50

\[
\begin{align*}
\text{CHO} & \quad \text{or} \\
\text{Et}_3\text{Si} \quad \text{N} & \quad \text{Bu}^1 \\
(368) & \quad (369)
\end{align*}
\]

3.1.10.7 Lewis Acid Catalysis

The use of cerium trichloride for the Peterson alkenation has been applied by Ueda and coworkers for nucleoside synthesis (Scheme 52).270 The anion was generated with LDA/cerium trichloride and condensed with the aldehyde (375). The product was treated with KH in THF and the pyrimidopyridine (377) isolated in 50% yield.

3.1.11 SULFUR-STABILIZED ALKENATIONS: THE JULIA COUPLING

In 1973, Julia introduced the reaction depicted in Scheme 53, that bears his name.271 The sulfone derivative is metallated (378) and added to the carbonyl, followed by functionalization (380), and reductive elimination, to produce the alkene (381). The yield for the transformation from carbonyl to alkene is ex-
tremely high; usually greater than 80% overall. In the original communication, the Julia coupling was applied to the synthesis of mono-, di- and tetra-substituted alkenes, and since then has been employed to solve many challenging synthetic problems. The selectivity can be extremely high for the production of disubstituted (E)-alkenes and it is this particular aspect of the Julia coupling in the synthesis of complex molecules that will be considered below.

\[
\text{Scheme 52}
\]

\[
\text{Scheme 53}
\]

3.1.11.1 (E)-(Z)-Selectivity

A study carried out by Kocienski and Lythgoe first demonstrated the trans selectivity of the Julia coupling process. The authors found the reductive elimination could best be carried out with the acetoxo or benzoyloxy sulfones. If the lithio sulfone derivative is used for addition to the carbonyl, the reaction can be worked up with acetic anhydride or benzoyl chloride to obtain the alkene precursor. In cases where enolization of the carbonyl is a complication, the magnesium derivative can frequently be used successfully. A modification of the reductive elimination was found to be most effective. Methanol, ethyl acetate/methanol or THF/methanol were the solvents of choice and a temperature of \(-20^\circ\text{C}\) was effective at suppressing the undesired elimination of the acetoxy group to produce the vinyl sulfone. With these modifications of the original procedure, the ability of the reaction to produce dienes as well as trans-disubstituted alkenes was demonstrated. The diastereoisomeric erythro- and threo-acetoxy sulfones could be separated and it was demonstrated that both isomers were converted to the trans-alkene. It
was hypothesized that the (E)-selectivity is derived from the reductive removal of the phenylsulfonyl group, generating an anion (383) that assumes the low energy trans configuration before loss of the acylate anion (Scheme 54). As demonstrated by numerous examples, the mechanism for reductive elimination is consistent with the finding that the alkenes obtained are the thermodynamic mixture and that increased branching at the site of elimination should, for steric reasons, increase the trans selectivity.273c,d

\[
\begin{align*}
\text{PhO\&} & \text{H R} \\
\text{c} & \text{+} \\
\text{R R} & \text{OAc} \\
\text{PhOS} & \text{H} \\
\text{H} & \text{OAc} \\
\text{R} & \text{H} \\
\text{R} & \text{H} \\
\text{R} & \text{H} \\
\text{R} & \text{H} \\
\end{align*}
\]

Scheme 54

3.1.11.2 Reductive Cleavage

The reduction of the p-acyloxy sulfone is most often carried out with sodium amalgam, as the examples below indicate. The reductive elimination can be buffered with disodium hydrogenphosphate for sensitive substrates.275 In certain applications it has proven advantageous to utilize lithium or sodium in ammonia. For example, Keck’s synthesis of pseudomonic acid C made use of the lithium/ammonia reductive elimination to simultaneously form an alkene and deprotect a benzyl ether.281 In studies directed toward the same target, Williams made use of a reductive elimination procedure developed by Lythgoe, involving the formation of the xanthate ester followed by reduction with tri-n-butyltin hydride.276

3.1.11.3 The Synthesis of (E)-Disubstituted Alkenes: Comparison with the Wittig Reaction

3.1.11.3.1 The synthesis of pseudomonic acid C

The Julia coupling can be utilized as an alternative to the Schlosser–Wittig reaction to form (E)-alkenes.277 Several reported syntheses of pseudomonic acid C (385) have provided interesting clues as to variability of applications of the Julia coupling in the context of natural product synthesis.

The (E)-disubstituted alkene has been extensively studied with several applications of the Julia coupling attempted.278 The first synthesis of the natural product was accomplished by Kozikowski.279 In this approach, the aldehyde (386) was reacted with 2 equiv. of the Wittig reagent (387) to produce (388), with an (E):(Z) ratio of 60:40 (equation 89; no yield given). This first synthesis establishes the baseline
selectivity achievable with the Wittig reaction and is useful for subsequent comparison to the Julia coupling. Further studies by Kozikowski on methyl deoxypseudomonate B utilized the Julia coupling to form a similar alkene (equation 90). The aldehyde (389) was coupled with the anion of the sulfone (390) and the hydroxyl group isolated as the benzoate. The alkene (391) was produced by treatment with Na(Hg) to give the desired (E)-alkene (no yield specified).

Keck attempted to apply the Julia coupling to the synthesis of pseudomonic acid C. Despite the success of the sulfone (393) in reactions with simple aldehydes, only modest yields of the desired coupling were observed. This problem was solved by reversing the aldehyde (395) and sulfone components (394), as shown in Scheme 55.

Williams carried out a Julia coupling similar to the Keck example. With the removal of the acetal functionality, the coupling step of the Julia reaction was efficient, but the usual reductive elimination procedure failed. As an alternative to the acetylation and reductive elimination procedure, the β-sulfonyl xanthate was formed by quenching the addition reaction with carbon disulfide and methyl iodide. Reductive elimination was then carried out with tri-n-butyltin hydride to yield the desired (E)-alkene (399) in an 85:15 ratio with the (Z)-alkene in 83% overall yield (equation 91).

Finally, White has utilized a substrate (400) with which the Wittig reagent (401) gave a 37% yield of a 57:43 mixture of (E)- and (Z)-isomers (Scheme 56). Using the preparation of the sulfone (393) developed by Keck, White formed the anion with n-butyllithium in THF and condensed it with the aldehyde (400). The β-hydroxy sulfone was acetylated and reduced with sodium amalgam to produce a 17:3 ratio of (E)- to (Z)-alkenes (402) in 62% overall yield.

These four examples of the successful application of the Julia coupling in natural product synthesis indicate the sensitivity of various substrates to the anionic conditions. The solutions, interchanging the aldehyde and sulfone portions, modification of the substrate or altering the reductive elimination conditions, are all techniques that can enable the successful use of the Julia coupling for (E)-alkene synthesis.
Transformation of the Carbonyl Group into Nonhydroxylic Groups

Scheme 55

Scheme 56
3.1.11.3.2 Other examples

An interesting comparative example of the unstabilized Wittig reaction and the Julia coupling is found in the synthesis of the capsaicinoids by Gannett. A selective route to both the (E)- and (Z)-isomers (405) and (406), respectively, is depicted in equation (92). The Wittig was carried out with potassium t-butoxide in DMF as the base, to form the (2)-alkene (406) as the major product in a 91:9 ratio to the (E)-isomer. The Julia coupling and subsequent elimination produced the isomer (405) as a 9:1 mixture with the (Z)-isomer in 70-80% yields. Other examples of the Julia coupling for the synthesis of (E)-disubstituted alkenes are outlined in Table 18. From the examples cited, it is apparent that the sulfone anion adds chemoselectively to aldehydes in the presence of esters and amides. The reagent is also compatible with a wide range of protecting groups, including ethers, acetics and amines.

\[
\begin{aligned}
\text{MeO} & \quad \text{H} \\
\text{(403)} & \quad \text{R} \\
\text{O} & \quad \text{MeO} \\
\text{(405)} & \quad \text{R} = \text{SO}_2\text{Ph}, \text{PPH}_3 \\
\text{(406)}
\end{aligned}
\]

3.1.11.4 (E)-Trisubstituted Alkene Synthesis

The Julia coupling has also been successfully utilized for the synthesis of more complex alkenes. There are limitations to the application of the method to tri- and tetra-substituted alkenes, since the addition of the sulfone anion to a highly substituted ketone forms a β-alkoxy sulfone that is difficult to trap and isolate. There is a tendency for highly substituted β-alkoxy sulfones to revert back to the ketone sulfone. There have been several recent examples of the synthesis of trisubstituted (E)-alkenes worthy of note.

3.1.11.4.1 The milbemycins and avermectins

The milbemycins and the structurally related avermectins contain an (E)-trisubstituted alkene linkage that has been formed by the Julia coupling. The first application of the Julia coupling to avermectin was undertaken by Hanesian. In this synthesis, the spiroketal portion was added as the sulfone (407) to the ketone (408; equation 93). The yield for the anion addition was 40%, but based on recovered sulfone (407) was 95%. The β-hydroxy sulfone was directly reduced to the (E)-trisubstituted alkene with excellent selectivity. In the synthesis of milbemycin, Barrett carried out a very similar transformation, but with the two components reversed (equation 94). The sulfone (410) was metallated and condensed with the aldehyde (411). The adduct was isolated as the acetate in 86% yield and the mixture of isomers reduced with sodium amalgam in 86% yield and the mixture of isomers reduced with sodium amalgam in 86% yield. Although the conversion to the alkene (412) was efficient, the (E)- to (Z)-selectivity was 5:3. Hiram and coworkers have also applied the Julia coupling to the trisubstituted alkene portion of the avermectins (equation 95). In this case, the addition of the sulfone anion (414) to the ketone (413; R = Me) failed and the starting materials were recovered. It was hypothesized that the lack of reactivity was due to the presence of oxygen substituents in the ketone which coordinate with the metal cation. In support of this theory, 3-methyl-2-butanone did undergo coupling with the sulfone and subsequent reductive elimination in satisfactory yield; however, the geometric selectivity in forming the trisubstituted alkene was a disappointing 2:1. In this case, the problem was solved by addition of the sulfone (414) to the aldehyde (413; R = H). The β-hydroxy sulfone (415) was converted to the enol triflate and displaced with dimethylcuprate.
Transformation of the Carbonyl Group into Nonhydroxylic Groups

Table 18 Julia Coupling to Produce (E)-Disubstituted Alkenes

<table>
<thead>
<tr>
<th>Entry</th>
<th>Carbonyl</th>
<th>Sulfone</th>
<th>Yield (%)</th>
<th>(E):(Z) ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>60</td>
<td>9:1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>36</td>
<td>(E)</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>28</td>
<td>(E)</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>68</td>
<td>4:1</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>35</td>
<td>(E)</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>46</td>
<td>(E)</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>30</td>
<td>(E)</td>
</tr>
</tbody>
</table>
Most recently, the immunosuppressive agent FK-506 (416) has been the target of total synthesis. To date several approaches to the trisubstituted alkene region at C-19 and C-20 have appeared. These preliminary studies allow the comparison between the Warren phosphine oxide approach and the Julia coupling. In the first total synthesis of FK-506, Jones and coworkers at Merck formed the the alkene by deprotonation of the phosphine oxide (418) and condensation with the aldehyde (417). The hydroxyphosphine oxides were formed in a ratio of 1:1 in 77% yield. The less polar diastereomer was treated with base to obtain the (E)-alkene (419) in 32% overall yield from the aldehyde (equation 96). Danishefsky utilized the Julia coupling for the formation of the trisubstituted alkene region. The sulfone anion (420) was treated with isobutyraldehyde as a model, followed by acetylation and reductive elimination to
Transformation of the Carbonyl Group into Nonhydroxylic Groups

give a 2–2.5:1 (E)- to (Z)-alkene mixture (421) in 83% yield for the addition and 33% yield for the acetylation and reductive elimination (equation 97).

![Chemical structures](image)

In a more direct comparison of the phosphine oxide elimination with the sulfone, Schreiber employed a identical system to Danishefsky, but used the phosphine oxide (422). Reaction with isobutyraldehyde and subsequent elimination resulted in a 1:1 mixture of the (E)- and (Z)-alkenes (421; equation 98).

It appears from the more complex example of the Merck synthesis and from this example, that the Julia coupling proceeds with higher (E)-selectivity, in similar yield.

![Chemical structures](image)

3.1.11.5 Diene Synthesis

Use of the Julia coupling for complex natural product synthesis has provided some of the most significant examples of the broad utility of the reagent. The coupling procedure can be a very selective method of (E,E)-diene synthesis, as the examples below indicate.

3.1.11.5.1 X-14547 A

Ley synthesized the antibiotic X-14547 A using Julia coupling to form the (E,E)-diene portion (424; equation 99). The sulfone anion was generated with Bu⁺Li in THF/HMPA and the addition adduct trapped with benzoyl chloride. The alkene generated from the mixture of sulfones was found to be exclusively the (E,E)-isomer (424). In studies directed to the same target by Roush, an interesting comparative study of the Julia coupling, Horner–Wadsworth–Emmons, Wittig and phosphine oxide methods of alkene formation was discussed (see Scheme 57). The synthesis of the key polyene intermediate was
carried out by the addition of the phosphonate (426) to the aldehyde (425) to produce a 95% yield of a 95:5 mixture of the desired (E)-alkene (427). The corresponding phosphorane and phospine oxide proceed with significantly lower selectivity (3.5:1) and lower yield (37%) respectively. As an alternative route, the Julia coupling of (429) and (428) formed the alkene in 49% overall yield and an (E):(Z) selectivity of 10:1.

Scheme 57

3.1.1.5.2 The diene portions of avermectin and milbemycin

The diene portions of avermectin and milbemycin have been synthesized by application of the Julia coupling. For the total synthesis of milbemycin β_1 by Baker and coworkers, the aromatic ring was incorporated as the aldehyde (431) and the spiroketal portion added as the sulfone (430; equation 100).100 The overall yield was 70–80% of the (E,E)-alkene (432), exclusively. The identical bond disconnection was studied by Kocienski, but with the aldehyde (433) and sulfone (434) components reversed (equation 101).101 The anion was formed with LDA and, following functionalization and reductive elimination, the alkene was isolated in 39% yield in a 5:1 ratio of the (E)- and (Z)-isomers (435).

An interesting variation upon these approaches was published by Ley and coworkers.102 In studies directed toward the synthesis of milbemycin β_1, a vinyl sulfone (437) was deprotonated to form the diene
Transformation of the Carbonyl Group into Nonhydroxylic Groups

\[\text{CHO} \quad \text{OSiPh}_2\text{Bu}^1 \quad \text{SO}_2\text{Ph} \quad \text{CO}_2\text{Me} \]

(433) + (434)

\[\text{i, LDA, PhCOCl} \]
\[\text{ii, Na(Hg), THF-MeOH} \]
\[(E)/(Z) = 5:1 \]
\[39\% \]

In Hanessian's approach to avermectin discussed in Section 3.1.1.4.1, the Julia coupling was used for the trisubstituted alkene and the diene portion of the molecule.\(^{292}\) The sulfone (439) was deprotonated with Bu\(^n\)Li and the aldehyde (440) added to it to obtain a 47% yield (77% based on recovered sulfone) of \(\beta\)-hydroxy sulfones (equation 103). The alcohol was converted to the chloride and the reductive cleavage carried out with sodium amalgam in 35% yield. The desired diene was the only detectable isomer (441). From the examples cited, it is apparent that the synthesis of \((E,E)\)-dienes by the Julia coupling is an extremely successful process, in terms of both yield and selectivity.

3.1.11.5.3 **The double elimination of the sulfone and the hydroxy component**

An alternative approach to diene synthesis using the basic methodology of the Julia coupling has been studied by Otera. Polyenes (445) and alkynes (443) can be formed by double elimination of the sulfone and the hydroxy component (Scheme 58).\(^{304}\)

The addition portion of the Julia coupling is run as usual. The \(\beta\)-hydroxy sulfone is functionalized and treated with KOBu\(^1\) to effect the elimination. If an allylic hydrogen is present in the substrate, the
polyene is formed, otherwise the alkyne is the product. Mechanistically, the alkyne formation proceeds by elimination of the acetoxy or alkoxy group to the vinyl sulfone, followed by elimination of the sulfone. In the case of the polyene, the vinyl sulfone is formed, followed by isomerization to produce allyl sulfone. This substrate then undergoes 1,4-elimination to form the polyene. This sequence has been applied to the synthesis of muscone, methyl retinoate and vitamin A.

In cases where the alkene is conjugated to a carbonyl, the polyene is formed with virtually exclusively the (E)-geometry. In the case of the dienamides the selectivity was 88–95% for the production of the (E,E)-isomer (equation 104).

3.1.11.6 Reaction with Esters

As discussed in the sections above, the sulfonylmethane anion reacts with ketones and aldehydes chemoselectively in the presence of an ester or amide. It is possible to obtain the keto sulfone on addition to an ester (448) when the reaction is carried out without competing carbonyl groups (equation 105). The
keto sulfone (450) can either be reduced to the β-hydroxy sulfone (451) and carried through to the alkene (452), or the ketone can be trapped as the enol phosphinate (453), and either reduced to the alkene (452), eliminated to the vinyl sulfone (454) or cleaved to the alkyne (455), as shown in Scheme 59.

Scheme 59

3.1.11.6.1 Alkene formation

As discussed in Section 3.1.11.1, which covers the reductive cleavage of the β-hydroxy sulfone derivatives to alkenes, the Julia reaction proceeds by the formation of an anion that is able to equilibrate to the thermodynamic mixture prior to elimination. Therefore, there is no inherent advantage in producing the erythro- or threo-β-hydroxy sulfone selectively from the keto sulfone. The (E)/(Z)-mixture of alkenes should be the same. This method is used to produce alkenes in cases where the acid derivative is more readily available or more reactive. The reaction of the sulfone anion with esters to form the keto sulfone, followed by reduction with metal hydrides has been studied. The steric effects in the reduction do become important for the reaction to produce vinyl sulfones, which are formed from the anti elimination of the β-hydroxy sulfone adduct, as mentioned in Section 3.1.11.6.2. Some examples of the use of esters are presented below.

An interesting intramolecular application of the Julia coupling through an ester was carried out by Kang and coworkers in the total synthesis of trinorastreptene (458; Scheme 60). The reduction produced isomeric alcohols, which were separated by chromatography. The major isomer was carried through the sequence shown in Scheme 60, while the minor isomer was resistant to functionalization.

Scheme 60

The reaction of lactone (459) with p-tolylsulfonylmethylmagnesium iodide, followed by reduction of the keto sulfone to the β-hydroxy sulfone has been studied. In this paper, the β-hydroxy sulfone was reduced to the alkene (460) electrochemically (equation 106). The method was applied to a wide variety of esters and lactones. The yield of the reduction to the methylene derivative was 70–87%.
Both the enol phosphate method, and the reduction of the keto sulfone to the β-hydroxy sulfone followed by reductive cleavage to produce (E)-alkenes, have been applied to the synthesis of brefeldin A. Gais and coworkers added the sulfone (462) to the lactone (461), formed the enol phosphate and reduced with sodium and ammonia to the (E)-alkene (463), in a 65% overall yield (equation 107).311

Trost added the sulfone (465) to the ester (464), and reduced the ketone to the alcohol.312 In this example the formation of the enol derivative of the keto sulfone failed. The hydroxy group was functionalized with acetic anhydride, and the reduction to the alkene (466) carried out with the standard sodium amalgam conditions in 54% overall yield, as shown in equation (108).

3.1.11.6.2 Vinyl sulfone formation

Julia has undertaken studies on the selective reduction of keto sulfones, followed by the trans elimination to the vinyl sulfone.308 These intermediates can then be reacted with Grignard reagents to produce trisubstituted alkenes.295

3.1.11.6.3 Alkyne formation

In 1978, Bartlett published a study of the reaction of esters and acid chlorides to produce β-keto sulfones (467), which could be converted to the enol phosphinates (468) and reduced with sodium in ammonia to the alkyne (469; Scheme 61).313 The overall yields for the process are good. As discussed in
Section 3.1.11.5.3, the double elimination developed by Otera can also be employed in the synthesis of alkynes.

\[
\begin{align*}
R_1 & \quad \text{O} \quad \Delta \quad R_2 \\
(467) & \quad \xrightarrow{i \text{ or } ii} \quad R_1 & \quad \text{PO} \quad (\text{OR}_3^2) \quad \xrightarrow{\text{iii or } iv} \quad R_1 \quad \equiv \quad R_2 \\
(468) & \quad (469) \\
i, \text{NaH or KH, } (R_3^3O)_2\text{POCl; } & \quad \text{ii, DMAP, Et}_3\text{N, } (R_3^3O)_2\text{POCl; } \quad \text{iii, Na/NH}_3; \quad \text{iv, Na(Hg)/THF} \\
\end{align*}
\]

Scheme 61

3.1.11.7 Lewis Acid Catalyzed Additions of Sulfone Anions to Carbonyls

In a study by Wicha directed to the synthesis of prostaglandins from the Corey lactone, the use of BF\textsubscript{3}-Et\textsubscript{2}O to catalyze the addition of the lithium sulfone anion \(\text{(470)}\) to aldehydes was demonstrated (equation 109).314 The use of Lewis acid catalysis results in significantly improved yields for the addition component of the Julia coupling. In this example, the addition of either the lithium or the magnesium sulfone anion proceeded in low yield. With the addition of BF\textsubscript{3}-Et\textsubscript{2}O, the \(\beta\)-hydroxy sulfone can either be isolated, or directly converted to an alkene in one pot. This sequence was originally developed to deal with the specific problem of \(\alpha\)-hydroxy aldehydes, and the difficulty of sulfone anion addition to these adducts. Other problems with addition of the sulfone adduct may be amenable to this solution as well.

![Scheme 61](image)

A second application of the use of Lewis acid catalysis in the Julia coupling can be found in the synthesis of \(\text{trans}\)-alkene isosteres of dipeptides \(\text{(478; Scheme 62)}\).315 Initially, attempts to couple aldehydes derived from amino acids \(\text{(473)}\) resulted in poor overall yield of the alkene. This difficulty was solved by reversing the substituents, and introducing the amino acid portion as the anion of sulfone \(\text{(476)}\) to the chiral aldehyde \(\text{(477)}\). The dianion of the sulfone was formed and to it were added 2 equiv. of aldehyde and 1 equiv. of disobutylaluminum methoxide. The resulting \(\beta\)-hydroxy sulfone was taken on to the reductive elimination step to produce the desired \((E)\)-alkene \(\text{(478)}\), in 74% overall yield.

![Scheme 62](image)
3.1.12 METHODS OF ALKENE FORMATION BY METAL CARBENE COMPLEXES

There are many metals that form alkylidene complexes. Among these, the Tebbe reagent has proven to be of widespread generality and use in organic synthesis for the transfer of a methylene unit. As discussed in Section 3.1.6, a method using titanium and zinc has recently been applied for the methylenation of aldehydes and ketones. In the quest to extend this technology to longer chain alkyl groups, other metals have been investigated. Unfortunately the dimetallo precursors to metal carbene complexes are prone to β-hydride elimination, and this has limited the application of this methodology to alkylideneation. In addition, the methods of forming the metal carbene complexes can be arduous. Consequently, these methods have not found widespread application in the context of natural product synthesis. Recently some mild and practical solutions to this problem have been discovered. These results are discussed in the following sections.

3.1.12.1 Chromium

A chromium carbene generated in situ from CrCl₂ and a dihaloalkyl derivative, has been utilized to form a variety of (E)-disubstituted alkenes (480). The general reaction is summarized in equation (110). Alkenyl halides, sulfides and silanes, as well as dialkyl-substituted alkenes, have been synthesized by this method.

\[\text{R'} \text{CHO} \xrightarrow{\text{CrCl}_2, \text{CHYX}_2} \text{R'CHY} \]
(110)

3.1.12.1.1 Alkenyl halides

Aldehydes may be converted to (E)-alkenyl halides by the reaction of CrCl₂ with a haloform in THF. The highest overall yields for the conversion were with iodoform, but somewhat higher (E):(Z) ratios were observed with bromoform or chloroform. Other low-valent metals, such as tin, zinc, manganese and vanadium, were ineffective. As the examples in Table 19 indicate, the reaction is selective for the (E)-isomer, except in the case of an α,β-unsaturated aldehyde. In addition, the reaction with ketones is sufficiently slow for chemoselectivity to be observed for mixed substrates.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Reagent</th>
<th>Yield (%)</th>
<th>(E):(Z)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhCHO</td>
<td>CHI₃</td>
<td>87</td>
<td>94:6:4</td>
<td>318</td>
</tr>
<tr>
<td></td>
<td>CHCl₃</td>
<td>43</td>
<td>95:5</td>
<td>318</td>
</tr>
<tr>
<td></td>
<td>TMSCH₂Br₂</td>
<td>82</td>
<td>(E) only</td>
<td>322</td>
</tr>
<tr>
<td>PhSCH₂Cl₂, LiI</td>
<td>83</td>
<td>82:18</td>
<td>322</td>
<td></td>
</tr>
<tr>
<td>PrCH₂</td>
<td>87</td>
<td>88:12</td>
<td>324</td>
<td></td>
</tr>
<tr>
<td>Pr₂CH₂</td>
<td>79</td>
<td>88:12</td>
<td>324</td>
<td></td>
</tr>
<tr>
<td>Bu₂CH₂</td>
<td>80</td>
<td>96:4</td>
<td>324</td>
<td></td>
</tr>
<tr>
<td>CH₂I₂</td>
<td>70</td>
<td>—</td>
<td>324</td>
<td></td>
</tr>
<tr>
<td>Me(CH₂)₇CHO</td>
<td>CHI₃</td>
<td>82</td>
<td>83:17:17</td>
<td>318</td>
</tr>
<tr>
<td></td>
<td>TMSCH₂Br₂</td>
<td>82</td>
<td>(E) only</td>
<td>322</td>
</tr>
<tr>
<td>PhSCH₂Cl₂, LiI</td>
<td>68</td>
<td>71:29</td>
<td>322</td>
<td></td>
</tr>
<tr>
<td>CHO</td>
<td>CHI₃</td>
<td>78</td>
<td>89:11:10</td>
<td>318</td>
</tr>
<tr>
<td></td>
<td>TMSCH₂Br₂</td>
<td>81</td>
<td>(E) only</td>
<td>322</td>
</tr>
<tr>
<td>COCH₃</td>
<td>CHI₃</td>
<td>75</td>
<td>81:19:19</td>
<td>318</td>
</tr>
<tr>
<td></td>
<td>TMSCH₂Br₂</td>
<td>76</td>
<td>(E) only</td>
<td>322</td>
</tr>
<tr>
<td>Ph(C(CH₃)₂CHO</td>
<td>MeCH₂</td>
<td>85</td>
<td>97:3</td>
<td>324</td>
</tr>
<tr>
<td>Et₂CHCHO</td>
<td>MeCH₂</td>
<td>99</td>
<td>98:2</td>
<td>324</td>
</tr>
</tbody>
</table>
This procedure has been utilized by Nicolaou to prepare the vinyl iodide (482) in the synthesis of lipotoxins A₃ and B₃ (equation 111). The synthesis of vinyl iodides was also utilized by Bestmann in a stereospecific synthesis of (4E,6E,11Z)-hexadecatrienal. A Wittig reaction was used to create the (E)-alkene (484), and the (E)-diene portion was synthesized via vinyl iodide (485) formation and coupling (Scheme 63). This method has been applied to the synthesis of ¹³C-labeled vinyl iodide (488; equation 112). Labeled iodoform (486) was made and the reaction conditions altered from those employed by Takai and coworkers in order to use smaller quantities of the valuable iodoform, relative to CrCl₂.

![Scheme 63](image)

This reaction has been extended to alkenylsilanes and alkenyl sulfides, as summarized in Table 19. In addition to various heteroatom-substituted examples, the reagent formed from CrCl₂ and a gem-diiodoalkane can be reacted with an aldehyde to selectively form the (E)-alkene. For the transfer of groups larger than ethylene with an aldehyde, it was found advantageous to add DMF. The conditions are compatible with nitriles, esters, acetals, alkynes and alkyl halides. In the case of ethylidenation, the chromium carbene reacts with ketones in good yields. It has not proven to be of general utility for the synthesis of trisubstituted alkenes either by the addition of a Cr derivative to a ketone or by the addition of a disubstituted Cr species to an aldehyde. An interesting comparative study of the Wittig reaction and the alkylidenation with Cr was carried out by Maxwell in the synthesis of several long chain ketones. The all-(Z)-isomers (490) were synthesized by the salt-free Wittig reaction, while the all-(E)-isomers (491) were obtained by the CrCl₂ coupling of the diiodide (Scheme 64). The reaction has been applied to the synthesis of a segment of macbecins. The aldehyde was treated with CrCl₂ and MeCHI₂ to produce the desired alkene (493) in 91% yield with 99% (E)-selectivity (equation 113).

![Scheme 64](image)
As pointed out in this work, the mild conditions of the Cr reaction resulted in no observed epimerization, and offered an excellent alternative to the Schlosser modification of the Wittig reaction. Both the CrCl₂ chemistry and the TiCl₄/Zn method discussed in Section 3.1.12.1.2 have the advantage of preparing the metallocarbene complex in situ.

3.1.12.2 Titanium–Zinc

The chemistry of Oshima and Takai, previously discussed in Section 3.1.6, has been extended to the incorporation of alkylidene (495) units when reacted with esters (494; equation 114). The essential additive is TMEDA. The reaction is highly selective, producing the disubstituted (Z)-enol ether in good yield. The ratio of (Z)- to (E)-isomer is enhanced by increasing the steric repulsion of substituents R¹ and R² relative to the size of the ester functionality. In addition, the rate of reaction was increased with aromatic or unsaturated esters. Although diiodoalkanes can be used in the reaction, better yields were obtained with the dibromo compounds. This reaction is complementary to the Tebbe reagent discussed in Section 3.1.5. The CH₂Br₂/Zn/TiCl₄ system does not react with esters even in the presence of TMEDA. Therefore, this method can be utilized to selectively form more highly substituted enol ethers, while the Tebbe reaction may be used to synthesize methylene derivatives. Examples are presented in Table 20.

\[
\text{O} \quad \begin{array}{c}
R^1 \\
\text{OR}^3
\end{array} \quad + \quad \begin{array}{c}
\text{Br} \\
R^2 \quad \text{Br}
\end{array} \quad \xrightarrow{\text{TiCl}_4, \text{Zn}, \text{THF, TMEDA}} \quad \begin{array}{c}
R^1 \\
\text{OR}^3
\end{array} \quad (496)
\]

(114)

The reaction is effective with electron-rich carbonyls such as trimethylsilyl esters and thioesters, as Table 20 indicates. Lactones are substrates for alkylidenation; however, hydroxy ketones are formed as side products, and yields are lower than with alkyl esters. Amides are also effective, but form the (E)-isomer predominantly. This method has been applied to the synthesis of precursors to spiroacetals (499) by Kocienski (equation 115). The reaction was found to be compatible with THP-protected hydroxy groups, aromatic and branched substituents, and alkene functionality, although complex substitution leads to varying rates of reaction for alkylidenation. Kocienski and coworkers found the intramolecular reaction to be problematic. As with the CrCl₂ chemistry, this reaction cannot be used with a disubstituted dibromoalkane to form the tetrasubstituted enol ether. Attempts were made to apply this reaction to alkene formation by reaction with aldehydes and ketones, but unfortunately the (Z):(E)-ratio of the alkenes formed is virtually 1:1.

\[
\begin{array}{c}
\text{THPO} \\
\text{Br}
\end{array} \quad \xrightarrow{\text{THF, TMEDA}} \quad \begin{array}{c}
\text{Br} \\
\text{Br}
\end{array} \quad \xrightarrow{\text{TiCl}_4, \text{Zn}} \quad \begin{array}{c}
\text{O} \\
\text{THP}
\end{array} \quad (498)
\]

(115)

R = H, 88%; R = Et, 89%
Transformation of the Carbonyl Group into Nonhydroxylic Groups

Table 20 Synthesis of Enol Ether Derivatives by Zn, TiCl₄ and TMEDA

<table>
<thead>
<tr>
<th>Carbonyl compound</th>
<th>Alkyl halide</th>
<th>Yield (%)</th>
<th>(Z):(E)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhC=O Me</td>
<td>MeCHBr₂</td>
<td>86</td>
<td>92:8</td>
<td>327</td>
</tr>
<tr>
<td>PhC=O Me</td>
<td>n-C₉H₁₈CHBr₂</td>
<td>89</td>
<td>95:5</td>
<td>327</td>
</tr>
<tr>
<td>PhC=O Me</td>
<td>c-C₆H₁₄CHBr₂</td>
<td>81</td>
<td>71:29</td>
<td>327</td>
</tr>
<tr>
<td>PhC=O Me</td>
<td>n-C₉H₁₈CH₂</td>
<td>89</td>
<td>100:0</td>
<td>327</td>
</tr>
<tr>
<td>PhCHCHCO₂Et</td>
<td>n-C₉H₁₈CHBr₂</td>
<td>90</td>
<td>94:6</td>
<td>327</td>
</tr>
<tr>
<td>Bu₂CO₂CH₂CHCH₂</td>
<td>n-C₉H₁₈CH₂</td>
<td>52</td>
<td>92:8</td>
<td>327</td>
</tr>
<tr>
<td>PhCO₂TMS</td>
<td>MeCHBr₂</td>
<td>90</td>
<td>73:27</td>
<td>329a</td>
</tr>
<tr>
<td>n-C₉H₁₈CO₂TMS</td>
<td>MeCH₂Br₂</td>
<td>77</td>
<td>86:14</td>
<td>329a</td>
</tr>
<tr>
<td>n-CSH₁₇CSMe</td>
<td>MeCH₂Br₂</td>
<td>94</td>
<td>73:27</td>
<td>329b</td>
</tr>
<tr>
<td>n-CSH₁₇CSMe</td>
<td>PhCH₂Br₂</td>
<td>88</td>
<td>94:6</td>
<td>329b</td>
</tr>
</tbody>
</table>

3.1.13 REFERENCES

1. For a recent discussion comparing the Wittig methylation to the methods discussed below see L. Fitjer and U. Quabeck, *Synth. Commun.*, 1985, 15, 855.

3. For a recent mechanistic study see P. F. Hudrlik, E. L. O. Agwaramgbo and A. M. Hudrlik, *J. Org. Chem.*, 1989, 54, 5613; see also Section 3.1.10 for a more complete discussion of the mechanism.

7. For a discussion of the stereochemistry of the elimination see Section 3.1.10.

8. For a discussion of the preparation of silicon anions see refs. 4b, c and f; for a discussion of experimental procedures see refs. 4d and f.

19. See Section 3.1.6.

22. T. Kauffman, R. Konig, C. Pahe and A. Tannert, *Tetrahedron Lett.*, 1981, 22, 5031; the CrCl₂ derivative was also studied, but yields were superior with titanium.

See Section 3.1.10 for substituted examples of the cerium Peterson alkenation.

See Section 3.1.10.3 for further discussion.

61. This problem can be circumvented by not isolating before continuing with subsequent steps; see entries 2 and 4, Table 7; for a case in which isomerization was used to advantage see E. Wenkert, A. J. Marsaioli and P. D. R. Moeller, *J. Chromatogr.*, 1988, 440, 449.

89. For an excellent review of this reaction and a hypothesis regarding the organometallic species involved see M. T. Reetz, 'Organotinanium Reagents in Organic Synthesis', Springer-Verlag, Berlin, 1986, p. 223.

90. See Section 3.1.12 for examples of successful application of this method to substituted alkynyl ethers.

94. See Section 3.1.12 for examples of successful application of this method to substituted alkynyl ethers.

118. The literature has been extensively reviewed. This section relied heavily on an excellent recent review that includes a discussion of the mechanism, see B. E. Maryanoff and A. B. Reitz, Chem. Rev., 1989, 89, 863. For additional reviews see ref. 115.

117. See ref. 114 for an excellent summary of current thought with regards to the mechanism of the Wittig reaction.

125. For a recent comparative study of a nonstabilized ylide reacted with an unsaturated aldehyde and a semistabilized ylide with a saturated aldehyde in the synthesis of dienes, see R. Ideses and A. Shani, Tetrahedron, 1989, 45, 3523.

136. For a summary of current work on the mechanism of phosphoryl-stabilized Wittig reactions as well as the preparation of these reagents, see ref. 114.

Transformation of the Carbonyl Group into Nonhydroxylic Groups

208. See refs. 205b, 216 and 217.

Alkene Synthesis

236. For summaries of conditions of anion formation with stabilizing groups present see refs. 4a and 4b.
237. For an excellent summary of the methods of silyl anion formation see ref. 4c.
240. For a review of the use of silyl anions as well as alkene formation see ref. 4f.
241. For an excellent review and experimental procedures for a variety of silyl anions as well as alkene formation see ref. 4f.
245. Consult ref. 4 for further details.
816
267.
268.
269.
270.
271.
272.
273.

274.
275.
276.
277.
278.
279.
280.
281.
282.
283.
284.
285.
286.
287.
288.
289.
290.
291.
292.
293.
294.
295.
296.
297.
298.
299.
300.
301.
302.
303.
304.
305.
306.
307.
308.
309.
310.
311.
312.
313.
314.
315.
316.
317.

Transformationof the Carbonyl Group into Nonhydroxylic Groups
For reviews of the Julia coupling see (a) P. J. Kocienski, Phosphorus Sulfur,1985, 24, 97; (b) M. Julia, Pure
(a) P. J. Kocienski, B. Lythgoe and S . Ruston, J . Chem. SOC., Perkin Trans. I , 1978, 829; (b) P. J. Kocienski,
B. Lythgoe and D. A. Roberts, J . Chem. SOC., Perkin Trans. 1 , 1978,834; (c) P. J. Kocienski, B. Lythgoe and
548.
See also Section 3.1.1 1.7
See ref. 272a for an excellent discussion of all aspects of the Julia coupling, as well as additional examples of
(E)-di- and -tri-substituted alkenes, and @,E)-dienes.
Unpublished results of P. J. Kocienski are discussed in ref. 272a.
The yields in this table are the overall yields of addition, functionalization and reductive elimination of
alkenes. In cases where a specific (E):(Z)ratio was not reported, or where it was determined to be entirely the
(E)-isomer, the ratio is reported as ‘(E) only’.
4603.
4840.
Formation of the vinyl sulfone from the P-hydroxy sulfone followed by displacement with a Grignard reagent
or cuprate is an alternative to the Julia coupling sequence for trisubstituted alkenes; see ref. 272a.
1989,111, 1157.
P. A. Bartlett, F. R. Green, I11 and E. H. Rose, J . Am. Chem. SOC., 1978, 100, 4852. See also ref. 272a for
discussion of examples.
(a) B. Achmatowicz, E. Baranowska, A. R. Daniewski, J. Pankowski and J. Wicha, Tetrahedron Lett.. 1985,
26, 5597; (b) B. Achmatowicz, E. Baranowska, A. R. Daniewski, J. Pankowski and J. Wicha, Tetrahedron,
1988,44,4989.
A. Spaltenstein, P. A. Carpino, F. Miyake and P. B. Hopkins, Tetrahedron Lett., 1986, 27, 2095; (b) A.
See ref. 78, and (a) F. W. Hartner, J. Schwartz and S. M. Clift, J. Am. Chem. SOC., 1983. 105.640; (b) S. M.
Clift and J. Schwartz, J. Am. Chem. SOC., 1984,106, 8300; (c) J. Schwartz, G.M. Arvanitis, J. A. Smegel, I.
Stork has recently published a Wittig route to (2)-iodoalkenes, see G. Stork and K. Zang, Tetrahedron Lett.,
1989.30, 2173.


Alkene Synthesis

323. Allylic acetals can be treated with CrCl₂ to obtain the allylic chromium reagent, see K. Takai, K. Nitta and K. Utimoto, *Tetrahedron Lett.*, 1988, **29**, 5263.
328. For a recent review of the chemistry of titanium see C. Betschart and D. Seebach, *Chimia*, 1989, **43**, 39.
3.2
Epoxidation and Related Processes

JEFFREY AUBÉ
University of Kansas, Lawrence, KS, USA

3.2.1 INTRODUCTION

This chapter concerns the net conversion of a C=X π-bond (X = O and N) to various three-membered ring heterocycles. The most common such process is the conversion of an aldehyde or ketone to a homologous epoxide. These reactions will be discussed along with the analogous process which takes place on imines and related compounds. Additionally, methods to effect the addition of elements other than carbon across either unsaturated system will be considered. The synthesis of thiiranes by the addition of carbon across the C=S π-bond is the subject of a recent comprehensive review and will not be covered here.

3.2.2 ADDITIONS TO C=O π-BONDS

3.2.2.1 General Considerations

The particular attributes of carbonyl epoxidation reactions, in addition to the importance of forming any carbon–carbon bond, result from the fact that the newly introduced carbon substituent is functionalized and, due to its presence in a three-membered ring, activated. The lability of epoxides toward nucleophiles is well known and accounts for the bulk of their utility in synthesis. In addition, epoxides undergo a variety of rearrangement reactions, such as chain elongation or ring expansion processes. Emphasis is placed here on techniques which allow the conversion of a carbonyl to a homologous isolable epoxide in a one-pot procedure, although pertinent multistep methods will be briefly noted.
All of these methods require the formation of an alkoxide with a leaving group \(X^* \) (the formal charge \(n \) is usually 0 or +1) in the \(\beta \)-position which collapses with the expulsion of an \(X^{n-1} \) species to afford the epoxide, as shown in Scheme 1. Rearrangement processes often compete with epoxidation and sometimes constitute the major reaction pathway. The bulk of these approaches entail the formation of this intermediate by the addition of an anionic species \(R_2R_4X^- \) to the electrophilic carbonyl group (path a). Very often, the leaving group serves the additional function of stabilizing the carbanionic species as well. Some mention will be made of alternative routes in which a nucleophile attacks a carbonyl compound which contains an adjacent leaving group (path b).

Scheme 1

3.2.2.2 Sulfur Ylides

The most commonly used reagents to effect the addition of a methylene group to an aldehyde or ketone are sulfur ylides such as dimethylsulfonium methylide (1) or dimethyloxosulfonium methylide (2)\(^4\) (Corey–Chaykovsky reaction).\(^6\) This reaction is well reviewed in standard treatises of organic synthesis\(^6,7\) and several useful monographs.\(^8,9\) This update will concentrate on progress attained from 1975. The reader is also encouraged to consult reviews on the chemistry of the related sulfoximine-derived ylides such as (3).\(^10,11\)

Sulfur ylides are primarily synthesized by deprotonation of a sulfonium salt, which in turn is usually prepared by alkylation of a sulfide.\(^12\) Branched chain sulfonium salts are not generally preparable by simple sulfide displacement, although some can be made by other routes.\(^9,12\) While ylide solutions are most commonly prepared and used immediately, frozen stock solutions of the more stable (2) can be stored for several months in DMSO at -20 °C.\(^13\)

The reaction between sulfur ylides and carbonyl compounds entails attack of the ylide on the carbonyl to form a betaine, which then collapses with expulsion of the neutral sulfide or sulfoxide (Scheme 1; \(X^* = R_2S^+ \)).\(^6,7,9\) A theoretical study of this mechanism has appeared.\(^14\) Ylides belonging to the general classes of (1) and (2) differ in stability and in the relative rates of the two mechanistic steps. Specifically, the more stable (2) reacts reversibly with carbonyl groups, whereas (1) undergoes a kinetic addition to the substrate followed by a rapid collapse of the betaine to an epoxide. Differences in chemoselectivity and stereoselectivity between the ylides are attributed to this key difference.\(^6,7,9\)

The structural variety of epoxides available through the above technology is limited by the availability of the starting sulfonium salt, the reactivity of the desired ylide, and the propensity of either species to undergo a variety of side reactions. For simple methylene addition, (1) and (2) are the most general and reliable reagents available. The rearrangement reactions observed with other reagents (most notoriously, diazoalkanes) are much less common with sulfur ylides. Even so, some electron-rich epoxides are prone to undergo rearrangement prior to isolation, yielding aldehydes or ketones.\(^15\) In addition, (2) or (3) reacts with epoxides under rather forcing conditions (50 °C, 3 d) giving rise to oxetanes.\(^16,17\)

A particularly interesting and useful group of ylides are those derived from diphenylcyclopropyl sulfonium halides, such as (4) and (5).\(^18\) These reagents react with ketones and aldehydes to afford
oxaspiropentanes, which are versatile synthetic intermediates. Ylide (4) exhibits stereochemical and regiochemical tendencies similar to (1).

\[
\begin{align*}
\text{Ph} & \quad \text{Ph} \\
\downarrow & \quad \downarrow \\
\text{S}^+ & \quad \text{NMe}_2 \\
(4) & \quad (5)
\end{align*}
\]

New methods for the generation of ylide (1) in the presence of a substrate have been introduced. Solid potassium hydroxide in nonpolar solvents containing trace amounts of water has proven a highly effective medium for the promotion of methylene and benzylidene transfer reactions (equation 1). The counterion of the sulfonium salt and the base used has a substantial effect on the success of the reaction.

\[
\text{CHO} + \text{S}^+ \quad \text{Br}^- \quad \text{KOH (solid), MeCN (trace H}_2\text{O), 0 °C, 45 min} \quad \rightarrow \quad \text{Ph} \\
\]

Two-phase systems, usually consisting of a strongly alkaline aqueous phase and methylene chloride, are also effective and convenient. Trialkylsulfonium salts with methylsulfate counterions can be used alone under these conditions, whereas those with halide counterions generally benefit from added phase transfer catalysts (equation 2). Dodecyldimethylsulfonium chloride was found to be an effective phase transfer reagent. A sulfonium salt covalently attached to a polymeric resin was found most effective when a phase transfer agent was also employed.

\[
\text{[Me}_3\text{S]}\text{Cl}, [\text{BnEt}_3\text{N}]\text{Cl, CH}_2\text{Cl}_2, 18\text{M NaOH} \\
\]

Epoxidations can be effected by adsorption of sulfonium salts and substrate on potassium fluoride impregnated alumina. Soluble fluoride ion allowed the generation of a methylide from a TMS-substituted precursor, which underwent equilibration to the more stable benzylide prior to addition (equation 3). The reaction failed with ketones or imines.

\[
\text{CHO} + \text{S}^+ \quad \text{SiMe}_3 \quad \text{PhCHO, CsF} \quad \rightarrow \quad \text{Ph} \\
\]

Several groups have investigated the use of complex sulfur ylide reagents for a key carbon–carbon bond formation step in leukotriene synthesis (equation 4). For example, tetraene (6) reacted with methyl 5-oxopentanoate to give an 85% yield of the desired epoxides as a mixture of cis and trans isomers. Significantly, only small amounts of by-products resulting from elimination or rearrangement of the sulfonium salt were observed.
Several examples of intramolecular epoxide formation have been reported. In general, a keto sulfide is reacted with a trialkyloxonium tetrafluoroborate to yield a sulfonium salt, which cyclizes upon treatment with base. A particularly clever variation involves the in situ generation of an allylic ylide (Scheme 2).

\[
\text{Me}_2\text{S}^+ \text{BF}_4^- + \text{Me}_2\text{S}^+ \rightarrow \text{Me}_2\text{S}^+ + \text{Me}_2\text{S}^+ \rightarrow 58% \rightarrow \text{O} \quad \text{H}
\]

Scheme 2

Compared to unstabilized ylides, ylides bearing an electron-withdrawing group on the adjacent carbon can be generated under milder conditions and are considerably more stable. However, most reactive aldehydes or ketones are not epoxidized by these reagents and classical Darzens-type reactions are usually preferred for the synthesis of epoxides bearing an electron-stabilizing group (see Volume 2, Chapter 1.13). However, ylide (7) does react with ketones to afford \(\alpha,\beta\)-epoxy carboxylic acids (equation 5).

\[
\text{Me}_2\text{S}=\text{CHCO}_2^- (7) + \text{H} \rightarrow \text{CO}_2\text{H}
\]

Scheme 2

Early efforts to probe the stereochemistry of sulfur ylide additions have been reviewed. Ylide (1) reacts with unhindered cyclohexanone derivatives to give products resulting from axial attack, whereas (2) gives rise to net equatorial addition. This is again due to the tendency of (1) to undergo kinetically controlled reactions and (2) to give products resulting from thermodynamic control. However, equatorial attack may prevail even in kinetically controlled reactions if axial attack is rendered sufficiently hindered, e.g. by 1,3-diaxial interactions or by additional steric bulk adjacent to the reactive carbonyl.

For example, the addition of (1) to ketone (9) affords the \(\beta\)-epoxide shown in equation (6) exclusively. Other cyclic systems react with fairly predictable stereoselectivities in accord with the above observations.

\[
\text{Me}_2\text{S}=\text{CHCO}_2^- (7) + \text{H} \rightarrow \text{CO}_2\text{H}
\]

Scheme 2

Ylide (1) adds selectively to the least hindered side of a spirocyclic cyclobutane to afford epoxide (10) as the sole product in \(\geq 65\%\) yield (Scheme 3). Where only steric factors are likely to be important, complementary stereochemical results are often possible by methylene addition to a carbonyl group or alternatively, by carrying out an epoxidation reaction on the derived alkene. In each case, the reagent approaches a double bond from the same stereochemical face. This point is nicely illustrated by the synthesis of epoxide (11).

Several workers have observed differences in the stereoselectivity of the reactions of (1) and (2) with ketones related to the trichothecene family of natural products (Scheme 4). Reaction of ketone (12) with (1) stereoselectively led to epoxide (13), whereas ylide (2) gave (14) instead. Very high diastereoselection was obtained in the late stages of a synthesis of (1)-phyllanthocin: treatment of ketone
Epoxidation and Related Processes

(15) with a large excess of (2) afforded a 98% yield of epoxide (16) in 97% diastereomeric purity (equation 7).

In contrast with the considerable effort which has gone into delineating the stereochemistry of sulfur ylide additions to cyclic ketones, studies in acyclic stereoselection have been sparse, and generally anecdotal. An interesting example is shown in Scheme 5. Here treatment of ketone (17) with (2) gave an approximately 78:22 preference for (18); addition of zinc chloride or magnesium chloride reversed the sense of the diastereoselection (with ratios of (18):(19) ranging from 23:77 to 10:90). The authors propose cyclic intermediates with significant bond formation between nitrogen and sulfur in the uncatalyzed reaction. The selectivity was thus explained by the preferential decomposition of the betaine containing an exo-methyl group. The Lewis acids were postulated to disrupt the cyclic structures.

Other examples of stereoselective additions of sulfoxonium methylide (2) to chiral aldehydes are shown in equations (8), (9), (9), and (10). At present, no one model is able to account for all of these results. Equations (10a) and (10b) show the effect of a nitrogen protecting group on the stereoselectivity of addition of unstabilized ylide (1) to α-amino acid derived aldehydes. The major products of
epoxidation of \(N,N\)-dibenzylamino aldehydes results from nonchelation-controlled attack of the nucleophile.

\[
\begin{align*}
(20) & \quad \xrightarrow{(2)} \quad (21) 68\% + (22) 32\% \\
(23) & \quad \xrightarrow{(2)} \quad (24) 66\%
\end{align*}
\]

In a synthetic effort directed toward a segment of erythronolide A, the addition of (2) to aldehyde (22) gave, after treatment with MeMgBr/CuI, an approximately 80:20 mixture of ring-opened products (23) and (24; equation 11). Interestingly, direct alkylation of this aldehyde (as a mixture of double bond isomers) with ethyllithium gave an 18:82 mixture of adducts. The factors responsible for the complementary face selectivity shown by (2) versus ethyllithium are unclear. Comparisons are particularly difficult due to the fact that most organolithium additions to carbonyl compounds are irreversible, kinetically controlled processes, whereas reactions of (2) can be reversible.

\[
\begin{align*}
(22) & \quad \text{BOM} = \text{CH}_2\text{OBn} \\
(23) & \quad (24)
\end{align*}
\]

Reactions with substituted ylides give rise to questions of relative stereochemistry in the product epoxides. \((E)/(Z)\)-Selectivity is usually low in the absence of other stereochemical control elements. An exception is diphenylsulfonium benzylide, which reacts stereoselectively with aldehydes to give
trans-stilbene oxides (e.g. see equations 1 and 3). Another example of modest stereocontrol in a cyclic example is shown in equation (12).\(^{46}\) Arsenic ylides are generally more stereoselective.

\[
\begin{align*}
\text{MeO} & \quad \text{OMe} \\
\text{MeO} & \quad \text{OMe}
\end{align*}
\begin{align*}
\text{MeCH=SPh}_2
\end{align*}
\begin{align*}
\text{MeO} & \quad \text{OMe} \\
\text{MeO} & \quad \text{OMe}
\end{align*}
\begin{align*}
\text{MeO} & \quad \text{OMe} \\
\text{MeO} & \quad \text{OMe}
\end{align*}
\begin{align*}
\text{91\%} & \\
\text{68\%} & \\
\text{32\%}
\end{align*}
\]

Another stereochemical feature of potential utility arises from the basic nature of many ylide generation conditions, in which enolizable ketones may undergo epimerization faster than epoxidation.\(^{19}\) This means that a stereochemically heterogeneous ketone can undergo equilibration prior to reaction. A recent example is shown in equation (13).\(^{47}\)

\[
\begin{align*}
\text{O} & \quad \text{OMe} \\
\text{OMe} & \quad \text{OMe}
\end{align*}
\begin{align*}
\xymatrix{\text{O} & \quad \text{OMe} \\
\text{OMe} & \quad \text{OMe} \\
\text{OMe} & \quad \text{OMe}}
\end{align*}
\begin{align*}
\xymatrix{\xymatrix{\text{O} & \quad \text{OMe} \\
\text{OMe} & \quad \text{OMe}}}
\end{align*}
\]

The few published attempts at the asymmetric epoxidation of carbonyl compounds with chiral sulfur ylides have been reviewed.\(^{48}\) Thus far, such processes have not been very useful synthetically. For example, reaction of benzaldehyde with an optically pure sulfoximine ylide only afforded an epoxide in 20% enantiomeric excess.\(^{49}\) More recently, chiral sulfur methylides have provided trans-stilbene oxides in up to 83% ee.\(^{50}\) An example of optical induction observed in reactions taking place with a chiral phase transfer reagent was reported,\(^{51}\) but later disputed.\(^{24}\)

3.2.2.3 Other Ylides

A number of elements form ylides which are analogous to the sulfur-based reagents discussed above, and these reagents display chemistry which is very similar to that obtained with the sulfur compounds. The following discussion will emphasize processes which appear to offer real advantages to better-known techniques.

Arsonium ylides were discovered near the turn of the century, but their reactions with carbonyl compounds did not become elucidated until the 1960s.\(^ {8,52}\) In a broad sense, arsionic ylides are midway in chemical behavior between ylides of phosphorus and those of sulfur. Stabilized arsionic ylides react with carbonyl compounds to afford alkenes, whereas the unstabilized analogs give rise to epoxides. More subtly, the nature of the substituents on either the ylide arsenic or carbon atom can alter the course of the reaction; the choice of solvent can exert a similar effect.\(^ {53}\)

The synthesis of the arsionic ylides most commonly involves deprotonation of arsionic salts utilizing a variety of bases. Simple arsionic salts are available via direct alkylation of triphenylarsine, but more highly substituted compounds require specialized methods. These include the use of highly electrophilic triflate salts, alkylation of triphenylarsonium methylide, and double alkylation of lithiodiphenylarsine. For some purposes, formation of the tetrafluoroborate salts is desirable and can be effected in good yield by cation exchange.\(^ {54}\)

The reactions of substituted arsionic ylides with carbonyl compounds can be carried out with high stereoselectivity in favor of trans-disubstituted epoxides (equation 14).\(^ {54}\) Equatorial attack is observed for addition to 4-tert-butylocyclohexanone. Good stereoselectivity (≥9:1) was observed for the addition of triphenylarsonium methylide to some (N,N-dibenzyl)amino aldehydes at −78°C in THF.\(^ {44c}\) Interestingly, the initial hydroxy tetraalkylarsonium adducts were isolated under these conditions, and had to be cyclized under the action of sodium hydride in a separate step.

Another arsionic ylide reaction involves a notable 'transylidation' reaction between a phosphorus and an arsenic ylide (Scheme 6).\(^ {55}\) A useful arsenic ylide which provides a hydroxymethyl epoxide has been reported (equation 15); note the use of biphasic reaction conditions for ylide generation.

Selenium and tellurium ylides take part in chemistry which is analogous to the reactions discussed thus far, and the subject has been well reviewed.\(^ {56,57}\) Both alkenes and epoxides are formed in their reactions,
Transformation of the Carbonyl Group into Nonhydroxylic Groups

\[
\text{Ph}_3\text{AsEt}^+ \text{BF}_4^- \xrightarrow{i, ii} \text{Ph}_3\text{As}^+ \quad \text{BF}_4^- \quad \frac{80\%}{99\%} + \quad \frac{1\%}{1\%}
\]

\(i, \text{KN(SiMe}_3\text{)}_2, \text{THF/HMPA, 40 °C}; ii, \text{Me(CH}_2\text{)}_6\text{CHO}\)

\[
\text{Ph}_3\text{P} \xrightarrow{i, (\text{CF}_2\text{CO})_2\text{O}} \text{Ph}_3\text{P}^+ \quad \text{AsPh}_3^- \xrightarrow{\text{Ph}_3\text{As=CH}_2} \text{Ph}_3\text{P}^+ \quad \text{AsPh}_3^- \quad \xrightarrow{-\text{Ph}_3\text{P}=\text{O}} \quad \text{PhCHO} \quad 45\% \quad \text{overall}
\]

Scheme 6

\[
\text{Ph}_3\text{As} \quad \text{OH} \quad \xrightarrow{i, \text{PhCHO, KOH (solid), THF (trace water)}} \quad \frac{83\%}{89\%} + \quad \frac{11\%}{11\%}
\]

\(i, \text{PhCHO, KOH (solid), THF (trace water)}\)

as with the arsonium ylides above. The stereoselectivities obtained using these ylides are generally less satisfactory than those observed in the arsenic counterparts.

3.2.2.4 Addition of Anionic Species

Strategies employing α-heterosubstituted organometallic reagents often provide useful alternatives to ylide chemistry for methylene transfer. The carbonyl compound is treated with a heteroatom-stabilized organometallic reagent, which gives rise to an isolable β-hydroxy adduct. These are transformed into the desired epoxide either: (a) spontaneously; (b) under the action of base; or (c) following an intermediate activation step in which \(X\) is converted into a better leaving group.

A powerful class of epoxidation reagents in this category are the anions derived from \(N\)-p-tolylsulfonylsulfoximines (equation 16). These reagents form epoxides directly upon addition to carbonyl compounds and are available in a number of alkyl substitution patterns. Their chemistry is similar to that of dimethyloxosulfonium methylide, to which they often provide a practical alternative due to their greater nucleophilicity.

\[
\text{Ph}_3\text{As} \quad \text{OH} \quad \text{Br}^- \xrightarrow{i, \text{PhCHO, KOH (solid), THF (trace water)}} \quad \frac{83\%}{89\%} + \quad \frac{11\%}{11\%}
\]

\(i, \text{PhCHO, KOH (solid), THF (trace water)}\)

Deprotonation of thioanisole and addition of a carbonyl compound affords an isolable hydroxy sulfide which can then be alkylated (Scheme 7). Treatment with base generates the same betaine that would have been formed using the sulfur ylide approach, and effects the intramolecular displacement reaction. The addition of methylthiomethyl lithium to 2-cyclohexenone exclusively provides the 1,2-addition product, the dianions derived from phenylmethanethiol or allylthiol react in a similar manner. In one case a 6-keto steroidal substrate was found to undergo smooth methylenation using this procedure,
whereas attempted epoxidation using either ylide (1) or (2) exclusively gave rearrangement products such as (25; equation 17).

\[
\text{PhSMe} \xrightarrow{\text{i, ii}} \text{HO} Bu^i \xrightarrow{\text{iii}} \left[\begin{array}{c} \text{Me} \\ \text{Bu}^i \end{array} \right] \xrightarrow{\text{iv}} \text{Bu}^i \xrightarrow{\text{O}} \\
\text{i, Bu''Li, DABCO; ii, Bu'_2C=O; iii, [Me_3O]BF_4; iv, CH_2Cl_2, 0.5M NaOH}
\]

Scheme 7

The lithiation of ethyl allyl sulfide followed by transmetallation with titanium isopropoxide engenders an allyltitanium reagent formulated as (26; Scheme 8).\(^{64}\) This and related reagents add to aldehydes or ketones to afford hydroxy sulfides, which are converted to epoxides as shown. The power of this method for the stereoselective generation of even trisubstituted epoxides is evident from Scheme 8 and equation (18). Reagent (26a), prepared as shown in Scheme 8a, undergoes addition to ketone (26b) to afford product exclusively resulting from chelation-controlled diastereofacial addition (as a mixture of epimers at the position shown).\(^{64b}\)

Early efforts to synthesize optically active epoxides using chiral α-lithio sulfoxide anions or chiral complexes of α-lithio sulfides have been reviewed.\(^{65}\) These approaches usually yield epoxides of low optical purity. More successful, if indirect, approaches are outlined in Section 3.2.2.7.

Chloromethyl phenyl sulfone and related compounds can undergo deprotonation and addition to ketones under a variety of conditions.\(^{66,67}\) These procedures appear most prominently as part of one-
Transformation of the Carbonyl Group into Nonhydroxylic Groups

\[\text{Scheme 8a} \]

carbon homologation procedures; alternatively, the sulfur substituent can be removed by treatment with \(n \)-butyllithium at low temperature (Scheme 9).\(^6\) This reaction has recently been featured in a stereoselective approach to a functionalized steroid side chain.\(^6\) Attempts to extend this reaction to asymmetric epoxide synthesis using chiral phase transfer catalysis\(^7\) or a chirally substituted sulfone\(^8\) have been reported.

\[\text{Scheme 9} \]

Procedures which utilize selenides are similar, but \(\alpha \)-lithio selenides are not generally preparable via simple deprotonation chemistry, due to facile selenium–lithium exchange.\(^5\)–\(^8\),\(^2\) Selenium-stabilized anions are available, however, by transmetallation reactions of selenium acetals and add readily to carbonyl compounds. The use of branched selenium-stabilized anions has been shown to result exclusively in 1,2-addition to unhindered cyclohexenones, in contrast to the analogous sulfur ylides. The resulting \(\beta \)-hydroxy selenides undergo elimination by treatment with base after activation by alkylati\(^9\)on\(^1\) or oxidation\(^2\) (Scheme 10). An alternative method of activating either \(\beta \)-hydroxy selenides or sulfides toward elimination involves treatment of a chloroform solution of the adduct with thallium ethoxide (Scheme 11).\(^3\) A mechanism involving the intermediacy of a selenium ylide is proposed.

Although much less is known about the chemistry of selenones, these compounds can be converted into epoxides upon reaction with carbonyl compounds in a single-step procedure, which succeeds due to the greater leaving group ability of the benzeneselenonyl anion.\(^7\) A series of cyclopropylselenonyl anions have been prepared and they afford oxaspiropentanes in excellent yields.\(^8\)

\[\text{Scheme 10} \]

The additions of metallated 2-allyloxybenzimidazoles to carbonyl compounds are tunable according to the nature of the transition metal counterion. The parent allyl ethers can be deprotonated by n-butyl-lithium and converted to the corresponding allyl-cadmium\(^{82}\) or -aluminate\(^{83}\) species by transmetallation (Scheme 12). The authors speculate that the allylcadmium reagent exists primarily in the (Z)-configuration, whereas the allylaluminum species is mostly (E). Each is presumed to react through a boat-like transition state to yield erythro or threo adducts, respectively, along with varying amounts of \(\gamma\)-attack. Ring closure with sodium hydride completes the sequence. Addition of the allylcadmium reagent to a chiral aldehyde predominantly afforded the Cram–Felkin isomer.\(^{84}\)

Other \(\alpha\)-alkoxylithium carbanions have been generated by tin–lithium exchange at low temperature,\(^{85}\) by metallation of (alkoxymethyl)trimethylsilane\(^{86}\) or by using samarium iodide.\(^{87}\) These reagents do not directly form epoxides due to the poor nucleofugicity of alkoxide anion. However, the resultant protected diols can be considered as particularly robust precursors to epoxides when deprotected and manipulated in any number of standard ways. A notable example of this strategy is shown in Scheme 13.\(^{88}\)
3.2.2.5 Halogen-stabilized Carbenoids

Another important group of stabilized anions which have a built-in leaving group suitable for epoxide formation are carbenoids (Köbrich reagents). These reagents are both highly reactive and thermally unstable. Several reviews on the varied chemistry of these reagents are available.89,90

The mechanistic outline of carbenoid/carbonyl reactivity follows the paradigm illustrated at the outset of this chapter (Scheme 1; X = halogen). The nucleophilic lithium species adds to the carbonyl compound and suffers elimination to provide the epoxide. Competition from molecular rearrangements emanating from the intermediate halohydrin or the product epoxides is sometimes a problem, particularly with cyclic ketones. Also, the initial adduct frequently fails to cyclize when the reaction is quenched at low temperature, but it is usually a simple matter to effect ring closure by treatment of the halohydrin with mild base in a separate step.

Lithium halocarbenoids are generated by either direct metallation (deprotonation), or lithium–halide exchange. Early efforts to use the former route were limited to vinyl halides or carbenoids bearing at least two chlorine atoms. Lithium–halide exchange has the advantages of offering a greater variety of structural types, and more importantly, often occurring even at <100 °C. In the case of especially unstable carbenoids, such as those bearing additional alkyl substitution, those having a single chlorine atom, or when X = Br or I, this method of generation is crucial.

Solvent plays an important role in these reactions. A highly basic solvent, usually THF, is used to provide stabilization of the lithium halocarbenoid, due to coordination which disrupts the internal Li–Br interaction which would otherwise lead to α-elimination (equation 20).91 The extreme low temperature of many of the reactions requires special solvent systems, commonly a mixture of THF, diethyl ether, and petroleum ether or pentane in a ratio of 4:1:1 (Trapp mixture). Solvent has also been noted to alter the mechanistic course of the reaction; for example, reaction of ketones with lithiobromomethane in hexane was observed to give rise to alkenes rather than epoxides.92

Contemporary work on the development of in situ methods for the generation of the classical carbenoid species or providing additional stabilization by other transition metals has permitted the more convenient use of these reagents. A chief advance involved the generation of the lithiohalocarbenoid by exchange with n-butyllithium, lithium metal, or lithium amalgam in the presence of the carbonyl partner at -78 °C.92 Simple methylene transfer or epoxidations involving more highly substituted epoxides can be effected under these conditions. For example, the use of chloroiodomethane as the carbenoid precursor affords epoxides in very high yield (equation 21).933" Epoxidations involving more highly substituted epoxides can also be effected under these conditions.90

A later modification of the original Köbrich procedure entails the generation of carbenoids in the presence of an added equivalent of lithium bromide salt (equation 22).91 Apparently, the Lewis acid character of the added salt helps to stabilize the carbenoid by coordination with the halogen atom. The lithium salt is also implicated in Lewis acid complexation to the oxygen atom of the C=O bond, and seems to assist in the cyclization step as well.

Lithium–bromine exchange of bromochloromethane can be accomplished using sonication at temperatures as high as -15 °C.95 The apparent generation of a dichloromethyl anion was effected at room temperature using phase transfer catalysis (equation 23).96 A practical route involving the selective deprotonation of several dihaloalkane solutions containing a ketone or aldehyde substrate using hindered lithium amide bases has been reported (equation 24).97 Fluoride catalysis liberates a 'naked' carbenoid anion from a TMS-containing precursor, which adds in good yields to a variety of aldehydes at 0 °C to
Addition to 2-phenylpropanal predominantly afforded the isomer predicted by Cram's rule (equation 25). Similar results were obtained by generating (presumably) the same anion under electrochemical conditions.

\[
\text{Cram's rule (equation 25)}
\]

A number of methods to increase the thermal stability of Körnich reagents have centered around replacement of the lithium counterion normally present with a variety of transition metals, chiefly titanium, hafnium and copper. For example, the reagent derived from transmetallation of lithium dichloromethane with titanium isopropoxide could be reacted with various ketones and aldehydes to afford halohydrin adducts in good yields at temperatures as high as 0 °C. Competition experiments established the chemoselectivity of this reagent (Scheme 14). The direct activation of several allylic halides has been accomplished with tin and chromium reagents (equation 26). Transmetallation of an alkyllead precursor has also been noted.

\[
\text{Scheme 14}
\]

Activation of dibromo- and diiodo-methanes can also be effected using samarium powder, which generates SmI₂ in situ. This procedure allows the isolation of the formal adduct of iodomethane to ketones and aldehydes at room temperature with very short reaction times. The iodohydrin so isolated can, of course, be readily converted to the corresponding epoxide. The reaction is thought to occur by a radical chain process. The stereoselectivity of the reaction was briefly investigated (equations 27 and 28).
There are few reports which deal with questions of chemo- and stereo-selectivity of Köbrich reagents. Lithiobromomethane reacted preferentially with a saturated ketone in the presence of an α,β-unsaturated ketone in a steroidal substrate, although the reaction was not stereoselective. However, addition of a related reagent to an acyclic chiral ketone was reported to occur with complete diastereoselectivity (equation 29).

Chemically distinct halogen atoms can undergo selective exchange in substrates containing a Lewis base site capable of internal coordination. A provocative example involves an exchange reaction which occurs with diastereotopic group selectivity (Scheme 15).

3.2.2.6 Diazoalkane Reactions

Although historically important, the epoxidation of ketones and aldehydes using diazoalkanes is of less contemporary interest as a synthetic tool. This is due to the much greater propensity of the adducts resulting from addition of the diazo compound to the carbonyl group to react along other pathways. Products arising from chain elongation and ring expansion tend to predominate in these reactions, particularly with cyclic ketones. The interested reader is directed to several good reviews on the subject, an older but still useful *Organic Reactions* chapter, and a review dedicated to diazomethane chemistry.

The mechanism for the addition of diazoalkanes to a C=O double bond is generally written along lines similar to those discussed so far (Scheme 1; \(X^* = N_2^+\)). The initial adduct is also the progenitor of the various rearrangement pathways. However, the subject of mechanism is by no means settled, with 1,3-dipolar cycloadditions and carbonyl ylide formation considered to be prominent alternatives. In general, successful epoxidation of carbonyl compounds improves with increasing electron-poor character of the C=O bond. When the diazoalkane is electron poor, yields of epoxide diminish.

An epoxidation reaction utilizing a complex diazo compound is shown in equation (30). The addition of diazomethane to highly electron-deficient esters has been reported to yield 2-alkoxy-2-substituted epoxides (equation 31). The stereoselectivity of the addition of diazomethane to pentulose derivative (20) was shown to be superior to that obtained using sulfur ylides, giving ratios of 95:5 in favor of (21; equation 8). However, the yields were unstated, and the products were accompanied in most cases by significant amounts of homologous ketone.
3.2.2.7 Additions to C=O π-Compounds Bearing Adjacent Leaving Groups

Although the bulk of this section is concerned with the formal addition of a single atom across both ends of a C=O double bond, halohydrins also result from the addition of a nucleophile (H- or R-) to carbonyl compounds bearing an adjacent leaving group or its equivalent (path b, Scheme 1). The use of this approach for epoxide synthesis was pioneered by Cornforth and coworkers as early as 1959. The scope of this process is very wide, so only a few highlights will be covered here.

The most simple example of this reaction type is the reduction of a ketone RC(O)CHX to afford a monosubstituted epoxide. Recently, several strategies for performing this reaction to give epoxides in optically active form have appeared. The corresponding β-keto sulfoxides are available in optically pure form by the deprotonation of resolved p-tolylmethyl sulfoxide and addition to esters (Scheme 16). The adducts can be stereospecifically reduced to afford either diastereomer, depending upon the reaction conditions: DIBAL-H in THF gives a 95:5 mixture of (27) and (28), whereas carrying out the reaction in the presence of zinc chloride reversed the ratio to 5:95. The stereochemistry of the former reduction is rationalized by an anti conformation resulting from dipole-dipole repulsions between the S-O and C=O bonds, whereas a chelation-controlled transition state best explains the latter result. Reduction to the corresponding sulfide, alkylation and elimination afforded optically pure styrene oxide in high yield.

An even more direct approach utilizes a chiral reducing agent (29) (equation 32).

The preparation of disubstituted epoxides is similarly accomplished by the addition of nucleophiles to more highly substituted ketones. Selective reduction of keto sulfides with either L-Selectride or zinc
Transformation of the Carbonyl Group into Nonhydroxylic Groups

\[
\begin{align*}
\text{Ph} & \quad \text{Br} \\
\xrightarrow{i, \text{(29)}} & \quad \text{Ph} + \text{Ph} \\
\xrightarrow{\text{NaOH, } 97\%} & \quad 98\% \quad 2\%
\end{align*}
\]

borohydride ultimately affords cis- or trans-epoxides, respectively, as the major products (Scheme 17). This route was extended to the preparation of optically active epoxides. The optically active keto sulfides were prepared in 50–85% enantiomeric excess by carrying out an asymmetric sulfonylation reaction on the parent ketones. β-Ketosulfonium salts can also be stereoselectively reduced to give trans-epoxides after cyclization.

\[
\begin{align*}
\text{Ph} & \quad \text{SMe} \\
\xrightarrow{\text{L-selectride, } 58\%} & \quad \text{Ph} + \text{Pr}^i \\
\xrightarrow{\text{Zn(BH}_4)_2, \text{ } 90\%} & \quad \text{Ph} + \text{Pr}^i
\end{align*}
\]

Scheme 17

A three-step procedure leads to trisubstituted epoxides from an acid chloride (Scheme 18). A palladium-catalyzed addition of an allyltin reagent to α-chloro ketones was reported to yield trisubstituted epoxides in moderate yield.

\[
\begin{align*}
\text{PhCH}_2\text{COCl} & \quad \text{Me}_3\text{SiCl} \\
\xrightarrow{\text{AlCl}_3, \text{ } 82\%} & \quad \text{Ph} + \text{Cl}
\end{align*}
\]

Scheme 18

3.2.2.8 Other Heterocyclic Syntheses

The formal addition of an oxygen atom across the carbonyl group gives rise to dioxiranes (equation 33). In practice, this reaction is effected with Oxone, and dimethyldioxirane (30) and other dioxiranes have been generated in solutions of their parent ketones. Dioxirane (30) has been implicated in oxidations of alkenes, sulfides, and imines. The formal addition of nitrogen across a carbon–oxygen double bond to afford oxaziridines has been reviewed. There are also many methods available for the indirect conversion of carbonyl compounds to aziridines and thiranes using multistep conversions.

\[
\begin{align*}
\text{O} & \quad \xrightarrow{2\text{KHSO}_4, \text{KHSO}_4, \text{K}_2\text{SO}_4} \quad \text{O} \\
\text{O} & \quad \xrightarrow{\text{NH}_2\text{Cl, } 85\%} \quad \text{H} + \text{N} + \text{O}
\end{align*}
\]
A number of techniques are available for the one-pot conversions of carbonyl substrates to thiiranes. These entail the addition of a lithiated thiol derivative to the substrate, transfer of either an acyl group or heterocycle to the oxygen atom, and cyclization. A recent example is depicted in Scheme 19.

\[\text{Me}_2\text{N} \text{S} \rightarrow \text{Bu}^\text{Li} \rightarrow \text{Me}_2\text{N} \text{O} \rightarrow \text{Me}_2\text{N} \text{S} \rightarrow \text{Me}_2\text{N} \text{HO} \rightarrow \text{NaH} \rightarrow \text{acyl transfer} \]

Scheme 19

3.2.3 ADDITIONS TO C=N π-BONDS

3.2.3.1 Addition of Carbon

The addition of a carbon atom to the C=N double bond has been reported using sulfur (equation 35) and arsenic ylides, halogen-stabilized carbenes, and diazo compounds. The best substrates are imines in which the nitrogen is substituted with an aromatic ring, substituted oximes, and hydrazones.

\[\text{[Me}_3\text{S]}\text{Cl}, 50\% \text{aq. NaOH} \rightarrow \text{Ar} \rightarrow \text{N} \rightarrow \text{Ar} \]
\[\text{Ar} = m-\text{MeOC}_6\text{H}_4 \]

Reactions of halogen-stabilized carbenoids with imines have been carried out using preformed lithium species (e.g. equation 36) or via a carbenoid generated from diiodomethane utilizing zinc–copper couple (Simmons–Smith conditions). A stereospecific ring closure is observed after the addition of lithiodichloromethane to a benzaldimine (equation 37). The addition of lithochloro(phenylsulfonfonyl)methane to aromatic imines affords 2-phenylsulfonyl-substituted aziridines, which can be deprotonated and alkylated in excellent yield (Scheme 20).

\[\text{Et} \rightarrow \text{Ph} \rightarrow \text{Cl} \rightarrow \text{Li}^+ \rightarrow \text{Et} \rightarrow \text{Ph} \]
\[\text{Ph} \rightarrow \text{LiCHCl}_2 \rightarrow \text{Ph} \rightarrow \text{Cl} \]
\[\text{Ar} \rightarrow \text{PhSO}_2\text{CHClLi} \rightarrow \text{Ar} \rightarrow \text{SO}_2\text{Ph} \rightarrow \text{i, LDA} \rightarrow \text{Ar} \rightarrow \text{SO}_2\text{Ph} \]

Ar = m-\text{MeOC}_6\text{H}_4

Scheme 20
The anion of (31) reacts with O-methyl oximes139 or nitrones140 to afford trans N-unsubstituted aziridines in modest yields (e.g. equation 38). Nitrones also react with stabilized phosphonate esters (equation 39).131,141

![Image of chemical reaction](image)

\textbf{Scheme 21}

The reactions of diazoalkanes and imines occur in generally low yields, but Lewis acid catalysis is of some help (equation 40).142 The reaction involves a 1,3-dipolar mechanism which proceeds through an isolable triazoline intermediate (Scheme 21). Treatment of the latter with acid affords aziridine in modest yield.

![Image of chemical reaction](image)

\textbf{Scheme 22}

In contrast, the addition of various diazoalkanes to preformed iminium ions can be a highly efficient process, leading to aziridinium salts, which may undergo further chemistry prior to isolation.131,145 The intermediacy of a diazonium ion which may react with nearby nucleophilic centers prior to cyclization has been postulated (Scheme 22).144 This and similar stereoselective reactions have been investigated as potential approaches to morphinoid analgesics.145,146
Epoxidation and Related Processes

The asymmetric synthesis of aziridines via these routes has been sparingly investigated. Aziridines bearing an N-alkoxy substituent can be resolved into nitrogen stereoisomers. Modest asymmetric induction was observed in the reaction of a chiral O-alkyl oxime with dimethylsulfonium methylide (equation 41).147 The analogous reaction with diazomethane was not stereospecific. Earlier work in this area has been reviewed.148

\[
\begin{align*}
\text{F}_3\text{C} & \quad \text{CF}_3 \\
\text{N} & \quad \text{O} \\
\text{CO}_2\text{Me} & \quad \text{low yield} \\
\xrightarrow{(1)} \\
\text{F}_3\text{C} & \quad \text{CF}_3 \\
\text{N} & \quad \text{O} \\
\text{CO}_2\text{Me} & \quad 25\% \\
\text{F}_3\text{C} & \quad \text{CF}_3 \\
\text{N} & \quad \text{O} \\
\text{CO}_2\text{Me} & \quad 75\%
\end{align*}
\]

Synthetic methods which utilize the addition of nucleophiles to α-halo oximes and similar compounds (the Hoch–Campbell reaction) have been reviewed.131

3.2.3.2 Addition of Oxygen and Nitrogen

The addition of oxygen across the C=N double bond is a common and synthetically useful process.149 The product oxaziridines are of interest for theoretical reasons (largely due to the high configurational stability of the chiral nitrogen), as reagents (such as oxygen transfer moieties), and as synthetic intermediates.150 The stereochemical aspects of oxaziridine synthesis and reactivity have been reviewed.148

Oxaziridines can be conveniently classified by the substituent on nitrogen. N-Alkyl oxaziridines and N-aryloxaziridines often differ in behavior from those compounds bearing an electron-poor nitrogen substituent, usually an N-sulfonyl or N-sulfamyl group.

The nitrogen atom in oxaziridines usually constitutes a stable stereogenic center. The nitrogen atoms in N-alkyl oxaziridines and N-aryloxaziridines have barriers to inversion of the order of ca. 30–33 kcal mol\(^{-1}\) (1 cal = 4.18 J),148 rendering these compounds configurationally stable at ambient temperature. Alternatively, the various N-sulfonyloxaziridines appear to be more readily epimerized, with inversion barriers of ca. 19–21 kcal mol\(^{-1}\).151,152 3-Alkoxy oxaziridines readily epimerize at room temperature, possibly through zwitterionic intermediates.153

The most common method for the synthesis of N-alkyl oxaziridines and N-aryloxaziridines from imines is through the oxidation of imines with an organic peroxy acid.129,154 Two mechanisms for this reaction have been advanced (Scheme 23). The concerted mechanism is exactly analogous to that usually accepted for the oxidation of alkenes with electron-deficient peracids. Unlike the latter conversion, however, the oxidation reaction of imines is not stereospecific. To account for this observation, it is necessary to presume that the imine isomers equilibrate more rapidly than the oxidation occurs, and that the cis isomer is more reactive.155 Neither of these possibilities can be convincingly ruled out. However, an alternative, Baeyer–Villiger type of mechanism seems more likely. Addition of the active oxygen atom to the carbon of the C=N double bond followed by expulsion of the acid by-product gives rise to oxaziridine. Intermediate (32) must be sufficiently long lived to allow nitrogen inversion to occur prior to ring closure. The two-step mechanism has been supported by an \textit{ab initio} molecular orbital study.156
Methods utilizing MCPBA157,158 or Oxone159 in buffered biphasic systems usually suffice for the stereoselective synthesis of trans-sulfonyl- and sulfamyl-substituted oxaziridines. The stereoselectivity is rationalized by the greater ability of the N-sulfonyl moiety to stabilize a negative charge in the intermediate resulting from addition to the imine carbon atom, allowing more time for bond rotation or nitrogen inversion before the ring closure step.160

The oxidation of imines derived from substituted cyclohexanones occurs predominantly from the equatorial direction. However, the product oxaziridines can undergo subsequent equilibration to favor a more stable conformation which places the bulkier nitrogen substituent in an equatorial conformation (Scheme 24).161 A particularly useful oxaziridine derived from camphor was formed exclusively via exo approach of the reagent (equation 42).162

\begin{equation}
\text{N-Bn} \xrightarrow{\text{MCPBA}} \text{N-Bn}\text{O} \xrightarrow{\text{H}} \text{N-Bn}
\end{equation}

Scheme 24

\begin{equation}
\text{KHSO}_3\text{acetone} \xrightarrow{90\%} \text{N-SO}_2\text{N-SO}_2\text{O}
\end{equation}

A chiral substituent on nitrogen can direct the predominant attack of an oxidizing agent to one diastereotopic face of an imine. Ratios as high as 97:3 were observed in a series of imines derived from \(\alpha\)-methylbenzylamine (equation 43).163 The oxidation of achiral imines with optically active peroxy acids, most notably monoperoxycamphoric acid [(+)-MPCA], do afford optically active oxaziridines, but not generally in synthetically useful optical ratios,148 but ratios as high as 80:20 have been reported.164

\begin{equation}
\text{N-Ph} \xrightarrow{\text{MCPBA}} \text{N-Ph} + \text{N-Ph}
\end{equation}

Reactions involving the use of chiral substrates in conjunction with chiral reagents have been reported. A seminal experiment was the oxidation of both enantiomers of a chiral imine with (+)-MPCA.148,165 In another example, the cumulative effect of equatorial attack in prochiral cyclohexanones with diastereoselectivity induced by a chiral nitrogen substituent allowed the synthesis of spirocyclic oxaziridines with a high induction of axial asymmetry (Scheme 25).166,167 The major oxaziridine isomer (33) results from both the favored equatorial attack and oxidation anti to the chiral nitrogen substituent (as drawn in Scheme 25). The isomers (34) and (35) result from a combination of one favored and one disfavored process and are minor products, whereas (36), which would result from a doubly disfavored trajectory, is not observed. The oxidation of a cyclic imine which involved a synergism between control by the chiral nitrogen substituent and attack from the convex face of the ring system was reported (equation 44).168 Oxaziridines of the type (37) have been utilized in the synthesis of racemic169,170 and optically active167,168 indole alkaloids.

Imines and substituted oximes react with several nitrogen-containing nucleophiles to provide a general synthesis of diaziridines or diazirines.171
Epoxidation and Related Processes

Scheme 25

3.2.4 REFERENCES

Transformation of the Carbonyl Group into Nonhydroxylic Groups

3.3 Skeletal Reorganizations: Chain Extension and Ring Expansion

PETER M. WOVKULICH

Hoffmann-La Roche, Nutley, NJ, USA

3.3.1 INTRODUCTION

The utilization of homologation reactions as a general synthesis strategy may be considered for various reasons, such as a greater accessibility of the lower homolog, the opportunity to introduce additional functionality, or simply the need for a regular series of homologs. The merit of an expansion/extension reaction which may be considered for incorporation into a synthetic plan will, to a large extent, be measured by the efficiency, technical simplicity, and regio- and/or stereo-selectivity of the overall operation. The persistent growth of new methodologies is testimony to the continuing demand for strategies which offer greater selectivity or versatility.

An exhaustive review\(^1\) on the general topic of carbocyclic ring expansions was recorded over twenty years ago, while a number of more specialized reviews\(^2\)–\(^8\) each not necessarily devoted to but incorporating some aspects of homologation reactions, have appeared during the interim. The intention of this chapter is to present a variety of methodologies with illustrative examples, focusing on the processes which achieve an overall homologation with preservation of the original carbonyl group, as illustrated in Scheme 1. This criterion emphasizes rearrangement processes over simple homologation protocols such as the methoxymethylenation/hydrolysis of carbonyl groups, alkylation with acyl anion equivalents, carbonyl group transpositions and so on. Since the orientation is primarily towards synthetic transformations, detailed mechanistic discussions will be held to a minimum, although in-depth analyses may usually be found in the accompanying references. The intention is to cover a variety of methods with sufficient examples to display both the advantages and disadvantages of the process, in the hope that the advantages will be exploited and the disadvantages will be taken as opportunities for improvement.

843
3.3.2 DIAZOALKANES AND RELATED REACTIONS

3.3.2.1 Arndt–Eistert Homologation

One of the more commonly applied chain extension reactions for carboxylic acids utilizes the unique reactivity of diazoalkanes. This sequence, generally referred to as the Arndt–Eistert synthesis, is a two-step process which, in the first step, involves the formation of an α-diazo ketone by reaction of the corresponding acyl chloride with an excess of diazoalkane (Scheme 2). In the second stage of the sequence, the α-diazo ketone is induced to undergo rearrangement by photochemical or thermal means or by exposure to metal salts (e.g., Ag, Cu), with concomitant loss of nitrogen to produce an intermediate ketene, which reacts in situ with water or alcohol to form the homologated acid or ester. This rearrangement of α-diazo ketones, known as the Wolff rearrangement, has been reviewed elsewhere in sufficient depth with regard to mechanism and synthetic utility that no comprehensive treatment will be given here.

\[\text{R}^1\text{CHOH} \rightarrow \text{R}^1\text{Cl} \xrightarrow{\text{R}_2\text{CH}≡\text{N}_2} \text{R}^1\text{O}^=\text{C} \xrightarrow{\Delta, \text{hv}, \text{or metal salts}} \text{R}^1\text{O}^=\text{C} \xrightarrow{\text{R}^3\text{OH}} \text{R}^1\text{OR}^3 \]

Scheme 2

The Arndt–Eistert synthesis, usually carried out with diazomethane, is fairly general and tolerates a wide range of substituents on both the carboxylic acid and alcohol. An obvious limitation is the reactivity of other functional groups, such as carboxylic acids or phenols, with diazomethane. The use of the more stable trimethylsilyldiazomethane as a replacement for diazomethane has been reported. While the use of diazoalkanes other than diazomethane is fairly rare, it does offer the opportunity to introduce additional functionality. For example, when sulfonyldiazomethanes (7) are used, the result is an α-sulfonyl carboxylic ester (Scheme 3).

\[\text{R}^1\text{Cl} \xrightarrow{\text{RO}_2\text{SCH}≡\text{N}_2, \text{Et}_3\text{N}} \text{R}^1\text{N}_2\text{SO}_2\text{R} \xrightarrow{\text{PhCH}_2\text{OH, toluene, reflux}} \text{R}^1\text{O}^=\text{C} \xrightarrow{\text{Et}_3\text{N}} \text{R}^1\text{OBn} \]

Scheme 3

3.3.2.2 Reactions of Aldehydes and Ketones

The reaction of diazomethane derivatives with aldehydes and ketones, though a fairly well-studied field now, continues to be a source of practical extension/homologation technology. The general reaction is outlined in Scheme 4. The diazoalkane, shown in resonance forms (11a) and (11b), reacts with...
the carbonyl carbon to form an intermediary betaine (12). Depending on the circumstances, the intermediate may be isolated in the form of the β-hydroxy diazo compound (13) or may lose nitrogen to produce an intermediate (14), which may then undergo rearrangement with migration of a substituent R² or R¹ to give the homologated compounds (15) and (16) respectively. Alternatively, simple collapse of (14) without migration of a substituent leads to epoxide (17). In general, the course of the reaction is influenced by the substituents and by the reaction conditions.

While the reaction of aldehydes with diazomethane is, in general, not a practical method for homologating aldehydes, it illustrates the influence of the relative migratory aptitudes of substituents on the outcome of the reaction. With aliphatic aldehydes, the preferential migration of hydrogen versus an alkyl group produces fair to good yields of the methyl ketones (18), along with varying amounts of epoxides (Scheme 5). Aromatic aldehydes are more variable, being influenced by substituents and solvent. For example, the addition of methanol or water favors aryl group migration; however, the resulting aldehyde reacts further to produce the homologated methyl ketone (21). A compilation of these reactions may be found in refs 8b and 9.

The reaction of diazomethane and its derivatives with ketones has been a rich source of chemistry. The major part of the developmental work with regard to reagents and mechanisms emerged from extensive studies in this area. Relative to aldehydes, aliphatic ketones are much less reactive to diazomethane and
yield, in addition to homologation products, substantial amounts of epoxides. The use of Lewis acids to activate the ketone carbonyl has greatly improved the situation, by increasing the rate of reaction and by reducing the degree of epoxide formation. The general trend for the migration of substituents, aryl > methyl > substituted alkyl, may be seen in Scheme 6.

\[
\begin{align*}
\text{R} & \xrightarrow{\text{BF}_3\cdot\text{OEt}_2} \text{CH}_2\text{N}_2 \quad \text{methyl versus R migration} \\
\text{Pr} & : 50:50 \\
\text{Pr} & : 67:33 \\
\text{Bu} & : 74:26 \\
\text{PhCH}_2 & : 78:22 \\
\text{Ph} & : 22:78 \\
\text{CH}=&\text{CMe}_2 & : 29:71
\end{align*}
\]

Scheme 6

Similar results were obtained on application of the related Tiffeneau-Demjanov reaction. This semipinacol-type reaction, an extension of the Demjanov rearrangement, involves the rearrangement of a diazonium ion (25; Scheme 7), which is generated by the diazotization of the corresponding amino alcohol (24). The amino alcohol is obtained from the ketone by reduction of a nitromethane adduct (23a), cyanohydrin (23b) or trimethylsilyl cyanohydrin (23c). This procedure allows for a controlled addition-rearrangement sequence in cases where the use of diazomethane is complicated by the further reaction of the product ketone.

\[
\begin{align*}
\text{R}^1 & \text{O} \xrightarrow{\text{MeNO}_2, \text{base or NaCN, H}^+ \text{ or Me}_3\text{SiCN}} \text{OH} \xrightarrow{\text{reduction}} \text{OH} \xrightarrow{\text{NaNO}_2, \text{AcOH}} \\
\text{R}^1 & \text{R}^2 \text{N}_2
\end{align*}
\]

Scheme 7

The hydroxide-catalyzed addition of \(\alpha\)-acyldiazomethane derivatives, while quite facile with aldehydes to produce stable aldol adducts, is poor with aliphatic ketones. However, the lithium or magnesium anion (26) adds smoothly to produce the corresponding aldol adducts (27) in good yield (Scheme 8). On treatment with acid, thermolysis or metal catalysts, these adducts lose nitrogen and rearrange to the \(\beta\)-keto esters (28) and (29). The analogous reaction with \(\alpha\)-diazo ketones has also been carried out; however, with bulkier substituents, the retro-aldol reaction competes with rearrangement.

In a mechanistic study on the Lewis acid catalyzed addition of ethyl diazoacetate to ketones a similar profile of rearrangement to the \(\beta\)-keto esters was observed (Scheme 9). In the same reaction with acetophenones, substitution on the benzene ring was found to only slightly affect the otherwise 90:10 preference for migration of aryl versus methyl.

Application of the above series of homologation reactions to cyclic ketones provides a route to ring-expanded products. Due to the constraints of ring systems, the preference for the migration of one bond over the other during these reactions is influenced by an additional set of factors, among which include
Skeletal Reorganizations: Chain Extension and Ring Expansion

\[
\begin{align*}
\text{H-} & \text{CO}_2\text{Et} \quad \xrightarrow{\text{BuLi or LDA, or MeMgBr}} \quad \text{M-} & \text{CO}_2\text{Et} \\
& \quad \xrightarrow{\text{R=O}} \quad \text{R-} & \text{OH-} & \text{CO}_2\text{Et} \\
& \quad \xrightarrow{\Delta, \text{or} \quad \text{Rh}_2(\text{OAc})_4} \quad \text{H^+}
\end{align*}
\]

\[
\begin{align*}
\text{R-} & \text{CO}_2\text{Et} + \text{R-} & \text{CO}_2\text{Et}
\end{align*}
\]

<table>
<thead>
<tr>
<th>(\text{R})</th>
<th>\text{Adduct yield (%)}</th>
<th>\text{Overall yield (%)}</th>
<th>((28):(29))</th>
<th>\text{Ref.}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>93</td>
<td>74</td>
<td>—</td>
<td>19b</td>
</tr>
<tr>
<td>Ph</td>
<td>94</td>
<td>72</td>
<td>0:100</td>
<td>18</td>
</tr>
<tr>
<td>Et</td>
<td>65</td>
<td>87</td>
<td>55:45</td>
<td>20</td>
</tr>
<tr>
<td>Bu</td>
<td>80</td>
<td>68</td>
<td>55:45</td>
<td>20</td>
</tr>
<tr>
<td>Bu^t</td>
<td>76</td>
<td>58</td>
<td>100:0</td>
<td>20</td>
</tr>
<tr>
<td>PhCH(_2)</td>
<td>—</td>
<td>73</td>
<td>38:62</td>
<td>20</td>
</tr>
<tr>
<td>Ph</td>
<td>47</td>
<td>80</td>
<td>8:92</td>
<td>20</td>
</tr>
</tbody>
</table>

Scheme 8

\[
\begin{align*}
\text{R-} & \xrightarrow{\text{EtO}_2\text{CCH}=\text{N}_2 \quad \text{Et}_3\text{O}^+\text{BF}_4^-} \quad \text{R-} & \text{CO}_2\text{Et} + \text{R-} & \text{CO}_2\text{Et}
\end{align*}
\]

<table>
<thead>
<tr>
<th>(\text{R})</th>
<th>\text{Yield (%)}</th>
<th>\text{Product ratio}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>78</td>
<td>—</td>
</tr>
<tr>
<td>Et</td>
<td>89</td>
<td>50:50</td>
</tr>
<tr>
<td>Pr^t</td>
<td>54</td>
<td>66:33</td>
</tr>
<tr>
<td>Bu^t</td>
<td>10</td>
<td>95:5</td>
</tr>
<tr>
<td>PhCH(_2)</td>
<td>96</td>
<td>62:38</td>
</tr>
<tr>
<td>Ph</td>
<td>78</td>
<td>10:90</td>
</tr>
<tr>
<td>CH=CMethyl</td>
<td>10</td>
<td>2:98</td>
</tr>
</tbody>
</table>

Scheme 9

ring strain, steric effects, stereochemical relationships in the approach of the diazoalkane, and conformational effects in the intermediate betaine (Scheme 10). Earlier work in this area has been reviewed.\(^9,13,23\)

\[
\text{RCH}=\text{N}_2 \quad \xrightarrow{} \quad \begin{array}{c}
\text{A}
\end{array} \quad \xrightarrow{\text{O}^-} \quad \begin{array}{c}
\text{B}
\end{array} \quad \xrightarrow{\Delta} \quad \text{Bond A migration} \quad \text{Bond B migration}
\]

Scheme 10

For monocyclic and many fused bicyclic ketones the general order of reactivity of \(3 > 4 > 6 > 7 ≥ 5\) has been observed in the reaction with diazomethane and derivatives.\(^1,9\) Cyclopropanones react smoothly with diazomethane and diazoethane in the absence of catalysts to form cyclobutanones (equations 1 and 2).\(^24\)
Transformation of the Carbonyl Group into Nonhydroxylic Groups

\[\text{CH}_2\text{Cl}_2 \xrightarrow{\text{RCHN}_2} \text{O} \]

R = H

\[43 : 57,85\% \]

R = Me

\[43 : 57.85\% \]

\[\text{R-H} \]

\[33 : 67.80\% \]

\[\text{R-Me} \]

\[70 : 30.80\% \]

The ready availability of cyclobutanones from the [2 + 2] cycloaddition of ketenes with alkenes makes cyclobutanones attractive precursors to cyclopentanones. These react with diazomethane in ether/methanol to give the ring-expanded products (equations 3 and 4). The presence of an α-halo substituent both accelerates the reaction of ketones with diazomethane and strongly shifts the migratory preference to the nonhalogenated carbon (equation 5a). It is noteworthy that the Tiffeneau–Demjanov expansion produces the opposite regiochemistry for expansion in the nonhalogenated case (equation 5b). Additional examples in mono-, bi- and tri-cyclic cyclobutanones are given in equations (6)–(10).

\[\text{O}_2C\text{R} \xrightarrow{\text{CH}_2\text{N}_2} \text{O} \]

\[66.33,75\% \]

\[\text{OH} \]

\[66\% \]

\[\text{H} \]

\[\text{MeO}_2\text{C} \]

\[50:50 \]

\[\text{MeO}_2\text{C} \]

\[55:45 \]

\[\text{X=Y=H} \]

\[\text{X}=\text{H}, \text{Y}=\text{Cl} \]

\[90:10 \]

\[\text{X}=\text{Y}=\text{Cl} \]

\[95:5 \]

\[\text{H} \]

\[\text{OH} \]

\[\text{NH}_2 \]

\[\text{NaNO}_2 \]

\[\text{AcOH} \]

\[\text{X}=\text{Y}=\text{H} \]

\[16:84 \]

\[\text{ref. 27} \]

\[\text{(6)} \]

\[\text{Cl} \]

\[\text{Cl} \]

\[\text{R}^1=\text{Ph}, \text{R}^2=\text{H} \]

\[82\% \text{ overall} \]

\[\text{R}^1=\text{Ph}, \text{R}^2=\text{Me} \]

\[74\% \]

\[\text{R}^1=\text{C}_8\text{H}_{17}, \text{R}^2=\text{H} \]

\[75\% \]
Skeletal Reorganizations: Chain Extension and Ring Expansion

The Lewis acid catalyzed expansion with ethyl diazoacetate also gives good regioselectivity, with a preference for migration of the non-ring-fusion carbon (equations 11-16). The use of SbCl₅ as the Lewis acid at -78 °C was reported to improve the regioselectivity in one case (equation 14).²⁶

The diminished reactivity of cyclopentanones toward diazomethane, while an asset in the ring expansion of cyclobutanones, has also proven to be a disadvantage. Some examples in the older literature demonstrate the problem of further reaction to higher homologs. The successful expansion reactions with
Transformation of the Carbonyl Group into Nonhydroxylic Groups

\[
\begin{align*}
\text{BF}_3\cdot\text{OEt}_2 & \quad \text{SbCl}_5, -78 \, ^\circ\text{C} & 68:32 \\
\text{Stability} & \quad \text{H}_{2}\text{O} & 98:2
\end{align*}
\]

ethyl diazoacetate are a likely consequence of the relatively unreactive \(\beta \)-keto ester products (equations 17 and 18). The sequential addition of the lithium anion of ethyl diazoacetate (26) to form the aldol product followed by rearrangement has also been found to be a viable tactic for the ring expansion of cyclopentanones (Scheme 11).\(^{19b}\)

\[
\begin{align*}
\text{BF}_3\cdot\text{OEt}_2 & \quad \text{BF}_3\cdot\text{OEt}_2 & \quad \text{BF}_3\cdot\text{OEt}_2 & \quad \text{BF}_3\cdot\text{OEt}_2 \\
\text{R} & \quad \text{H} & \quad \text{Me} & \quad \text{H}
\end{align*}
\]

There is an abundance of literature dealing with the diazomethane, diazomethane derivatives and Tiffeneau-Demjanov expansions of six-membered and larger ring ketones, with most of the simpler examples reported in the older literature.\(^9,15\) For example, the diazomethane expansion of cyclohexanone
produces cycloheptanone in 33–36% yield on a preparative scale,35 and the corresponding Tiffeneau–
Demjanov expansion provides a 41% overall yield.16 The preparative scale expansion of cyclohexanone
with phenyl diazomethane to 2-phenylcycloheptanone has also been recorded and provides a route to
2-aryl-cycloheptanones.36 A series of 4-substituted cyclohexanones have been expanded with diazoethane
to yield the 2-methylcycloheptanones in good yield as ca. 1:1 cis/trans mixtures (equation 19).37 As in
the case with diazomethane, the addition of alcohol to the reaction mixture with diazoethane had a
beneficial effect.

\[
\text{Scheme 11}
\]

\[
\begin{align*}
\text{O} & \xrightarrow{\text{Li CO}_2\text{Et} N_2} \xrightarrow{95\%} \text{HO} & \xrightarrow{\text{CO}_2\text{Et} N_2} \xrightarrow{65\%} \text{O} \\
\end{align*}
\]

The use of Lewis acids for the diazomethane and diazoethane homologations of a series of C₆–C₁₄
ketones has been reported to reduce the amount of epoxide formation, although as the ring size increases
the amount of unreacted starting material increases (Scheme 12).12 The expansion of 2-allylcyclohexa-
none with diazomethane in the presence of AICl₃ proceeds with migration of the less-substituted bond,12
in contrast to the Tiffeneau–Demjanov expansion of 2-methyl- and 2-isopropyl-cyclohexanone wherein
the alkyl-substituted bond migrates preferentially (Scheme 13).38,39

\[
\text{Scheme 12}
\]

\[
\begin{align*}
\text{R} & \quad \text{Yield (\%)} & \quad \text{R} & \quad \text{Yield (\%)} \\
\text{H} & \quad 84\% & \quad \text{Me} & \quad 81\% \\
\text{Me} & \quad 81\% & \quad \text{CO}_2\text{Et} & \quad 89\% \\
\text{Pr} & \quad 75\% & \\
\end{align*}
\]

The trimethylsilyldiazomethane–BF₃•Et₂O homologation of 2-methylcyclohexanone also proceeds
with high regioselectivity to give 2-methylcycloheptanone in 69% yield. A particular advantage for this
reagent over diazomethane appears to be for the homologation of larger rings where the yields are good
(equations 2040 and 2141). The Tiffeneau–Demjanov expansion also displays good regioselectivity with
larger ketones containing a fused benzene ring (equations 2242 and 2343), although a loss of selectivity
was noted in a 12-membered ring ketone (equation 24).44

The one-carbon expansion of cyclohexanones with introduction of a carbonyl group, trifluoromethyl,
cyano, phosphonate or benzenesulfonate has also been reported to proceed in the presence of Lewis acids
(Scheme 14). The analogous reactions of larger ring ketones [expressed as ring size (yield)] with ethyl
diazoacetate21 [7 (81%), 8 (85%)] and phenylsulfonyldiazomethane47 [7 (86%), 8 (27%), 12 (43%), 14
(48%), 15 (54%) and 16 (58%)] have also been reported. In the reaction of ethyl diazoacetate and
Transformation of the Carbonyl Group into Nonhydroxylic Groups

\[
\begin{align*}
& \text{CH}_2\text{N}_2, \text{AlCl}_3 \\
& \text{R} = \text{allyl, 60\%, ref. 12} \\
& \text{i, HCN} \\
& \text{ii, H}_2 \\
& \text{R} = \text{Me, Pr}^1
\end{align*}
\]

\[
\begin{align*}
& \text{R} = \text{Me, 66\%, ref. 38} \\
& \text{R} = \text{Pr}^1, 73\%, \text{ref. 39}
\end{align*}
\]

Scheme 13

\[
\begin{align*}
& \text{Me}_3\text{SiCH=N}_2, \text{BF}_3\cdot\text{OBz}_2 \\
& \text{72\%} \\
& \text{(ref. 40) (20)}
\end{align*}
\]

\[
\begin{align*}
& \text{Me}_3\text{SiCH=N}_2, \text{BF}_3\cdot\text{OBz}_2, -40^\circ\text{C} \\
& \text{88\%} \\
& \text{(ref. 41) (21)}
\end{align*}
\]

\[
\begin{align*}
& \text{i, SiMe}_3\text{CN} \\
& \text{ii, LiAlH}_4 \\
& \text{iii, NaNO}_2, \text{AcOH} \\
& \text{64\% overall}
\end{align*}
\]

\[
\begin{align*}
& \text{i, Me}_3\text{SiCN} \\
& \text{ii, LiAlH}_4 \\
& \text{iii, NaNO}_2, \text{AcOH} \\
& \text{79\% overall}
\end{align*}
\]

\[
\begin{align*}
& \text{i, Me}_3\text{SiCN} \\
& \text{ii, LiAlH}_4 \\
& \text{iii, NaNO}_2, \text{AcOH}
\end{align*}
\]

\[
\begin{align*}
& \text{MeO} \\
& \text{52:48}
\end{align*}
\]
2-substituted cyclohexanones, a preference for the migration of the unsubstituted carbon was observed (Scheme 15). The regioselectivity of this rearrangement promoted by BF$_3$-OEt$_2$ was improved by the use of SbCl$_5$ at -78°C.

\[\text{RCH=N}_2 + \text{Lewis acid catalyst} \rightarrow \text{R} \]

Scheme 14

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Yield (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Et$_3$O$^+$BF$_4^-$</td>
<td>90</td>
<td>21</td>
</tr>
<tr>
<td>BF$_3$-OEt$_2$</td>
<td>66</td>
<td>45</td>
</tr>
<tr>
<td>Et$_3$O$^+$BF$_4^-$</td>
<td>46</td>
<td>21</td>
</tr>
<tr>
<td>Et$_3$O$^+$BF$_4^-$</td>
<td>58</td>
<td>21</td>
</tr>
<tr>
<td>Et$_3$O$^+$BF$_4^-$</td>
<td>85</td>
<td>21</td>
</tr>
<tr>
<td>Et$_3$O$^+$BF$_4^-$</td>
<td>65</td>
<td>21</td>
</tr>
<tr>
<td>BF$_3$-OEt$_2$</td>
<td>92</td>
<td>46</td>
</tr>
<tr>
<td>TiCl$_4$</td>
<td>71</td>
<td>47</td>
</tr>
</tbody>
</table>

Scheme 15

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Ratio</th>
<th>Yield (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Et$_3$O$^+$BF$_4^-$</td>
<td>100:0</td>
<td>90</td>
<td>21</td>
</tr>
<tr>
<td>Et$_3$O$^+$BF$_4^-$</td>
<td>83:17</td>
<td>66</td>
<td>33</td>
</tr>
<tr>
<td>Et$_3$O$^+$BF$_4^-$</td>
<td>85:15</td>
<td>46</td>
<td>21</td>
</tr>
<tr>
<td>SbCl$_5$</td>
<td>94:6</td>
<td>58</td>
<td>21</td>
</tr>
<tr>
<td>Et$_3$O$^+$BF$_4^-$, Et$_2$O$^+$BF$_3$</td>
<td>80:20</td>
<td>85</td>
<td>21, 33</td>
</tr>
<tr>
<td>Et$_3$O$^+$BF$_4^-$</td>
<td>90:10</td>
<td>65</td>
<td>21</td>
</tr>
<tr>
<td>Et$_3$O$^+$BF$_4^-$</td>
<td>73:27</td>
<td>92</td>
<td>21</td>
</tr>
<tr>
<td>Et$_3$O$^+$BF$_4^-$</td>
<td>>95:5</td>
<td>71</td>
<td>21</td>
</tr>
</tbody>
</table>

The powerful directing effect of halogen substitution has been studied in the reaction of a series of cholestane derivativers with ethyl diazoacetate. In both the 5α and 5β series, essentially no selectivity was observed for the nonhalogenated series, while with halogen substitution only the products arising from migration of the unhalogenated carbon were observed (Scheme 16). A similar effect was observed for an acetoxy substituent.

The sequential lithioethyl diazoacetate addition-Rh catalyzed rearrangement proved to be advantageous in a pseudoguanylode synthesis, where the corresponding one-step ethyl diazoacetate-BF$_3$-OEt$_2$ method produced an 80:20 mixture of regioisomers (Scheme 17). An investigation for a guaiane synthesis utilized a similar sequence, again with only one regioisomer being observed (Scheme 18).

The reaction of diazomethane and its derivatives with bridged polycyclic ketones continues to provide a convenient source of the next higher homologs, and also serves as a reactivity probe with which the effects of ring strain and steric and electronic interactions may be unveiled. In cases where further ring expansion occurs due to a lower reactivity of the starting ketone relative to the product, the Tiffeneau-Demjanov ring expansion is especially useful. Moreover, this sequence allows for the study of bond migration preferences in relation to the stereochemistry of leaving groups when the intermediate amino alcohols can be isolated as separate stereoisomers. The reader is referred to an excellent review on the ring expansion of bridged bicyclic compounds for a detailed analysis of the factors which influence rearrangements in general for this class of compounds. Illustrative examples are provided in Table 1.
Transformation of the Carbonyl Group into Nonhydroxylic Groups

Scheme 16

Scheme 17

Scheme 18

Scheme 19
Table 1 Ring Expansion of Bridged Bicyclic Ketones with Diazoalkanes or Tiffeneau–Demjanov Rearrangement

<table>
<thead>
<tr>
<th>Ketone</th>
<th>Conditions</th>
<th>Intermediates if isolated</th>
<th>Conditions</th>
<th>Products</th>
<th>Yield (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td></td>
<td>b</td>
<td></td>
<td>81:19</td>
<td>85</td>
</tr>
<tr>
<td>R = H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R = Me</td>
<td>93:7</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R = F</td>
<td>100:0</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R = Cl</td>
<td>100:0</td>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c</td>
<td></td>
<td>b</td>
<td></td>
<td>94:6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td>single bond 60:40 double bond 42:58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e</td>
<td></td>
<td>b</td>
<td></td>
<td>single bond 62:38 double bond 50:50</td>
<td></td>
</tr>
</tbody>
</table>
Table 1 (continued)

<table>
<thead>
<tr>
<th>Ketone</th>
<th>Conditions</th>
<th>Intermediates if isolated</th>
<th>Conditions</th>
<th>Products</th>
<th>Yield (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>91:9</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>77:23</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>51:49</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90:10</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95%</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93</td>
<td>56</td>
</tr>
<tr>
<td>Ketone</td>
<td>Conditions</td>
<td>Intermediates if isolated</td>
<td>Conditions</td>
<td>Products</td>
<td>Yield (%)</td>
<td>Ref.</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>---------------------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>e</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>e</td>
<td>NH_2</td>
<td>b</td>
<td></td>
<td>68:32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e</td>
<td>OH</td>
<td>and</td>
<td></td>
<td>88:12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>e</td>
<td>OH NH_2</td>
<td>b</td>
<td></td>
<td>50:50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>—</td>
<td>b</td>
<td></td>
<td>71</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>i</td>
<td>—</td>
<td>—</td>
<td></td>
<td>75:25</td>
<td></td>
</tr>
</tbody>
</table>

75:25 (R = H, Me)
Table 1 (continued)

<table>
<thead>
<tr>
<th>Ketone</th>
<th>Conditions</th>
<th>Intermediates if isolated</th>
<th>Conditions</th>
<th>Products</th>
<th>Yield (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>j</td>
<td>–</td>
<td>–</td>
<td></td>
<td>70</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>g</td>
<td>–</td>
<td>–</td>
<td></td>
<td>61</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R = CO₂Me</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R = Br</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R = Me</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>g</td>
<td>–</td>
<td>–</td>
<td></td>
<td>75</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>k</td>
<td></td>
<td></td>
<td> + </td>
<td>66:34</td>
<td>62</td>
</tr>
</tbody>
</table>

Transformation of the Carbonyl Group into Nonthydroxyl Groups

858
<table>
<thead>
<tr>
<th>Ketone</th>
<th>Conditions</th>
<th>Intermediates if isolated</th>
<th>Conditions</th>
<th>Products</th>
<th>Yield (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g</td>
<td>-</td>
<td>-</td>
<td></td>
<td>80</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>-</td>
<td>-</td>
<td></td>
<td>R = H</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>R = CO₂Et</td>
<td></td>
<td></td>
<td></td>
<td>63</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td> b</td>
<td></td>
<td></td>
<td>70</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>g</td>
<td>-</td>
<td>-</td>
<td></td>
<td>90</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td> b</td>
<td></td>
<td></td>
<td></td>
<td>75</td>
<td>67</td>
</tr>
</tbody>
</table>

Table 1 (continued)

Skeletal Reorganizations: Chain Extension and Ring Expansion
Table 1 (continued)

<table>
<thead>
<tr>
<th>Ketone</th>
<th>Conditions</th>
<th>Intermediates if isolated</th>
<th>Conditions</th>
<th>Products</th>
<th>Yield (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m</td>
<td>—</td>
<td>—</td>
<td>+ next higher homolog</td>
<td>64</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>g</td>
<td>—</td>
<td>—</td>
<td></td>
<td>56</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>m</td>
<td>—</td>
<td>—</td>
<td></td>
<td>71 overall</td>
<td>70</td>
</tr>
</tbody>
</table>

a i. Me₃SiCN; ii. LiAlH₄.
b NaNO₂.
c i. Me₂C=CH₂; ii. NaN₃; iii. H₂, PtO₂.
d CH₂N₂, 17–20% completion.
e i. HCN; ii. H₂, PtO₂.
f Ethyl diazoacetate/BF₃·OEt₂.
g Excess CH₂N₂.
h 0.06 equiv. CH₂N₂.
i Ethyl diazoacetate, Et₂O·BF₄⁻.
j CH₂N₂, Et₂O, MeOH.
k i. Ph₂P=CH₂, ii. MCPBA; iii. NaN₃; iv. H₂, PtO₂.
l RCH=N₂ (R = H or CO₂Et).
m i. CH₂N₂; ii. Wolff–Kishner reduction.
The intramolecular reaction of diazo groups with ketones has also been examined in several systems. Early work studied the variation in ring size, substitution and chain length on the reaction outcome (Scheme 19). Despite the interesting synthetic potential for an intramolecular ring expansion reaction, relatively few examples have been reported (equations 25, 26, 27, 28).

In a related addition–elimination with rearrangement sequence, the chain extension–ring expansion reactions of ketones with sulfur- and selenium-stabilized anions has, relative to diazoalkanes, only been examined fairly recently. The general reaction involves the addition of a sulfur- or selenium-stabilized carbanion (30) to the ketone carbonyl to form adduct (31; Scheme 20). The expulsion of the sulfur or selenium may be induced by alkylation, complexation with metal salts, reaction with carbenes or oxidation, which leads to the rearranged products and/or epoxides. While the mechanistic details of the rearrangement aspect may differ substantially, depending on the reaction conditions, this set of expansion reactions is organized according to a common first step, the addition of a sulfur- or selenium-stabilized anion to a carbonyl group and will be presented in the order of the number of heteroatoms on the nucleophile (30).

\[R^1 = O \]
\[R^2 \]
\[R^3 \]
\[R^4 \]

Scheme 20
When one heteroatom is present on the nucleophilic unit, the overall result is similar to the carbon insertion with diazomethane. While the addition of PhSeCH$_2$Li or MeSeCH$_2$Li74 to ketones is an efficient process, the elimination step using methyl iodide and base (e.g., KOH), dichlorocarbene generated from thallium(I) ethoxide and chloroform, or oxidation with peroxy acids leads, in general, to high yields of epoxides from aliphatic ketones. For cyclobutanones the resulting epoxides have been rearranged to the cyclopentanones with preferential migration of the more-substituted carbon (Schemes 2175a,b and 2276).

![Scheme 21](image)

The β-hydroxy phenyl selenide products from the reaction of aryl-substituted ketones and PhSeCH$_2$Li eliminate the phenylselenyl group on treatment with peroxy acid, with migration of the aromatic group to give the one-carbon extended ketones or, in the case of cyclic ketones, the ring-expanded products (Schemes 23 and 24)77. Cyclobutanones have been ring-expanded in a two-step procedure by reaction of the lithium anion of methyl 2-chlorophenyl sulfoxide followed by heating the β-hydroxy sulfoxide with potassium hydride in tetrahydrofuran. Rearrangement with elimination of sulfur proceeds with the exclusive migration of the more-substituted carbon atom (Scheme 25). This method has also been applied to cyclobutanones with substituted sulfoxides to provide 2-substituted cyclopentanones (Table 2)78. The precise mechanistic details have yet to be elucidated, as well as the extension of the reaction to other ketones.

![Scheme 23](image)

![Scheme 24](image)
Skeletal Reorganizations: Chain Extension and Ring Expansion

\[
\text{Li} \quad \text{S} \quad \text{O} \\
\text{R} \quad \text{R}^1 \\
\text{Cl} \\
\text{HO} \quad \text{S} \quad \text{O} \\
\text{R} \quad \text{R}^1 \\
\text{R} \quad \text{Ar} \\
\text{KH} \quad \text{THF} \\
\text{R}^1 = \text{H, alkyl, aryl}
\]

Scheme 25

Table 2 Ring Expansion of Cyclobutanones with Lithium Alkyl Aryl Sulfoxides

<table>
<thead>
<tr>
<th>Sulfoxide RCH_2SOAr</th>
<th>Cyclobutanone</th>
<th>Product</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R = \text{H}$</td>
<td></td>
<td></td>
<td>58</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R = \text{Me}$</td>
<td></td>
<td></td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R = \text{Me}$</td>
<td></td>
<td></td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Transformation of the Carbonyl Group into Nonhydroxylic Groups

Table 2 (continued)

<table>
<thead>
<tr>
<th>Sulfoxide RCH_2SOAr (^{a})</th>
<th>Cyclobutanone</th>
<th>Product</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R = CH_2CH_2CH=CH_2$</td>
<td></td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>$R = (CH_2)_7OSiMe_2Bu$</td>
<td></td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>$R = CH_2CH_2Ph$</td>
<td></td>
<td></td>
<td>53</td>
</tr>
</tbody>
</table>

\(^{a}\) $Ar = 2$-chlorophenyl.

The selenium-based methodology is particularly well suited for the homologation of ketones with the incorporation of a geminally disubstituted carbon because, in this instance, the formation of epoxides is minimal. Representative examples are given in Table 3. The regioselectivity of the expansion reaction is sensitive to steric effects and stereochemical relationships, as well as to the method used for activation of the selenium for elimination. For cyclic enones, ring sizes larger than six begin to show a decline in regioselectivity. It is noteworthy that the thallium(I) ethoxide/chloroform generated dichlorocarbene can be utilized in the presence of double bonds. The last entry of Table 3 is of particular interest with regard to the mechanistic aspects of the overall reaction. This example indicates that the configuration of the migrating carbon is preserved regardless of the elimination method used, while the center from which the selenium departs undergoes net inversion with $\text{TO}E\text{t}/\text{CHCl}_3$ and varying amounts of net retention or inversion with the silver tetrafluoroborate induced elimination.

When the lithium reagent added to the carbonyl group bears two heteroatoms, the net result following rearrangement is the incorporation of a carbon bearing a heteroatom. The hydroxy diphenyl dithioacetals, readily formed from the addition of the anion of the formaldehyde diphenyl dithioacetal to ketones, have been shown to rearrange in the presence of copper(I) triflate to produce the α-benzenesulfonyl homologated ketones. The preferred migration of the more-substituted carbon atom is observed for aliphatic and cyclic ketones, while hydrogen migration is still preferred in the case of aldehyde adducts (Table 4). The presence of an epoxide intermediate has been observed and may bear some relevance to the failure of the rearrangement process to homologate cycloheptanone. Complementary to the copper(I) triflate induced elimination is the base-induced loss of thiophenol. Treatment of the hydroxy diphenyl dithioacetal adduct with two equivalents of s-butyllithium at -78 °C produces a dianion, which on warming undergoes a carbenoid-type reaction (cf. the next section for a discussion) to the ring-expanded ketone (Scheme 26).

In general the yields and regioselectivity for the bond migrations appear to be comparable to the copper(I) triflate reaction, with the notable improvement that ring size does not appear to be a restriction.

![Scheme 26](image-url)
Another variation on the Lewis acid catalyzed homologation process is to raise the oxidation level on one of the sulfur groups to the level of sulfone. The addition of the less nucleophilic lithium anion of (phenylthio)methyl phenyl sulfone to ketones requires the presence of a Lewis acid (diethylaluminum chloride). The rearrangement step, which did not occur in ether solvents, is conducted at low temperature in dichloromethane in the presence of diethylaluminum chloride and provides good yields of the ring-enlarged ketones. The general trend of the more-substituted bond migration also follows here, except for a bridged bicyclic system, the last entry of Table 5.

A nitro group has been found to perform the same leaving group function as the phenyl sulfone in an analogous procedure using the addition of the dianion of PhSCH2NO2 to ketones. The rearrangement step is catalyzed by the action of aluminum chloride, is apparently general for four- through seven-membered ring ketones and also displays a high regioselectivity for migration of the more-substituted carbon. An illustrative example is shown in Scheme 27.

This general procedure has also been extended to allow for the insertion of a methoxy-containing carbon. The uncatalyzed addition of the lithium anion of methoxymethyl phenyl sulfone to ketones proceeds readily at low temperature in dimethoxymethane to form the intermediate adduct. Addition of a Lewis acid (ethylaluminum dichloride or diisobutylaluminum diisopropylamide) directly to the reaction mixture effects the rearrangement reaction to produce the ring-expanded α-methoxy ketone. This sequence, illustrated by the example in Scheme 28, is limited to the expansion of four- and five-membered ring ketones.

Insertion of a latent carbonyl group, in the form of a dithioketal, may be achieved through the same sulfur-based strategy by employing a nucleophile containing three heteroatoms such as the lithium anion of tris(methylthio)methane. The rearrangement, with loss of one thiomethyl group, has been carried out in a separate step on the anion of the adduct in the presence of CuClO4•4MeCN, CuBF4•4MeCN in toluene or in a strained case simply by treatment with acid (Scheme 29). The reaction proceeds well for the expansion of four- and five-membered ring ketones, but is diverted to nonexpanded products for cyclohexanone and other ketones, a result rationalized by the isomerization through epoxides. As may be seen from the examples in Table 6, the regioselectivities in general are high.
<table>
<thead>
<tr>
<th>Lithioselenide</th>
<th>Ketone</th>
<th>Adducts</th>
<th>Yield (%)</th>
<th>Rearrangement method</th>
<th>Product(s)</th>
<th>Yield (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li-SeMe</td>
<td></td>
<td>HO-</td>
<td>66</td>
<td>a</td>
<td></td>
<td>57</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SeMe</td>
<td></td>
<td>c</td>
<td></td>
<td>83</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tol</td>
<td></td>
<td></td>
<td></td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Li-SeMe</td>
<td></td>
<td>HO-</td>
<td>20</td>
<td>a</td>
<td>90:10</td>
<td>76</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OH-</td>
<td></td>
<td></td>
<td></td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Li-SeMe</td>
<td></td>
<td>HO-</td>
<td></td>
<td>a</td>
<td>60:40</td>
<td>77</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SeMe</td>
<td></td>
<td>b</td>
<td></td>
<td>79</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tol</td>
<td></td>
<td></td>
<td></td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Li-SeMe</td>
<td></td>
<td>HO-</td>
<td>89</td>
<td>a</td>
<td>81:19</td>
<td>79</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SeMe</td>
<td></td>
<td></td>
<td></td>
<td>79</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ph</td>
<td></td>
<td></td>
<td></td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Li-SeMe</td>
<td></td>
<td>HO-</td>
<td>68</td>
<td>a</td>
<td>81:19</td>
<td>81</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SeMe</td>
<td></td>
<td></td>
<td></td>
<td>81</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ph</td>
<td></td>
<td></td>
<td></td>
<td>81</td>
<td></td>
</tr>
</tbody>
</table>

Transformation of the Carbonyl Group into Nonhydroxylc Groups
Table 3 (continued)

<table>
<thead>
<tr>
<th>Lithioselectide</th>
<th>Ketone</th>
<th>Adducts</th>
<th>Yield (%)</th>
<th>Rearrangement method</th>
<th>Product(s)</th>
<th>Yield (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li<sup>-</sup>SeMe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li<sup>-</sup>SeMe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li<sup>-</sup>SeMe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li<sup>-</sup>SeMe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R = H
R = Me
R = Ph

867
Table 3 (continued)

<table>
<thead>
<tr>
<th>Lithiohetero</th>
<th>Ketone</th>
<th>Adducts</th>
<th>Yield (%)</th>
<th>Rearrangement method</th>
<th>Product(s)</th>
<th>Yield (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li-SeMe</td>
<td></td>
<td></td>
<td>39</td>
<td>a</td>
<td>+</td>
<td>64</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>78:22</td>
<td></td>
</tr>
<tr>
<td>Li-SeMe</td>
<td></td>
<td></td>
<td>51</td>
<td>a</td>
<td>+</td>
<td>88</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>56:44</td>
<td></td>
</tr>
<tr>
<td>Li-SePh</td>
<td></td>
<td></td>
<td></td>
<td>a</td>
<td></td>
<td>98</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li-SePh</td>
<td></td>
<td></td>
<td>67</td>
<td>a</td>
<td>+</td>
<td>94:6</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>77:23</td>
<td>72</td>
</tr>
</tbody>
</table>

Transformation of the Carbonyl Group into Nonhydroxyl Groups
<table>
<thead>
<tr>
<th>Lithioselenide</th>
<th>Ketone</th>
<th>Adducts</th>
<th>Yield (%)</th>
<th>Rearrangement method</th>
<th>Product(s)</th>
<th>Yield (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li SePh</td>
<td></td>
<td></td>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a):(b) = 34:66</td>
<td></td>
<td></td>
<td></td>
<td>a</td>
<td>20:80</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a</td>
<td>70:30</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Li SePh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a):(b) = 34:66</td>
<td></td>
<td></td>
<td></td>
<td>a</td>
<td>32:68</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Li SePh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a</td>
<td>3:97</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a</td>
<td>32:68</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Li SePh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li SePh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Skeletal Reorganizations: Chain Extension and Ring Expansion
Table 3 (continued)

| Lithiosele
Ketone	Adducts	Yield (%)	Rearrangement method	Product(s)	Yield (%)	Ref.	
MeSe	Ph	HO SeMe	84				
	But	(a): (b) = 50:50					
Li	HO SeMe	ButPh					
	HO SeMe	ButPh					

\[\text{Product(s)} \]

\[\text{Yield (%)} \]

870

Transformation of the Carbonyl Group into Nonhydroxylic Groups

a TiOEt\textsubscript{2}/CHCl\textsubscript{3}, b AgBF\textsubscript{4}/CH\textsubscript{2}Cl\textsubscript{2}, c MeSO\textsubscript{2}F.
Table 4 Homologation of Carbonyls by Reaction with (PhS)$_2$CHLi and Rearrangement with Cu$^+$

<table>
<thead>
<tr>
<th>Carbonyl</th>
<th>Adduct yield (%)</th>
<th>Homologated ketone</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C=O</td>
<td>80</td>
<td>C=SPh</td>
<td>66</td>
</tr>
<tr>
<td>C=O</td>
<td>90</td>
<td>C=SPh</td>
<td>88</td>
</tr>
<tr>
<td>C=O</td>
<td>85</td>
<td>C=SPh</td>
<td>81</td>
</tr>
<tr>
<td>C=O</td>
<td>86</td>
<td>C=SPh</td>
<td>72</td>
</tr>
<tr>
<td>C=O</td>
<td>84</td>
<td>C=SPh</td>
<td>83</td>
</tr>
<tr>
<td>C=O</td>
<td>74</td>
<td>C=SPh + C=SPh</td>
<td>71</td>
</tr>
</tbody>
</table>

Table 5 Ring Expansion of Ketones with PhS(PhSO$_2$)CHLi

<table>
<thead>
<tr>
<th>Ketone</th>
<th>Adduct</th>
<th>Yield (%)</th>
<th>Expansion product</th>
<th>Overall yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C=O</td>
<td>HO-SPh</td>
<td>92</td>
<td>C=SPh</td>
<td>79</td>
</tr>
<tr>
<td>C=O</td>
<td>HO-SPh</td>
<td>94</td>
<td>C=SPh</td>
<td>77</td>
</tr>
<tr>
<td>C=O</td>
<td>HO-SPh</td>
<td>92</td>
<td>C=SPh</td>
<td>69</td>
</tr>
<tr>
<td>C=O</td>
<td>HO-SPh</td>
<td>93</td>
<td>C=SPh</td>
<td>74</td>
</tr>
</tbody>
</table>
Table 6 Ketone Ring Expansions via (MeS)$_3$Cl

<table>
<thead>
<tr>
<th>Ketone adduct</th>
<th>Yield (%)</th>
<th>Expansion product</th>
<th>Yield (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>OH C(SMe)$_3$</td>
<td>73</td>
<td></td>
<td>73</td>
<td>89</td>
</tr>
<tr>
<td>OH C(SMe)$_3$</td>
<td>85</td>
<td></td>
<td>58</td>
<td>89</td>
</tr>
<tr>
<td>OH C(SMe)$_3$</td>
<td>95</td>
<td></td>
<td>61</td>
<td>89</td>
</tr>
<tr>
<td>SEMO H H C(SMe)$_3$</td>
<td>95</td>
<td></td>
<td>84</td>
<td>89</td>
</tr>
<tr>
<td>SEMO H H OH C(SMe)$_3$</td>
<td>21:79</td>
<td></td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>(a) (a):(b) = 48:52</td>
<td>87</td>
<td></td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>SEMO H H OH C(SMe)$_3$</td>
<td>69:31</td>
<td></td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>OH C(SMe)$_3$</td>
<td>74</td>
<td>+</td>
<td>99</td>
<td>90</td>
</tr>
<tr>
<td>OH C(SMe)$_3$</td>
<td>75</td>
<td></td>
<td>71</td>
<td>90</td>
</tr>
<tr>
<td>OH C(SMe)$_3$</td>
<td>66</td>
<td></td>
<td>91</td>
<td></td>
</tr>
</tbody>
</table>
3.3.4 REARRANGEMENT OF β-OXIDO CARBENOIDS

A novel homologation method arises from the base-induced rearrangement of dihalohydrins. On an historical note, this reaction is mechanistically distinct from an earlier ring expansion protocol that employed the known tendency of the magnesium salts of monohalohydrins to undergo rearrangement. That procedure involved the addition of benzylmagnesium chloride to ketones and bromination of the resulting alcohols at the benzylic position with N-bromosuccinimide to form the bromohydrin. On heating with one equivalent of isopropylmagnesium bromide, the bromohydrin underwent rearrangement to the homologated ketone, either through a pinacol-like reaction, or possibly via an epoxide. Examples are shown in Schemes 30 and 31. While the regioselectivity for bond migration is moderate for the 2-methylcyclopentanone expansion, the corresponding expansion for the 2-methylcyclohexanone is near unity.

On the other hand, dichlorohydrins, produced by the addition of dichloromethylthallium to ketones, may be deprotonated at low temperature by two equivalents of alkylthalliums or lithium dialkylamides to form the corresponding dianion. This dianion loses LiCl on warming, and rearranges either directly or through a carbenoid intermediate to the enolate of the homologated α-chloro ketone (Scheme 32). As a homologation, the reaction proceeds well for aliphatic (Scheme 33) and cyclic ketones (Scheme 34), but suffers with aldehydes due to the preferred migration of hydrogen — phenyl >> alkyl.
Transformation of the Carbonyl Group into Nonhydroxylic Groups

Scheme 34

In contrast, when the analogous dibromohydrins are exposed to two equivalents of butyllithium at low temperature, lithium-halogen exchange occurs to produce the monobromo dianion. On warming, this intermediate loses LiBr to give a carbene, which rearranges with migration of a substituent to form the enolate of the expanded ketone (Scheme 35). This procedure appears to be fairly general for the one-carbon expansion of cyclic ketones (Table 7). It is noteworthy that the intermediate enolate anion has been trapped as the trimethylsilyl enol ether. The preferred regioselectivity for the migration of the more-substituted carbon atom has been rationalized in terms of a preferred orientation of the dianion in which the departing bromine atom is situated opposite the more sterically hindered center (Scheme 36). For the few cases examined, it has been determined that the configuration at the migrating carbon atom is preserved: examples are given in Table 7.

Scheme 35

Scheme 36

This rearrangement process has also been developed into a homologation procedure for esters. The low temperature addition of dibromomethylolithium to esters produces the primary adduct, which, depending on substitution may collapse to the dibromo enolate (Scheme 37). A rapid metal-halogen exchange occurs on addition of butyllithium to produce the dilithio anion, which then undergoes a rearrangement on warming. The resulting lithium ynolate is quenched with acidic ethanol to give the homologated ester. This one-flask process appears to be general for esters and lactones (Table 8). The rearrangement aspect of the reaction has been verified by carbon-13 labeling, and proceeds with retention of configuration at the migrating carbon. An interesting adjunct to this homologation procedure is the observation that the intermediate ynolate may be reduced to the enolate by lithium hydride generated in situ from butyllithium and 1,3-cyclohexadiene (Scheme 38). The esters shown in Table 8 have been converted to the corresponding aldehydes or enol acetates in 50–60% overall yield by this procedure.
Table 7 β-Oxido Carbenoid Ring Expansion

<table>
<thead>
<tr>
<th>Ketone</th>
<th>Adduct</th>
<th>Product(s)</th>
<th>Yield (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{CHBr}_2)</td>
<td>(\text{OH})</td>
<td>(\text{CHBr}_2)</td>
<td>(\text{OH})</td>
<td>(\text{CHBr}_2)</td>
</tr>
<tr>
<td>(\text{CHBr}_2)</td>
<td>(\text{OH})</td>
<td>(\text{CHBr}_2)</td>
<td>(\text{OH})</td>
<td>(\text{CHBr}_2)</td>
</tr>
<tr>
<td>(\text{CHBr}_2)</td>
<td>(\text{OH})</td>
<td>(\text{CHBr}_2)</td>
<td>(\text{OH})</td>
<td>(\text{CHBr}_2)</td>
</tr>
<tr>
<td>(\text{CHBr}_2)</td>
<td>(\text{OH})</td>
<td>(\text{CHBr}_2)</td>
<td>(\text{OH})</td>
<td>(\text{CHBr}_2)</td>
</tr>
<tr>
<td>(\text{CHBr}_2)</td>
<td>(\text{OH})</td>
<td>(\text{CHBr}_2)</td>
<td>(\text{OH})</td>
<td>(\text{CHBr}_2)</td>
</tr>
<tr>
<td>(\text{Me}_3\text{SiO})</td>
<td>(\text{OH})</td>
<td>(\text{CHBr}_2)</td>
<td>(\text{OH})</td>
<td>(\text{CHBr}_2)</td>
</tr>
</tbody>
</table>
Transformation of the Carbonyl Group into Nonhydroxylic Groups

Table 7 (continued)

<table>
<thead>
<tr>
<th>Ketone</th>
<th>Adduct</th>
<th>Product(s)</th>
<th>Yield (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>68</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>53</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>102</td>
<td></td>
</tr>
</tbody>
</table>

double bond 63% 73:27 56
single bond 62% 80:20 50
Table 8 Ester Homologation

<table>
<thead>
<tr>
<th>Starting ester</th>
<th>Product</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhCO₂Et</td>
<td>PhCH₂CO₂Et</td>
<td>65</td>
</tr>
<tr>
<td>PhCH₂CO₂Et</td>
<td>PhCH₂CH₂CO₂Et</td>
<td>74</td>
</tr>
<tr>
<td>Ph=CCO₂Et</td>
<td>Ph=CCO₂Et</td>
<td>53</td>
</tr>
<tr>
<td>Ph=CCO₂Et</td>
<td>Ph=CCO₂Et</td>
<td>55</td>
</tr>
<tr>
<td>Ph=CCO₂Et</td>
<td>Ph=CCO₂Et</td>
<td>60</td>
</tr>
<tr>
<td>PhO=CCO₂Et</td>
<td>PhO=CCO₂Et</td>
<td>72</td>
</tr>
<tr>
<td>PhO=CCO₂Et</td>
<td>PhO=CCO₂Et</td>
<td>75</td>
</tr>
<tr>
<td>PhCO₂Me</td>
<td>PhCO₂Me</td>
<td>57</td>
</tr>
<tr>
<td>PhCO₂Me</td>
<td>PhCO₂Me</td>
<td>60</td>
</tr>
<tr>
<td>PhCO₂Me</td>
<td>PhCO₂Me</td>
<td>65</td>
</tr>
</tbody>
</table>

Scheme 37

Scheme 38
3.3.5 MISCELLANEOUS HOMOLOGATION METHODS

In this section are homologation/expansion procedures which do not fit a strict addition–elimination with rearrangement type of process such as those described above. Included among these are known carbon–carbon bond-forming processes which, when applied to cyclic ketones, achieve ring expansions by forming, either transiently or in a stepwise manner, bicyclic systems that suffer fragmentations to the homologated ketone (Scheme 39). Several of these protocols provide the opportunity to introduce more than one carbon atom at a time.

Scheme 39

3.3.5.1 Rearrangement of Cyclopropanol Derivatives from Ketone Enols

This method is based on the known tendency of dihalocyclopropanol ethers to undergo solvolytic rearrangements. Addition of dihalocarbenes to enol ethers and acetates of cyclic ketones produces the corresponding dihalocyclopropane derivatives (Scheme 40). The cyclopropyl derivative may undergo an ionic ring-opening, either thermally or in the presence of silver salts, to provide either the α-halo-α,β-unsaturated ketone or the corresponding enol ether. Early studies with ethyl enol ethers indicated that, while homologation for the six-membered ring worked well, expansions of seven- and eight-membered ring ketones were not successful. When the ring-opening step was carried out on the corresponding acetate derivatives in the presence of LiAlH4, conditions which may alter the mechanistic aspects of the reaction, the expanded α-halo-α,β-unsaturated ketones could be obtained as the corresponding alcohols in good yields for five- through eight-membered ring ketones.

Scheme 40

Along these lines, cyclic enol esters, after reaction with dichlorocarbene, were found to undergo smooth expansion to the 2-chlorocycloheptenones on room temperature treatment with ethanolic potassium carbonate (Scheme 41).

Scheme 41
Similarly, the rearrangement of trialkysilyloxy-\textit{cyclopropanes}, obtained from the reaction of the silyl enol ethers of cyclic ketones with halocarbenes, may be carried out under either acidic (alcohol/HCl) or basic (alcohol/Et3N) conditions. Since the regiochemistry of the expansion is fixed by the position of the starting enol ether, this variation has the further advantage that methods for the convenient regioselective generation of the silyl enols are well established.110 Examples showing rearrangements from mono- and dihalo-cyclopropyl derivatives are given in Table 9.111a–e

Table 9 Ring Expansion of Ketones via Halo Carbene Addition to Silyl Enol Ethers

<table>
<thead>
<tr>
<th>Silyl enol ether</th>
<th>Carbene adduct</th>
<th>Product</th>
<th>Yield (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{OSiEt}_3)</td>
<td>(\text{Cl})</td>
<td>(\text{Cl})</td>
<td>66</td>
<td>111a</td>
</tr>
<tr>
<td>(\text{OSiMe}_3)</td>
<td>(\text{Cl})</td>
<td>(\text{Cl})</td>
<td>73</td>
<td>111b</td>
</tr>
<tr>
<td>(\text{OSiMe}_3)</td>
<td>(\text{Cl})</td>
<td>(\text{Cl})</td>
<td>72</td>
<td>111b</td>
</tr>
<tr>
<td>(\text{OSiMe}_3)</td>
<td>(\text{Br})</td>
<td>(\text{Br})</td>
<td>40</td>
<td>111c</td>
</tr>
<tr>
<td>(\text{OSiMe}_3)</td>
<td>(\text{Br})</td>
<td>(\text{Br})</td>
<td>111c</td>
<td></td>
</tr>
<tr>
<td>(\text{OSiMe}_3)</td>
<td>(\text{Br})</td>
<td>(\text{Br})</td>
<td>90</td>
<td>111d</td>
</tr>
<tr>
<td>(\text{OSiMe}_3)</td>
<td>(\text{Cl})</td>
<td>(\text{Cl})</td>
<td>56</td>
<td>111d</td>
</tr>
<tr>
<td>(\text{OSiMe}_3)</td>
<td>(\text{Cl})</td>
<td>(\text{Cl})</td>
<td>52</td>
<td>111e</td>
</tr>
</tbody>
</table>
A similar, but mechanistically different, ring expansion sequence has been described using the iron(III) chloride induced opening of nonhalogenated cyclopropyl derivatives. In this case, the silyl enol ethers are cyclopropanated under Simmons-Smith conditions and then exposed to FeCl₃ in dimethylformamide. The ring fission, rationalized in terms of a radical mechanism, produces the β-chloro-expanded ketone which, either spontaneously or with sodium acetate–methanol, eliminates chloride to yield the corresponding expanded enone (Scheme 42). This protocol has been demonstrated for the homologation of five-, six-, seven- and twelve-membered ring ketones. An example which demonstrates a regioselective expansion by taking advantage of the in situ trapping of a regiospecifically generated enolate is shown in Scheme 43.

The 3,3-rearrangement of allylvinylcarbinols and their derivatives, also referred to as the oxy-Cope rearrangement, is a well-studied bond reorganization process that has found substantial use in synthesis. Since this topic has already been reviewed in depth in this series with regard to mechanistic detail and general synthetic application, the coverage here will be limited to those particular instances where simple ring homologations have been achieved. The overall two-step process, illustrated in Scheme 44, first involves the addition of a vinyl organometallic to a ketone bearing a vinyl substituent. The thermal 3,3-rearrangement step is carried out on the carbinol (R = H), the ether derivatives (R = alkyl or Me₃Si) or, with a substantial rate increase, the alkoxide (R = Na, K) to produce the enol derivative, which is subsequently transformed to the ketone. The net result of this operation is the insertion of a four-carbon unit, which for cyclic ketones (R₁ and R₂ are joined) translates to a four-carbon ring expansion.

The placement of the substituents on the ring establishes the regiochemistry of the expansion process, while the stereochemistry of the vinylcarbinol adduct influences the double bond geometry in the products and is illustrated in the following example. Addition of a vinyl organometallic to 2-vinylcyclohexanone produces two vinylcarbinols (Scheme 45). The major isomer on thermolysis (220 °C, 3 h) produces the 10-membered ring ketone as a single isomer in 90% yield, while, on the other hand, the minor carbinol isomer produces a mixture of cis- and trans-enones. These results have been interpreted in terms of the preferred conformations of the the carbinols during rearrangement assuming a chair-like transition state.
The ring size also influences the course of the reaction. For example, both the cis- and trans-divinylcyclopentanols lead to a single (E)-nonene, while for the divinyldecanol the trans isomer produces only the (E)-enone, whereas the cis isomer produces mostly the (Z)-enone (Scheme 46). Relief of ring strain can provide a considerable driving force for the rearrangement, such as in the example shown in Scheme 47, where rearrangement of the carbinol occurs at only 50 °C.

Scheme 45

Scheme 46

Scheme 47
This basic strategy has found application in the synthesis of germacrines (Schemes 48, 49, and 50), where the initial addition of the vinyl organometallic to the ketone proceeded with a high level of stereoselectivity, which in turn led to the selective 3,3-rearrangement of the potassium alkoxides. The sequence depicted in Scheme 50 demonstrates the trapping of the regiospecifically generated enolate as a trimethylsilyl ether, and its subsequent reaction to form an α-hydroxy ketone as a single isomer. The regiospecific generation of the enol has also allowed for the regiospecific repetitive ring expansion process shown in Scheme 51.
A highly efficient route to the ophiobolin nucleus is a noteworthy application of the \textit{in situ} enolate-trapping strategy (Scheme 52).124 The 3,3-rearrangement of the intermediate divinyl alkoxide, produced from the addition of a cyclopentenyl anion to the bicyclic ketone, proceeds at low temperature \textit{via} a boat-like transition state to generate the enolate. Subsequent trapping with methyl iodide provides the expanded, alkylated ketones in good overall yield. Transannular alkylations are feasible when an alkylating moiety resides on the reacting molecule, as illustrated in Scheme 53.125 A stereochemical dependence for the transannular alkylation step has been observed in an unusual use of allylic ethers as alkylating agents. While the stereospecific 3,3-rearrangement proceeds for both the (E-) and (Z)-isomers shown in Scheme 54,126 only the intermediate from the (Z)-enol ether undergoes the internal alkylation.

\begin{center}
\begin{tikzpicture}
\node (a) at (0,0) {MeI};
\node (b) at (-2,1) {-78°C};
\node (c) at (4,0) {Mel};
\node (d) at (6,1) {-78°C \textit{to} r.t.};
\draw[->] (a) -- (b);
\draw[->] (b) -- (c);
\draw[->] (c) -- (d);
\end{tikzpicture}
\end{center}

\textbf{Scheme 52}

\begin{center}
\begin{tikzpicture}
\node (a) at (0,0) {MeI};
\node (b) at (-2,1) {-78°C};
\node (c) at (4,0) {Mel};
\node (d) at (6,1) {-78°C \textit{to} r.t.};
\draw[->] (a) -- (b);
\draw[->] (b) -- (c);
\draw[->] (c) -- (d);
\end{tikzpicture}
\end{center}

\textbf{Scheme 53}

\begin{center}
\begin{tikzpicture}
\node (a) at (0,0) {MeI};
\node (b) at (-2,1) {-78°C};
\node (c) at (4,0) {Mel};
\node (d) at (6,1) {-78°C \textit{to} r.t.};
\draw[->] (a) -- (b);
\draw[->] (b) -- (c);
\draw[->] (c) -- (d);
\end{tikzpicture}
\end{center}

\textbf{Scheme 54}

Other variations of the 3,3-rearrangement have been reported where the vinyl unit is incorporated into a ring. Addition of vinyllithium to a cyclohexanespirocyclobutanone produces a mixture of two stereo-isomeric alkoxides, one of which on warming to room temperature undergoes a smooth anionicoxy-Cope rearrangement to the octahydrobenzocyclooctene, while the other suffers ring fission (Scheme 55).127 Interestingly, if the carbinols are isolated first by a low temperature quench and then transformed...
Transformation of the Carbonyl Group into Nonhydroxylic Groups

to the potassium alkoxides, the isomer with the trans-disposed vinyl units undergoes rearrangement to the hexahydropyrene ketone. This alternate reaction course, rationalized in terms of either a fragmentation-recombination process or a 1,3-rearrangement, has been utilized in other systems as a ring expansion process (see Section 3.3.5.3). The formation of bicyclo[5.3.1]undecenes has been made feasible via the anionic oxy-Cope rearrangement arising from either spirocyclobutanone systems or bicyclo[2.2.2]octane systems (Table 10). Significantly, a base-induced stereoisomerization has been suggested to explain the fact that, in the case of the spirocyclobutanones, either stereoisomer of the vinylcarbinol undergoes the rearrangement to the same product.127

![Chemical Reaction Diagram]

Scheme 55

Table 10 Ring Expansion of Ketones via 1,3-Rearrangements

<table>
<thead>
<tr>
<th>Ketone adduct</th>
<th>Rearrangement product</th>
<th>Yield (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>80</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td></td>
<td>72</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td></td>
<td>83</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td></td>
<td>79</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70-85</td>
<td>130</td>
</tr>
</tbody>
</table>

R = H
R = Me

R¹ = R² = H
R¹ = H, R² = Me
R¹ + R² = -(CH₂)₄−
Even larger ring expansions are possible when bis(butadienyl) systems are employed. As exemplified in Schemes 56,133a 57133b and 58133c the process involves the addition of a butadienyl organometallic to a ketone bearing a butadienyl side chain. The 5,5-bond reorganization process of the resulting carbinol, which may in fact be the outcome of two consecutive 3,3-rearrangements, is conducted thermally as for the 3,3-rearrangements above.133a–c

3.3.5.3 Homologations via 1,3-Rearrangements

During the course of investigations on the 3,3-rearrangement of allylvinylcarbinols, some cases were found where 1,3-reaction pathways predominate (Scheme 59).134 This alternative reaction sequence has
been used to advantage for the two-carbon ring expansion in a number of ring systems. As in the 3,3-rearrangements, a substantial rate acceleration has been observed in the 1,3-rearrangements for the corresponding alkoxides, although this modification may well alter the reaction mechanism. Shown in Scheme 60 are examples of systems where the ring expansion via 1,3-rearrangement predominates in a synthetically useful manner over the alternative nonexpanding 3,3-rearrangement.135

\begin{equation}
\text{Scheme 59}
\end{equation}

\begin{equation}
\text{Scheme 60}
\end{equation}

This process for large rings is somewhat substrate sensitive. For example, the corresponding saturated ring systems do not undergo the rearrangement; however, the presence of a phenyl group on the carbon adjacent to the carbinol restores the facility of the 1,3-rearrangement.136 In similar fashion, incorporation of an aromatic moiety into the ring system, also adjacent to the original ketone, allows for the execution of a two-carbon ring expansion (Schemes 61 and 62).42,43 In the 13- to 15-membered ring ketone expansion, the competition between 1,3- and 3,3-rearrangement is dependent on both the rearrangement conditions and substitution patterns on the vinyl moiety (Scheme 63).137

\begin{equation}
\text{Scheme 61}
\end{equation}
Skeletal Reorganizations: Chain Extension and Ring Expansion

887

\[\text{Scheme 62} \]

\[\text{KH, HMPA, r.t.} \]

\[7-8 \text{ h} \]

\[R^1 = R^2 = H \quad 70\% \]

\[R^1 = H, R^2 = \text{OMe} \quad 90\% \]

\[R^1 = \text{OMe}, R^2 = H \quad 54\% \]

\[\text{Scheme 63} \]

The relief of ring strain in cyclobutanols also provides the driving force for alkoxide-induced 1,3-rearrangements (Scheme 64). The reduction of α-vinyl-substituted cyclobutanones with borohydride reagents followed by methyllithium generates the intermediate alkoxides which, on warming, undergo the 1,3-rearrangement to the cyclohexanol derivatives. Examples are provided in Table 11. A reversal of the stereochemical outcome of the 1,3-rearrangement has been achieved by altering the reaction conditions. Further investigation of the intermediate isomeric alcohols has revealed that, for the example shown in Scheme 65, the cis-alcohol isomerizes to the trans-alcohol, which then undergoes the 1,3-rearrangement. Moreover, this isomerization is accelerated by the addition of 18-crown-6, a modification which also changes the product distribution. This effect has been rationalized in terms of a fragmentation-recombination process where the geometry of the recombination step is changed according to whether the potassium ion is intramolecularly coordinated by the carbonyl oxygen or externally coordinated by the crown ether.

\[\text{Scheme 64} \]

\[\text{Scheme 65} \]

\[\text{KH/THF/reflux} \]

\[70:30, 88\% \]

\[\text{KH/18-crown-6/r.t.} \]

\[10:90, 98\% \]
Table 11 Ring Expansion of Cyclobutanones via 1,3-Rearrangements

<table>
<thead>
<tr>
<th>Ketone</th>
<th>Products</th>
<th>Yield (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td> + </td>
<td>65</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td> + </td>
<td>17:83</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td> + </td>
<td>94:6</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td> + </td>
<td>90:10</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td> + </td>
<td>97:3</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td> + </td>
<td>22:78</td>
<td>138</td>
</tr>
</tbody>
</table>

* Intermediate alcohols were isolated and treated separately with KH/THF.
3.3.5.4 Cationic Variations of the 3,3-Rearrangement

Ring expansions of appropriately α-substituted ketones via their vinyl carbinol derivatives has also been carried out under cationic conditions. The basic sequence, outlined in Scheme 66, begins with the addition of a vinyl organometallic to an α-substituted ketone, where X is carbon or a heteroatom. Departure of a leaving group Y then produces a cationic species, which may react further to form products. Two main pathways appear to be operative: one is a cationic alkene cyclization, followed by a pinacol-like rearrangement; while the other is a 3,3 or 3,3-like rearrangement, followed by an intramolecular alkylation of the intermediate enol.

![Scheme 66]

When X is nitrogen, the overall process achieves ring expansion with a pyrrolidine annulation. Representative of this protocol is the addition of aryl-substituted vinyllithium reagents to the α-amino-substituted ketones, as shown in Scheme 67. The vinylcarbinols, produced as cis/trans mixtures, are reduced to the secondary amines with sodium cyanoborohydride. On exposure of either isomer to paraformaldehyde and acid in dimethyl sulfoxide, intermediate iminium ions are formed that rearrange preferentially to the cis-fused bicyclic systems. Alternatively, the iminium ions may be generated through the acid or silver ion induced loss of cyanide from the related N-cyanomethyl derivatives. The process, shown in Scheme 68, involves the addition of a vinyllithium reagent in a trans fashion to the α-amino-substituted ketone. Treatment with camphorsulfonic acid in refluxing benzene or silver nitrate at room temperature yields the cis-fused ring-expanded product. The procedure appears to be general for four- to five-, five- to six- and six- to seven-membered ring expansion-annulations, and has found utility in alkaloid synthesis, examples of which are depicted in Schemes 69 and 70.

![Scheme 67]
Transformation of the Carbonyl Group into Nonhydroxylic Groups

Scheme 68

Scheme 69

Scheme 70

The mechanistic interpretation of these results has favored the 3,3-like rearrangement—transannular alkylation pathway. Detailed conformational analyses on this basis have been advanced for the stereochemical outcome of the reaction. Evidence in favor of the 3,3-rearrangement comes in part from the example in Scheme 71. If a cationic alkene cyclization—pinacol-like rearrangement mechanism were operative and the substrate and product did not racemize under the reaction conditions, the optically active amino alcohol derivative would be expected to produce an optically active product. That a racemic product is formed suggests that the intermediate enol-iminium ion, which if formed in a chiral conformation by a 3,3-rearrangement, undergoes racemization by rotation around the single bond prior to ring closure. Supporting evidence comes from the example presented in Scheme 72, where the rearrangement of optically active starting material produced optically pure product. The preservation of chirality is attributed to the restricted bond rotation imposed by the cyclic structure of the asymmetric enol conformation prior to the alkylation step.
In contrast, when the X group is oxygen, the reaction appears to follow the cationic alkene cyclization-pinacol-like rearrangement pathway. In this case, reaction of an optically pure acyclic oxygen-containing analog of the system in Scheme 71 leads to a product with preservation of optical activity. This reaction protocol, which accomplishes an overall ring expansion with a tetrahydrofuran annulation, has been examined for α-hydroxy-cyclopentanones and -cyclohexanones (Scheme 73 and equations 29–31).
The process has also been extended to the $X = \text{C}$ series. The ring expansion–cyclopentane annulation provides good yields for the five- to six- (82%), six- to seven- (90%) and seven- to eight-membered ring (75%) ketone series studied (Scheme 74 and equations 32 and 33).148,149

3.3.5.5 Expansion by Intramolecular Addition–Fragmentation

Another homologation strategy is the intramolecular addition of nucleophiles to the ketone carbonyl followed by a fragmentation reaction, which may be facilitated by a charge-stabilizing group X (Scheme 75).150 The reaction, with $X = \text{SO}_2\text{Ph}, \text{NO}_2$ or CN, has been examined mostly for the expansion of cyclic ketones, although a few acyclic examples exist. The sequence does have the virtue that the presence of the electron-withdrawing group X allows for the convenient attachment of the requisite side chain. The sulfone-based methodology utilizes the fluoride-induced intramolecular addition of an allyl silane to the ketone catalytically in the first stage and stoichiometrically for the fragmentation step (Scheme 76). The reaction works well for the three-carbon expansion of five-, eight- and twelve-membered ring ketones, as well as an acyclic case (equation 34), but fails at the fragmentation step for six- and seven-membered ring ketones.151
A four-carbon ring expansion, where X is nitro, has been reported to proceed well for seven- and eight-membered ring ketones, poorly for the 12-membered ring ketone, and fails at the fragmentation step for five- and six-membered ring ketones (equation 35). A successful three-carbon expansion has been reported for the octanone where X is cyano (equation 36). For these anionic type addition–fragmentation reactions, the success of the sequence is dependent to a large extent on the fragmentation of the intermediate carbinol derivative, which in turn has been correlated in part with the release of ring strain.

More recently, a radical-mediated variation of this addition–fragmentation has been explored. The reaction, summarized in Scheme 77 for a one-carbon expansion, involves the generation of a radical at the terminus of a chain by homolytic cleavage of a carbon–heteroatom bond. Addition of the radical to the carbonyl produces a bicyclic intermediate, which on cleavage of the alternate bond regenerates the ketone carbonyl group with formation of a new radical. The sequence is terminated by the reduction of the radical with the tributyltin hydride reagent. The near neutral conditions of the reaction avoid the reclo-
Transformation of the Carbonyl Group into Nonhydroxylic Groups

\[
\text{Bu}_3\text{SnH, AIBN} \quad \begin{array}{c}
\text{O} \\
\text{CO}_2\text{R} \\
(\text{38})
\end{array}
\]

\[
\begin{array}{c}
\text{O} \\
\text{CO}_2\text{R} \\
(\text{39})
\end{array}
\]

Sure or nonfragmentation complication encountered in the anionic series above. The sequence proceeds in good yield for the one-carbon expansion of the five-, six-, seven- and eight-membered ring ketones studied (Scheme 77) as well as acyclic ketones (equation 37).154,155 While the corresponding two-carbon homologation has not been successful, three- and four-carbon expansions are viable, although in some cases reduction at the chain terminus competes with the expansion reaction (equations 38 and 39).154-156

\[
\text{X} = \text{Br, I, SePh} \\
n = 1, 2, 3, 4
\]

Scheme 77

A slightly different approach has been utilized for the three-carbon expansion in a system which does not contain a carboalkoxy group. The initial intramolecular addition step is carried out separately with butyllithium or samarium diiodide to give a bicyclic alcohol (Scheme 78).157 The radical-induced fragmentation step is carried out photochemically in the presence of mercury(II) oxide and iodine to provide the expanded iodo ketone.

An alternate radical-induced addition-fragmentation sequence relies on the 1,4-elimination of a leaving group to drive the reaction.158 In this sequence, because the fragmentation is accompanied by the expulsion of a tributylstannyl radical, the requirement for the initial tributyltin hydride is only catalytic (Scheme 79).159 The stereospecificity of the reaction course has been rationalized in terms of a conformational preference for the elimination step, as depicted in Scheme 79 where the \textit{trans}-substituted cyclohexanone forms only one double bond geometry in the product.160 As shown in equations (40) and (41), the \textit{cis}-substituted cyclohexanones undergo the four- and three-carbon expansions stereospecifically to give the (Z)-alkenes.
Skeletal Reorganizations: Chain Extension and Ring Expansion

SePh

\[
\begin{align*}
\text{O} & \quad \text{cat. Bu}_3\text{SnH} \\
\text{SnBu}_3 & \quad \text{AIBN}
\end{align*}
\]

R = H, Me; 87%

\[
\begin{align*}
\text{R} & \quad \text{SmI}_2 \\
\text{or} & \\
\text{BuLi} & \quad \text{HgO}_2\text{I}_2 \\
\text{hv} & \\
\text{Bu}_3\text{SnH} & \quad \text{AIBN}
\end{align*}
\]

R = H, α-Me, β-Me

\[
\begin{align*}
\text{R} & \quad \text{75–90}\% \\
\text{I} & \\
\text{SnBu}_3 & \quad \text{2–72 h}
\end{align*}
\]

R = H, 47%; D, 75%; Me, 85%; CO$_2$Me, 72%

Scheme 78

\[
\begin{align*}
\text{R} & \quad \text{SnBu}_3, \text{AIBN, } \Delta \\
\text{Bu}_3\text{SnH}, & \\
\text{Bu}_3\text{SnH} & \quad \text{Bu}_3\text{Sn}^* \\
\text{Bu}_3\text{Sn}^* & \quad \text{Bu}_3\text{Sn}^*
\end{align*}
\]

Scheme 79

3.3.6 REFERENCES

Transformation of the Carbonyl Group into Nonhydroxylic Groups

12. The use of AlCl₃ in a similar series, has been reported to show a preference of substituted alkyl over methyl, see E. Müller and M. Bauer, Justus Liebigs Ann. Chem., 1962, 854, 92.

15. For a review on the application of the Tiffeneau-Demjanov reaction to cyclic ketones, see P. A. S. Smith, D. R. Baer, Org. React. (N.Y.), 1960, 11, 157.

23. See refs. 1,2,7b and 8f.

94. For a review on carbones and carbenoids with neighboring heteroatoms, see K. G. Taylor, Tetrahedron, 1982, 38, 2751.

114. For a review on carbones and carbenoids with neighboring heteroatoms, see K. G. Taylor, Tetrahedron, 1982, 38, 2751.

This strategy has been successfully employed in expansions to macrocyclic lactones and lactams; see ref. 2a.

Author Index

This Author Index comprises an alphabetical listing of the names of over 7000 authors cited in the references listed in the bibliographies which appear at the end of each chapter in this volume.

Each entry consists of the author’s name, followed by a list of numbers, each of which is associated with a superscript number. For example:

Abbott, D. E., 612.12e, 1040, 573.55.55

The numbers indicate the text pages on which references by the author in question are cited; the superscript numbers refer to the reference number in the chapter bibliography. Citations occurring in the text, tables and chemical schemes and equations have all been included.

Although much effort has gone into eliminating inaccuracies resulting from the use of different combinations of initials by the same author, the use by some journals of only one initial, and different spellings of the same name as a result of transliteration processes, the accuracy of some entries may have been affected by these factors.

<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbott, D. E.</td>
<td>612.12e, 1040, 573.55.55</td>
</tr>
<tr>
<td>Aaititi, A.</td>
<td>331.49</td>
</tr>
<tr>
<td>Abdallah, A. A.</td>
<td>567.22</td>
</tr>
<tr>
<td>Abd Elhafez, F. A.</td>
<td>49.3, 50.1, 182.46, 222.69, 295.60, 460.1</td>
</tr>
<tr>
<td>Abdulaev, N. F.</td>
<td>543.16</td>
</tr>
<tr>
<td>Abe, E.</td>
<td>858.40</td>
</tr>
<tr>
<td>Abe, K.</td>
<td>422.92</td>
</tr>
<tr>
<td>Abe, Y.</td>
<td>808.19</td>
</tr>
<tr>
<td>Abell, E. W.</td>
<td>239.8, 242.12, 244.9, 245.12, 247.15, 580.1</td>
</tr>
<tr>
<td>Abelman, M. M.</td>
<td>872.91</td>
</tr>
<tr>
<td>Abeln, R.</td>
<td>749.78, 816.78</td>
</tr>
<tr>
<td>Abenhaim, D.</td>
<td>863.37-40, 241.84, 243.49, 247.9, 251.9, 580.1</td>
</tr>
<tr>
<td>Abiko, A.</td>
<td>161.88.89</td>
</tr>
<tr>
<td>Aitken, D. J.</td>
<td>162.16</td>
</tr>
<tr>
<td>Aitkin, M. H.</td>
<td>242.57.58</td>
</tr>
<tr>
<td>Aitkin, H. J.</td>
<td>245.14</td>
</tr>
<tr>
<td>Aikawa, H.</td>
<td>511.32</td>
</tr>
<tr>
<td>Akabori, S.</td>
<td>543.14</td>
</tr>
<tr>
<td>Akaia, S.</td>
<td>242.49-50, 243.52</td>
</tr>
<tr>
<td>Akasaka, K.</td>
<td>762.41</td>
</tr>
<tr>
<td>Akiba, K.</td>
<td>120.8, 236.9, 237.50, 350.152.153, 361.53.55a, b, 362.55a, 363.46.16</td>
</tr>
<tr>
<td>Akita, M.</td>
<td>162.101.102, 163.106</td>
</tr>
<tr>
<td>Akikiyama, T.</td>
<td>72.68, 752.9, 753.103</td>
</tr>
<tr>
<td>Akkerman, O. S.</td>
<td>26.132.133.134, 746.70</td>
</tr>
<tr>
<td>Akutagawa, K.</td>
<td>481.160</td>
</tr>
<tr>
<td>Al-Aseer, M.</td>
<td>477.133</td>
</tr>
<tr>
<td>Al-Bayati, R.</td>
<td>347.130</td>
</tr>
<tr>
<td>Alberts-Jansen, H. J.</td>
<td>214.27</td>
</tr>
<tr>
<td>Albrecht, H.</td>
<td>476.114, 477.114</td>
</tr>
<tr>
<td>Albrecht, J. D.</td>
<td>542.5, 543.5, 544.8, 547.5, 548.5, 550.5, 552.5, 553.5, 555.8.109, 556.10, 557.5, 559.109, 560.8</td>
</tr>
<tr>
<td>Alder, G.</td>
<td>215.33</td>
</tr>
<tr>
<td>Alexakis, A.</td>
<td>78.5, 107.3, 112.27, 124.81, 132.107, 133.108, 343.115.117, 347.131, 348.140, 370.68, 371.68, 373.84, 374.84, 428.116-118</td>
</tr>
<tr>
<td>Ali, S.</td>
<td>585.14</td>
</tr>
<tr>
<td>Ali, S. A.</td>
<td>436.13</td>
</tr>
<tr>
<td>Al Kolla, A.</td>
<td>544.34, 551.34, 553.34</td>
</tr>
<tr>
<td>Allavena, C.</td>
<td>215.94, 830.95</td>
</tr>
<tr>
<td>Allen, F. H.</td>
<td>2.37</td>
</tr>
<tr>
<td>Allinger, J.</td>
<td>141.99, 151.19</td>
</tr>
<tr>
<td>Allinger, N. L.</td>
<td>215.19</td>
</tr>
<tr>
<td>Alonso, T.</td>
<td>172.17</td>
</tr>
<tr>
<td>Alsdorf, H.</td>
<td>32.9</td>
</tr>
<tr>
<td>Altman, G.</td>
<td>82.44, 83.24, 97.82, 215.31</td>
</tr>
<tr>
<td>Alvarez, F. M.</td>
<td>568.227, 571.227</td>
</tr>
<tr>
<td>Alvernhre, G.</td>
<td>387.126.128.134, 388.126.134</td>
</tr>
<tr>
<td>Ambler, P. W.</td>
<td>119.63</td>
</tr>
<tr>
<td>Ames, A.</td>
<td>953.74</td>
</tr>
<tr>
<td>Amice, P.</td>
<td>879.116</td>
</tr>
<tr>
<td>Ammon, H. L.</td>
<td>294.17</td>
</tr>
<tr>
<td>Amouroux, R.</td>
<td>53.38, 215.43, 216.43</td>
</tr>
<tr>
<td>Armoullah-Modjtabadi, A.</td>
<td>55.13</td>
</tr>
<tr>
<td>Amsutz, R. 1.</td>
<td>3.1, 26.1, 28.142, 30.151, 37.238.240.241, 38.241, 41.91, 43.1, 299.94, 316.91</td>
</tr>
<tr>
<td>Anandrut, J.</td>
<td>303.97</td>
</tr>
<tr>
<td>Ancaux, A.</td>
<td>631.47, 656.154, 658.154</td>
</tr>
</tbody>
</table>
Andersen, N. H., 506, 582
Andersen, P., 3310
Anderson, A. G., 846, 851
Anderson, D. G., 618
Anderson, H. J., 474
Anderson, K. D., 471
Anderson, M. B., 2387, 529, 135, 735, 732
Anderson, M. W., 366
Anderson, O. P., 677
Anderson, R., 731, 819
Anderson, R. J., 116, 1284, 433, 434
Ando, M., 988, 387, 136
Ando, R., 670
Andre, C., 4106, 79, 820
Andrews, D. R., 883
Andrews, S. B., 213
Andrews, S. W., 612
Andriamialisoa, R. Z., 838
Andrianova, G. M., 555
Anet, F. A. L., 174, 528
Angelova, O., 367
Angermann, A., 354
Angermund, K., 147, 3721, 180, 531
Angioli, L., 39
Angie, S., 859, 890
Angoh, A. G., 428
Angst, C., 347
Angyal, S. J., 215
Anh, N. T., 4972, 50, 110, 153, 1824, 1857, 1929, 3102, 683
Anker, M., 440
Ankekar, T. V., 477
Annis, G. D., 492
Annoura, H., 6344, 646
Anzumzi, R., 5196, 520, 523, 524, 765
Ansell, M. F., 739
Anselme, J., 845
Anthonsen, T., 8234, 832
Anthony, N. I., 801
Antonjuk, D., 519
Aoki, O., 279, 286
Aoki, S., 212, 213, 215, 2172, 448
Aoyama, T., 373, 373
Aoyama, R., 8461, 851, 852, 853
Appa Rao, J., 543, 548
Appelt, A., 172
Arai, H., 834
Arai, K., 543
Arai, Y., 752, 821
Arai, K., 802
Araki, M., 406, 407, 415, 424, 427, 430
Araki, S., 256
Araki, Y., 837, 357, 367
Arashiba, N., 868
Arco, M. J., 131
Arjost, C. A., 729
Arjona, O., 117
Armistead, D. M., 103, 126, 148
Armstrong, D. R., 33
Armstrong, R., 92
Andt, H. C., 794
Arme, K. H., 491, 495, 496, 497, 501
Armet, E. M., 41
Armet, J. F., 359, 364
Arms, T. M., 215
Carpenter, B. K., 74763
Carpenter, G. B., 19152, 26135, 136, 43136
Carpio, P. A., 63598, 88, 806315
Carr, R. A. E., 797859
Carre, M. C., 563184
Carrell, C. J., 78
Carrell, H. L., 838
Carreras, M., 54324
Carroll, G. L., 32821, 23, 84617
Carroll, J. P., 838162
Carruthers, W., 428121, 429121, 457121
Carsen, R. D., 3099100
Carter, J. M., 62378
Cartoon, M. E. K., 47485
Cartwright, B. A., 23, 373
Casabo, J., 34223
Casamitjana, N., 564206
Casares, A. M., 11433, 36
Casierio, M. C., 58618
Casey, C. P., 14332, 426109
Cason, L. F., 61960
Cassady, P. A., 22377, 22477, 317IM
Cappone, L., 377W
Cappone, B. A., 23, 373
Cartwright, B. A., 23, 373
Cambell, A., 58912, 5918
Carter, M. E. K., 47485
Casaer, B., 19179, 19283, 55173
Catherine, P., 656151, 658151, 84618b, 84718
Cederbaum, F. E., 16296
Cense, J.-M., 63263
Cere, V., 516960, 51761, 62
Cervera, O., 36662
Chaibouni, R., 387129, 134, 388129, 134
Chabala, J. C., 41876
Chabotiaux, G., 677222, 683222, 700222, 705222, 708222, 712222, 723222, 73223
Chadwick, D. J., 471856, 47273, 74, 47474
Chadwick, D. J., 471856, 47273, 74, 47474
Chae, Y. B., 798286, 804109
Chakrabarti, P., 8371, 382001, 262, 30691
Chakraborti, R., 85759
Chakraborty, T. K., 72599
Chaloner, P. A., 22377, 22477, 317150
Chamberlain, T., 24353
Chamberlin, T., 24353
Chamberlin, A. R., 52383, 61046
Chamehaan, W., 78755
Chan, L.-H., 390147
Chan, T., 5801, 62380, 82, 84, 6301, 722171, 7314, 7326, 8154
Chan, W., 9572
Chandrouchood, P. S., 46329
Chandrakumar, N. S., 47493, 564202
Chandrasekaran, S., 27256, 27366
Chandrasekhar, J., 28715, 17, 476125, 477125, 4871, 4881, 5802, 5812, 5822
Chang, E., 7326
Chang, H. T., 557128
Chang, Z.-Y., 35915, 39115
Dankward, J. W., 470
Danon, L., 258
Dardis, R. E., 366
Darst, K. P., 757
Daruwala, K. P., 886
Das, B. C., 766
Dashan, L., 464
Da Silva Jardine, P., 42
Dauben, H. J., 846, 851
Dauben, W. G., 377
Dawn, H., 753, 141
Dauphin, G., 410
Dave, V., 853
Davey, A. E., 564
David, S., 831
Davidson, A. H., 836
Davidson, E. R., 506
Davidson, F., 488
Davies, I. W., 526
Davies, S. G., 119
Davis, D. D., 174, 179
Davis, J. E., 727
Dawson, R. L., 422
Dax, S. L., 243
Dayrit, F. M., 156
De, R. L., 41%
Deacon, G. B., 276
Dean, W. P., 181
Deaton, D. N., 287
Debal, A., 786
Deberly, A., 863
De Beys, V., 661
de Boer, T. J., 528
DeCian, A., 365
Dedrini, P., 471
Deeming, A. J., 451
De Frees, D. J., 487
de Groot, A., 576
Dehasse-De Lombaert, C. G., 683
De Jong, R. L. P., 471
Dekker, J., 301
De Lasalle, P., 189
Delbecq, F., 191
Del Bene, J. E., 286
Della, E. W., 859
Delmas, M., 821
de Lopez-Cepero, I. M., 436
Delorme, D., 772
Delpierre, G. R., 391
De Mahieu, A. F., 648
Demajly, G., 513
de March, P., 832
de Mayo, P., 844
de Meijere, A., 664, 665, 669, 670
De Mesmaeker, A., 850
Demko, D. M., 127
Demuth, M., 436
Demuyck, J., 639
De Ninno, M. P., 325
Denis, J.-N., 630
Denmark, S. E., 36
Des, R., 428
Desautavel, S., 665
Deschamps, B., 683
DeSelms, R. C., 878
DeSmukh, M. W., 568
Deshpande, M. N., 420
de Silva, O., 466
Desio, P. J., 226
Deslongchamps, P., 766
Desmond, R., 402
Dessy, R. E., 36
Deubelly, B., 172
Devlin, J. A., 130
DeVries, K., 402
Dewan, J. C., 314
Devar, M. J. S., 580
DeWinter, A. J., 648
DeWy, M., 873
Diab, Y., 387
Dias, H. V. R., 117
Dickinson, C., 343
Dickman, D. A., 477
Dierich, H., 944
Dietrich, W., 162
Differding, E., 683
Di Giambardino, T., 694
Dike, M. S., 584
Didic, B., 515
Di Mare, M., 430
Dime, D. S., 584
Dimock, S. H., 114
Dingerdissen, U., 376
Dinjus, E., 320
Fisher, C. D., 292
Fishpough, J. R., 412, 432, 456
Fitzjer, L., 6719, 67419, 71419, 71519, 71819, 72219, 731, 867
Fitt, J. J., 480
Fitzner, J. N., 638
Fitzwater, S., 367
Fjeldberg, T., 17
Fleming, L., 2726, 358, 359, 362, 580, 586, 610, 623
Flippin, L. A., 286
Fliri, H., 3729
Florio, S., 113
Floyd, D., 430
Floyd, D. M., 112
Floyd, J. C., 412
Flynn, L. A., 308
Font-Altaba, M., 34
Ford, T. M., 85F
Fomasier, R., 8287
Fomi, A., 83716, 83816
Forsberg, J. H., 2313
Forsen, S., 2919, 29319
Forster, S., 546
Foucaud, A., 821%
Foulon, J. P., 107, 113, 428, 436
Four, P., 142
Fowler, F. W., 473
Fox, C. M. J., 243
Foxman, B. M., 308
Fraenkel, G., 29, 439
Franck, M. J., 412
Franck-Neumann, M., 115
Francois, D., 543
Frangin, Y., 214
Frank, W., 401
Frank-Kamenetskaya, O. V., 43
Franklin, J. F., 412
Freidlina, R. K., 142
Freissler, A., 185
Freon, P., 215, 219, 249, 223
Freudenberger, J. H., 749, 816
Fribush, H. M., 357
Friedman, L., 377
Fries, R. W., 442
Fringuelli, R., 656, 658, 846, 847
Fristad, W. F., 584
Fritz, S., 223
Froberg, J., 429
Fronczek, F. P., 568
Fronza, O., 185, 186, 221
Fruscella, W. M., 878
Frye, L. L., 751
Frye, S. V., 624
Fu, W. Y., 506
Fu, X., 243
Fuchs, B., 752
Fuchs, P. L., 114, 238, 343, 529, 735, 736, 765
Fuentes, L. M., 477
Fuganti, C., 522, 221, 389, 543
Fuganti, P., 185, 186
Fujer, W., 464
Fujii, M., 634
Fujihara, H., 825
Fujii, S., 880
Fujii, T., 768
Fujimoto, K., 642, 646, 656, 658, 658, 665, 667, 672
Fujimoto, T., 779
Fujimura, A., 823
Fujimura, N., 116
Fujimura, O., 809
Fujinami, T., 243, 245, 268, 269
Fujikawa, H., 63, 64, 646
Fujisawa, T., 85, 104, 126, 246, 233, 236, 363, 423, 424, 425, 427, 448, 568
Fujise, Y., 533
Fujita, A., 609
Fujita, E., 834
Fujita, M., 474, 475, 506, 526, 527, 751, 831
Fujita, S., 668
Fujita, Y., 803
Fujitani, M., 543
Fujiiwa, J., 852
Fujiiwa, T., 561
Fujiiwa, Y., 162, 254, 277, 278, 284, 298
Fukagawa, T., 162, 254, 277, 278
Fukazawa, Y., 553
Fukuda, Y., 343
Fukui, M., 463
Fukunaga, R., 860
Fukutani, Y., 88
Fukui, K., 796
Funk, R. L., 872
Funk, E., 289
Furukawa, N., 825
Furukawa, S., 474, 477, 568
Furuta, K., 78, 161, 163, 278, 509, 827
Fuzuzaki, K., 584
Gabell, N. W., 387
Gabe, S. Y., 582
Gable, R. A., 474
Gabriel, J., 506
Gadek, T., 377
Gadwook, R. C., 648, 727, 728, 750, 767, 767, 767, 767, 780
Gergosian, R. B., 84724
Gaines, D. F., 139

gainnina, M. B., 753120
Ghannam, A., 13321
Ghatak, U. R., 85759
Ghribi, A., 347131, 348140
Gago, R. B., 84729
Gaines, D. F., 1367
Gainsford, G. J., 78620
Gainullina, E. T., 5208
Gais, H.-J., 372124, 372125, 52120, 52112, 53113, 53213, 53314, 53415, 53516, 77320, 78626, 80511
Galinio, J., 41770, 41874
Gall, M., 318J9
Gallardo, T., 24e9
Galle, J. E., 3296
Gallego, C. H., 7435, 7465, 7485
Gallis, D. E., 837Is3
Gallucci, J. C., 21531
Galyer, A. L., 21531
Ganem, B., 3296, 34318, 61963
Gannett, P., 429126, 797283, 798289
Gannon, W. F., 84629
Ganter, C., 85758
Garad, M. V., 48811, 49237, 49437, 50137
Garbe, W., 808320
Garcia, G. A., 55281*83
Garcia-Ochoa, S., 759132
Gardein, T., 34224, 36174
Gardlik, J. M., 429IZ3
Garigipati, R. S., 23834, 40421
Gamer, P., 759133
Garst, M. E., 82rI3*
Garvey, D. S., 41043*M, 436Is3
Gary, J. A., 131W
Gasdaska, J. R., 82121
Gaset, A., 82122
Gassman, P. G., 1 181, 648137, 654137, 655137, 84617
Gassner, T., 563173
Gateau-Oleskar, A., 56117
Gaudemar, M., 2142232a, 21822949, 22022949965, 22349
Gaudemar-Bardone, F., 21851
Gaudin, J.-M., 767L79
Gaudino, J. J., 75913l
Gauntlett, J. T., 310109
Gavens, P. D., 1393
Gawley, R. E., 476127, 477129, 130131
Gaydoul, K. R., 6359i, 63P1, 67291, 67891
Gehrt, H., 391153
Geib, G. D., 74354, 74654, 7485
Geiger, G. A. P., 19Im
Geiger, W., 36439
Geijo, F., 54326
Gellert, R. W., 4136
Gellibert, F., 6445
Génin, D., 838169
Gennari, C., 722, 52468, 526100, 527101, 102, 107, 528108, 764147
Genthe, W., 162104, 2512
Gentile, B., 759131
Geokjian, P. G., 18893
George, A. V. E., 47162
Georgoulis, C., 63262
Géard, F., 21963
Gerba, S., 894155
Gerhold, J., 63266
Germain, G., 838166
Geron, C., 37068, 37168, 37364, 37464
Gero, S. D., 561166
Gess, J. P., 567222
Geurink, P. J. A., 1054
Gewali, M. B., 753105
Ghanam, A., 13311
Ghatak, U. R., 85729
Gherardini, E., 838161
Ghi, S., 347131, 348140
Giacomini, D., 391148
Giangiordano, M. A., 390143
Gibson, C. P., 428121, 429121, 457121
Gibson, D. H., 876105
Giddings, P. J., 656152, 658152
Giese, B., 26960
Gilbert, L., 5914, 15363
Gillie, J. W., 36235
Gill, G. B., 8444
Gill, M., 55174
Gillespie, R. J., 29229
Ginestet, P., 759133
Giggi, P. G., 18e5, 19893-95, 19993
George, A. V. E., 47162
Georgoulis, C., 63262
Gerard, F., 21P3
Gerba, S., 894155
Gerhold, J., 63266
Germain, G., 838166
Geron, C., 37068, 37168, 37364, 37464
Gero, S. D., 561166
Gess, J. P., 567222
Geurink, P. J. A., 1054
Gewali, M. B., 753105
Ghanam, A., 13311
Ghatak, U. R., 85729
Gherardini, E., 838161
Ghi, S., 347131, 348140
Giacomini, D., 391148
Giangiordano, M. A., 390143
Gibson, C. P., 428121, 429121, 457121
Gibson, D. H., 876105
Giddings, P. J., 656152, 658152
Giese, B., 26960
Gilbert, L., 5914, 15363
Gillie, J. W., 36235
Gill, G. B., 8444
Gill, M., 55174
Gillespie, R. J., 29229
Ginestet, P., 759133
Giggi, P. G., 18e5, 19893-95, 19993
George, A. V. E., 47162
Georgoulis, C., 63262
Gerard, F., 21P3
Gerba, S., 894155
Gerhold, J., 63266
Germain, G., 838166
Geron, C., 37068, 37168, 37364, 37464
Gero, S. D., 561166
Gess, J. P., 567222
Geurink, P. J. A., 1054
Gewali, M. B., 753105
Ghanam, A., 13311
Ghatak, U. R., 85729
Gherardini, E., 838161
Ghi, S., 347131, 348140
Giacomini, D., 391148
Gi
Author Index

Haller, D., 776116, 7772106, 814216
Hall, S. S., 12433
Hallett, P., 570499
Haltermann, R. L., 19281, 73314, 78614
Halton, B., 78649
Ham, W. H., 4138
Hamachi, I., 15874, 18036, 181319
Hamada, T., 18351, 763145
Hamade, Y., 3962, 165913, 560355
Hamaguchi, F., 559150151
Hamaguchi, H., 36664
Hamana, N., 85034
Haman, S., 75193
Hambly, T. W., 779223
Hamer, J., 39116, 834130
Hammes, W., 37334, 37485
Hammond, G., 767110
Hammond, M., 838161167
Hamon, L., 1074
Hampton, K. G., 320
Hansens, A., 202109, 203109, 234248, 33157, 669181, 670181
Hanscck, M., 41668
Hanatusa, T., 11639, 11839, 555115
Hanagura, M. A., 6030, 7530, 46818
Handa, Y., 271189
Hane, J. T., 770189
Hane, R., 41822
Hanes, R. M., 45218
Haness, S., 5526, 1537, 41979, 773202, 797292, 79885, 802292
Hanko, R., 18031
Hana, J., 760135
Hannon, F. J., 22322, 22422, 313119120, 314119120, 31731512, 3191152
Hansen, J., 34170, 35171, 34196, 345124, 477132, 482132
Hanson, G. J., 5628
Hanson, J. R., 1741774
Hanzawa, Y., 429123
Haque, M. S., 86424, 874103104
Hara, D., 21536
Hara, S., 85139, 85239
Harada, K., 36028, 36426
Harada, T., 21536
Haraguchi, K., 471171
Harder, S., 2312112
Harman, W. D., 310108
Harms, K., 1061, 186, 29145, 32159, 160161, 33162, 37358, 342479, 246, 4496, 3069, 4601, 528119
Harrring, L., 26832
Harries, E., 9285
Harries, H. A., 1367
Harris, M., 557128
Harris, T. D., 46327
Harris, T. M., 320
Harrison, A. W., 73936
Harrison, G. P., 30586
Hart, D. J., 390140, 390144
Hart, D. W., 14333
Hart, G. C., 477229131
Harr, T. W., 862726
Hartley, F. R., 21539, 21839, 22539, 3269, 32713
Hartman, J. S., 29229, 29335
Hartman, M. E., 8462122, 85121, 85321, 85622, 85921, 86122, 89621
Hartner, F. W., 74975, 807316
Hartog, F. A., 21955
HartzeU, S. L., 7892160
Harusawa, S., 544321637, 54866, 555113, 5603157, 5613156
Haruta, R., 165108
Harutunian, V., 54432, 55134, 55334
Harvey, R. G., 466467
Harvey, S. J., 1727
Harwood, L. M., 24355
Hasagawa, T., 73938
Hasan, L., 436148, 47379
Hase, T., 542131, 544123, 56313
Hasegawa, M., 8854
Hashimoto, H., 73330
Hashimoto, K., 7661161
Hashimoto, M., 10119, 86066720
Hashimoto, N., 85140, 85240
Hashimoto, S., 26624, 314121, 35919, 382191919, 386122
Hashizume, A., 563171
Hassig, R., 20117, 506631157
Hassner, A., 5441412, 570548, 81913, 8341129131, 83511311, 836131, 8373129131, 838171
Hasukichi, H., 72088
Hata, G., 881118
Hata, T., 563171
Hatjama, T., 24882, 73525
Hatakeyama, S., 34341, 436148, 56920, 763144
Hatanaeka, H., 10130
Hatanaka, Y., 23213, 23313, 234123, 25325, 27626, 27626
Hatano, M., 256221
Hatekeyama, S., 766155
Hatky, G. C., 30793, 31093
Hatsui, T., 1871164
Hattori, I., 390145, 391145
Hattori, K., 9884, 9984, 21516, 387134
Hatzigigorou, E., 561162
Hauptmann, H., 74661
Hauser, A., 21849, 22099, 22349
Hauser, C. R., 32046322
Hawkings, J., 46114, 46414
Hawkings, L. D., 1981
Hay, D. R., 477133134
Hayakawa, H., 47171
Haya, M., 450119
Haya, T., 61962
Hayasaka, T., 8653, 223279, 22479
Hayase, Y., 9572
Hayashi, H., 54656, 55951, 56824
Hayashi, M., 85024
Hayashi, T., 1581, 18039, 18139, 3191520, 3201520, 3201520, 61096, 61164, 617173
Hayashi, Y., 24316, 554108
Haynes, R. K., 37599, 520670.7274, 635330, 63690, 678330, 681320, 691380, 779223
Hayes, H. R., 476114
He, X. C., 629
Heath, M. J., 37797974
Heathcock, C. H., 2164, 1644, 1411718, 17926, 18226, 28679, 33559, 5372, 3999, 40526, 46014, 544204, 562168, 50819, 771196, 772198, 82455
Hebert, E., 555111, 557111
Heck, G., 8448
Hecker, S. J., 40529, 772198
Heeres, H. J., 23216
Hegedus, L. S., 18974, 439163164, 440167171, 451217, 457163
Hehre, W. J., 29737, 4874, 4886, 61065
Heilmann, S. M., 54885, 5517274
Author Index

Heimgartner, H., 843
Heine, H. W., 838
Heineke, D. M., 213
Heinmann, P., 545
Heitz, M., 64, 115, 594, 595
Helle, M. A., 678
Hellmann, G., 372, 773
Hellmann, H., 367, 368, 370, 371
Helling, S., 482, 164
Helmchen, G., 62, 303
Helmut, H., 551
Helquist, P., 193, 415
Hering, G., 90
Henderson, M. J., 172
Hendrickson, J. B., 894
Hendrix, J., 404
Henke, B. R., 294
Henke, K., 665
Hennessy, B. M., 822
Henrick, C. A., 116, 128, 433, 434
Henriksson, U., 292
Heny-Basch, E., 86, 41, 215, 214, 218, 220
Henkel, G., 372, 349
Hensel, M. E., 765
Henzen, A. V., 774, 22
Hertkom, N., 476
Herlinger, H., 542, 546
Hermanek, S., 489
Higuchi, H., 480, 152
Heitmann, P., 546
Henrique, B. R., 294, 38, 304, 38
Henriekey, D. M., 215
Heine, H. W., 83
Heimgartner, H., 843
Hen, J. E., 377
Herold, T., 192
Herwig, W., 174
Heymanns, P., 19, 272
Hess, P., 473
Hesse, R. H., 174, 179
Hess, P., 473
Hess, G., 197
Herndon, J. W., 24
Herold, T., 192
Herradon, B., 759
Herrick, J., 418
Hirao, K., 83
Higashiyama, K., 166, 14, 369
Hirao, K., 172, 179, 179
Hillemann, G., 234
Hirato, A., 317, 139, 141, 142, 390, 145, 391
Hirai, I., 343, 103, 112, 113, 419
Hirao, K., 838
Hirai, T., 322
Hiraoaka, H., 165
Hiraoaka, T., 123, 372
Hirata, N., 872
Hirobe, M., 116
Hirota, K., 188, 189
Hirshfield, J., 823
Hirst, G. C., 89
Hirukawa, T., 100
Hisaoka, H., 544
Hitchcock, P. B., 169, 179, 391, 412
Hite, G. A., 38
Hiyama, T., 174, 177, 179, 182, 182
Hill, R. K., 843
Hobee, M., 663, 664, 666
Hodder, O. J. R., 38
Hodges, J. C., 753
Hob, D. J., 563
Hodge, J. C., 753
Hodges, P. J., 419, 397, 802
Hodgson, S. M., 63
Hoechstetter, C., 214
Hoekstra, W., 571
Hoff, D. J., 563
Hoffman, A. K., 38
Hoffman, L., Jr., 824
Hoff, D. J., 563
Hoffman, A. K., 38
Hoffman, L., Jr., 824
Hoffman, J., 563
Hoffman, A. K., 38
Hoffman, L., Jr., 824
Hoffman, J., 563
Hoffman, A. K., 38
Hoffman, L., Jr., 824
Hoffman, J., 563
Hoffman, A. K., 38
Hoffman, L., Jr., 824
Hoffman, J., 563
Hoffman, A. K., 38
Hoffman, L., Jr., 824
Hoffman, J., 563
Hoffman, A. K., 38
Hoffman, L., Jr., 824
Hoffman, J., 563
Hoffman, A. K., 38
Hoffman, L., Jr., 824
Hoffman, J., 563
Hofmann, H. R. M., 761, 773
Hoffmann, R., 78, 79, 141, 158, 159, 159
Hoffmann, R. W., 661, 167, 662, 677
Hogeveen, H., 72
Hollstein, W., 372
<table>
<thead>
<tr>
<th>Name</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kadurov, Ch. Sh.</td>
<td>543146</td>
</tr>
<tr>
<td>Kaez, H. D.</td>
<td>2145</td>
</tr>
<tr>
<td>Kagan, H. B.</td>
<td>179018</td>
</tr>
<tr>
<td>Kahan, M.</td>
<td>884128</td>
</tr>
<tr>
<td>Kahn, S. D.</td>
<td>2975</td>
</tr>
<tr>
<td>Kahne, D.</td>
<td>2901</td>
</tr>
<tr>
<td>Kail, Y.</td>
<td>147519</td>
</tr>
<tr>
<td>Kaino, T.</td>
<td>410440</td>
</tr>
<tr>
<td>Kaiser, J.</td>
<td>320160</td>
</tr>
<tr>
<td>Kaji, S.</td>
<td>820160</td>
</tr>
<tr>
<td>Kagihara, Y.</td>
<td>16239100</td>
</tr>
<tr>
<td>Kajikawa, Y.</td>
<td>858160</td>
</tr>
<tr>
<td>Kakihana, M.</td>
<td>759128129</td>
</tr>
<tr>
<td>Kaldor, S.</td>
<td>401134</td>
</tr>
<tr>
<td>Kale, V. N.</td>
<td>306050</td>
</tr>
<tr>
<td>Kalib, C.</td>
<td>37217</td>
</tr>
<tr>
<td>Kalinovskii, I. O.</td>
<td>437157</td>
</tr>
<tr>
<td>Kalinowski, H.-O.</td>
<td>709141</td>
</tr>
<tr>
<td>Kalimbert, J.</td>
<td>131199</td>
</tr>
<tr>
<td>Kamei, T.</td>
<td>3727</td>
</tr>
<tr>
<td>Kamitoi, Y.</td>
<td>54217</td>
</tr>
<tr>
<td>Kamiya, Y.</td>
<td>248256</td>
</tr>
<tr>
<td>Kanai, K.</td>
<td>39017</td>
</tr>
<tr>
<td>Kanatani, R.</td>
<td>61961</td>
</tr>
<tr>
<td>Kanazawa, H.</td>
<td>34168</td>
</tr>
<tr>
<td>Kanbara, H.</td>
<td>24356</td>
</tr>
<tr>
<td>Kanda, N.</td>
<td>317124</td>
</tr>
<tr>
<td>Kaneda, Y.</td>
<td>55939094</td>
</tr>
<tr>
<td>Kane, V. V.</td>
<td>51130</td>
</tr>
<tr>
<td>Kaneshia, N.</td>
<td>16239102</td>
</tr>
<tr>
<td>Kaneko, T.</td>
<td>223348</td>
</tr>
<tr>
<td>Kaneko, Y.</td>
<td>5611598</td>
</tr>
<tr>
<td>Kanemase, S.</td>
<td>770190</td>
</tr>
<tr>
<td>Kang, H.-Y.</td>
<td>198193</td>
</tr>
<tr>
<td>Kang, J.</td>
<td>9781</td>
</tr>
<tr>
<td>Kang, S. H.</td>
<td>7981608</td>
</tr>
<tr>
<td>Kann, R.</td>
<td>46712</td>
</tr>
<tr>
<td>Kan, S.</td>
<td>5611598</td>
</tr>
<tr>
<td>Karabatsos, G. J.</td>
<td>49519</td>
</tr>
<tr>
<td>Kariv-Miller, E.</td>
<td>26851262</td>
</tr>
<tr>
<td>Karle, L.</td>
<td>1173065</td>
</tr>
<tr>
<td>Karsch, H.</td>
<td>1173214215</td>
</tr>
<tr>
<td>Karten, M. J.</td>
<td>41145</td>
</tr>
<tr>
<td>Kass, N.</td>
<td>147719</td>
</tr>
<tr>
<td>Kashchbe, W.</td>
<td>74917</td>
</tr>
<tr>
<td>Kashima, C.</td>
<td>373124</td>
</tr>
<tr>
<td>Kashimura, S.</td>
<td>346128</td>
</tr>
<tr>
<td>Kashin, A. N.</td>
<td>437157</td>
</tr>
<tr>
<td>Kataoka, H.</td>
<td>18753</td>
</tr>
<tr>
<td>Kataoka, Y.</td>
<td>205108</td>
</tr>
<tr>
<td>Katayama, E.</td>
<td>184528</td>
</tr>
<tr>
<td>Kato, M.</td>
<td>759128</td>
</tr>
<tr>
<td>Kato, N.</td>
<td>1876148</td>
</tr>
<tr>
<td>Kato, R.</td>
<td>2381608</td>
</tr>
<tr>
<td>Kato, T.</td>
<td>581130, 135117, 881118</td>
</tr>
<tr>
<td>Katoh, E.</td>
<td>561164</td>
</tr>
<tr>
<td>Katoh, T.</td>
<td>86098</td>
</tr>
</tbody>
</table>

Author Index
Author Index

Krtiier; M., 832
Kubas, R., 350
Kubo, M., 477
Kubo, R., 293
Kucera, D. J., 589
Kucherov, V. F., 555
Kuduk, J. A., 189
Kuehne, M. E., 838
Kuhlein, K., 143
Kuhne, R. O., 286
Kuhne, J., 564
Kuh, H., 321
Kuivilla, H. G., 342
Kulkarni, A. K., 828
Kulkarni, B. K., 463
Kulkarni, G. H., 546

Kumada, M., 113
Kumar, A., 820
Kumar Das, V. G., 327
Kume, A., 563
Kuncel, K., 878
Kundig, E. P., 568
Kunieda, N., 513
Kunieda, T., 119
Kunisch, F., 548
Kunnen, K. B., 478
Kunz, T., 110
Kuo, Y., 844
Kupfer, R., 372
Küppers, H., 641
Kuraishi, T., 474
Kuran, W., 440
Kurata, H., 733
Kurata, Y., 506
Kurauchi, M., 561
Kuribayashi, H., 174
Kurihara, T., 544
Kurita, H., 557
Kurita, Y., 128
Kuroboshi, M., 751
Kuroda, A., 101
Kuroda, T., 193
Kurr, B. G., 506
Kurras, E., 174
Kurusu, Y., 215
Kurz, A. L., 33
Kusakabe, M., 58
Kvasigroch, C. A., 592
Kwon, C. D., 822
Kyler, K. S., 542
Kwong, E., 318
Kyung, S. H., 142
Labadie, J. W., 442
Labdar, N., 672
Laboratoire, J.-L., 648
Lambert, J., 718
Lambert, K. E., 718
Li, Y., 419, 462, 463
Liang, C. D., 359, 383, 384
Liao, L.-F., 512, 565
Liao, Q., 825
Liao, W.-P., 272
Lidy, W., 328, 343, 345, 390
Liebensch, L. S., 404
Lied, T., 805
Lien, M. H., 487, 488
Lietje, S., 788
Liggero, S. H., 853
Lh, D., 1048, 411
Lh, S. T., 563
Limburg, W. W., 436
Lin, J., 733
Lin, K., 117, 333
Lin, L.-C., 473
Lindbeck, A. C., 480
Lindberg, J. G., 321, 491
Lindberg, T., 562
Linde, R. G., 11, 529
Lindell, S. D., 348
Linderman, R. J., 133, 431, 791
Lindert, A., 642
Lindstedt, E.-L., 112
Linkies, A., 123
Linstnunelle, G., 832
Lion, C., 427
Liotta, D., 572, 631, 634, 638, 640
Lipshutz, B. H., 107, 110, 112, 114, 122, 124, 131, 138, 335, 543, 379
Lipton, M., 268
Liu, C.-M., 665
Liu, H.-I., 1186, 564
Liu, H. J., 849, 850, 853
Liu, J., 381
Liu, R. S. H., 765
Livinghouse, T., 622, 787, 846
Llitjos, H., 547
Llobet, A., 342
Lloyd, D., 825
Lo, K. M., 506
Lo, S. M., 451
Loader, C. E., 474
Loar, M. K., 440, 445
Lochman, R., 287
Lochmann, L., 104, 41
Lodge, E. P., 498, 286, 460
Lodi, L., 192
Loesch, C., 286
Loeschn, C. A., 845
Loewe, M. F., 482, 672, 700
Lofgren, C. S., 568, 571
Logue, M. W., 447
Logusch, E. W., 532
Loh, J.-F., 506
Löher, H. J., 311
Lohmann, J.-J., 481, 483
Lohri, B., 62, 63, 537
Lombardo, L., 749, 750, 812
Lommes, P., 266
Loncharich, R. J., 287, 288, 289
Long, G. W., 744
Long, J. R., 231, 251, 252
Look, G. C., 599, 591, 592
Loosil, H. R., 41
Loots, M. J., 155, 156
Lopez, F., 782
Lopez-Calahorra, F., 543
Lopez Herrera, F. J., 759
Lorber, M. E., 377
Lorberth, J., 215
Lorenzen, N. P., 40, 41, 42
Lorenzi-Riatsch, A., 145
Lotz, W. W., 655, 684
Lovell, A. V., 42, 103
Low, A., 476
Lowry, T. H., 528
Loy, R. S., 378
Lozar, L. D., 608
Lu, L.-D.-L., 436
Lubosch, W., 474
Lucarini, L., 214
Lucchetti, C., 571
Lucchetti, J., 571, 634, 637, 638, 640
Lymph, B., 780
Lyle, G. G., 357
Lyle, R. E., 357
Lynch, J., 805
Lynch, J. E., 62, 63
Lynch, L. E., 551, 665, 668
Lyon, J. T., 826
Lysenko, V. P., 820
Lythgoe, B., 329, 780, 793, 794, 802
924
Author Index
Author Index

Maas, G., 844, 848
Macaluso, A., 391, 150
McBride, B. J., 822
McCarthy, K. E., 1076, 1106
McCly, M. R., 514, 37, 38
McCloskey, P. J., 769, 845
Collum, G. J., 632, 266
McCormick, A. S., 554, 102
McCowan, J. D., 162
McCrae, D. A., 582
McCullough, D. W., 786
McDaniel, R. L., 884
McDonald, I. A., 441, 174
Macdonald, J. E., 458, 622
MacDonald, J. H., III, 511, 52, 1081, 153, 13, 336, 7, 302
Macdonald, T., 52, 1081, 109, 1175, 32, 3, 283, 13, 429
Macdonald, T. L., 1081, 109, 1175, 32, 3, 429
McDougal, P. G., 507
McElroy, A. B., 781
McEvoy, F. J., 55, 55, 59, 55, 55
MacEwen, G., 38
MacEwen, W. E., 559, 152
McGarvey, G. J., 109, 143, 329, 341, 427
McGuirk, P. R., 428
McHenry, B. M., 786
Macias, A., 323
Macicek, J., 361, 75
McIntosh, J. M., 551, 559, 345
McIver, J. M., 132
Mackay, K. M., 252
Mackay, R. A., 252
McKenna, E. G., 758, 761
McKenzie, A., 49, 774, 209
Mackenzie, P. B., 746
McMullen, L. A., 248
McMullen, L. A., 248
Mak, C.-P., 372
Magaha, H. S., 822
Malacria, M., 892
Malgren, A., 324, 324
Malin, N., 55
Main, K., 559, 14, 18
Maier, G., 303, 303
Maierhofer, A., 373, 67, 374
Maiz, Z., 859
Magid, R. L., 57, 87
Magriotis, P. A., 446
Mague, J. T., 451, 216
Mahadevan, C., 836
McNamara, J. M., 436
McPartlin, M., 303
MacPhee, J. A., 427
MacRae, D. M., 436
Maddock, J., 526
Maddox, V. H., 371, 73
Mahachi, T., 268, 269
Mahadevan, C., 836
Macleod, G., 844
Macfarlane, R., 385
Magdena, T., 834
Magda, K., 526
Magen, T., 372
Mack, C.-P., 372
Maggi, M., 526
Magdesiava, N. N., 632, 12
Maggiora, G. M., 314, 315, 317
Magnus, P., 580, 622, 323, 34, 623, 77, 630, 731, 737
Magnusson, G., 429, 563
Magola, R. L., 409
Magriotis, P. A., 446
Mague, J. T., 451, 216
Mahachi, T., 268, 269
Mahadevan, C., 305
Mahalanabis, K. K., 466
Mahalingam, S., 328
Mahdi, W., 129, 135, 189, 23, 19, 109, 23, 23, 29, 147
Mahidol, C., 526
Mahon, M. F., 526
Mai, K., 551, 14, 118
Maier, G., 303
Maierhofer, A., 373, 374
Mai, G., 551, 142
Majerski, Z., 859
Majetich, G., 114
Majid, T. N., 212, 213
Majumdar, D. J., 49, 13, 50, 13, 50, 13
Majumdar, S. P., 85, 85
Makino, T., 56
Malamas, M. S., 434
Malanco, F. L., 552
Maldonado, L. A., 349, 649, 650, 672, 675
Malik, R. S., 461, 463
Mallet, M., 474
Mallick, I. M., 564, 649, 650, 672, 675, 679
Malone, T. C., 592
Malsumoto, M., 546
Mancino, M., 389
Mandar, I. K., 820
Mandell, G. S., 880
Mandell, N. S., 880
Mander, L. N., 41, 752
Mandon, M., 567
Mangenev, P., 107
Mangini, A., 506
Mariani, K. S., 515
Mann, B. E., 440
Männig, D., 301
Mansour, T. S., 462
Mantlo, N., 92
Maravigna, P., 2
Marchese, G., 41, 416, 452
Marchiori, M. L. P., 41, 75
Marchioro, G., 480
Marco, J. L., 559, 559
Margar, 41
Margolis, N. V., 34
Marcelli, E. R., 473
Marin, C., 314
Marinier, A., 766
Marino, J. P., 118, 129, 431
Marinoni, G., 543
Marinovic, N., 642
Märki, H.-P., 824
Markies, R. P., 26
Marks, M. W., 41
Marks, T. J., 231, 251, 252, 273, 274
Maroldo, S. G., 41203
Marquet, A., 51345, 53130
Marquez, E., 55389
Marren, T. J., 11227
Marsaioli, A. J., 74873, 81273
Marsais, F., 47488, 496, 5799, 101102
March, M., 1047, 18296, 29145, 32219, 31601, 33162, 34166,
37242, 24525, 446, 72219
Marshall, J. A., 1886, 76170, 17175, 178, 76167, 169, 772200,
85137
Martel, A., 12378
Martelli, G., 391148
Marsh, C. F., 755115, 7561116, 758112, 761116
Mart, H. A., 1391145, 159776
Martin, J. C., 4680, 47153
Martin, R. M., 480153
Martin, S. F., 41270, 27577, 383110, 432137, 456137, 542,
84833
Martin, T. R., 16189
Martin, W. B., 37175
Martina, D., 11542
Martina, V., 41667
Martinez, G. R., 41041, 47378
Martinez-Davila, C., 887138, 888138
Martín-Lomas, M., 759132
Martos-Bartsai, M., 37070, 37170
Mats, B., 2156, 2160, 32789
Mayanoff, B. E., 755114, 756116, 758112, 761116
Maycock, C. D., 1439, 14539, 14639, 14844, 149425, 15249,
15542, 17062
Matsuda, T., 18748
Mathew, K. K., 494, 504, 15362
Mathieu, J., 36756, 36856, 37056
Mathre, D. J., 425105
Matier, W. L., 555116
Matloubi, F., 5234
Matsumura, Y., 12770, 42714
Matsuda, A., 792270
Matsuda, F., 24114
Matsuda, K., 836140
Matsuda, Y., 22384, 225844
Matsue, H., 8243
Matsukawa, M., 26133, 27578, 751110
Matsuki, M., 836139
Matsumoto, T., 131104, 18452, 24844, 33988, 784243, 344
Matsumura, H., 12375, 37382
Matsumura, Y., 984, 990845, 346128, 387136, 804210
Matsuoaka, Y., 451221
Matsushita, K., 24738
Matsura, T., 54444, 54669
Matsuzaaki, K., 779222
Matsuzaki, Y., 8342146, 122
Matsuzawa, S., 1127
Matthews, H., 21956
Matteson, D. S., 489223, 4902423, 279, 4913035, 4942423,
4952314537, 49631, 4973031, 49853, 50123133, 50233,
62383, 8309
Matthews, J. D., 30587
Matthews, W. S., 6326
Matz, J. R., 78628, 887139, 888139
Maurer, B., 21849, 21949, 22349
Maurer, P. J., 41359, 53159, 73915
Maus, S., 83715, 14552, 14652, 14862, 149421, 15542, 17062
Mazé, B., 831103, 835148
Maxwell, J. R., 80852
May, A. S., 37188
Maycock, C. D., 1439, 1439, 146394, 14844, 14939,
15239, 16545
Maye, H., 392156, 393156
Maynard, G. D., 24043
Mayo, B. C., 29447
Mazaleyrat, J. P., 7271, 14122, 555122
Mazur, D. J., 564204
Mazzocchi, P. H., 29447
McBoula, J., 113163, 62381
Mead, K., 564101, 1081, 109614, 13422, 33832, 33922
Meakin, G. D., 6326
Mearneill, N. A., 532137, 73942, 74045, 74143, 74248
Medici, A., 47158
Medina, I., 76177
Meer, R. K. V., 568227, 571127
Meerwein, H., 14445, 21345, 21644
Meetsma, A., 23216
Megurya, N., 16181982,
Meeuw, G. D., 59222
Meehe, H., 84545
Meier, I. K., 807316
Meeuw, G. D., 59222
Meehe, H., 84545
Meehe, I. K., 807316
Meeuw, W., 28714
Meinhardt, D., 74872, 74978, 81687
Meiswold, J., 37798
Melching, K. H., 77192
Melillo, D. G., 42505
Mellea, M. F., 30794
Meller, J. H., 46056, 47496
Melnikov, V. V., 34228
Melnikova, V. I., 52068
Melzt, C. N., 350130, 35924, 36424
Melvin, L. S., Jr., 40385, 43023, 60323, 67532, 72232,
8208, 8229
Author Index

Mensah, I. M., 23217
Menchen, S. M., 65645, 147, 147, 699, 47
Mendelson, L. T., 88040, 89040
Mendelson, S. A., 78648
Mendes-Araujo, A., 4915, 49547
Meng, W., 22354, 22546
Merkle, H. R., 21430
Mestre, F., 77085
Metter, J. O., 30738, 30778
Metz, P., 770189
Meyer, J., 37351, 37551, 37691
Meyer, N., 63149, 63649, 6545, 65849, 65949, 67249, 70849, 71049, 72149
Meyer, R., 84653, 84749, 850196
Meyers, A. L., 23120, 6035, 6575, 7559, 3592322, 1369535, 36755, 3832022, 3842122, 42255, 4605, 461381011, 468955, 473141, 4741014, 477128135, 4781011141, 482128164, 65, 6672207, 700207, 791269
Meyers, H. V., 20045, 32946, 798796
Miah, M. A. J., 46463
Mica-Languin, D., 770185
Michael, K. W., 61950
Michael, J., 22699, 96
Middleton, W. J., 425103
Midland, M. M., 40555
Migge, A., 14480
Migniac, L., 21539, 21815, 22115, 3264, 385135, 831103
Migniac, P., 21850, 219651, 36817, 36957
Migniac-Groizelleau, L., 21828, 21990
Migita, T., 43654, 438160161, 452219, 834124
Mignani, S., 770184
Mihelic, J. M., 30794
Mihelich, E. D., 35921, 38321, 38421
Mika, T., 558135
Mikami, K., 58411
Mikhail, G. K., 86587
Miki, K., 14748, 16291, 102
Mikolaitys, M., 788259
Mikułec, R., 22695
Miller, J., 78695, 95830
Miller, J. A., 448206
Miller, M. J., 386133
Miller, W. H., 18895, 19895
Millikan, R., 480153
Mills, R. J., 46219
Mills, S., 10191, 40217, 46141, 46414, 47733, 791796a, 795796
Millstein, D., 437155, 440155, 442155, 47714, 44314, 445155, 446155194, 447205, 457515
Miltz, W., 12275
Minami, I., 53537
Minami, T., 554108, 569861
Minamikawa, H., 54656
Mincione, E., 754107
Mine, N., 2541414b, 27783
Minowa, N., 19282
Minamikawa, H., 54655
Minami, T., 554108, 569109
Minami, I., 55397
Miltz, W., 12275
Minami, I., 554108, 569861
Minamikawa, H., 54656
Mincione, E., 754107
Mine, N., 2541414b, 27783
Minowa, N., 19282
Minamikawa, H., 54655
Minami, T., 554108, 569109
Minami, I., 55397
Miltz, W., 12275
Minami, I., 554108, 569861
Minamikawa, H., 54656
Mincione, E., 754107
Mine, N., 2541414b, 27783
Minowa, N., 19282
Minamikawa, H., 54655
Minami, I., 554108, 569109
Minami, I., 55397
Miltz, W., 12275
Miracle, G. K., 86587
Miettinen, J., 869140, 890140
Mitchell, R. H., 635789, 636789, 640789
Mitra, R. B., 54653
Mitsui, H., 391151, 392155
Miura, I., 559152
Miura, T., 648137, 654137, 655137
Miyaji, K., 54654
Miyake, A., 881118
Miyake, F., 83549, 80615
Miyake, N., 387127
Miyasaka, T., 42293, 47171
Miyashita, K., 753103
Miyashita, M., 642115, 85139, 85239, 85552
Miyazaki, K., 85346
Miyazaki, K., 317141, 385114
Miyazaki, T., 98949, 983147
Mizusawa, Y., 561201
Mjall, A. M. M., 86587
Mladenova, M., 21881
Mlodezdnik, G., 83649
Mobillo, D., 18745, 18855
Moccia, P. E., 747147
Mock, W. L., 846121, 85121, 85321, 85629, 85921, 86121, 89621
Moderhau, D., 386124
Moebus, M., 36734
Montejo, I. R., 74871, 81213
Moeller, T., 23131
Mohamadi, F., 29144
Moise, C., 33119, 74978, 81678
Moison, H., 812126
Molander, G. A., 21853, 2623456, 2634, 264342, 26542, 26642, 26750, 26958, 27058, 27154, 27856, 61249
Mole, T., 771, 78957, 9573, 3252
Mollina, K., 21497
Molloy, K. C., 52569
Monkiewicz, J., 76036
Monobe, H., 42293
Montana, J. G., 86587
Montanari, F., 52380
Montanari, S., 566216
Montaudo, G., 29443
Montes de Lopez-Cepero, I., 784243
Montoya, R., 83754
Moody, R. J., 48993, 49130, 49549, 49730
Moollenen, M. J., 61754
Moore, J. L., 795142
Moortof, C. M., 760136
Moorhouse, S., 21493
Moos, W. H., 83646
Mootz, D., 632
Moreau, J. L., 2206456
Mori, T., 837147
Mori, T., 837147
Moreau, J. L., 2206456
Mourhouse, F. S., 1748, 1758
Morel, J., 644224, 664122, 668122, 669122, 695122
Moreno-Manas, M., 477414, 54761
Morane, E., 19590
Moretti, I., 837155, 838150
Morey, M. C., 12271
<table>
<thead>
<tr>
<th>Author Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author Name</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>Racherla, U.</td>
</tr>
<tr>
<td>Rabmovitz, M.</td>
</tr>
<tr>
<td>Raber.</td>
</tr>
<tr>
<td>Quirk, J.</td>
</tr>
<tr>
<td>Qiu, W.</td>
</tr>
<tr>
<td>Qian,</td>
</tr>
</tbody>
</table>
Author Index
Sasaki, M., 253, 259, 274, 366
Sasbo, M., 242, 243
Sasaki, K., 751
Sato, F., 487, 874, 110, 131, 134, 159, 16, 16, 161, 180, 181, 18, 39, 340, 41, 56, 56, 784, 24
Sato, K., 100, 100, 103, 103
Sato, M., 87, 92, 52, 135, 135, 158, 159, 159, 159, 159, 181, 184, 180, 181, 181, 390, 41, 56, 56
Sauermann, G., 31, 39
Saucy, G., 32, 32
Savard, J., 11, 11
Sawada, H., 8
Sawamura, T., 31, 31, 32, 39
Satoh, K., 56, 56
Satoh, T., 52, 52, 202, 202
Sato, S., 506, 7
Scarmoutzos, L., 22, 23
Schade, C., 21, 21, 13, 13
Schaart, F., 57, 57
Schauffhauer, T., 24
Scheffold, R., 23
Schej, G., 139, 168, 746
Schacht, B., 755, 757, 811, 813, 813
Schaus, J., 383
Schechter, H., 37, 37
Scheffold, R., 14, 14
Scherer, P., 61
Scher, K., 739
Schlauch, M., 11
Schweizer, W., 299, 316
Schiedl, M., 23, 23
Scheier, A., 109
Schiess, M., 149, 170
Schiedl, W., 89, 89
Schill, G., 56, 56
Schilling, S., 41
Schilling, W., 95
Schipper, P., 561, 561, 663, 663, 663, 672, 672, 700, 704, 704
Schlachter, S., 759
Schlecker, R., 474
Schlegel, H., 506
Schleitner-Rust, E., 213
Schlessinger, R., 32, 32, 52, 52, 56, 56, 56, 56, 56, 784
Schlicker, S., 837, 837, 838, 838
Schlicker, B., 37
Schweizer, E. E., 37
Schweizer, W., 11, 11, 11, 26, 28, 30, 34, 37, 37, 37, 37, 37, 37, 41, 43
Schwickardi, C., 31
Schol, C., 52, 52
Schon, D. F., 760
Schloemer, H., 106
Schmitt, G., 551, 762
Schmitt, M., 760, 141
Schmidt, T., 405
Schmidt, U., 188, 188, 219, 219
Schmieder, R. J., 79, 79
Schmit, C., 683, 714, 715, 717, 717, 717
Schmitz, A., 56
Schneebebi, J., 37, 37, 37, 37
Schneider, D. F., 760
Schneider, F., 524
Schneider, J., 424
Schneider, J. A., 52, 109, 109, 110, 126, 134, 134, 135, 336, 460
Schneider, H. G. V., 168
Schöber, P. A., 520
Schoenen, F. J., 126, 70, 75, 75
Schoen, H., 360
Schöllkopf, U., 5, 26, 60, 22, 641, 722, 723, 846, 850
Scholz, D., 424
Schow, S. R., 129, 772
Schöven, R. J., 314, 315
Schrader, T., 37, 37
Schreiber, S. L., 8, 29, 29, 32, 420, 563, 786, 786, 800, 883, 888
Schröder, T. M., 24
Schröder, M. C., 63, 63, 63, 63, 63, 63, 63
Schubert, B., 206, 206, 206, 206, 206, 206, 39
Schubert, H., 359, 380, 381
Schubert, U., 106, 258
Schubert, W., 292
Schultz, A. G., 5061
Schulz, H., 661, 661, 670, 670
Schulze, T., 185
Schumann, H., 23, 252, 232
Schumann, U., 18, 22, 22, 22, 22, 36, 39, 39
Schuster, P., 286
Schuster, R. E., 29, 29
Schuster, T., 142
Schwartz, J., 143, 155, 156, 157, 157, 157, 157
Schwartz, N. V., 622
Schwarzenbach, P., 37
Schwickardi, C., 37
Schweizer, E. E., 878
Schweizer, W., 11, 11, 26, 28, 30, 34, 37, 37, 37, 37, 37, 41, 43
Schwickardi, M., 147
Scolastico, C., 727, 524, 524, 527, 101, 101, 107, 528
Scott, A. S., 786
Scott, J. W., 825, 837, 838
Author Index

943

Van Engen, D., 807
van Heteren, A., 2312
van Huisen, E., 1615
Vanier, N. R., 5316
Van Koten, G., 2512
van Leusen, A. M., 5712
van Leusen, D., 5712
van Meerssche, M., 3825
Van Middlesworth, F., 4298
van Mier, G. P. M., 2318
van Niel, M. B., 5683
Vannoorenberghe, Y., 22378
van Oeveren, A., 22384
van Ooij, P. J. J. M., 661165, 663165
van Schaik, T. A. M., 7742
van Seters, A. J. C., 8586
van Wijnen, W. Th., 52814
Vamey, M. D., 74764
Vasil'eva, L. L., 52068
Vasquez de Miguel, L. M., 46328, 46959
Vassilatos, S. N., 46436, 477140, 47836
Vather, S., 568228
Vawter, E. J., 21852
Veber, D. F., 823
Vedejs, E., 24356, 26649, 3575, 3785105, 755116
Veenstra, S. J., 85(Y1
Vevert, J.-P., 131101
Veysoglu, T., 51452
Viader, J., 892149
Viard, B., 30379
Viau, R., 51237
Vicens, J. J., 507120, 51120, 712263
Vidulich, G. A., 29332
Viehe, H. G., 3663
Vietmeyer, N. D., 37797
Villa, C. A., 894160
Villacorta, G. M., 432137, 456137
Villalobos, A., 529124, 799287
Villemin, D., 821
Villieras, J., 21471, 428116, 83091, 87392.5b
Vince, D. G., 27679
Vincent, B. R., 52812, 804308, 805508
Vincent, J. E., 41876, 892131
Vishwakarma, L. C., 838137
Visnick, M., 78962b, 79026
Vladuchick, S. A., 88012
Vodnansky, J., 1048
Vogel, E., 42499
Vogt, P. F., 530127
Volante, R. P., 40217, 791296, 799296
Volaron, F., 82014
Volkmann, R. A., 350151, 3589, 35924, 36229, 36424, 385119, 386119, 121
Vollhardt, J., 372447, 24849, 250252, 528120, 531131
Vollhardt, K. P. C., 73314, 78614
Volmer, M., 571279
Volpi, E., 85757
VonGeldern, T. W., 771196
Vonwiller, S. C., 52072, 779223
Voorbergen, P., 1369
Vorbruggen, H., 773503, 203a
Vos, A., 2995
Vos, M., 1025, 1149
Vostrowsky, O., 375152, 383152, 385153
Vottero, P., 212
Vougioukas, A. E., 328119, 32119, 321121, 342
Vos, M., 1055, 1155b
Waack, R., 22114
Wachter, J., 310107
Wada, M., 12065, 23630, 23730, 350152, 351155, 361353, 362353a
Wada, T., 61996
Wade, K., 2, 6313, 139
Wade, R. H., 84618, 85116
Wadsworth, A. H., 570263
Wadsworth, W. S. Jr., 722270, 761139
Wagner, H.-U., 385118
Wagner, R., 884130
Wagner, S. D., 18974
Wagnon, J., 1074
Wai, J. S. M., 765164
Wales, P. C., 139
Wakabayashi, S., 520715
Wakabayashi, Y., 347132, 134
Wakamatsu, K., 95718, 45013, 73840
Wakefield, B. J., 26, 12854, 41299, 63151, 67231
Walba, D. M., 429123
Walker, B. J., 755115, 758127, 761137, 812115, 813115
Walker, D. G., 791269
Walker, M. A., 835133
Walker, R. T., 569122
Wallace, P., 782132
Wallace, R. H., 27265
Wallin, A. P., 480159
Wallis, C. J., 774209, 779225
Wallis, J. D., 82312
Walls, F., 55280
Walsh, E. J., 885134
Washe, N. D. A., 797293
Walter, S., 38183
Walther, D., 320160
Wanat, R. A., 28141, 29144, 34169
Wand, M. D., 429125
Wang, J.-T., 165112b
Wang, S., 33989
Zhang, J., 25519, 25819, 27119
Zicmanis, A., 54323
Ziegler, F. E., 567220, 74457
Ziegler, K., 1395
Ziegler, T., 54633
Zilniece, I., 54323
Zima, G., 669183, 670183, 671183, 699183
Zimmer, H., 54438, 56218, 169
Zimmerman, H. E., 528112
Zingqing, Z., 54315
Zinke, P. W., 26342, 26442, 26542, 26642, 27474
Zinn, M. F., 46323
Zinner, G., 386124
Zinnius, A., 632
Zipkin, R., 779226
Zirotti, C., 18525, 18655, 22164
Zoller, U., 8191, 8341, 8351
Zollo, P. H. A., 41977
Zook, H. D., 3182021, 42220c
Zoretic, P. A., 656153, 658153
Zubiani, G., 206111, 48919, 49819, 50, 83092, 83292
Zucker, P. A., 894160
Zutterman, F., 648134, 653134, 659160, 672160, 208, 674160,
676160, 698160, 704160, 715160, 717160, 718160, 86276
Zwanenburg, B., 82811, 85861
Zweifel, G., 788, 958, 22096, 48916, 17, 20
Subject Index

A-23187 — see Calcimycin

Acetaldehyde, α-methoxyphenyl-
synthesis
 chiral, 527

Acetals
 chiral
 asymmetric synthesis, 347
 nucleophilic addition reactions, 63
cyanation, 551
cyclizations
 vinylsilanes, 585
 intermolecular additions
 allylsilanes, 610
 stereochemistry, 615
 reactions with organometallic compounds
 Lewis acid promotion, 345
 α,β-unsaturated
 addition reactions with alkylaluminum
 compounds, 88

Acetals, α-hydroxy
 chiral
 addition reactions with alkylaluminum
 compounds, 89

Acetals, α-keto
 cyclic
 nucleophilic addition reactions, 63
 Peterson alkenation, 791

Acetic anhydride
titanium tetrachloride complex
 crystal structure, 303

Acetic anhydride, trifluoro-
reactions with boron-stabilized carbanions
 synthesis of alkenes, 499

Acetone
 lithium bromide complex
 crystal structure, 299
 sodium cation complexes
 theoretical studies, 287

Acetone, hexafluoro-
carbonylchlorobis(triphenylphosphine)iridium
 complex
 crystal structure, 310

Acetone, hydroxy-
 Wittig reaction, 757

Acetone, triphenylphosphonyldi-
chlorotrimethyltin complex
 crystal structure, 305

Acetone cyanohydrin
catalyst
 benzoin condensation, 543

Acetonitrile, α-allyloxy-α-substituted
 synthesis, 551

Acetonitrile, methoxy-
boron trifluoride complex
 NMR, 292

Acetonitrile, phenyl-
lithium enolate
crystal structure, 32

Acetonitrile, α-silyl-
 Peterson alkenation, 790

Acetophenone
 nucleophilic addition reactions
 stereoselectivity, 69
 reaction with allylic organometallic compounds, 156

Acetophenone, bromo-
reactions with 2-bromocyclohexanone, 202

Acetophenone, 1-chloro-
 reductions
 dialkylzinc, 319

Acetophenone, α-(dimethylaminomethyl)-
lithium enolate
 crystal structure, 28

Acetophenone, methoxy-
tin(IV) chloride complexes
 crystal structure, 306

Acid chlorides
 acylation
 alkylrhodium(I) complexes, 450
 lithium dialkylcuprates, 428
 organostannanes, 446
 palladium complex catalysis, 436
 synthesis of ketones, 414
 reaction with organoaluminum reagents
 ketone synthesis, 95

Tebbe reaction, 743

Acoragermacrone
 synthesis
 via cyclization, 553

Acrolein
 dimer
 nucleophilic addition reactions, 52
 Lewis acid complexes
 conformation, 288
 lithium cation complexes
 structure, 289

Acrylic acid
 borane complexes
 structure, 289
 Lewis acid complexes
 conformation, 288

Acrylonitrile
 reactions with Yamamoto’s reagent, 124

Acryloymethyl lactate
titanium tetrachloride complex
 crystal structure, 303

Actinobolin
 synthesis, 404

Acyl anions
 equivalents, 542
 lithium
 generation, 273
 masked equivalents
 benzoin condensation, 544

Samarium
generation, 273
Acylation
 boron-stabilized carbanions, 497
 organocopper reagents, 426
 organometallic compounds, 399
 palladium catalysis
 mechanism, 438
Acyloins
 unsymmetrical
 synthesis, 551
Acylic radicals
 samarium
 generation, 273
Adamantanol, 3-proto-
synthesis
 via intramolecular Barbier reaction, 262
Addition—fragmentation
 intramolecular
 expansion, 892
Addociane, diisocyano-
synthesis
 via organostannane acylation, 446
Africanol
 synthesis
 via methyl lithium addition to unsaturated acid, 413
Alanal, phenyl-
nucleophilic addition reactions
 stereoselectivity, 56
Alanine
 bis-lactim ether, lithium salt
 crystal structure, 34
Alcohols
 axial
 synthesis, 116
 chiral synthesis
 via aldehydes, 70
 synthesis
 via β-hydroxalkyl selenides, 699, 718
 via organocerium compounds, 231
 tertiary
 synthesis, 66
Alcohols, 2-amino
 threo
 synthesis, 380
Alcohols, β-amino
 Lewis acid catalysts, 317
 synthesis
 via O-silylated cyanohydrins, 548
Alcohols, 2,3-epoxy-
reactions with organometallic compounds
 regioselectivity, 343
Alcohols, β-(phenylthio)
synthesis
 organochromium-mediated, 203
Aldehydes
 addition reactions
 cyanides, 460
 1,2-addition reactions
 acyl anions, 546
 cyanohydrin ethers, 551
 cyanohydrins, 548
 α-(diarylakyl)aminonitriles, 554
 phosphonate carbanions, 562
 aliphatic
 reactions with boron-stabilized carbanions, 499
 aryl
 methlenation, 738
 boron trifluoride complexes
 NMR, 292
 α-chiral
 Lewis acid complexes, 298
dialkylzinc addition reactions, 317
 enantioselective addition
 alkyl lithium, 72
 organolithium, 70
geminal dialkylalkylation
titanium(IV) reagents, 167
 intermolecular additions
 allylsilanes, 610
 intramolecular additions
 allylsilanes, stereochemistry, 615
 allyltrimethylsilane, 612
 Lewis acid complexes
 rotational barriers, 290
 nucleophilic addition reactions
 butyllithium, 70
 photolysis
 benzoin formation, 544
 protection
 via titanium reagents, 170
 reactions with allenylsilanes, 599
 reactions with allylic organocadmium compounds, 226
 reactions with boron stabilized carbanions, 498
 reactions with α-bromo ketones, 202
 reactions with diazoalkanes, 845
 reactions with dithioacetals, 564
 reactions with organoaluminum reagents
discrimination between ketones and, 83
 reactions with organocadmium compounds, 225
 reactions with organocuprates, 108
 reactions with organometallic compounds
 chemoselectivity, 145
 Cram versus anti-Cram selectivities, 80
 Lewis acid promotion, 326
 pinacolic coupling reactions, 270
Aldehydes, α-alkoxy
 N,N-dimethylhydrazones
 reactions with organometallic compounds, 380
 reactions with organochromium compounds, 198
 reactions with organocuprates, 108
 reactions with organozinc compounds
 1,2-asymmetric induction, 336
 stereoselectivity, 221
Aldehydes, β-alkoxy
 reactions with organocuprates, 108
Aldehydes, α-alkoxy chiral
 reactions with organochromium compounds
 addition to crotyl halides, 185
Aldehydes, β-alkoxy-γ-hydroxy
 nucleophilic addition reactions
 stereoselectivity, 59
Aldehydes, β-alkoxy-α-methyl
 reaction with allylchromium
 stereoselectivity, 183
Aldehydes, β-allylsiloxy
 intramolecular additions
 Lewis acid catalyzed, 615
Aldehydes, amino
 nucleophilic addition reactions
 stereoselectivity, 56
Aldehydes, α-amino
Subject Index

951

dibenzyl protected
nucleophilic addition reactions, 56
Aldehydes, α,β-dialkoxy
reactions with organocuprates, 108
Aldehydes, N,N-dibenzyl α-amino
carbonyl compound complexes
nonchelation-controlled addition, 460
Aldehydes, α,β-dibenzylxo
reactions with organometallic compounds
Lewis acids, 338
Aldehydes, α,β-dihydroxy
reactions with organometallic compounds
Lewis acids, 337
Aldehydes, α,β-epoxy
reactions with organometallic compounds
Lewis acids, 339
Aldehydes, α-hydroxy
chiral
synthesis, 64, 69
synthesis
via 1,3-dioxathianes, 62
via formaldehyde dimethyl dithioacetal S-oxide, 526
via keto amines, 64, 65
Aldehydes, 1,4-keto
synthesis
via nickel-catalyzed acylation, 452
Aldehydes, α-methyl-β,γ-unsaturated
reactions with crotylchromium stereoselectivity, 184
Aldehydes, α-(phenylthio)
synthesis, 570
Aldehydes, β-siloxy
NMR, 297
Aldimines
aromatic
reactions with organometallic compounds, 383
chiral
stereochemistry in nucleophilic addition reactions, 359
chiral α,β-unsaturated
reactions with organometallic compounds, 382
Aldol reactions
cerium enolates, 243
mechanism
X-ray structure of intermediates, 4
Aldol-type reactions
α-bromo ketones
with aldehydes, 202
Aldoxime ethers
reactions with organometallic compounds, 385
Alkane-1-boronates, 1-lithio-1-phenylthio-
reactions with carbonyl compounds, 501
Alkanes, 1,1-diboryl-
synthesis, 489
Alkanes, dimesitylboryl(trimethylsilyl)-
 cleavage
synthesis of α-boryl carbanions, 490
Alkanes, 1-lithio-1-(phenylethene)cyano-
reaction with cyclohexenone, 686
Alkanes, α-phenyletheno-nitro-
metallation, 642
Alkanes, tris(dialkoxyboryl)-
synthesis
via production of boron-stabilized carbanions, 489
Alkenations
alkyl-gem-dichromium reagents, 205
carbonyl compounds
phosphorus stabilized, 755
(E)-selective, 758
sulfur stabilized
Julia coupling, 792
Alkenes
conjugated
Peterson alkenation, 789
reactions with ketyls
organosamarium reagents, 268
silicon mediated formation
Peterson alkenes, 782
synthesis
via carbonyl compounds, 729–809
via β-hydroxyalkyl selenides, 700, 721
via Julia coupling, 804
via metal carbene complexes, 807
via organoaluminum reagents, 92
via reaction of boron-stabilized carbanions with ketones, 498
trisubstituted
Julia coupling, 797
synthesis, 779
(E)-Alkenes
synthesis
via Horner–Wadsworth–Emmons reaction, 762
via Julia coupling, 794
(Z)-Alkenes
synthesis
via Horner–Wadsworth–Emmons reaction, 763
Alkenes, 1-bromo-1-(trimethylsilyl)-
cyclization, 589
2-Alkenes, 2-chloro-1,1,1-trifluoro-
Oshima-Takai reaction, 751
Alkenes, disubstituted
synthesis
via Homer reaction, 778
Alkenes, phenylthio-
synthesis
via 1-lithio-1-phenylthioalkane-1-boronates, 501
Alkenyl halides
reactions with ketones
organosamarium compounds, 258
synthesis
via metal carbenecomplexes, 807
1-Alkenyllithiums, 1-seleno-
synthesis, 666
1-Alkenyl metals, 1-seleno-
synthesis, 644
Alkoxides
alkali metal anions
crystal structures, 37
Alkoxides, α-amino-
lithiation
addition reactions, 463
Alkoxylation
α-alkoxy carboxylic acid chlorides
samarium diiodide, 259
N-Alkylamides
acyclic synthesis, 376
Alkylation
boron stabilized carbanions, 495
cyanohydrin ethers, 552
cyanohydrins, 550
Subject Index

α-(dialkylamino)nitrites, 557
1,3-dithiane lithio derivatives, 568
enolates
sterically hindered, 3
phosphonate carbanions, 563
Alkylative amination
aldehydes
alkyltitanium(IV) complexes, 170
Alkyldenation
alkyl-gem-dichromium reagents, 205
Alkyldene transfer
methyleneation versus Tebbe reaction, 749
Alkyl metal, 1,1-bis(seleno)-
reactions with carbonyl compounds, 723
reactions with enals, 686, 687
Alkyl metal, α-seleno-carbonyl compound homologation, 724
functionalized
reactions, 723
reactions with carbonyl compounds, 723
reactions with enals, 683
reactions with enones
regiochemistry, 682
synthesis, 658, 666, 669
via metallation of selenides, 635
Alkyl metals, α-selenoxy-
reactions with carbonyl compounds, 723
reactions with enals, 683
Alkyl metal, 1-silyl-1-seleno-
reactions with carbonyl compounds, 723
Alkynes
reactions with ketenyls
organosamarium compounds, 268
synthesis
via Julia coupling, 802, 805
Alkynes, B,γ-dihydroxy-synthesis
via Payne rearrangement, Lewis acids, 343
Alkynes, stannyl-
reactions with steroidal aldehydes
Cram selective, 335
Alkynyl alcohols
synthesis
via alkynylcerium reagents, 243
Alkynylolation
oxiranes and oxetanes
use of boron trifluoride, 343
Allenic alcohols
synthesis
via samarium diiodide, 257
Allyl alcohols
synthesis, 708
via β-hydroxyalkyl selenides, 721
via organocerium compounds, 235
Allylamines
γ-lithiation, 477
synthesis, 559
via Homer reaction, 774
Allicy acetates
reactions with carbonyl compounds
samarium diiodide, 256
Allicy amides
synthesis
via Homer reaction, 774
Allicy halides
Barbier-type reactions
organosamarium compounds, 256
β-keto esters
cyclization, 265
Allylic phosphate esters
reactions with carbonyl compounds
samarium diiodide, 256
Allylthiol
dianions
reactions with carbonyl compounds, 826
Alumina
catalyst
carbonyl epoxidation, 821
Aluminates, tetraalkyl-
reactions with chiral keto esters
stereoselectivity, 87
Aluminum, alkyl-
addition reactions
masked carbonyl compounds, 88
Aluminum, (2,6-di-r-butyl-4-methyl)phenoxyethyl-
methyl toluate complex
crystal structure, 301
Aluminum, (2,6-di-r-butyl-4-methyl)phenoxyethyl-
ketone complexes, 283
Aluminum, trimethyl-
complex with benzophenone, 78
reaction with benzophenone
role of Lewis acid, 325
reaction with 2,6-di-r-butyl-4-alkylphenol, 78
Aluminum, tris(trimethylsilyl)-
reactions with acyclic enones
site selectivity, 83
Aluminum amides
reactions with esters, 93
Aluminum compounds
Lewis acid complexes
structure, 287
Aluminum hydrazide, dimethyl-
reactions with esters
carboxylic acid hydrazides, 93
Aluminum trichloride
tetramethylurea complex
crystal structure, 301
Amides
alkali metal anions
crystal structures, 37
α-deprotonation, 476
lithiation
addition reactions, 464
lithium enolates
crystal structures, 30
methylenation
Tebbe reaction, 748
reactions with organocopper complexes, 124
reaction with benzophenone dianion
organoytterbium compounds, 280
unsaturated
lithiation, 480
Amides, α-amino-
synthesis
Lewis acid catalysis, 349
Amides, bis(trimethylsilyl)-
crystal structures, 37
Amides, β-hydroxy-
synthesis
via desulfuration, 523
Amides, β-keto-
cyclization reactions
organosamarium compounds, 263
intermolecular pinacolic coupling reactions
organosamarium compounds, 271
Amides, N-methoxy-N-methyl-
acylation with, 399
synthesis
via acid chlorides, 399
α-Amidoalkylation
amides, 371
Amines
enantioselective syntheses
via chiral N,N-dialkylhydrazones, 379
metallation
addition reactions, 463
Amines, N-(aryliothiophenyl)-
synthesis
via tertiary amine precursors, 370
Amines, N,N-bis(trimethylsilyl)-
desilylation
to primary amines, 369
Amines, N-methylene-
reactions with organometallic compounds, 361
Amino acids
acylating agents, 413
Strecker synthesis, 460
synthesis, 373
via Lewis acid catalysis, 349
Amino acids, α-N-hydroxy
synthesis
via oxime ethers, 386
Amino alcohols
diazotization, 846
α-Amino radicals
α-unsaturated
reductive cyclization, 275
Ammonium cyanide, tetrabutyl-
catalyst
benzoin condensation, 543
Amphotericin B
synthesis, 564
via cuprate 1,2-addition, 126
via Horner–Wadsworth–Emmons reaction, 772
via Wittig reaction, 763
Anatoxin-a
synthesis
via acylation of precursor, 403
Androstane, 3-acetyl-3-bromo-
synthesis
via 17β-hydroxy-5α-androstan-3-one, 530
Androstane-3,17-dione
reactions with organometallic reagents
regioselectivity, 152
Androsine-3,17-dione
boron trifluoride complex
NMR, 293
Anhydrides
acylation, 423
tebbe reaction, 743
Anilides
metallation
addition reactions, 463
Aniline
meta metallation
addition reactions, 463
Aniline, N-benzylidene-
reactions with organometallic compounds, 361
reactions with sulfanyl-stabilized carbanions, 515
Aniline pivalamides
ortho lithiation
addition reactions, 464
Anisole, α-lithio-
acylation, 404
Annulation
intramolecular Barbier process
samarium diiodide, 262
[3 + 2] Annulations
allenylsilanes, 596
Antamanide
lithium salt complexes
crystal structure, 300
Antamanide, perhydro-
lithium salt complexes
crystal structure, 300
Anthracyclinone, 11-deoxy-
synthesis
via protected acetaldehyde cyanohydrin, 554
Anthracyclinones
synthesis
via annulation of arynes, 554
Anthramycin
synthesis
via directed lithiation, 469
Anthrquinones
reaction with allylzinc bromide, 218
synthesis
via annulation of arynes, 554
Antibiotic X-206
synthesis
via higher order cuprate, 130
Antofine
synthesis
via selective ortho lithiation, 466
Aobamine
synthesis, 564
Aplasmomycin
synthesis
via oxalate acylation, 425
Arachidonic acid
synthesis
via (Z)-selective alkenation, 758
Arndt/Eistert homologation
diazoalkanes, 844
Aromatic halides
reactions with ketones
organosamarium compounds, 258
Aromatic
synthesis, 566
Arsonium ylides
epoxidation, 825
synthesis, 825
Artemesia ketone
synthesis
via sequential dialkylation, 557
Asperidol
synthesis
via chromium(II) ion mediation, 187
Avermectin B
synthesis
via acylation of alkynide, 419
Avermectins
synthesis, 569
Subject Index

organoauminum promotion, 98
Benzaldehyde
boron trifluoride complex
crystal structure, 300
oxime ether
reactions with butyllithium, 385
reactions with allylic copper reagents, 113
reactions with allylic organometallic compounds, 156
reactions with chromium chloride, 193
reactions with dimethyloxyboryl carbamions, 499
Benzaldehyde, 4-acetylacylation
palladium complex catalysis, 437
Benzaldehyde, 4-t-butyltin(IV) chloride complex
crystal structure, 303
NMR, 294
Benzaldehyde, 4-chloro-reaction with diethylzinc, 216
Benzaldehyde, 4-dimethylaminodichlorodiphenylmethane complex
crystal structure, 305
Benzaldehyde, 4-nitro-reactions with boron-stabilized carbamions
synthesis of alkenes, 499
Benzaldehyde, 3-phenoxy-cyanohydrin
benzoin condensation, 546
Benzamide, N,N-dimethyl-reaction with phenylytterbium(II) iodide
synthesis of benzophenone, 278
Benzamides
lithiation
addition reactions, 464
metallation
addition reactions, 466
Benzene, o-bis(chloromethyl)-tetrahydrofuran complex
crystal structure, 16
Benzene, iodo-reaction with nonanal
crystal structure, 16
Benzene, iodo-reaction with nonanal
chromium(II) chloride catalysis, 193
Benzhydrol
synthesis
via benzophenone and ytterbium, 279
Benzil
reaction with organometallic reagents, 153
Benzimidazoles, 2-allylalcohol-metallated
epoxidation, 829
Benzimidazole, 1-methylquaternary salts
benzoin condensation, catalysis, 543
Benzimidazole, 1-(phenylthiophenyl)-lithiation, 471
Benzo[g]carbazole
lithiation
addition reactions, 463
Benzo[b]furan
synthesis
via intramolecular organochromium reaction, 188
3(2H)-Benzo[b]furanone, 4-(1,3-dithion-2-yl)-
4,5,6,7-tetrahydropyrrrole-synthesis, 566
Benzonic acid, 2,3,4,5-tetrafluoro-
synthesis

via Julia coupling, 797, 801, 802
via organoauminum reagents, 103
via organostannane acylation, 447
Azaalkenes
synthesis
via benzoin condensation, 545
Azaallyl enolates
crystal structures, 28
Azabicyclic alkaloids
synthesis
chiral, 558
Azadienes
reactions with organometallic compounds, 382
2-Azadienes
reactions with organometallic compounds, 383
Azafulvene
dimer
dilithiation, 473
Azetidin-2-ones
α-amidoalkylation, 372
Aziridines
asymmetric synthesis, 837
cleavage
use of Lewis acids, 343
synthesis, 834
via ketoximes, 387
via lithium methyl phenyl sulfoxides, 526
via nitrones, 836
Aziridines, 2-phenylsulfonyl-
synthesis
via aromatic imines, 835
Aziridinium salts
synthesis
via diazoalkanes, 836
Azomethines
deprotonation
minimization, 357
enolizable
reactions with organometallic compounds, 361
nonenolizable
reactions with organometallic compounds, 360
nucleophilic addition reactions
stereochemistry, 358, 362
reactivity
correlation with structure, 357
Azulenes
[3 + 2] annulations, 603
Bactobolin
synthesis, 404
via dichloromethylcerium reagent, 238
Baiyunol
synthesis, 568
Baldulin
synthesis, 564
Barbier-Grignard type addition
alloyh halides
carbonyl compounds, 177
Barbier-type reactions
intermolecular
organosamarium compounds, 256
iron(III) salt catalysts
organosamarium compounds, 257
organosamarium compounds, 255
ytterbium diiodide, 278
Beckmann rearrangements
via Julia coupling, 797, 801, 802
via organoauminum reagents, 103
via organostannane acylation, 447
Subject Index

via carbonation of bis(pentafluorophenyl)ytterbium, 277
Benzoin, deoxy-
reaction with α-selenoalkyllithium, 675
Benzoin condensation, 541–579
catalysts, 543
electrophiles, 544
Benzonitrile acylation
synthesis of acetophenone, 498
Benzophenone
anil
reactions with Grignard reagents, 383
catalyst with trimethylaluminum, 78
ketone dianion
reactions with esters and amides, 280
reactions with boron stabilized carbanions, 498
reactions with dialkoxyboryl stabilized carbanions, 501
reactions with diethylzinc, 216
reactions with trimethylaluminum role of Lewis acid, 325
Benzophenone, dilithio-
crystal structure, 25
Benzoselenophene
metallation, 644
Benzoselenophene, 2-lithio-
synthesis, 668
Benzothiazolium salts
Catalysts
Benzpinacol
synthesis
via triphenylchromium complex, 176
Benzylamine, N,N-dialkyl-
methylation
addition reactions, 463
Benzyllic halides
Barbier-type reactions
organosamarium compounds, 256
Berberines
synthesis
via directed metallation, 463
Bernaminycinic acid
synthesis
via regioselective metallation, 474
Beryllium, dimethyl-
crystal structure, 13
Beryllium acetylide
crystal structure, 21
Beryllium compounds
Lewis acid complexes
structure, 287
Betaines
sulfur ylide reactions
carbonyl epoxidation, 820
Bicyclic alcohols
synthesis
via organoytterbium compounds, 278
via samarium diiodide, 262
Bicycloheptane
deprotonation
α-butyllithium, 10
Bicyclo[4.1.0]heptanes
synthesis, 664
Bicyclo[3.1.0]hexanes
synthesis, 664
Bicyclomycin
synthesis
via Peterson methylation, 732
Bicyclo[2.2.2]octene
synthesis
via cyclization of alkynes, 605
Bicyclo[3.3.0]oct-1(5)-ene-2,6-dione
synthesis, 567
Bicyclooctenone, (siloxymethyl)-
reactions with allylic sulfinyl carbanions, 522
Bicyclo[5.3.1]undecenes
synthesis
via anionic oxy-Cope rearrangement, 884
Biotin
synthesis
via stereocontrolled reaction, 350
Biphenyl
2,2'-dianion
Crystal structure, 25
Biphenyl, 2-amino-
methylation
addition reactions, 463
Bisabolene
synthesis
via Horner reaction, 780
Bisallylic alcohols
tertiary
synthesis, 118
α-Bisabololone
synthesis
via benzoin alkylation, 552
Bis(1,3-dialkylimidazolidin-2-ylidine)
catalyst
benzoin condensation, 543
Bis(thiazolin-2-ylidine)
catalyst
benzoin condensation, 543
Bonds
carbon–zinc, 212
9-Borabicyclo[3.3.1]nonane
synthesis of 1,1-diboryl compounds, 489
9-Borabicyclo[3.3.1]nonane, β-methyl-
reaction with lithium amides
deprotonation, 491
Borane
acrylic acid complexes
structure, 289
formaldehyde complex
rotational barriers, 290
propanal complex
rotational barriers, 290
Borane, allyldimesityl-
reactions with lithium amides, 492
Borane, dicyclohexyl-
synthesis of 1,1-diboryl compounds, 489
Borane, dicyclohexyl-
synthesis of 1,1-diboryl compounds, 489
Borane, dihydroxy[lithio(trimethylallyl) methyl]-
pinacol derivative
acylation, 498
Borane, dimesitylmethyl-
reactions with bases, 492
reactions with styrene oxide, 496
Borane, disiamyl-
synthesis of 1,1-diboryl compounds, 489
Borane, ethylidimesityl-
reactions with epoxides, 497
Borane, α-lithiodimesitylmethyl-acylation, 498
Borane, tristannylmethyl-synthesis, 494
Boranes α-trimethylsilyl-substituted reactions with aldehydes, 501
Boranes, alkenyl-synthesis
via α-trimethylsilyl-substituted boranes, 501
Boranes, alkenyloxy-synthesis
Boranes, alkyldimesityl-reactions with bases, 492
Boranes, vinyl-reactions with organometallic compounds, 492
Boromycin
synthesis, 568
Boron compounds
carbanions
Lewis acid complexes
structure, 287
Boron trifluoride
benzaldehyde complex
crystal structure, 300
dimethyl ether complexes
coordination energy, 290
etherate
organocuprate reactions, 115
ethyl acetate complex
NMR, 292
organolithium reactions
Lewis acid promotion, 329
reactions with organocopper compounds
rate enhancement, 343
reactions with organolithium compounds
alkynylation, 343
Boryl compounds, dimesityl-properties, 492
reactions with epoxides, 496
synthesis, 494
Boryl compounds, ethylenedioxy-organometallic compounds
synthesis, 494
Bostrycoidm
synthesis
Brassinolide
synthesis
Brefeldin A
side chain introduction, 552
synthesis
via Julia coupling, 805
Brefeldin C
synthesis
via diisopropyl phosphonate, Wittig reaction, 763
Brefeldins
synthesis
via alkenylchromium reagents, 200
exo-Brevicomin
synthesis
via zinc chelation, 222
Brevicomin
synthesis
via 1,2-addition of ethylcopper reagents, 134
via Lewis acid mediated Grignard addition, 336
Bromination
boryl-substituted carbanions, 501
Bryostatin
synthesis
via acylation with thiol esters, 434
Bufnomedil
synthesis
via alkylation of cyanohydrin anions, 552
Burseran
synthesis, 566
Butadiene
zirconocene complex
reactions with carbonyl compounds, 163
Butadiene, 2,3-dimethyl-
zirconocene complex
reactions with carbonyl compounds, 163
Butadiene, 2-formyl-
iron tricarbonyl complex
reactions with organocuprates, 115
1,3-Butadienes, 2-(1'-hydroxyalkyl)-
synthesis
via 1-methylselenocyclobutyl lithium, 709
Butanal, 2-ethyl-
reaction with organometallic compounds
chemoselectivity, 148
Butanal, 3-hydroxy-
reaction with tetraaerylzirconium, 157
Butanal, 2-phenyl-
reaction with organometallic reagents
diastereoselectivity, 151
Butane, 3-lithio-1-methoxy-
intramolecular solvated tetramer, 10
Butanoic acid, 3,3-dimethyl-
methyl ester
lithium enolate, crystal structure, 30
Butanoic acid, 2-methyl-3-oxo-
ethyl ester
synthesis via samarium diiodide, 266
Butanoic acid, (4-phenylsulfonyl)-dianion
reactions with imines, 350
2-Butanol, 4-dimethylamino-1,2-diphenyl-3-methyl-
metal complex
aluminum complex
reactions with keto esters, 86
2-Butanol, 1-piperidyl-3,3-dimethyl-
diethylzinc reaction with benzaldehyde, 225
2-Butanone, 3,3-dimethyl-
lithium enolate
X-ray diffraction analysis, 1
reaction with zirconocene/isoprene complex, 163
2-Butanone, 3-methyl-
reaction with crotyltitanium compounds, 158
1-Butanone, 3-methyl-1-(3-methyl-2-furyl)-
synthesis, 553
2-Butanone, 1-(trimethylsilyl)-
synthesis
via acylation of copper reagents, 436
3-Butenal, methyl-2-phenyl-
synthesis, 560
2-Butene, 1-bromo-
reaction with organochromium compounds
Subject Index

anti selectivity, 179
1-Butene, 4-methoxy-
reaction with magnesium hydride, 14
1-Butene, 4-phenyl-
synthesis
via organochromium reagent, 175
3-Buten-1-ol, 1-phenyl-2-methyl-
synthesis
via trihapto-titanium compound, 159
Butenolide anions
reactions with acetals
Lewis acid promoted, 347
Butenolides
synthesis
via ortho lithiation, 472
via oxidation of a cyanohydrin, 551
via Peterson alkenation, 791
t-Butyl alcohol
synthesis
via ethyl acetate, 398
t-Butyl isobutyrate
lithium enolate
crystal structure, 30
t-Butyl propionate
lithium enolate
crystal structure, 30
t-Butyl trimethylsilylacetate
lithium anion
Peterson alkenation, 789
1-Butyne, 3-methyl-3-methoxy-
acylation
nontransferable ligand, 430
Butyric acid, γ-bromo-
reactions with samarium diiodide
lactone synthesis, 259
Butyrolactones
bicyclic
synthesis via samarium diiodide, 269
via ketyl–alkene coupling reaction, 268
γ-Butyrolactones
alkynic ketone synthesis from, 419
γ-Butyrolactones, α-hydroxy-
synthesis
via alkylation of protected cyanohydrin, 552
γ-Butyrolactones, 4,5-trans-disubstituted
synthesis
via 1,2-addition of organocuprates, 110
γ-Butyrolactones, β-keto-
synthesis
via Reformatsky-type reaction, 551
Butyronitrile, phenyl-
synthesis
via organochromium reagent, 175
Cadmium, dicrotyl-
reactions with aldehydes
stereoselectivity, 220
Cadmium, methyl-
addition reactions
chiral aldehydes, 221
Cadmium reagents, alkyl-
addition reactions, 225
Cadmium reagents, aryl-
addition reactions, 225
Calcimycin
synthesis, 568
final step, 409
introduction of 2-keto pyrrole, 409
model system, 410
Camphoric acid, monoperoxy-
oxaziridine synthesis, 838
Capnellene
synthesis
via Tebbe reagent, 748
Capsaicinoids
synthesis
via Julia coupling, 797
Carbacyclins
synthesis
stereoselectivity, 535
Carbanions
alkyl
butyric acid, γ-bromo-
synthesis
via ethyl acetate, 398
aliphatic
alkyl
boron stabilization, 502
crystal structure, 18
allylic sulfanyl
addition reactions with carbonyl compounds, 517
reactions with enones, 520
allylic sulfonyl
reactions with C=X bonds, 529
aryl
alkyl
boron stabilization, 501
crystal structure, 21
bis(dialkoxyboryl) stabilization
reactions with aldehydes, 497
acylation, 497
alkylation, 495
calculations, 487
carboxylation, 498
crystal structure, 488
geometry, 488
halogenation, 501
nonallylic, 494
reactions with aldehydes and ketones, 498
reactions with epoxides, 496
reactions with metal halides, 494
synthesis, 489
crystallization, 41
crystal structures, 8
2D-HOESY NMR, 41
heteroatom-substituted
crystal structure, 34
mixed metal cations
crystal structure, 39
nitrogen stabilization
carbonyl compound addition reactions, 459–482
organochromium(III) equivalents, 174
phosphoryl stabilized
Subject Index

Wittig reaction, 761
selenium stabilized, 629–724
reactions with carbonyl compounds, 672
synthesis, 630, 635
silicon stabilization, 579–625
σ-π-bonded, 583
α-sulfenylated allylic, 508
sulfenyl stabilization, 506
addition to carbonyl compounds, 506
configuration, 506
sulfinyl stabilization, 512
addition to C= N bonds, 515
addition to carbonyl compounds, 513
addition to nonactivated C=C bonds, 516
configuration, 512
sulfonimidoyl stabilization, 531
configuration, 531
reactions with carbonyl compounds, 532
sulfonyl stabilization, 528
configuration, 528
reactions with carbonyl compounds, 529
sulfur stabilization, 505–536
vinyllic
 crystal structure, 19
Carbanions, α-seleno
reaction with carboxylic acid derivatives, 694
synthesis, 655
Carbanions, α-silyl
addition reactions
imines, 624
ambient, 623
crystal structure, 16
functionalized
addition reactions, 621
stabilization
hyperconjugation, 582
synthesis
general methods, 618
Carbapenem
synthesis
via Wittig cyclization, 434
6α-Carbaprostaglandin I2
synthesis
via Johnson sulfoxime reaction, 742
Carbazole aminals
lithiation
addition reactions, 463
Carbenes
chromium complexes
alkene synthesis, 807
metal complexes
alkene synthesis, 807
titanium–zinc complexes
reactions with esters, 809
Carbenes, dihalo-
reaction with enol ethers, 878
Carbenoids
halogen-stabilized
epoxidation, 830
Carbenoids, β-oxido-
rearrangement, 873
Carbinol, diethylphenyl-
synthesis
via triphenylchlorium complex, 176
Carbinols, allylvinyl-
rearrangements, 885
Carbohydrates
nucleophilic addition reactions
stereoselectivity, 55
β-Carbolines
lihiated formamidines
reaction with benzaldehyde, 482
β-Carbolines, 3,4-dihydro-
silylation, 366
Carbonation
organoytterbium compounds, 277
Carbon–nitrogen compounds
1,2-addition reactions
organooctaluminum compounds, 98
Carbonyl compounds
addition reactions
carbanions, 49–74
nitrogen-stabilized carbanions, 460
organochromium compounds, 177
α-silyl phosphonates, 622
sulfur-stabilized carbanions, 506
alkene synthesis from, 730
cyclic
nucleophilic addition reactions, 67
cyclizations
vinylsilanes, 585
enolizable
reaction with organometallic compounds, 150
epoxidation, 819
homologation
α-selenaalkyl metals, 724
Julia coupling
sulfones, 806
Lewis acid complexes, 283–321
σ- versus π-(η²)-bonding, 284
conformation, 285
effects on rate and reactivity, 284
NMR, 292
theoretical studies, 286
X-ray crystallography, 299
masked
addition to alkylaluminum, 88
nonconjugated
addition reactions, 314
nucleophilic addition reactions
chiral auxiliaries, 61
stereocontrol, 150
prochiral
nucleophilic addition reactions, 68
reactions with allenylsilanes
titanium tetrachloride, 595
reactions with allylic sulfinyl carbanions, 517
reactions with α-halo sulfones, 530
reactions with organocerium compounds, 234
reactions with organosamarium 'ate' complexes, 254
reactions with organosamarium(III) reagents, 253
reactions with organotitanium compounds, 145
reactions with organozinc reagents, 215
reactions with organozirconium compounds, 145
reactions with selenium-stabilized carbanions, 672
reactions with α-selenoalkylmetals, 723
reactions with sulfinyl-stabilized carbanions, 513
reactions with sulfonylimidoyl carbanions, 532
reactions with sulfonyl-stabilized carbanions, 529
synthesis
via β-hydroxyalkyl selenides, 712, 714, 721
α,β-unsaturated
addition reactions, 311
1,4-addition reactions, 546, 566
1,4-addition reactions with cyanohydrin ethers, 552
1,4-addition reactions with cyanohydrins, 548
1,4-addition reactions with α-(dialkylamino)nitriles, 556
addition reactions with organometallic compounds, 155
Lewis acid complexes, 287
Lewis acid complexes, NMR, 294
reactions with allenylsilanes, 596
reactions with organocerium compounds, 235, 239
reactions with organometallic compounds, site selectivity, 81

Carbonyl compounds, α-alkoxy
chiral
reaction with organometallic compounds, 153
reactions with organometallic compounds
Lewis acids, 335
Carbonyl compounds, 2-alkoxy-3-trimethylsilylalkenyl
nucleophilic addition reactions, 58
Carbonyl compounds, α-alkyl
nucleophilic addition reactions, 50
Carbonyl compounds, 2-alkyl-3-trimethylsilylalkenyl
nucleophilic addition reactions
stereoselectivity, 58
Carbonyl compounds, α-amino
nucleophilic addition reactions
stereoselectivity, 56
Carbonyl compounds, α-benzylxoy
nucleophilic addition reactions
selectivity, 52
Carbonyl compounds, α,β-dihydroxy
nucleophilic addition reactions
stereoselectivity, 55
Carbonyl compounds, α-halo
nucleophilic addition reactions
selectivity, 50
Carbonyl compounds, α-hydroxy
reactions with organometallic compounds
Lewis acids, 335
synthesis
via cleavage of 1,3-oxathianes, 61
via keto aminals, 64
Carbonyl compounds, α-oxygenated
Wittig reaction
selectivity, 757
Carbonyl compounds, α-seleno
eolates
reactivity, 691
reactions with enals, 686
Carbonyl compounds, α-sulfenyl
reactions with carbonyl compounds, 523
Carbonyl methylation
iodomethylation
samarium diiodide, 261
Carboxylic acid chlorides
reactions with benzylsamarium reagents, 253
Carboxylic acid chlorides, α-alkoxy-
reactions with ketones
samarium diiodide, 259
Carboxylic acids
acylation
preparation of ketones, 411
derivatives
nucleophilic addition, 397–453

Carbonyl compounds, α-alkoxy
chiral
reaction with organometallic compounds, 153
reactions with organometallic compounds
Lewis acids, 335
Carbonyl compounds, 2-alkoxy-3-trimethylsilylalkenyl
nucleophilic addition reactions, 58
Carbonyl compounds, α-alkyl
nucleophilic addition reactions, 50
Carbonyl compounds, 2-alkyl-3-trimethylsilylalkenyl
nucleophilic addition reactions
stereoselectivity, 58
Carbonyl compounds, α-amino
nucleophilic addition reactions
stereoselectivity, 56
Carbonyl compounds, α-benzylxoy
nucleophilic addition reactions
selectivity, 52
Carbonyl compounds, α,β-dihydroxy
nucleophilic addition reactions
stereoselectivity, 55
Carbonyl compounds, α-halo
nucleophilic addition reactions
selectivity, 50
Carbonyl compounds, α-hydroxy
reactions with organometallic compounds
Lewis acids, 335
synthesis
via cleavage of 1,3-oxathianes, 61
via keto aminals, 64
Carbonyl compounds, α-oxygenated
Wittig reaction
selectivity, 757
Carbonyl compounds, α-seleno
eolates
reactivity, 691
reactions with enals, 686
Carbonyl compounds, α-sulfenyl
reactions with carbonyl compounds, 523
Carbonyl methylation
iodomethylation
samarium diiodide, 261
Carboxylic acid chlorides
reactions with benzylsamarium reagents, 253
Carboxylic acid chlorides, α-alkoxy-
reactions with ketones
samarium diiodide, 259
Carboxylic acids
acylation
preparation of ketones, 411
derivatives
nucleophilic addition, 397–453

reactions with organoaluminum reagents, 92
reactions with α-seleno carbonates, 694
2-[(2-methoxyethyl)pyridyl] ester
acylating agent, 453
synthesis
via organoytterbium compounds, 277
Carboxylic acids, α,β-epoxy-
synthesis
via sulfur ylide reagents, 822
Carboxylic acids, α-hydroxy-
asymmetric synthesis
from chiral α-keto esters, 49
chiral
synthesis, 86
synthesis, 62
enantiomerically enriched, 66
via organoytterbium compounds, 280
Carboxylic acids, α-seleno-
methallation, 642
Carboxylic esters, 4-oxo-
synthesis
via benzoin condensation, 542
Carboxymethyleniminium salts
acylation, 423
Carminomycinone, 11-deoxy-
synthesis
via ortho lithiation, 464
Cembranolides
synthesis
via Horner–Wadsworth–Emmons reaction, 772
Cerium, alkynyl-
reactions with enones, 240
Cerium, allyl-
in synthesis, 237
Cerium, alkyne-
reactions, 242
Cerium, allyl-
synthesis, 239
Cerium, aryl-
reactions with enones, 240
Cerium, trimethylsilylilithinyl-
reactions, 242
Cerium, trimethylsilylmethyl-
synthesis, 238
Cerium, α-trimethylsilylvinyl-
reactions with enones, 240
Cerium chloride
Grignard reagent system, 244
preparation, 232
Cerium enolates
synthesis, 243
Ceroplastol II
synthesis
via allyl chromium reagents, 187
Ceroruberenic acid
synthesis
via methylenation and thermolysis, 740
Chain extension, 843–899
Chinensin
synthesis
via ortho directed addition, 468
Chokol A
synthesis
via methylcerium reagent, 237
Cholestane, 3β-alkyl-
synthesis
via alkyllithium addition, 377

5α-Cholestane-3-one
reactions with organometallic reagents
equatorial or axial, 152
tosylhydrazone
reactions with alkyllithium compounds, 377

Δ3-Cholestene, 3-methylene-
synthesis
via ketone methylenation, 506

Chromium, α-acyl-
reactions, 202
Chromium, alkenyl-
intramolecular addition reactions, 200
reactions, 193
Chromium, γ-alkoxyallylic
reactions with aldehydes, 185, 190
Chromium, alkyl-
addition to carbonyl compounds, 202
Chromium, alkyl-gem-di-
alkenation, 205
Chromium, allyl-
asymmetric induction, 187
enantioselective addition reactions, 192
intramolecular addition reactions, 187
reactions
1,2-asymmetric induction, 179
carbonyl addition, 177
substituted substrates, 189
Chromium, benzyl-
reaction with acrylonitrile, 175
Chromium, crotyl-
2,3-asymmetric induction, 181
reactions
carbonyl addition, 177
synthesis, 179
Chromium dichlorotris(tetrahydrofuran)alkyl-
synthesis, 202
Chromium, dichlorotris(tetrahydrofuran)-p-tolyl-
synthesis, 174
Chromium, methallyl-
reactions
carbonyl addition, 177
Chromium, propargyl-
reactions
carbonyl addition, 177
with carbonyl compounds, 191
Chromium α-thiolakyl-
synthesis, 202
Chromium, triphenyltris(tetrahydrofuran)-
reaction with carbon monoxide
benzpinacol synthesis, 175
synthesis, 174
Chromium complexes
chiral
iminies, 364
octahedral configuration, 179
Chromium perchlorate, benzylpentaquo-
synthesis, 174
Chromium salts
organochromium compound synthesis from, 174
Cinnamaldehyde
dicarbonyl(triphenylphosphine)iron complexes
crystal structure, 309
reaction with diethylzinc, 217
reaction with organocopper compounds, 113
Colletodiol
synthesis
via Horner–Wadsworth–Emmons reaction, 769
Confertifolin
synthesis, 570
Conhydrine
synthesis, 555
Conine
synthesis, 559
Copper, alkyl-
reactions with aldimines
Lewis acid pretreatment, 350
Copper, allyl-
magnesium bromide reagent
reactions with α,β-dialkoxy aldehydes, 109
Copper, crotyl-
reaction with benzaldehyde, 113
Copper, (isopropylthio)allyl-
reactions with acetone, 508
Copper, γ-silylated vinyl-
acylation of, 428
Copper, α-trimethylsililylmethyl-
acylation of, 436
Corey–Chaykovsky reaction
addition of methylene group to carbonyl compounds
dimethyloxosulphonium methylide, 820
Coriolin
synthesis
via tandem radical cyclization, 270
Coronafacic acid
synthesis
via α-silyl carbani ons, 783
Corticosteroids
synthesis
via acylation of organolithiums, 412
Corydalisol
synthesis, 564
Costusolide
synthesis
via acylation of organolithiums, 412
Corticosteroids
synthesis
via chromium(II) ion mediation, 188
via cyclization, 553
Counarin
synthesis of derivatives
via arylcerium reagents, 242
Crotonaldehyde
Lewis acid complexes
NMR, 294
Crotyl bromide
reaction with benzaldehyde
chromium dichloride mediated, 179
Crotyl halides
addition to α-alkoxy chiral aldehydes
chromium mediated, 185
Crown ethers
1,2-additions to carbonyl compounds
lower order cuprates, 115
reactions with organometallic compounds
Lewis acids, 335
Cryptopleurine
synthesis
via selective ortho lithiation, 466
Cryptopleurotopspermine
synthesis, 564
Crystal growth
carbanions, 40
Cubane amides
liithiation, 480
Cubebin
synthesis, 566
Cuparene
synthesis, unsuccessful
diastereoselectivity, 150
β-Cuparenone
synthesis
via conjugate addition of aryl
cyanohydrin, 552
Cuprates (see also under Lithium and Diliithium
compounds)
carbonions
structure, 40
Cuprates, vinyl-
acylation of, 428
Cyanides
addition reactions
carbonyl compounds, 460
polymer-supported catalyst
benzoin condensation, 543
Cyanohydrin esters
reactions with carbonyl compounds, 551
Cyanohydrin ethers
reactions with carbonyl compounds, 551
Cyanohydrins
chiral
benzoin condensation, 546
optically active
synthesis, 347
protected, 544
O-protected
benzoin condensation, 547
O-silyl-protected
benzoin condensation, 548
Cyanophosphates
acyl anion equivalents, 544, 560
Cycloalkadienes
molybdenum complexes
reactions with N-substituted sulfoximine
carbonions, 535
Cycloalkanones, alkylidene-
synthesis, 669
Cycloalkanones
boron trifluoride complex
NMR, 293
Cycloalkanones, 2,3-dihydroxy-
synthesis
via 2-cycloalkenones, 534
Cycloalkencarbaldehyde
aldimes
reactions with Grignard compounds, 382
Cycloalkenones, epoxy-
nucleophilic reactions
Lewis acids, 343
Cycloalkenones
synthesis, 669
Cycloaraneosine
synthesis
via allyl chromium reagents, 187
Cycloaranesine
synthesis
via chromium-initiated cyclization, 188
Cyclobutane, 1-cyano-1-(methylthio)-
synthesis, 561
Cyclobutane, octylidene-
synthesis, 653
Cyclobutanol, 1-(1’-alkenyl)-
synthesis, 709
Cyclobutanols
ring strain
relief, 887
Cyclobutanone, permethyl-
reaction with α-selenoalkyllithium, 674
Cyclobutanones
epoxydes
rearrangements, 862
reactions with diazomethane, 848
2,6-Cyclodecadienones
synthesis
via cyclization, 553
Cycloextrins
catalysts
benzoin condensation, 543
Cyclooctadecanone, 1-bromo-
reaction with methyl iodide, 202
Cycloheptanone, 2-methyl-
synthesis
via ring expansion, 851
Cycloheptanone, 2-phenyl-
synthesis
via ring expansion, 851
Cycloheptatriencarboxamide, N,N-dimethyl-
lithium enolate
crystal structure, 32
Cycloheptenones, 2-chloro-
synthesis, 878
Cyclohexane, 1-bromo-4-τ-butyl-
cyanohydrins, 550
Cyclohexane, methylene-
synthesis
via boron-stabilized carbonions, 498
Cyclohexanecarbomitrile, 1-piperidino-
reactions with Grignard reagents, 370
Cyclohexanone, 2-allyl-
expansion with diazomethane, 851
Cyclohexanone, 2-bromo-
reaction with bromoacetophenone, 202
Cyclohexanone, 4-τ-butyl-
nucleophilic addition reactions
equatorial or axial, 152
methyl lithium, 316
organometallic compounds, 156
use of Lewis acid, 283
reactions with α-butyl lithium–ytterbium trichloride, 276
reactions with methyl lithium
stereoselectivity, 79
reactions with methyl zinc, 223
reactions with organocadmium compounds, 226
reactions with organometallic compounds
Lewis acids, 333
stereoselectivity, 333
reactions with α-selenoalkyllithium
stereoisomery, 677
synthesis
via 4-τ-butyl-1-ethylidencyclohexane, 535
Cyclohexanone, 2-isopropyl-
expansion with diazomethane, 851
Cyclohexanone, 2-methoxy-
titanium chloride complex
Subject Index

NMR, 295
Cyclohexanone, 2-methoxycarbonyl-
N,N-dimethylhydrazone
lithiated anion, crystal structure, 34
Cyclohexanone, methyl-
reactions with organolithium compounds
Lewis acids, 333
Cyclohexanone, 2-methyl-
ring expansion, 873
with diazomethane, 851
Cyclohexanone, β-silyl-
synthesis
via α,β-unsaturated acylsilanes, 598
Cyclohexanone, 2,2,6,6-tetramethyl-
synthesis
via intramolecular Barbier cyclization, 264
Cyclohexanone, 2,2,6-trimethyl-
stereochemistry, 677
cyclodecenones from, 880
Cyclohexanonephenylimine, lithio-
Cyclohexanones
keto aldehydes from, 461
lithiated dimethylhydrazine
lithium salts, 315
stereoselectivity, 67
reactions with alkyl lithium and alkyl Grignard reagents
stereoselectivity, 79
reactions with boron stabilized carbanions, 498
reactions with 2-bromoocctane
samarium diiodide, 259
reactions with dialkoxoyboryl stabilized carbanions, 501
reactions with diazomethane, 850
reactions with organometallic compounds
stereoselectivity, 333
substituted
expansion with ethyl diazoacetate, 853
nucleophilic addition reactions, 67
Cyclohexanones, 2,3-dihydroxy-3,5,5-trimethyl-
synthesis
via thermolysis of triols, 534
Cyclohexene, 1-acetyl-
synthesis, 430
1-Cyclohexeneacetaldehyde, 3-hydroxy-
synthesis, 564
1-Cyclohexeneacetonitrile
reactions with Yamamoto’s reagent, 124
2-Cyclohexene
boron trifluoride complex
NMR, 293, 294
reaction with α-cyanobenzyl lithium, 235
reaction with organometallic reagents, 155
Cyclohexen-2-one
addition reactions
Lewis acid catalysis, 313
lithium enolates
methylation, 688
reactions with organoaluminum reagents
site selectivity, 82, 85, 95
synthesis, 383
Cyclohexenones, methyl-
reaction with 1,1-bis(methylseleno)-1-propyllithium, 689
2-Cyclopentadecanone
synthesis
via cyclization, 553
Cyclopentane
annulation, 892
Cyclopentane, benzylidene-
synthesis, 663
Cyclopentanecarboxylates, 2-hydroxy-
synthesis
via intramolecular Barbier cyclization, 264
Cyclopentanols
synthesis
via samarium diiodide, 261
Cyclopentanols, divinyl-
rearrangements, 881
Cyclopentanone, 3-formyl-
synthesis, 527
Cyclopentanone, permethyl-
reaction with α-selenoalkyllithium, 674
Cyclopentanone, 2-phenyl-
reaction with organometallic compounds, 150
Cyclopentanones
annulation
intramolecular Barbier process, 262
boron trifluoride complex
NMR, 293
lithium enolates
crystal structure, 26
X-ray diffraction analysis, 1, 3
reactions with ethyl diazoacetate, 849
reactions with organoaluminum reagents
stereoselectivity, 79
substituted
nucleophilic addition reactions, 67
synthesis, 862
Cyclopentene, (trimethylsilyl)-
annulations, 596
Cyclopentenes
synthesis
via reaction of allenylsilanes with α,β-unsaturated carbonyl compounds, 596
2-Cyclopentenone, 2-(6-methoxycarbonyl)-1-hexyl-
reactions with dithioacetal oxides, 528
Cyclopentenones
annulations
regiospecific, 584
reaction with 1-phenylselenoallyllithium
regiochemical control, 691
4-substituted
reactions with allylic sulfinyl carbanions, 521
synthesis, 555
via divinyl ketones, 430
via three-carbon annulation, 548
Cyclopropane
lithiation, 480
Cyclopropane, 1-(1′-hydroxalkyl)-1-(methylseleno)-
rearrangement, 717
Cyclopropane, alkylidene-
synthesis, 652
Cyclopropane, allylidene-
synthesis, 652
via Peterson alkenation, 786
Cyclopropane, 1,1-bis(phenylseleno)-
synthesis, 638
Cyclopropane, 1,1-bis(seleno)-
synthesis, 657
Cyclopropane, bromo-
reaction with lithium in diethyl ether
crystal structure, 10
Cyclopropane, 1-oxido-1-(1'-phenylselenoalkyl)-
rearrangement, 715
Cyclopropane, 1-phenyl-1-methyleno-
synthesis, 669
Cyclopropane, 1-phenyl-2,3-phenacyl-
metallation, 641
Cyclopropane, trialkylsilyloxy-
rearrangement, 879
1-Cyclopropanecarboxylic acid, 2-hydroxymethyl-
1-aminono-
synthesis, 559
Cyclopropanols
rearrangement, 874
synthesis
via organosamarium compounds, 261
Cyclopropanone, 2,3-dimethyl-
Lewis acid complexes
structure, 287
Cyclopropanones
reactions with diazomethane, 847
Cycloproparenes
synthesis
via Peterson alkenation, 786
Cyclopropylselenenyl anions
synthesis, 828
Cytochalasin
synthesis
via SmI2-promoted macrocyclization, 266
Cytovaricin
synthesis, 401
α-Damascone
synthesis
via Grignard reagent and base, 417
Daunomycinone
synthesis
via alkynylcerium reagents, 242
via annulation, 554
Daunomycinone, 7-deoxy-
synthesis
via chiral acetics, 64
Daunomycinone, 11-deoxy-
synthesis, 567
Daunosamine
synthesis, 349
Deltamethrin
synthesis
via chiral cyanohydrins, 546
Deplancheine
synthesis
via iminium ion–vinylsilane cyclization, 592
Diamines
chiral catalysts
enantioselective addition of alkylthiolium to aldehydes, 72
1,3,2-Diazaphosphorinane, 2-benzyl-2-oxo-
lithium carbamion
crystal structure, 36
Diaziridines
synthesis
via imines and oximes, 838
Diazirines
synthesis
via imines and oximes, 838
Diazomethane, α-acyl-
reactions with aliphatic ketones
hydroxide-catalyzed, 846
Diazomethane, phenylsulfonyl-
reactions with cyclohexanones, 851
Diazomethane, trimethylsilyl-
trifluoroborane complex
2-methylcyclohexanone homologation, 851
Dibenzophosphate oxide
Horner reaction, 776
Dibenzophosphate ylides
alkene synthesis
(E)-selective, 758
1,1-Diboryl compounds
synthesis and cleavage, 489
Dibromohydrins
rearrangement, 874
Dicarboxyl compounds
methylenation
Tebbe reagent, 743
Dichlorohydrins
rearrangement, 873
Diels–Alder reaction
anthracene with maleic anhydride
aluminum chloride catalysis, 284
asymmetric
mechanisms, 311
Dienes
synthesis
via β-hydroxyalkyl selenides, 705
via Julia coupling, 800
(E,Z)-Dienes
synthesis
via Horner reaction, 779
1,7-Dienes
synthesis, 663
Dienes, silyloxy-
synthesis
via γ-silylated vinylcopper, 428
β,β'-Dienols
synthesis
via oxidation of β-hydroxy-γ-alkenyl selenides, 709
β,β'-Dienols
synthesis
via 1-lithio-3-alkenyl phenyl selenoxides, 709
Diethyl phthalate
titanium tetrachloride complex
crystal structure, 303
Dihalohydrins
rearrangement, 873
1,2-Diketones
synthesis
via acylstannanes, 438
via benzoim condensation, 546
via organosamarium compounds, 273
1,4-Diketones
synthesis
via acylation of organozincs, 448
via benzoin condensation, 542
via nickel-catalyzed acylation, 452
1.5-Diketones
synthesis, 558
via acylation of organozincs, 448
Dilithium cyanocuprates
1,2-additions, 107
Dilithium trialkylcuprates
reactions with toslylhydrazones, 378
Diols
synthesis
chiral, 66
1,2-Diols
erythro
synthesis, 191
synthesis
via dimesitylboryl carbanions, 499
1,3-Diols
synthesis
via reaction of epoxides with boron-stabilized carbanions, 497
Diorganozinc reagents
enantioselective addition reactions, 223
1,3-Dioxanes
chiral carbonyl equivalent
Lewis acid promoted reactions, 347
1,3-Dioxathiane
nucleophilic addition reactions
chiral auxiliary, 62
Dioxiranes
synthesis
via potassium peroxyxymonosulfate, 834
1,3-Dioxolane, 2-(2-bromoethyl)-
Grignard reagents
acylation, 452
Diselenoacetals
acyl anion equivalents, 571
Diterpenoids
Horner–Wadsworth–Emmons reaction, 763
1,3-Dithiane, 2-aryl-
reaction with 2-cyclohexenone, 511
1,3-Dithiane, 2-ethylidene-
allyllithium derivative
reaction with aldehydes, 511
1,3-Dithiane, 2-hydroxymethyl-
carbonanions
reactions with epoxycyclohexanone, 511
1,3-Dithiane, 2-phenyl-
carbonanions, 511
1,3-Dithiane, 2-(1-propen-1-yl)-
crotyllithium derivative
reactions with aldehydes, 512
1,3-Dithiane S,S'-dioxides
reaction with butyllithium, 526
1,3-Dithiinanes
acyl anion equivalents, 563
carbonanions
crystal structure, 36
formyl anion equivalents, 510
Dithioacetals S,S'-dioxides
additions to C=X bonds, 526
Dithioacetals S-oxides
additions to C=X bonds, 526
Dithioacetals
acyl anion equivalents, 544, 563
vinylsilane terminated cyclizations, 586
Dithiocarbamates, S-(dialkylaminomethyl)-iminium salts
generation in situ, 370
9,11-Dodecadien-1-yl acetate
synthesis, 680
Dodecanedioic acid, 4.9-dioxo-
synthesis
via dialdehydes, 547
Dodecylamine, dimethyl-
α-deprotonation, 476
D-Dopa
synthesis
via L-serine, 413
Elaeokanines
synthesis
via acylaminium ion terminated cyclization, 592
via pyrolytic dehydrosulfinylation, 515
Elaiphylin
synthesis, 569
Eldanolide
synthesis, 565
via cerium reagents, 240
Enamines, α-chloro-
reaction with carboxylic acids, 424
Enoates
reactions with α-selenoalkyl metals
regiochemistry, 682
Enolates
reaction transition states
stereochemistry, 2
Enolates, aluminum
masked
facially selective sigmatropic protocol, 91
Enol phosphates
1,2-addition reactions
organoauminum compounds, 92
Enols
reactions with α-selenoalkyl metals
regiochemistry, 682
Enol triflates
vinyl carbanion equivalents, 195
Enones
acyclic
reaction with tris(trimethylsilyl)aluminum, 83
asymmetric reduction
Lewis acid coordination, 319
conjugated
Barbier reaction, 263
reactions with allylic sulfinyl carbanions, 520
reactions with α-selenoalkyl metals
regiochemistry, 682
β,γ-Enones
reactions with organocerium reagents, 240
Ephedrine
synthesis
via benzoin condensation, 543
4-Epibrefeldin C
synthesis
via alkylchromium reagents, 200
Epiewesine
synthesis
via iminium ion–vinylsilane cyclization, 592
Epoxidation, 819–839
intramolecular, 822
Epoxydes
 cleavage
 samarium triiodide, 260
 reactions with dialkoxyboryl carbanions, 496
 reactions with lithiodithiane, 569
 reactions with organometallic compounds, 233
 reactions with organometallic compounds
 Lewis acid promotion, 342
 synthesis
 via 1-chloroalkyl p-tolyl sulfoxide, 526
 via β-hydroxyalkyl selenides, 712, 718, 721
Erythronolide A
 synthesis, 430
 via sulfur ylide reagents, 824
Erythronolide B
 synthesis, 430
Erythronolide B, 6-deoxy-
 synthesis
 via cuprate acylation, 436
Erythronolides
 synthesis, 564
 via Grignard addition, 408
 via Horner–Wadsworth–Emmons reaction, 772
 via reactions of organocuprates and homochiral aldehydes, 125
 via Wittig reaction, 757
Esters
 acylation of organometallic reagents, 416
 boron trifluoride complex
 NMR, 292
 epoxide synthesis
 diazomethane, 832
 Julia coupling, 803
 lithium enolates
 crystal structures, 30
 methylation
 Tebbe reaction, 747
 reactions with benzophenone dianion
 organoytterbium compounds, 280
 reactions with organoaluminum reagents, 92
 α,β-unsaturated
 reactions with 1,1-bis(seleno)alkyllithium, 694
 synthesis from β-hydroxyalkyl selenides, 705
Esters, bis(trimethylsilyl)
 Peterson alkenation, 791
Esters, α-fluoro-α,β-unsaturated
 Oshima–Takai reaction, 751
Esters, α-hydroxy
 chiral
 synthesis, 66, 86
 via organoaluminum reagents, 84
Esters, α-keto
 intermolecular pinacolic coupling reactions
 organosamarium compounds, 271
 intramolecular Barbier cyclization
 samarium diiodide, 264
Esters, α-seleno
 metallation, 642
 Ethane, dimethoxy-
 alkali metal stabilized carbanions
 crystal structure, 5
 Ethanol, 2-phenylthio-1,2-diphenyl-
 synthesis
 via benzyl phenyl sulfide, 506
Ether, benzyl chloromethyl
 reaction with carbonyl compounds
 samarium diiodide, 259
Ether, dimethyl
 boron trifluoride complexes
 coordination energy, 290
Ether, α-(tetrahydropyranyl)
 nucleophilic addition reactions, 51
Ethers, N,N-(disubstituted)aminomethyl
 reactions with Grignard reagents, 368
Ethers, vinyl
 synthesis
 via β-hydroxyalkyl selenides, 705
Ethoxycarbonylation
 dimesitylboron stabilized carbamion, 498
Ethyl acetate
 reaction with bromomethylmagnesium, 398
 titanium tetrachloride complex
 crystal structure, 302
Ethyl acetate, 2-methoxy-
 boron trifluoride complex
 NMR, 293
Ethyl anisate
 titanium tetrachloride complex
 crystal structure, 303
Ethyl camphanate
 tin(IV) chloride complex
 crystal structure, 305
Ethyl diazoacetate
 reactions with ketones
 Lewis acid catalyzed, 846
Ethylene, 1-dimesitylboryl-1-trimethylsilyl-
 reactions with organometallic compounds, 492
Ethynediame, N,N,N′,N′-tetramethyl-
 alkali metal stabilized carbanions
 crystal structure, 5
 deprotonation, 476
Ethyl levulinate
 reaction with ate complexes, 156
 reaction with methyltinanium triisopropoxide, 141
Ethyl (trimethylsilyl)acetate
 Peterson alkenation, 789
Exaltone
 synthesis, 570
Euryfuran
 synthesis, 570
Ferensimycin
 synthesis
 via cyclization, 553
 via intramolecular Barbier reaction, 262
1-Fenchone
 Tebbe reaction, 743
Finkelstein-type reaction
 alkyl tosylates
 organosamarium compounds, 257
FK-506
 synthesis, 799
 via acylation of dithiane, 425
 via N-methoxy-N-methylamide chemistry, 402
 Finkelstein-type reaction
 alkyl tosylates
 organosamarium compounds, 257
Fluorene, 9,9-disubstituted
synthesis
via alkyllylithium addition, 377

Fluorenone

tosylhydrazone
reactions with alkyllylithium, 377

Fluoromethylenation
carbonyl compounds
sulfoximines, 741

Formaldehyde
borane complexes
rotational barriers, 290
lithium salt complexes
theoretical studies, 286
proton complexes
theoretical studies, 286
reaction with water
Lewis acids, 315

Formaldehyde dimethyl dithioacetal S-oxide
reaction with carbonyl compounds, 526

Formaldehyde dithioacetals
formal anion equivalents, 510

Formaldehyde di-p-tolyl dithioacetal S-oxide
reaction with enones, 527
synthesis
via methyl p-toluenesulfinate, 526

Formaldehyde imines
trimerization, 361

Formaldehyde ethers
reactions with organometallic compounds, 385
Formamidamides, N-trimethylsilyl-N-alkyl-
reactions with organocuprates complexes, 124
Formamidamides
lithiation, 482

Formylation
carbonyl compounds
samarium diiodide, 274

Forskolin
synthesis
via alkynide addition, 421

FrONTAL
synthesis
via chiral auxiliary, 65

Furan, alkylidenetetrahydro-
etrasubstituted
synthesis, 591

Furan, 2-(bromomethyl)tetrahydro-
reaction with ketones
samarium diiodide, 259

Furan, dihydro-
synthesis
via allenylsilanes, 599

Furan, 2-methyltetrahydro-
nucleophilic addition reactions
Grignard reagents, 72

Furan, tetrahydro-
anannulation, 891

Furanal, tetrahydro-
nucleophilic addition reactions
selectivity, 53

Furancembraloides
synthesis
(Z)-selectivity, 767

Furanones
synthesis
via palladium(II)-catalyzed acylation, 450

Furan-2(5H)-ones
5-substituted
synthesis, 514

Furans
lithiation, 472

Furlylamine, tetrahydro-
chiral catalysts
nucleophilic addition reactions, 72

Fusicoccar-2,8,10-triene
synthesis
via allyl chromium reagents, 187

Gallium, trimethyl-
reactions with epoxides
Lewis acid, catalytic, 343

Gascardic acid
synthesis
via Johnson methylenation, 738

Geissoschizine
synthesis, 593

Gephyrotoxin-223AB
synthesis, 559
via organoauminum-promoted Beckmann
rearrangement, 104

Germacranes
synthesis
via oxy-Cope rearrangement, 882

Germacrene, dihydro-
synthesis, 561

Germacrone
synthesis
via cyclization, 553

Germacrone lactones
synthesis
via cyclization, 553

Gibberellins
synthesis
carbonyl methylenation step, 749

Gilman cuprates
1,2-additions, 107
reactions with ketones
comparison with aldehydes, 116

Gingerol
synthesis
via α-sulfinyl hydrazones, 524

Gloeosporone
synthesis, 568
via lactone acylation, 420

Glucopyranolactones
alkynic ketone synthesis from, 419

Glutamic acid, 3-hydroxy-
synthesis, 119

l-Glyceraldehyde
synthesis, 568

L-Glyceraldehyde
synthesis, 568

Glyceraldehyde, cyclohexylidene-
nucleophilic addition reactions
stereoselectivity, 55

Glyceraldehyde, 2,3-O,O-dibenzyl-
nucleophilic addition reactions
stereoselectivity, 55

Glyceraldehyde, 2,3-O-isopropylidene-
nucleophilic addition reactions, 53
reactions with crotyl bromide/chromium(II) chloride, 185
reactions with organocuprates, 110
reactions with organometallic compounds, 153
Lewis acids, 339
Glyceraldehyde acetone N,N-dimethylhydrazone
reactions with organocopper complexes, 121
Glycine, α-halo-N-(b-butoxy carbonyl)-
electrophilic glycinates, 373
Glycosides
synthesis
via alkenylchromium reagents, 198
Glycosides, C-methyl-
synthesis
via alkenylchromium reagents, 198
Glyoxylates
menthyl
N-substituted imines, organometallic addition
reactions, 363
β-Gorgonene
synthesis
via Peterson alkenation, 731
Granaticin
synthesis
via annulation, 554
via organoaluminum reagents, 101
Grignard reactions
abnormal, 244
Grignard reagents
acylation, 399
asymmetric
nucleophilic addition reactions, 69
cericum chloride system, 244
crystal structure, 13
nucleophilic addition reactions
α-alkoxy acyclic ketones, 50
carbonyl compounds, 49
chiral ketones, 58
reaction with α-alkoxy acyclic ketones
cyclic chelate model, 51
Grignard reagents, alkyl
reaction with cyclohexanone
stereoselectivity, 79
Haagenolide
synthesis
via cyclization, 553
Halides
carbonations
crystal structure, 38
organic
reactions with organocerium compounds, 233
Halogenation
boryl-substituted carbonations, 501
Halomethylation
carbonyl compounds
samarium diiodide, 260
6-Henicosen-11-one
synthesis, 563
Heptanal
reaction with allylic organometallic compounds, 156
Heptane, 1-methylseleno-
synthesis, 663
Heptanoic acid, 4-amino-3-hydroxy-6-methyl-
synthesis, 119
Heptan-2-one
reaction with allylic organometallic compounds, 156
Heterocuprates
acylation, 431
Hexadecan-5-olide, 6-acetoxy-
synthesis
via Payne rearrangement, Lewis acids, 343
Hexadecatrienial
synthesis
via vinyl iodides, 808
2,4-Hexadiene
zirconocene complex
reactions with carbonyl compounds, 163
Hexane, 3-chloro-1,1-bis(methylseleno)-
metallation, 638
Hexane, 3-chloro-1,1-bis(phenylseleno)-
metallation, 638
2-Hexenal
reaction with organoaluminum reagents
site selectivity, 85
reaction with organometallic compounds
chemoselectivity, 148
4-Hexenoic acid, 2-acetyl-2-methyl-6-bromo-
ethyl ester
cyclization, 266
Himachalene
synthesis, 558
Hinokinin
synthesis, 566
Histrionicotoxin, perhydro-
structure, 364
Homofemascene
synthesis, 568
Homopropargylic alcohols
synthesis
via allenylsilanes and carbonyl compounds, 595
via samarium diiodide, 257
Homo-tyrosine
synthesis
via oxalate esters, 425
Homer reaction
phosphine oxides, 761, 773
Homer–Wadsworth–Emmons reaction
asymmetric, 773
mechanism, 761
phosphonate carbanion
reaction with carbonyl derivative, 761
(E)-selectivity
phosphonate size, 762
Humulene
synthesis
via cyclization, 553
Hydrangenol
synthesis
via directed lithiation, 477
Hydrazone, bis(tosyl)-
reactions with organocopper complexes, 122
Hydrazones
aziridine synthesis, 835
reactions with organocerium reagents
diastereoselectivity, 239
reactions with organometallic compounds, 377
SAMP
optically pure amine synthesis, 380
Hydrazones, α-alkoxy-
acrylic
reactions with organocopper reagents, 121
Hydrazones, N,N-dialkyl-
chiral
reactions with organometallic compounds, 379
Hydrazones, tosyl-
Subject Index

reactions with organometallic compounds, 377

Hydroxamic acid
- N-acylimines
 - reactions with organometallic compounds, 376

Hydroxylamines
- N,N-disubstituted
 - reactions with organometallic compounds, 391

Hydroxyymethylation
- samarium diiodide
 - Barbier-type reaction, 259

Hypnophilin
- synthesis, 564
 - via tandem radical cyclization, 270

Ikarugamicin
- synthesis
 - (Z)-selectivity via Wittig reaction, 765

Imidazoles
- N-alkyl
 - lithiation, 477
 - metallation
 - addition reactions, 471
 - 1,2,4-trisubstituted
 - N-acylimines from, 376

Imidazoles, acyl-acylation, 423

Imidazoles, 1-benzyl-2-alkyl-4,5-dihydro-methiodide salt
 - reactions with organometallic compounds, 366

Imidazolidine, 1,3-dimethyl-2-phenyl-lithiation
 - addition reactions, 463

Imidazol-2-one, N-phenyl-metallation, 464

Imines
- activated
 - reactions with allenylsilanes, 602
 - synthesis of substituted amines, 357
- cyclic
 - reactions with organometallic compounds, 364
 - deprotonation
 - regioselectivity, 357
- electrophilicity
 - methods for increase, 357
 - nucleophilic addition reactions, 355–393
 - oxidation
 - mechanism, 837
 - proton abstraction, 356
 - reactions with organocerium compounds, 236
 - reactions with organocopper complexes, 119
 - reactions with organometallic compounds, 360
 - Lewis acid promotion, 349
 - reactions with α-silylbenzylic anions, 624
 - reactions with sulfanyl-stabilized carbanions, 515
 - reactions with ylides, 835
 - synthesis
 - via reactions of amides and organocuprates, 124

Imines, N-acyl-
 - reactions with organocopper complexes, 122
 - reactions with organometallic compounds, 371, 373
 - reactivity, 371

Imines, N-trialkylsilyl-
 - enolizable carbonyl compounds
 - reactions with organometallic compounds, 391

Imines, N-trimethylsilyl-
 - in situ synthesis, 390
 - reactions with organometallic compounds, 390

Iminium chlorides, aci-nitro-
 - reactions with organocopper complexes
 - synthesis of ketoximes, 121

Iminium salts
- in situ generation, 367
 - reactions with organometallic compounds, 365
 - silicon stabilization
 - cyclizations, 592
 - trimethylsilyl
 - nucleophilic addition, 391
 - α-unsaturated
 - reduction by samarium diiodide, 275

Iminium salts, N-acyl-
 - reactions with allenylsilanes, 598
 - reactions with organometallic compounds, 371, 373
 - reactivity, 371
 - silicon stabilization
 - cyclizations, 592

Indanomycin
- synthesis
 - via cuprate 1,2-addition, 126

Indole
- meta metallation
 - addition reactions, 463

Indole, dihydro-
 - lithiated formamidines
 - reaction with benzaldehyde, 482

Indole alkaloids
- synthesis
 - via oxaziridines, 838

Indoles
- 2-substituted
 - lithiation, 474
- N-substituted
 - lithiation, 473
 - synthesis
 - via nitrogen-stabilized carbanions, 464

1H-Indoles, 3-(1-dialkylamino)alkyl-
- synthesis
 - via vinylogous iminium salts, 367

3H-Indolium salts, 3-(1-pyrrolidinylmethylene)-nucleophilic addition reactions, 367

Indolizidine
- synthesis
 - chiral, 558

Indolizidine, 1,2-dihydroxy-
- synthesis
 - via isoascorbic acid, 594

Indole[2,3-α]quinolizine alkaloids
- synthesis
 - via 3-lithiation of an indole, 474

Inomycin
- synthesis, 569

Iodides
- reactions with carbonyl compounds
 - organosamarium compounds, 257

Iodohydrin
- synthesis
via iodomethylation with samarium diiodide, 260

Iodomethylation
 carbonyl compounds
 samarium diiodide, 260

Iodomethylation
 carbonyl methylation, 261
 Iridium tetrafluoroborate, diacetateiodihydrido-
 (triphenylphosphine)-
 crystal structure, 307

Iron, cyclopentadienylcarbonyl(triphenylphosphine) -
 ethoxy carbonyl-
 transmetallation
 stereoselective addition to symmetrical ketones,
 119

Iron, dicarboxylic cyclopentadienyl-
 Lewis acid, 307

Iron, dicarboxylic cyclopentadienyl(cinnamaldehyde) -
 crystal structure, 308

Iron, dicarboxylic cyclopentadienyl(cyclohexenone) -
 crystal structure, 308, 314

Iron, dicarboxylic cyclopentadienyl(4-methoxy-3-butene)
 crystal structure, 308

Isobenzofurans
 cycloaddition reactions, 464

Isobutynic acid,
 α-lithiated esters
 crystallization, 41

Isocarbacyclin
 synthesis, 568
 via 1,2-addition of silylcuprate, 133

Isochromanones
 synthesis
 via directed metallation, 463

Isocyanates
 reactions with organoytterbium reagents, 278
 reactions with ytterbium keto dianions, 280

Isocyanides
 reactions with Grignard reagents, 544

Isocyanides, tosylmethyl
 acyl anion equivalents, 571

Isocyanate acetates
 Aldol reactions
 Lewis acid asymmetric induction, 320

Isoderminin
 synthesis, 570

Isomaltose
 C-analog
 synthesis, 198

Isoprene
 zirconocene complex
 reactions with carbonyl compounds, 163

Isoquinoline, 3,4-dihydro-6,7-dialkoxy-
 reactions with organometallic compounds, 366

Isoquinoline, 3,4-dihydro-6,7-dimethoxy-
 reactions with sulfanyl-stabilized carbanions, 516

Isoquinoline, pivaloyl-
 lithiated
 reaction with cyclohexanone, 481

Isoquinoline, N-pivaloyl tetrahydrobromomagnesium derivative
 crystal structure, 35

Isoquinoline, 1,2,3,4-tetrahydro-
 lithiated
Subject Index

via Horner reaction, 774

γ-Keto acids
synthesis
via acylation of boron-stabilized carbanions, 497

Keto esters
reactions with organoaluminum–ate complexes
facial selectivity, 86

α-Keto esters
synthesis
via oxalic acid derivatives, 425

α-Ketols
synthesis
via samarium acyl anions, 273

Ketone, dicyclopentyl
reactions with organocuprates in presence of crown ethers
anti-Cram selectivities, 115

Ketone, 2,4,6-heptatrienyl 4-methoxyphenyl
synthesis
via monoacylation, iron(III) catalyzed, 416

Ketones
1,2-addition reactions
acyl anions, 546
cyanohydrin ethers, 551
cyanohydrins, 548
α-(diarylaldehyde)ketones, 555
phosphonate carbanions, 562
alkynic
synthesis, 405
synthesis from lactones, 418
aromatic
reactions with boron-stabilized carbanions, 498
Barbier-type reactions
organosamarium compounds, 256
boron trifluoride complex
NMR, 292
cross-coupling reactions
organometallic compounds, 279
cyclic
axial selectivity of alkyl addition, 78
nucleophilic addition reactions, 67
enantioselective reduction
Lewis acid coordination, 317
enolates
crystal structures, 26
enolizable
reactions with organocadmium compounds, 234
reactions with organosamarium(III) reagents, 253
geminal dialkylation
titanium(IV) reagents, 167
intermolecular additions
allylsilanes, 610
intramolecular additions
allyltrimethylsilane, 612
Lewis acid complexes
rotational barriers, 290
methylenation, 532
Tebbe reaction, 746
optical resolution, 534
reactions with allylic organocadmium compounds, 226
reactions with boron stabilized carbanions, 498
reactions with diazoalkanes, 845
reactions with dithioacetals, 564
reactions with organoaluminum reagents
discrimination between aldehydes and, 83
reactions with organocadmium compounds, 225
reactions with organocopper compounds, 233
reactions with organocopper compounds, 116
reactions with organometallic compounds
chemoselectivity, 145
Lewis acid promotion, 326
reactions with samarium diiodide
pinacol coupling reactions, 271
reductive coupling
nitriles, 273
synthesis
via acylation of boron-stabilized carbanions, 497
via carboxylic acid derivatives, 398
via β-hydroxyalkyl selenides, mechanism, 718
α,β-unsaturated
reaction with organocuprates, 116
reaction with vinyl zirconium reagents, 155
β,γ-unsaturated
synthesis via acylation of π-allyliron(III) complexes, 453

Ketones, α-alkoxy
cyclohexanone
nucleophilic addition reactions, 52
reactions with organocuprates, 108

Ketones, α-alkoxy acyclic
nucleophilic addition reactions
Grignard reagents, 51

Ketones, α-amino
expansion, 889

Ketones, β-asymmetric amino
nucleophilic addition reactions
stereoselectivity, 60

Ketones, α-bromo
reactions with aldehydes, 202

Ketones, r-butyl ethyl
magnesium bromide enolate
crystal structure, 29

Ketones, dibenzyl
α,α′-keto diacid
crystal structure, 29

Ketones, di-r-butyl
reaction with α-selenoalkyl lithium, 674
Ketones, diisobutyl
reaction with 2-pentenylzinc bromide, 219
Ketones, divinyl
synthesis, 430

Ketones, α-ethoxy
synthesis
via 1,2-diketones, 217

Ketones, α-halo
reaction with diiodomethane
organosamarium compounds, 261

Ketones, α-hydroxy
synthesis
via benzoin condensation, 542
via diarylsulfone dianions, 280
via α-keto esters, 63

Ketones, β-hydroxy
synthesis
via cerium reagents, 244
Ketones, γ-hydroxy
synthesis
via acylation of boron-stabilized carbanions, 497
Ketones, α-hydroxy(trifluoromethyl)-
synthesis, 543
Ketones, o-idoalkyl
 reaction with samarium diiodide
 synthesis of cyclopentanols, 261
Ketones, phenyl
 synthesis
 via acylation of boron-stabilized carbanions, 497
Ketones, α-phenylthio
 synthesis
 via acylation of boron-stabilized carbanions, 497
Ketones, α-seleno
 metallation, 642
Ketones, a-silyl
 synthesis, 436
Ketoesters
 reactions with organometallic compounds, 387
 synthesis
 via nitroiminium chlorides, 121
Ketoximes
 reactions with organometallic compounds, 387
 synthesis
 via nitroiminium chlorides, 121
Ketyl
 Barbier-type coupling reactions
 samarium diiodide, 263
 reactions with alkenes
 organosamarium reagents, 268
 reactions with alkynes
 organosamarium compounds, 268
Kiliani–Fischer synthesis
 sugars, 460
Köbrich reagents
 carbenoids
 epoxidation, 830
Lactams, N-alkyl-
 heterocyclic
 metallation, 478
β-Lactams, α-phenylseleno-
 metallation, 642
Lactams, α-silyl-
 Peterson alkenation, 790
γ-Lactols
 synthesis
 via benzaldehyde, 502
Lactones
 alkylic ketone synthesis from, 418
 methylation
 Tebbe reaction, 744
 reactions with organocerium reagents, 239
 synthesis
 via organosamarium compounds, 259, 266
Lactones, α-methylene-
 synthesis
 via allyl chromium reagent, 189
Lactones, α-silyl-
 Peterson alkenation, 790
γ-Lactones, β-(p-tolylsulfanyl)-
 synthesis
 via 3-(p-tolylsulfanyl)propionic acid, 513
Lanthanide compounds
 toxicity, 252
Lanthanide oxides
 dissociation energies, 252
Lanthanides
 hard acids, 252
 ionic radii, 252
Lanthanide shift reagents
 carbonyl compound complexes
 NMR, 294
Laurenyne
 synthesis
 via cyclization, 591
Leukotriene A₄
 synthesis of intermediate
 via organocopper reagents, 131
Leukotriene B₄
 synthesis of analogs
 via carbocupration/1,2-addition, 131
Leukotrienes
 synthesis
 via sulfur ylide reagents, 821
Lewis acids
 carbonyl compound complexes, 283–321
 σ- versus π-(η²)-bonding, 284
 conformation, 285
 NMR, 292
 theoretical studies, 286
 X-ray crystallography, 299
 reactions
 structural models, 311
 reactions with organometallic compounds, 325–353
 transition metals, 307
Lipotoxins
 synthesis
 via metal carbene complexes, 808
Lithiation
 nitrogen compounds
 addition reactions, 461
Lithiodithianes
 acylation, 568
Lithium, α-alkoxy-
 carbanions
 epoxidation, 829
Lithium, allyl-
 enantioselective addition
 aldehydes, 72
 reaction with cyclohexanone
 stereoselectivity, 79
Lithium, allyl-
 crystal structure, 18
 tetramethylethylene diamine complex
 crystal structure, 18
Lithium, benzyl-
 crystal structure, 11
Lithium, 1,1-bis(seleno)alkyl-
 reactions, 694
 reactivity
 reactions with carbonyl compounds, 672
Lithium, n-buty1-
 mixed aggregate complex with t-butoxide
 crystal structure, 10
 nucleophilic addition reactions
 stereoselectivity, 70
Lithium, t-buty1ethynyl-
 crystal structure, 20
Lithium, α-(t-buty1thio)phenyl-
 crystal structure, 23
Lithium, 1-cyano-2,2-dimethylcyclopropyl-
 crystal structure, 32
Lithium, cyclohexyl-
 crystal structure, 9
Lithium, dibromomethyl-
 addition to esters, 874
Lithium, 2,6-dimethoxyphenyl-
 crystal structure, 23
Lithium, α-(dimethylaminomethyl)phenyl-
Subject Index

- crystal structure, 25
- Lithium, 2,6-dimethylaminophenyl-
crystal structure, 23, 24
- Lithium, ethyl-
crystal structure, 9
- Lithium, fural-
nucleophilic addition reactions
- factors affecting stereoselectivity, 54
- Lithium, indenyl-
tetramethylethlenediamine complex
- crystal structure, 19
- Lithium, mesityl-
crystal structure, 23
- Lithium, o-methoxyphenyl-
crystal structure, 23
- Lithium, 1-methoxy-1-phenylselenomethyl-
reactivity
 reactions with carbonyl compounds, 672
- Lithium, methoxy(phenyllithio)(trimethylsilyl)methyl-
Peterson alkenation, 787
- Lithium, α-methoxyvinyl-
acyl anion equivalent, 544
- Lithium, methyl-
crystal structure, 9
tetramethylethlenediamine complex
crystal structure, 10
- Lithium, 1-methylenecyclopropyl-2,2-dimethylpropyl-
reaction with heptanal
 stereochemistry, 677
- Lithium, methylthiomethyl-
2-cyclohexenone, 826
- Lithium, pefluoroalkyl-
reactions with imines
- Lithium, phenyl-
- Lithium, phenylethynyl-
- Lithium, 1-phenylseleno-2-methylseleno-2-oct-5-enyl-
- Lewis acid pretreatment, 350
- Lithium, phenycrystal structure, 22
- Lithium, phenylethynyl-
crystal structure, 20
- Lithium, 1-phenyl-2-methylenecyclopenten-2-yl-
epoxidation
 2-cyclohexenone, 826
- Lithium, perfluoralkyl-
reactions with imines
- Lithium amides
 chiral catalysts
 nucleophilic addition reactions, 72
- Lithium bromide
 acetone complex
crystal structure, 299
- Lithium cations
 acrolein complexes
 structure, 289
- Lithium dialkenylcuprates
 acylation of, 428
- Lithium dialkylcuprates
 acylation of, 428
- Lithium diallylcuprate
 reactions with carbonyl compounds
 formation of 1,2,3-adducts, 113
- Lithium dibutylcuprate
 reactions with ketones, 116
- Lithium dimethylcuprate
 reactions with aldehydes, 108
 reactions with α,β-dialkoxy aldehydes, 109
 reactions with ketones, 116
- Lithium diphenylmethane
 lithium (12-crown-4) complex
crystal structure, 11
- Lithium hexamethyldisilazide
crystal structure, 6
- Lithium 3-lithiopropoxide
 acylation, 404
- Lithium/magnesium acetylide
 reactions with carbonyl compounds
 reactivity, 672
 stereochemistry, 677
 synthesis, 655
 via selenium–lithium exchange, 631
- Lithium, α-selenoallyl-
 ambident reactivity, 678
 reactivity
 reactions with carbonyl compounds, 672
- Lithium, α-selenobenzyl-
 reactions with alkenes, 664
 reactivity
 reactions with carbonyl compounds, 672
- Lithium, α-selenocyclopropyl-
 reactivity
 reactions with carbonyl compounds, 672
- Lithium, selenomethyl-
synthesis, 631
- Lithium, 1-seleno-1-silylalkyl-
 reactivity
 reactions with carbonyl compounds, 672
- Lithium, α-selenoxalkyl-
 reactions, 694
- Lithium, 2,3,5,6-tetrakis(dimethylaminomethyl)phenyl-
crystal structure, 25
- Lithium, (tetramethylcyclopropyl)methyl-
crystal structure, 9
- Lithium, trialkylstannylmethyl-
 reactions with carbonyl compounds
 methylation, 755
- Lithium, triarylstannylmethyl-
 reactions with carbonyl compounds
 methylation, 754
- Lithium, tris(trimethylsilyl)methyl-
tetrahydrofuran complex
crystal structure, 16
- Lithium amides
 chiral catalysts
 nucleophilic addition reactions, 72
- Lithium bromide
 acetone complex
crystal structure, 299
- Lithium cations
 acrolein complexes
 structure, 289
- Lithium dialkenylcuprates
 acylation of, 428
- Lithium dialkylcuprates
 acylation of, 428
- Lithium diallylcuprate
 reactions with carbonyl compounds
 formation of 1,2,3-adducts, 113
- Lithium dibutylcuprate
 reactions with ketones, 116
- Lithium dimethylcuprate
 reactions with aldehydes, 108
 reactions with α,β-dialkoxy aldehydes, 109
 reactions with ketones, 116
- Lithium diphenylmethane
 lithium (12-crown-4) complex
crystal structure, 11
- Lithium hexamethyldisilazide
crystal structure, 6
- Lithium 3-lithiopropoxide
 acylation, 404
- Lithium/magnesium acetylide
 reactions with carbonyl compounds
 reactivity, 672
 stereochemistry, 677
 synthesis, 655
 via selenium–lithium exchange, 631
Subject Index 973

Lithium organofluorosilyl)amides

crystal structure, 38
Lithium salts
formaldehyde complexes
theoretical studies, 286
Lithium tri-tert-butylborate

crystal structure, 13
Lithium triphenylmethane

crystal structure, 11
Lycorenine alkaloids
synthesis, 568

Macbecin 1
synthesis
(E)- and (Z)-selectivity, 764
Macbecins
synthesis of segment
via Wittig or CrCl2 reaction, 808

Macrolide antibiotics
synthesis
via (Z)-selective Wittig reaction, 763

Magnesium, alkylbromoboron trifluoride complex
reactions with acetics, 346
Magnesium, allylchloro-
crystal structure, 18
Magnesium, bis(2,4-diethyl-2,4-pentadienyl)-
crystal structure, 18
Magnesium, bis(indenyl)-
tetramethylmethylenediamine complex
crystal structure, 19
Magnesium, bis(phenylethynyl) -
tetramethylmethylenediamine complex
crystal structure, 21
Magnesium, bromodecyl-
nucleophilic addition reactions
acrolein dimer, 52
Magnesium, bromomethyl-
reaction with ethyl acetate, 398
tetrahydrofuran solvate
crystal structure, 13
Magnesium, bromophenyl-
crystal structure, 13
Magnesium, chloro-
crystal structure, 13
Magnesium, chloro(phenyldimethylsilyl)methyl-
Petersen reaction, 737
Magnesium, 15-crown-4-xylylchloro-
crystal structure, 26
Magnesium, dialkyl-
crystal structure, 13
nucleophilic addition reactions
stereoselectivity, 72
Magnesium, diethyl-
18-crown-6 complex
crystal structure, 15
2,1,1-cryptand complex
crystal structure, 15
Magnesium, dimethyl-
crystal structure, 16
Magnesium, dineopenty1
2,1,1-cryptand complex
crystal structure, 15
Magnesium, diphenyl-
tetramethylmethylenediamine complex
crystal structure, 25
Magnesium, ethyl-
diethyl ether solvate
crystal structure, 13
Magnesium, ethyl-3-(N-cyclohexyl-N-
methyloamino)propyl-
crystal structure, 14
Magnesium, ethyl-3-(N,N-dimethylamino)propyl-
crystal structure, 14
Magnesium, pentamethylenecrystal structure, 16
Magnesium bromide
Tebbe reaction, 746
Malonates, acyramino-
synthesis, 373
Malonic esters, acylicmino-
reactions with organometallic compounds, 373
Malyngolide
synthesis
via chiral auxiliary, 65
Mandelic acid
mentyl ester
synthesis, 223
Manganese, alkyl-
reactions with carbonyl compounds
Lewis acid promotion, 331
Mannich bases
addition reactions
acyl anions, 547
Mannitol
chiral sulfur methylide, 825
Meerwein-Ponndorf reaction
organosamarium compounds, 258
Menthol, phenyl-
crotonate ester
addition reactions with organocopper reagents, 313
glyoxalate esters
nucleophilic addition reactions, 65
Metallacyclobutane complexes
Tebbe reaction, 748
Metallation
acyclic systems
addition reactions, 477
nitrogen stabilization, 461
carbocyclic systems
addition reactions, 461, 480
heterocyclic systems
addition reactions, 470, 480
Methane, arylibis(methylseleno)-
metallation, 641
Methane, arylibis(phenylseleno)-
metallation, 641
Methane, bis(methylsulfonyl)-3-(2,6-
dimethoxyprpyridyl)sulfonyl-
potassium salt
structure, 528
Methane, bis(phenylseleno)-
metallation, 641
Methane, borylstannyl-
cleavage
synthesis of boron-stabilized carbanions, 490
Methane, bromochloro-
lithium–bromine exchange
sonication, 830
Methane, chloroiodo-
epoxidation, 830
Methane, diiodo-
reaction with α-halo ketones
organosamarium compounds, 261
Methane, phenylnitro-
nitronate carbanion
crystal structure, 34
Methane, (phenylseleno)chloro-
metallation, 641
Methane, phenyl(trimethylsilyl)phenylseleno-
metallation, 642
Methane, tris(methylseleno)-
metallation, 641
Methane, vinyl(phenylthio)-
ketone homologation, 878
Methane, tris(phenylseleno)-
metallation, 642
Methane, tris(methy1thio)-
metallation, 641
Methane phosphonate, 1-
diethyl ester
Methanethiol, phenyl-
crystal structure, 34
acyl anion equivalents, 544
Methyl acetate, methoxy-
NMR, 292
Methyl acrylate
borane complexes
structure, 289
Lewis acid complexes
conformation, 288
Methylamine, N,N-bis(trimethylsilyl)methoxy-
formaldehyde imine equivalent, 368
Methyl crotonate
Lewis acid complexes
NMR, 294
Methylenation
carbonyl compounds, 731
samarium induced, 751
silicon stabilized, 731
sulfur stabilized, 737
Tebbe reagent, 743
titanium stabilized, 743
titanium–zinc, 749
Methyl retinoate
synthesis
via Julia coupling, 803
Methyl toluate
(2,6-di-t-butyl-4-methyl)phenoxydiethylaluminum
complex
crystal structure, 301
Mevicinic acids
synthesis
via Horner–Wadsworth–Emmons reaction, 772
Mevinolin
synthesis
via Horner reaction, 779
via Julia coupling, 801
Meytansine
synthesis
via t-butyl (p-tolylsulfanyl)acetate, 523
Milibemycin β₁
synthesis
via Julia coupling, 801
Milbemycin E
spiroacetal fragment
synthesis, 568
Milbemycins
synthesis
via Horner reaction, 779
via Julia coupling, 797, 801
Mitomycins
synthesis
via Peterson methylenation, 732
Molybdenum, dicyclopentadienyltetracarbonyl-
(acetaldehyde)-
crystal structure, 310
Molybdenum complexes
cycloalkadiene complexes
reactions with N-substituted sulfoximine carbanions, 535
Monensin
synthesis
via alkynide addition, 420
via Lewis acid chelation-controlled addition, 336
Morphinoid analgesics
synthesis
via diazonium ions, 836
Mukulol
synthesis
via cyclization, 553
Muscone
synthesis
via cyclization, 553
via intramolecular Barbier reaction, 262
via Julia coupling, 803
Myrtenal
optically active ligand from
synthesis of homoallyl alcohols, 612
Naphthoquinones
synthesis
via 'one-pot' ortho lithiation, 466
Naphtho[2,1-d]hiazolium salts
benzoin condensation, 543
1-Naphthylamine
reactions with organometallic compounds, 383
Narbomycin
synthesis
via cuprate acylation, 436
Nazarov-type cyclization reactions
vinylsilanes, 585
Neomethylolide
synthesis
via alkynide acylation by lactones, 421
Neuraminic acid, N-acetyl-
synthesis
(Z)-selectivity, 765
Nickel catalysts
acylation, 450
Nitriles
boron trifluoride complex
Subject Index

NMR, 292
lithium enolate
 crystal structure, 32
metallation
addition reactions, 468
reactions with diaryl ketone dianions
organoytterbium compounds, 280
reactions with organocerium compounds, 236
reactions with organocopper complexes, 123
reductive coupling
 ketones, 273
α,β-unsaturated
 synthesis, 560, 774
Nitriles, α-amino-
 acyl anion equivalents, 559
 synthesis
 via Lewis acid catalysis, 349
Nitriles, α-(arylseleno)-
 acyl anion equivalents, 562
Nitriles, α-(dialkylamino)-
 acyl anion equivalents, 544, 554
Nitriles, N,N-(disubstituted)aminomethyl-
 reactions with Grignard reagents, 370
Nitriles, 4-oxo-
 synthesis
 via benzoin condensation, 542
Nitriles, α-seleno-
 metallation, 642
Nitro compounds
reactions with organocerium compounds, 233
Nitrones
acyclic chiral
reactions with organometallic compounds, 391
cyclic
reactions with organometallic compounds, 393
reactions with organometallic compounds, 391
Nitrosamine anions
deprotonation, 476
Nojirimycin, 1α-cyano-1-deoxy-
 1α-amino derivative
 synthesis, 364
Nonacrylic acid
 methyl ester
 synthesis, 131
Nonanal
 reaction with iodobenzene
 chromium(II) chloride, 193
Nonylamine, 2-hydroxy-
 synthesis
 chiral, 559
Norsercurinine
 synthesis
 via Horner–Wadsworth–Emmons
 reaction, 769
Nozaki protocol
 application
 1,4- and 1,2-addition, 101
Nuclear magnetic resonance
carbanions, 41
carbonyl compounds
 Lewis acid complexes, 292
Nucleosides
 synthesis
 via Peterson alkenation, 792
C-Nucleosides, 3-deoxy-
 synthesis, 113
Ochratoxins
 synthesis
 via ortho lithiation, 470
Ochromycinone
 synthesis, 567
Octadecane, 7,8-epoxy-2-methyl-
synthesis
 via t-butyl 5-methylhexyl sulfoxide, 514
Octadecene, 9,10-epoxy
 synthesis, 718
Octane, 2-bromo-
 reaction with cyclohexanone
 samarium diiodide, 259
6-Octen-3-one, 8-bromo-4-methyl-
cyclization
 samarium diiodide, 266
Ophiobolins
 synthesis
 via alkenylchromium reagents, 200
 via oxy-Cope rearrangement, 883
Organoauminum reagents, 77–105
 acylation
 palladium catalysis, 450
 1,2-addition reactions
 carbon–nitrogen compounds, 98
ate complexes
 reactions with keto esters, 86
ate complexes, silyl
 acyl silane synthesis, 97
chiral
 site selective addition reactions, 78
stereoselective addition reactions, 78
reactions with acid derivatives, 92
reactions with α,β-unsaturated carbonyl compounds
 site selectivity, 81
Organoboranes
deprotonation, 490
α-substituted
 cleavage, 490
Organocadmium reagents, 211–227
 addition reactions, 225
 diastereoselective addition reactions, 220
 reactions with carbonyl compounds
 Lewis acid promotion, 326
 reactions with imines
 Lewis acid promotion, 349
Organocadmium reagents, allylic
 addition reactions, 226
Organocadmium reagents, benzyllic
 addition reactions, 226
Organocerium reagents, 231–248
 reactions, 233
 synthesis, 232, 233
 thermal stability, 233
Organochromium reagents, 173–207
 carbonion equivalents, 174
C–C bond forming reactions, 175
 reactions with carbonyl compounds
 Lewis acid promotion, 331
 structure, 174
 synthesis, 174
Organocopper reagents, 107–136
 acylation, 426
 palladium catalysis, 450
 stoichiometric, 426
 1,2-additions
aldehydes and ketones, 108
imines, nitriles and amides, 119
alkynyl
reactions with enones, 118
association with boron trifluoride
increased reactivity, 347
natural product synthesis, 125
reactions with aldehydes, 108
reactions with amides, 124
reactions with epoxides
rates, 343
reactions with imines, 119
reactions with ketones, 116
reactions with nitriles, 123
Organocopper, allylic reagents
reaction with benzaldehyde, 113
Organocuprates (see also Cuprates)
reactions with α-seleno-α,β-unsaturated ketones, 669
Organolithium reagents
acylation, 399
asymmetric
nucleophilic addition reactions, 69
enantioselective addition
aldehydes, 70
ketone synthesis
from carboxylic acids, 411
nucleophilic addition reactions
carbonyl compounds, 49
chiral ketones, 58
reactions with acetals, 347
reactions with carbonyl compounds
Lewis acid promotion, 329
reactions with episilanes
use of Lewis acids, 343
Organomercury reagents, 211–227
acylation
palladium catalysis, 450
addition reactions, 225
Organometallic compounds
acylation
palladium catalysis, 450
alkyl
reactions with selenides, 630
reactions
Lewis acids, 325–353
reactions with aldehydes
Cram versus anti-Cram selectivities, 80
reactions with cyclic ketones
stereoselectivity, 333
Organometallic compounds, α-silyl-
addition reactions, 618
Organometallic compounds, vinyl-
acylation, 401
Organonickel complexes
acylation, 451
Organosamarium 'ate' complexes, 253
Organosamarium halides
reactions with aldehydes, 254
Organosamarium reagents
Barbier-type reactions, 255
carbonyl addition reactions, 253
reactions with enolizable reagents, 253
synthesis
via transmetallation, 253, 254
Organoselenium compounds
carbanions, 629–724
Organosilanes
reactions with carbonyl compounds
Lewis acid promotion, 327
Organosilicon compounds
bond energies, 582
carbanions
field effects, 580
hyperconjugation, 581
inductive effects, 580
p–d π-bonding, 581
reactions with carbonyl compounds, 579–625
selectivity, 580
nucleophilic substitution reactions, 582
reactivity
carbanions, 580
Organostannanes
acylation
acid chlorides, 446
palladium complex catalysis, 436
reactions with carbonyl compounds
Lewis acid promotion, 327
Organotitanium reagents, 139–170
properties, 140
reactions with carbonyl compounds
Lewis acid promotion, 330
reactivity, 144
synthesis, 142
Organoytterbium reagents
reactions with carbonyl compounds
synthesis of alcohols, 277
use, 276
Organozinc reagents, 211–227
acylation
palladium catalysis, 448
addition reactions, 215
diastereoselective addition reactions, 220
reactions with carbonyl compounds
Lewis acid promotion, 326
reactions with imines
Lewis acid promotion, 349
synthesis, 211
transmetallation, 214
Organozinc reagents, allylic
synthesis, 212
Organozinc reagents, benzylic
synthesis, 212
Organozirconium reagents, 139–170
properties, 140
reactivity, 144
synthesis, 142
Osmium, pentaamine-
acetone complex
crystal structure, 310
Oudemansins
synthesis
via Horner reaction, 777
7-Oxabicyclo[2.2.1]hept-5-en-2-one
reactions with organocuprates, 117
Oxalic acid
reactions with Grignard reagents
synthesis of α-keto esters, 425
Oxametallacyclic compounds
ytterbium, 279
1,2-Oxaphosphatanes
intermediates in Wittig reaction, 755
Oxasilatane
Subject Index

Palladium, benzyl(chloro)bis(triphenylphosphine)-catalyst
acylation, 440
Palladium complexes
acylation
synthesis, 436
Palsytoxin
synthesis
via alkenylchromium reagents, 197
β-Panansinsene
synthesis
via Johnson methylenation, 739
via ketone methylenation, optical resolution, 533
Paniculide-A
synthesis
via Diels–Alder reaction of alkynic ketone, 406
Parham cyclization
bromoaromatic carboxylic acids, 412
Pellefierine
synthesis, 393
1,3-Pentadiene
zirconocene complex
reactions with carbonyl compounds, 163
synthesis via epoxides, 820
Oxetanes, 3-methoxy-
synthesis, 670
Oxime ethers
asymmetric reduction
Lewis acid coordination, 317
boron trifluoride activated
reactions with organometallic compounds, 385
reactions with organometallic compounds, 385
Oximes
aziridine synthesis, 835
reactions with organometallic compounds, 385
tosylates
Beckmann rearrangement, 387
Oxirane, 1,2-di-n-propyl-
reactions with boryl compounds, 497
Oxirane, 1-methyl-2-pentyl-
reaction with boryl compounds, 496
Oxiranones
alkynylation
use of boron trifluoride, 343
ring opening
Lewis acids, 345
Oxiranes, (p-tolylsulfinyl)-
synthesis
via chloromethyl p-tolyl sulfoxide, 524
Oxiranes, vinyl-
synthesis, 510, 712
Δ4-Oxocene, 2,8-disubstituted
synthesis
via cyclization of oxonium ions, 591
Oxocenes
synthesis
via cyclization of acetics, 589
2H-Oxocins, 3,6,7,8-tetrahydro-
synthesis
via cyclization of acetics, 589
Oxy-Cope rearrangement, 880
13-Oxyprostanoids
synthesis
via conjugate addition of aryl cyanohydrin, 552
Palladium, benzylic(chloro)bis(triphenylphosphine)-catalyst
acylation, 440
Palladium complexes
acylation
catalysis, 436
Palsytoxin
synthesis
via alkenylchromium reagents, 197
β-Panansinsene
synthesis
via Johnson methylenation, 739
via ketone methylenation, optical resolution, 533
Paniculide-A
synthesis
via Diels–Alder reaction of alkynic ketone, 406
Parham cyclization
bromoaromatic carboxylic acids, 412
Pellefierine
synthesis, 393
1,3-Pentadiene
zirconocene complex
reactions with carbonyl compounds, 163
Palladium, benzyl(chloro)bis(triphenylphosphine)-catalyst
acylation, 440
Oxirane, 1-methyl-2-pentyl-
reaction with boryl compounds, 496
Oxiranes
alkynylation
use of boron trifluoride, 343
ring opening
Lewis acids, 345
Oxiranes, (p-tolylsulfinyl)-
synthesis
via chloromethyl p-tolyl sulfoxide, 524
Oxiranes, vinyl-
synthesis, 510, 712
Δ4-Oxocene, 2,8-disubstituted
synthesis
via cyclization of oxonium ions, 591
Oxocenes
synthesis
via cyclization of acetics, 589
2H-Oxocins, 3,6,7,8-tetrahydro-
synthesis
via cyclization of acetics, 589
Oxy-Cope rearrangement, 880
13-Oxyprostanoids
synthesis
via conjugate addition of aryl cyanohydrin, 552
Palladium, benzylic(chloro)bis(triphenylphosphine)-catalyst
acylation, 440
Palladium complexes
acylation
catalysis, 436
Palsytoxin
synthesis
via alkenylchromium reagents, 197
β-Panansinsene
synthesis
via Johnson methylenation, 739
via ketone methylenation, optical resolution, 533
Paniculide-A
synthesis
via Diels–Alder reaction of alkynic ketone, 406
Parham cyclization
bromoaromatic carboxylic acids, 412
Pellefierine
synthesis, 393
1,3-Pentadiene
zirconocene complex
reactions with carbonyl compounds, 163

Oxaspiro[2.0,n]heptanes
synthesis, 712
Oxaspiro[2.0,n]hexanes
synthesis, 712
Oxaspiro[2.0,n]octanes
synthesis, 712

Oxaspiropentanes
synthesis
via diphenylcyclopropylsulfonium halides, 820

1,3-Oxathiane
nucleophilic addition reactions
stereoselectivity, 61

Oxathianes
chiral
nucleophilic addition reactions, 63

1,3-Oxazines, 4,4,6-trimethyl-5,6-dihydro-
methiodide salt
reactions with organometallic compounds, 366

Oxazin-2-one, 3-bromotetrahydro-
synthesis, 376

Oxazirconacycloheptenes
synthesis
via dieny/lzirconium reagents, 162

Oxaziridines
spirocyclic
synthesis, 838
synthesis, 834
via imines, 837

Oxazole, 5-methyl-
metallation, 477

Oxazoles
metallation
addition reactions, 471

Oxazolidine-N-oxide,
4P-dimethyl nitroxide

Oxazolidinone
synthesis, 273

Oxazolidinones, N-acetyl-
α,β-unsaturated
Diels–Alder reactions, 312

Oxazoline, chiral
nucleophilic addition reactions
remote asymmetric induction, 60

Oxazoline, 2,4,4-trialkyl-
N-oxide
reactions with Grignard reagents, 393

Oxazolines
aromatic
nucleophilic addition reactions, 69
metallation
addition reactions, 468

2-Oxazolines, 4,4-dimethyl-
metiodide salt
reactions with organometallic compounds, 366

Oxazolium salts
electroreduction
acyl carbanion equivalents, 544

2-Oxazolone, 3-ketopinyl-
cleavage
lower order cuprate, 119

Oxetanes
alkynylation
use of boron trifluoride, 343
reaction with lithium dithiane, 569
Subject Index

lithiation
addition reactions, 469

Phenoxide, bis(2,6-di-i-propyl-4-methylmethylaluminium complex reactions of organolithium compounds, 333

Phenoxide, bis(2,4,6-tri-i-propylmethylaluminium complex reactions of organolithium compounds, 333

(-)-Phenylmethyl esters, α-bromo-N-Boc-glycine reactions with Grignard reagents, 376

Phosphine dichloride, triphenyl reaction with lithium carboxylates, 424

Phosphine oxides
Horner reaction, 773

Phosphinite, chlorodiphenyl-mixed anhydride with carboxylic acids acylation, 424

Phosphinothioic amide, phenylreductive elimination, 742

Phosphonate carbanions
α-heterosubstituted acyl anion equivalents, 562

Phosphonates
Horner–Wadsworth–Emmons reaction, 761

Phosphonates, acylaminosynthesis, 373

Phosphonates, acylimino-reactions with organometallic compounds, 373

Phosphonates, phenylselenomethyl metallation, 641

Phosphonates, α-silyl-addition reactions carbonyl compounds, 622

Phosphonates, (trimethylsilyl)alkyl lithio anion
Peterson alkenation, 788

Phosphonic diamides, \(N,N,N',N'-\)tetramethyl-ortho metallation, 464

Phosphonium salts, phenylselenomethyl metallation, 641

Phosphonium ylides
alkene synthesis, 755

Phosphonium ylides, allylic tributyl-synthesis via palladium(0) catalysis, 759

Phosphorane, ethylidenetriphenyl-Wittig reaction, 757

o-Phthalaldehyde reaction with organometallic reagents, 154

Phthalides optically active synthesis, 60

Phyllanthocin synthesis
diastereoselectivity, 822

Picrotoxinin synthesis via Johnson methylenation, 738

Pinacol coupling reactions organosamarium compounds, 270

Pinacolone
lithium enolates crystal structure, 26

X-ray diffraction analysis, 3 potassium enolate crystal structure, 26

1,3-Pentadiene, 3-methylzirconocene complex
reactions with carbonyl compounds, 163

Pentaene
synthesis via Horner reaction, 779

Pentalenene
synthesis via stereoselective cuprate reaction, 133

2,4-Pentanedione, 3,3-dimethyl-titanium tetrachloride complex crystal structure, 303

3-Pentanone, 2-benzylxy-reaction with trichloromethyltitanium(IV) chloride complexes crystal structure, 306

4-Penten-2-ol, 2,3-dimethyl-synthesis via trihaptotitanium compound, 159

2-Pentenone
Lewis acid complexes NMR, 294

3-Pentenone
Lewis acid complexes NMR, 294

5,5-Pentenones fused synthesis, 585

1-Pentyne reaction with borane, 489

Periplanone B
synthesis, 553

Peshawarine
synthesis, 564

Peterson alkenation, 731, 786

catalysis cerium, 734
titanium, 734
chemoselectivity, 734
definition, 785
elimination conditions, 732
heterosubstituted alkene synthesis, 786
Lewis acid catalysis, 792
mechanism, 620, 785
phosphorus substituted alkynes, 788
reactivity of metal anions, 732
silicon substitution, 737
α-silyl organometallic compounds, 620
stereochemistry, 621
sulfur substituted alkene synthesis, 786

Peterson reagent
addition to aldehydes and ketones, 238

Phase transfer catalysts
sulfur ylide reactions, 821

Phenanthrene amide, trimethoxy-metallation, 466

Phenanthrene
synthesis via directed metallation, 463

Phenanthrones
α-substituted synthesis, 369

Phenol, 2,6-di-i-propyl-4-alkyl-reaction with trimethylaluminium, 78

Phenothiazines

Subject Index

sodium enolate
 crystal structure, 26
Pinacols
 synthesis
 via organoytterbium compounds, 279
 unsymmetrical
 synthesis, using ytterbium, 279
Pinacol-type reactions
 β-hydroxy sulfides, 861
β-Pinene
 synthesis
 via methyltriallyl addition, 377
Pindine, dihydro-
 synthesis, 559
Piperidine
 lithiated formamidines
 reaction with benzaldehyde, 482
Δ¹-Piperidine
 reactions with organometallic compounds, 364
Piperidine, N-benzyl-2-cyano-6-methyl-
 deprotonation, 476
Piperidine, α-propyl-
 synthesis, 558
Piperidine amides
 lithiation
 carbonyl addition reactions, 483
Piperidinediones
 Tebbe reaction, 745
Plumbanes, alkyl-
 reactions with aldehydes
 Lewis acid promotion, 329
Podorhizol
 synthesis, 566
Polyenes
 synthesis
 via Julia coupling, 802
1,3-Polyols
 synthesis, 569
Polyquinones
 synthesis
 via bisannulation, 262
Potassium, methyl-
 synthesis
 crystal structure, 12
Prenonensin
 synthesis, 429
Progesterone, 9α-bromo-11β-hydroxy-
 reaction with chromium(II) acetate, 175
Progesterone, 21-methyl-
 synthesis
 via acylation of organocadmiums, 447
Proline
 chiral catalysts
 nucleophilic addition reactions, 72
Propanal
 borane complexes
 rotational barriers, 290
Propanal, 2-phenyl-
 addition reactions with bromomethylmagnesium, 317
 reaction with methyltitaniun triisopropoxide, 141
 reaction with organometallic reagents
 diastereoselectivity, 151
Lewis acids, 334
Propane, 2,2-bis(phenylseleno)-
 stability, 632
Propane, 3-chloro-1,1-bis(methylseleno)-
 metallation, 638
Propane, 3-chloro-1,1-bis(phenylseleno)-
 metallation, 638
Propane, 1-dimethylamino-3-lithio-
 intramolecular solvated tetramer, 10
Propane, 2-lithio-2-phenylseleno-
 synthesis, 634
Propane, 2-phenylseleno-2-phenylthio-
 stability, 632
Propanol, 1-phenyl-
 perdeuterated
 synthesis, 223
1-Propanol, 1-(3-phenyl-1-indolizidiny1)-
 synthesis
 via γ-diketones, 547
1-Propanones, 2-alkoxy-1-(1,3-dithian-2-yl)-
 synthesis, 568
Propargylic acetates
 reactions with carbonyl compounds
 organosamarium compounds, 257
Propargylic alcohols
 optically active
 synthesis, 347
Propargylic amine equivalents
 allenylsilanes
 synthesis of substituted alkynes, 595
1-Propene, 1-1-isopropyl-
 synthesis, 638
Propene, 2-iodo-
 reaction with chromium chloride, 193
Propene, 1-lithio-1-seleno-3-methyl-
 reactions with benzaldehyde, 679
2-Propenethiol
 lithiated
 reactions with carbonyl compounds, 510
2-Propen-1-one, 1-(4'-methoxyphenyl)-3-phenyl-
 reactions with organocerium compounds, 235
Propionamide, N,N-dimethyl-
 lithium enolate
 crystal structure, 31
Propionic acid, β-bromo-
 methyl ester
 reaction with samarium, 254
Propionic acid, 3-(p-tolylsulfonyl)-
 dianions
 reactions with carbonyl compounds, 513
Propyne, bis(trimethylsilyl)-
 Peterson alkenation, 790
 reaction with chloral
 Lewis acid promotion, 328
Prostaglandin, 9-fluoromethylene-
 synthesis
 via Johnson methylenation, halogen incorporation, 741
Prostaglandin D₁
 methyl ester
 synthesis, 570
Prostaglandins
 synthesis, 569
 via protected cyanohydrins, 553
 via vinylzirconium(IV) complexes, 155
Prostanoic acid
synthesis
via 1,4-addition of allylic sulfoxides to enones, 520

Prostanoids
synthesis, 566
via organoaluminum reagents, 103

Protons
formaldehyde complexes
theoretical studies, 286

Pseudomonate B, methyl deoxy-synthesis
via Julia coupling, 795

Pseudomonic acid C
synthesis
via Julia coupling, 794, 795

Pseudomonic acid esters
synthesis
via Peterson alkenation, 791

Pumiliotoxins
synthesis
via iminio ion-vinylsilane cyclization, 593

Pyllodulcin
synthesis
via directed lithiation, 477

Pyran, 2-alkyltetrahydro-synthesis
via Lewis acid promoted reaction, 346, 347

Pyranosides
methyleneation, 737
C-Pyranosides
synthesis
via cuprate 1,2-addition, 126

2H-Pyrans, dihydro-synthesis, 589

2H-Pyrans, 5,6-dihydro-synthesis
via vinylsilane acetal, 589

Pyrazines, 2-acyloxy-acylating agent, 422

Pyrazoles, N-alkyl
lithiation, 477

Pyrazoles, 3,5-dialkyl-synthesis, 557

Pyrazoline, tosyl-reaction with trimethylaluminum pyrazolol synthesis, 98

Pyrazolols
synthesis
via tosylpyrazolines, 98

Pyrenophorin
synthesis, 569
via organostannane acylation, 446

Pyrethroids
synthesis
via chiral cyanohydrins, 546

Pyridine, 2,6-dimethyl-α-lithiated
crystal structure, 12

Pyridine, 2-methoxy-ortho metallation, 474

Pyridine, 2-methyl-3-acyl-synthesis, 560

Pyridine, 2-methyl-3-formyl-synthesis, 560

Pyridine, 6-methyl-2,3,4,5-tetrahydro-
N-oxide
reaction with allylimagnesium bromide, 393

Pyridines
acylating agents, 422
metallation
addition reactions, 471
2-substituted
lithiation, 474
synthesis
via nitrogen-stabilized carbanions, 461

Pyridines, 3-alkoxy-
methylation, 474

Pyridinium salts, 5,6-dihydro-
reactions with organometallic compounds, 367

Pyridylamides, N-methylamino-
acylation
Grignard reagents, 422

2-Pyridylcarboxylates
acylation, 434

2-Pyridyl ketone-O-acyloximes
acylation
Grignard reagents, 422

Pyrimidopyrididine
synthesis
via Peterson alkenation, 792

Pyrrrole, 2-lithio-N-(N',N'-dimethylamino)-
acylation, 410

Pyrrrole, N-methyl-2,3,5-tris(3-pyridyl)-
synthesis
via γ-diketones, 547

Pyrrrole, N-phenyl-2-lithio-
crystal structure, 35

Pyrrrole-2-carbaldehydes, 5-substituted
synthesis
via dithiation of azafulvene dimer, 473
metallation, 473

Pyroles
metallation, 473
N-substituted
lithiation, 473

Pyroles
regiocontrolled, 552
via nitrogen-stabilized carbanions, 461

Pyroles, 2-keto-
introduction into natural products, 409

Pyroles, 1,2,5-trisubstituted
synthesis, 559

Pyrrolidine, 1-amino-2-(methoxymethyl)-
lithiated hydrazone enolate
crystal structure, 29

Pyrrolidine, N-methyl-
N-deprotonation, 476

Pyrrrolides
annulation, 889
chiral auxiliaries
nucleophilic addition reactions, 64, 65
lithiated formamidines
reaction with benzaldehyde, 482
synthesis, 669
chiral, 558
via α-methoxy carbamates, 377

1-Pyrroline
reactions with organometallic compounds, 364

1-Pyrroline, 2-alkyl-
deprotonation
thermodynamic considerations, 358

2-Pyrrolines
2-functionalization
metallation, 473
Pyrolopyridines
lithiation, 471
Quadrone
synthesis
via organostannane acylation, 447
Quercus lactone
synthesis, 565
Quinocarcin
synthesis, 404
Quinoline, 3,4-dihydro-
reaction with trimethylsilyl triflate, 391
Quinoline, 8-hydroxy-
esters
reaction with Grignard reagents, 422
Quinoline, tetrahydro-
lithiated formamidines
reaction with benzaldehyde, 482
Quinolines
acylating agents, 422
Quinolizidine alkaloids
synthesis
chiral, 559
Quinolizidines
synthesis, 559
via γ-diketones, 547
1,3-Rearrangements
homologations, 885
3,3-Rearrangements
reaction with benzaldehyde, 254
Reductive elimination
acylation
organostannanes, 444
Reformatsky reagent
t-buty1 bromoacetate
crystal structure, 30
Reformatsky-type reaction
organosamarium compounds, 266
Resorcylide, dihydroxy-
synthesis
via cyclization, 553
Rethrones
synthesis, 566
cis- Retinal
synthesis
(Z)-selectivity, 765
Rhenium, cyclopentadienylnitroso(triphenylphosphine)-
crystal structure, 309
Rhenium, cyclopentadienylnitroso(triphenylphosphine)-(acetophenone)-
crystal structure, 309
Rhenium, cyclopentadienylnitroso(triphenylphosphine)-(phenylacetaldehyde)-
crystal structure, 309
Rhodinose
synthesis
via Lewis acid mediated Grignard addition, 336
Rhodium catalysts
acylation, 450
Rhodium, chloro(carbonyl)bis(triphenylphosphine)-
catalysts
Subject Index

Samarium iodide
iodohydrin synthesis, 831
Samarium reagents, 251–280
acyl anion chemistry, 273
acyl radical chemistry, 273
ketyl-alkene coupling reactions, 268
pinacolic coupling reactions, 270
Reformatsky-type reactions, 266

α-Santalol
synthesis
via Wittig reaction, 757

Schiff bases
reactions with organocopper complexes, 119

Secoisouquinoline alkaloids
synthesis, 552

7,16-Secotrinitervita-7,11-diene, 3α-acetoxy-15β-hydroxy-
synthesis
via organoaluminum reagents, 100

Selenide, methyl phenyl
metallation, 641

Selenide, phenyl trimethylsilylmethyl
metallation, 641

Selenides
metallation
synthesis of selenoalkyl metals, 635
reactions with alkyl metals, 630

Selenides, allyl
metallation, 640
synthesis
via β-hydroxyalkyl selenides, 705

Selenides, aryl 1-(2-methyl-1-propenyl)
metallation, 647

Selenides, aryl 1-propenyl
metallation, 647

Selenides, benzyl
metallation, 640

Selenides, β-hydroxy
pinacol-type reactions, 861
synthesis
via selenium-stabilized anions, 828

Selenides, β-hydroxyγ-alkenyl
rearrangement, 717

Selenides, β-hydroxyalkyl
epoxide synthesis from mechanism, 718
in synthesis, 696, 721
reactions with carbonyl compounds, 673
rearrangement, 714
reduction, 699
reductive elimination, 700
synthesis, 650

Selenides, β-hydroxyα-trimethylsilylalkyl
reductive elimination, 705

Selenides, α-lithio
epoxidation, 828

Selenides, α-metalloalkyl
synthesis
via metallation, 630

Selenides, 1-metalloallenyl phenyl
synthesis, 646

Selenides, α-metallovinyl
synthesis
via metallation, 630

Selenides, 1-metallovinyl aryl
synthesis, 646

Selenides, propargylic
metallation, 640

Selenides, pyridyl alkenyl
metallation, 648

Selenides, vinyl
metallation, 644
reactions with organometallic compounds, 669
synthesis
via β-hydroxyalkyl selenides, 705

Selenium

carbonanions
synthesis, 630
synthesis via metallation, 635

Selenium ylides
epoxidation, 825
reactions with enals, 683

Selenocetates
synthesis, 656

Seleno esters
synthesis, 95

Selenolactones
metallation, 642

Selenones
epoxidation, 828
metallation, 650

Selenones, α-metalloalkyl
reactivity
reactions with carbonyl compounds, 672
synthesis, 648
via metallation, 630

Selenones, vinyl
reactions with organometallic compounds, 669
Selenonium bromide, phenacylmethyl(dimethyl)-
metallation, 655

Selenonium salts
metallation, 651

Selenonium salts, allyldimethyl-
metallation, 653

Selenonium salts, allylmethylphenyl-
metallation, 653

Selenonium salts, α-metalloalkyl-
synthesis, 648
via metallation, 630

Selenonium ylides
reactivity
reactions with carbonyl compounds, 672

Selenophene
metallation, 644

Selenophene, 2-lithio-
synthesis, 668

Selenoxides
metallation, 649

Selenoxides, α-metalloalkyl
reactivity
reactions with carbonyl compounds, 672
synthesis, 648
via metallation, 630

Selenoxides, α-metallovinyl
reactivity
reactions with carbonyl compounds, 672
synthesis, 630

Selenoxides, β-oxidoalkyl
synthesis, 650

Selenoxides, vinyl
reactions with organometallic compounds, 669
Selenuranes
reactions with aldehydes, 651
Senoxepin
synthesis
via Peterson alkenation, 733
Septamycin
synthesis
A-ring fragment, 429
Sesbanine
synthesis
via regioselective lithiation, 474
Sex pheromones
bark beetle
synthesis, 218
Sibirosamine
synthesis
stereospecific, 413
3,3-Sigmatropic rearrangements
aluminum enolates, 91
homologations, 880
Silanes, acyl-
synthesis
via organoaluminum reagents, 97
α,β-unsaturated
reactions with allenylsilanes, 598
Silanes, alkenyl-
synthesis
via metal carbene complexes, 808
Silanes, alkynyl-
reactions with electrophilic π-systems, 604
Silanes, allenyl-
[3 + 2] annulations, 596
reactions with activated imines, 602
reactions with acylliminium salts, 598
reactions with aldehydes, 599
reactions with carbonyl compounds
synthesis of substituted alkynes, 595
titanium tetrachloride, 595
reactions with tropylium ions, 603
reactions with α,β-unsaturated acylsilanes, 598
reactions with α,β-unsaturated carbonyl compounds, 596
Silanes, allyl-
addition reactions
stereochemistry, 610
allylations
Lewis acid promoted, 346
intermolecular additions
aldehydes, ketones and acetals, 610
internal additions
stereochemistry, 615
metallated
additions to aldehydes, 113
reactions with carbonyl compounds, 610
synthesis
via esters, 244
via β-hydroxyalkyl selenides, 705
via Peterson methylation, 238, 735
Silanes, allylamino-
metallated
addition reactions, 624
Silanes, allyltrimethyl-
intramolecular additions
carbonyl compounds, 612
Silanes, chiral acyl-
nucleophilic addition reactions
stereoselectivity, 57
Silanes, α,β-epoxy-
Peterson reaction, 737
Silanes, 2-hydroxy-
synthesis
via trimethylsilylmethylcerium reagent, 238
Silanes, β-hydroxyalkyl(1-naphthyl)phenylmethy-
synthesis, 785
Silanes, propargyl-
electrophilic additions
formation of β-silyl carbocations, 616
Silanes, trialkyl-
nucleophilic addition reactions
stereoselectivity, 57
Silanes, vinyl-
cyclization reactions
acetal- and carbonyl-initiated, 585
Nazarov type, 585
intramolecular addition, 584
synthesis
via β-hydroxyalkyl selenides, 705
via Peterson reaction, 786
vinyl anion equivalents, 583
Silyl compounds, titanated
reactions with carbonyl compounds, 161
Silyl cyanides, trialkyl-
reactions with carbonyl compounds
Lewis acid promotion, 328
Silyl enol ethers
Aldol reactions
Lewis acid promoted, 346
Silyl halides, trialkyl-
reaction between aldehydes and organocuprates, 112
Simmons–Smith cyclopropanation
unsaturated ketones, 533
α-Sinsenal
synthesis, 560
Skeletal reorganizations, 843–899
Sodium, benzyl-
tetramethylethylenediamine solvate
crystal structure, 13
Sodium, indenyl-
tetramethylethylenediamine complex
crystal structure, 19
Sodium, methyl-
synthesis
crystal structure, 12
Sodium cation complexes
acetone
theoretical studies, 287
crystal structure, 299
Sodium hexamethyldisilazide
crystal structure, 37
Solenopsin
synthesis, 558
Solinopis invicta
trail pheromone component
synthesis, 568
Sparteine
ethylmagnesium bromide complex
crystal structure, 13
Sparteine, 6-benzyl-
ethylmagnesium bromide complex
crystal structure, 14
Spiro[4,5]decadienones
synthesis
via vinylsilanes, 584
Spiroketals
synthesis
via organocerium reagents, 239
Squalinoids
synthesis
(Z)-selectivity, 767
Stannane, (1-alkynyl)tributyl-
acetylation
platinum catalyzed, 447
Stannane, [(2,6-xylylimino)(trialkylsilyl)methyl]-transmetallation, 546
Stannanes, α-amino-
transmetallation, 476, 479
Stannanes, 3-hydroxy-
fragmentation, 894
Stannanes, tetrasubstituted
synthesis, 445
Steganacin
synthesis, 566
Stemodinone, deoxy-
synthesis
via samarium diiodide, 259
Steroids
carbonyl compounds
NMR, 293
(Z)-Stilbene
synthesis
via Horner reaction, 776
Stilbene, cyano-
synthesis, 561
Stille acylation
rate
factors affecting, 442
Strecker synthesis
amino acids, 460
Streptogramin
synthesis
via Peterson alkenation, 791
Streptovaricin
synthesis, 560
Streptovaricin
synthesis
(Z)-selectivity, 764
Styrene, bromo-
reaction with aldehydes
chromium(II) chloride, 193
Styrene oxide
optically pure
synthesis, 833
Succinimides
Tebbe reaction, 745
Sugars
Kiliani-Fischer synthesis, 460
Sugars, aldehyde-
Wittig reaction, 759
Sugars, deoxyamino-
synthesis
via Peterson methylation, 732
Sugars, 3-C-methylene-
synthesis
via Peterson methylation, 732
Sulfamides, diaryl
reactions with organometallic compounds, 390
Sulfenamines, S-aryl-
reactions with organometallic compounds, 389
Sulfides
carbonations
crystal structure, 36
Sulfides, alkenyl
synthesis
via metal carbene complexes, 808
Sulfides, allyl
synthesis
via β-hydroxyalkyl selenides, 705
Sulfides, β-hydroxy
pinacol-type reactions, 861
Sulfides, α-lithio
anions
epoxidation, 827
Sulfides, 3-methyl-2-butenyl phenyl
allylic carbonations, 508
Sulfides, methyl (trimethylsilyl)methyl
Peterson alkenation, 787
Sulfides, phenyl (trimethylsilyl)methyl
Peterson alkenation, 787
Sulfonates, S-(di(alkylaminomethyl))dithio-
iminium salts
generation in situ, 370
Sulfone, benzyl phenyl
lithium salt
crystal structure, 528
Sulfone, chloromethyl phenyl
Darzens-type reactions, 530
epoxidation, 827
Sulfone, methoxymethyl phenyl
lithium anion
addition to ketones, 865
Sulfone, phenyl (trimethylsilyl)methyl
Peterson alkenation, 787
Sulfones
carbonations
crystal structure, 36
Julia coupling
carbonyl compounds, 806
Sulfones, α-halo-
reactions with carbonyl compounds, 530
Sulfones, vinyl
Peterson alkenation, 786
synthesis
via Julia coupling, 805
Sulfonimines
reactions with organometallic compounds, 390
Sulfonium benzylic, diphenyl-
reactions with aldehydes
synthesis of trans-stilbene oxides, 824
Sulfonium methylidene, dimethyl-
epoxidation
carbonyl compounds, 820
Sulfonium methylidene, dimethylxoxo-
epoxidation
carbonyl compounds, 820
Sulfonium salts
diatomic resins
phase transfer catalysts, 821
sulfur ylides from, 820
Sulfoxide, benzyl 1-butyl
carbonation, 512
reactions with carbonyl compounds, 513
Sulfoxide, benzyl methyl
carbonation, 512
Sulfoxide, chloromethyl phenyl
Darzens-type reactions, 530
Subject Index

985

a-carbanions, 535

ylides
 carbonyl epoxidation, 820

Sulfoximines, alkenyl-
 synthesis
 via silylation of b-hydroxysulfoximines, 536

Sulfoximines, b-hydroxy-
 reductive elimination, 738
 synthesis
 stereoselectivity, 536
 via prochiral carbonyl compounds, 532

Sulfoximines, (b-hydroxyalkyl)-
 synthesis
 via N-silyl-S-methyl-S-phenylsulfoximine, 532

Sulfur ylides
 epoxidation
 carbonyl compounds, 820

Sydowic acid
 synthesis
 via 1,2-addition of trimethylaluminum, 104

Tagatose
 synthesis
 via Lewis acids, nonchelation selectivity, 339

Tagetones
 synthesis
 via 1,6-addition, 554

Talaromycin A
 synthesis
 via functionalized alkyne addition, 419

Talaromycin B
 synthesis, 568

Tantalum, r-butylalkyliden-
 t-butylalkene synthesis, 743

Tebbe reaction
titanium-stabilized methylation, 743

Tebbe reagent
 alkene synthesis, 807

Tellurium ylides
 epoxidation, 825

Tetracyclines
 synthesis
 via conjugate addition of aryl cyanohydrin, 552

Tetralins
 synthesis
 via silicon-stabilized cyclizations, 585

b-Tetralone
 methylation
 organometallic compounds, 150

Tetronic acids
 synthesis
 via Reformatsky-type reaction, 551

Thermochemical measurements
carbonanions, 41

Thiaclopect-4-ene S-oxide
 synthesis
 via 1,6-dibromo-3,4-hexanediol, 517

1-Thiadecalin
 synthesis via transannular addition
 a-sulfanyl carbanions to nonactivated double
 bonds, 517

Thiamine
 acyloin formation
catalysis, 542

Thiane S-oxides
carbonanions
Subject Index

NMR, 513
1,3-Thiazole, 2-hydroxyethyl-4-methyl-alkylation, 543
Thiazoles, metallation, 477
3-Thiazolines
reactions with organometallic compounds, 364
stereoselective, 350, 359
Thiazolium carboxylates
acid catalysts
benzoin condensation, 543
Thiazolium salts
catalysts
benzoin condensation, 543
carbonyl condensation reactions, 542
Thienamycin
synthesis of precursor
via higher order cuprate, 133
Thiiranes
synthesis, 819, 834
Thioanisole
deprotonation
reaction with carbonyl compounds, 826
Thioates, S-(2-pyridyl)-
acylation, 407
Thioesters
acylation, 433
lithium dialkylcuprates, 428
2-pyridyl
synthesis, 407
reactions with organocuprates, 116
Thioimidates
synthesis
via organoaluminum reagents, 98
α-Thiononitriles
acyl anion equivalents, 561
Thiophenes
lithiation, 472
metallation
addition reactions, 471
Thiophenes, 2-oxazolyl-
lithiation, 472
Tiffeneau–Demjanov reaction
diazonium ion rearrangement, 846
Tiglic aldehyde
Lewis acid complexes
NMR, 294
Titanium, chlorotrimethyl-
triphenylphosphoanlyldiacetone complex
crystal structure, 305
Titanium, chlorotriphenyl-
tetramethyleneurea complex
crystal structure, 305
Titanium, (α-deuteriobenzyl)tributyl-
acylation, 444
Titanium, dichloromethyl-
salicylaldehyde complex
crystal structure, 305
Titanium, dichlorotriphenyl-
tetramethyleneurea complex
crystal structure, 305
Titanium, dichlorodiphenyl-
p-dimethylaminobenzaldehyde complex
crystal structure, 305
Titanium, tetrachloride
4-r-butylbenzaldehyde complex
crystal structure, 303
ethyl cinnamate complex
crystal structure, 305
ketone complexes
crystal structure, 306
methoxyacetophenone complexes
crystal structure, 306
Tirandamycin
dioxabicyclononane unit
synthesis, 564
Titanium, alkyl-
reactions with carbonyl compounds, 145
Titanium, (alkylthio)allyl-
reactions with carbonyl compounds, 508
Titanium, alkyltris(dimethylamino)-
reaction with carbonyl compounds
chemoselectivity, 149
Titanium, allyl-
heterosubstituted
reactions with carbonyl compounds, 161
phosphorus-containing
reactions with carbonyl compounds, 161
reaction with carbonyl compounds, 143, 156
Titanium, allyltris(isopropoxy)-
reaction with carbonyl compounds, 156
Titanium, aryl-
reactions with carbonyl compounds, 145
Titanium, crotyl-
reactions with carbonyl compounds, 158, 340
Titanium, dialkyl-
synthesis, 143
Titanium, diaryl-
synthesis, 143
Titanium, dichlorobis(isopropoxy)methyl-
synthesis, 142
Titanium, dichlorodimethyl-
reaction with carbonyl compounds
chemoselectivity, 149
Titanium, dichlorodiphenyl-
reaction with carbonyl compounds
chemoselectivity, 149
Titanium, dienyl-
reactions with carbonyl compounds, 162
Titanium, methyl-
chiral ligands
reactions with aromatic aldehydes, 165
Titanium, methyl(acylpyrrolidinylmethoxy)bis(isopropoxy)-
reactions with carbonyl compounds, 166
Titanium, monoalkyl-
synthesis, 142
Titanium, monoaryl-
synthesis, 142
Titanium, phenyl-
chiral ligands
reactions with aromatic aldehydes, 165
Titanium, propargyl-
reactions with carbonyl compounds, 165
Titanium, trichloromethyl-
properties, 141
reaction with 2-benzyloxy-3-pentanone
NMR, 295
reaction with carbonyl compounds
chemoselectivity, 149
synthesis, 142
Titanium, tris(isopropoxy)methyl-
properties, 141
reaction with alkoxy ketones, 153
reaction with carbonyl compounds
 chemoselectivity, 145
Titanium ate complexes
 synthesis, 143
Titanium complexes
 chiral Ti atom
 reactions with carbonyl compounds, 167
Titanium isopropoxide, phenyl-
 synthesis, 139
Titanium reagents, chirally modified
 enantioselective addition
 carbonyl compounds, 165
Titanium tetrachloride
 acetic anhydride complex
 crystal structure, 303
 acryloylmethyl lactate complex
 crystal structure, 303
 allenylsilanes
 reactions with carbonyl compounds, 595
carbonyl compound complexes
 NMR, 294
diethyl phthalate complex
 crystal structure, 303
 3,3-dimethyl-2,4-pentanedione complex
 crystal structure, 303
 ethyl acetate complex
 crystal structure, 302
 ethyl anisate complex
 crystal structure, 303
 methylenation
carbonyl compounds, 749
Titanocene
 synthesis, 139
Titanocene, crotyl-
 reaction with carbonyl compounds, 158
 synthesis, 143
Titanocyclobutane
 Tebbe reaction, 743
Tocopherol
 synthesis
 via cuprate 1,2-addition, 130
Tosylates
 reactions with carbonyl compounds
 organosamarium compounds, 257
Trachelanthic acid
 synthesis, 568
Transannular alkylation
 3,3-like rearrangement, 890
 oxy-Cope rearrangement, 883
Transition metal halides
 reactions with organolithium compounds
 complex Lewis acid reagent, 330
Transition metals
 Lewis acids, 307
Transmetallation
 acylation
 organostannanes, 444
Trialkylsilysil groups
 nucleophilic addition reactions
 stereoselectivity, 58
1,3,5-Triazine, 1,3,5-trialkylhexahydro-
synthesis
 via trimerization of formaldehyde imines, 361
4H-1,2,4-Triazole, 4-(4-chlorophenyl)quaternary salts of
 benzoin condensation, catalysis, 543
Triazoles
 N-alkyl
 lithiation, 477
1,3,4-Triazoles
 metallation
 addition reactions, 471
Trichothecene
 synthesis
 via sulfur ylide reagents, 822
Trichothec-9-ene, 12,13-epoxy-
synthesis
 via 4-methyl-2-cyclohexenone, 522
Triethylamine
 α-deprotonation, 476
Trihapttotitanium compounds
 synthesis, 159
Triisopropylsilyl protecting groups
 nucleophilic addition reactions
 effect on stereoselectivity, 62
Trimethylamine
 deprotonation, 476
Trimethylsilyl chloride
 ketone synthesis
 via carboxylic acids, 411
Trinorastreptene
 synthesis
 via Julia coupling, 804
Triphenylmethyl carbamion
 lithium (12-crown-4) complex
 crystal structure, 11
Tropylium ions
 reactions with allenylsilanes, 603
Tungsten hexafluorotiminate, tricarbonyl-
nitroso(trimethylphosphine)-
crystal structure, 309
Tylosin
 aglycones
 synthesis, 436
Urea, tetramethyl-
 aluminum trichloride complex
 crystal structure, 301
chlorotriphénylphosphine complex
 crystal structure, 305
dichlorodimethyltin complex
 crystal structure, 305
Urethanes
 lithiation
 addition reactions, 469
Urethanes, α-cyano-
synthesis, 559
Valeric acid, 8-bromo-
 reactions with samarium diiodide
 lactone synthesis, 259
γ-Valerolactone
 acylation, 418
Valerolactone, β-hydroxy-
synthesis
 via SmI₂-promoted reductive cyclizations, 267
Valinol
 imines
 reactions with organometallic compounds, 363
Valinol, O-t-butyli
 imines
reactions with organolithium reagents, 383
Venustatriol

synthesis
via cerium reagent, 237
Verbenene

synthesis
via methyllithium reaction, 377
Verbenone

tosylhydrazone
reaction with methyllithium, 377
Vermiculine

synthesis, 568
Vinyl bromide
reaction with aldehydes, 193
Vinyl ethers

synthesis
via Horner reaction, 774
Vinyl halides

reduction
chromium(II) salts, 193
Vinyl iodides
reactions with benzaldehyde
chromium(II) chloride, 193
Vinyl metals, α-seleno-synthesis, 644, 665
Vinyl sulfides

synthesis
via Horner reaction, 774
Vitamin A

synthesis
via Julia coupling, 803
Vitamin B₁

catalyst
benzoin condensation, 543
Vitamin D

synthesis
via Horner reaction, 780
via Horner–Wittig process, 779
Water

reaction with formaldehyde
Lewis acids, 314
Wittig reaction
alkene synthesis, 755
Peterson methylenation compared with, 731
Wolff rearrangement
α-diazoacetones, 844
X-206

synthesis, 401
X-14547A

synthesis
final step, 409
introduction of 2-ketopyrrole, 409
via Julia coupling, 800
X-14881

synthesis, 567
X-ray crystallography
carbonyl compounds
Lewis acid complexes, 299
Yamamoto’s reagent

reactions with ketones, 117
reactions with nitriles, 124
Yeast

benzaldehyde reaction with acetaldehyde, 543
Ylides
nonstabilized
Wittig reaction, 757
semistabilized
Wittig reaction, 758
stabilized
Wittig reaction, 759
α,β-Yrones, α′-amino-synthesis
acylisoxazolidides as leaving groups, 405
Ytterbium
oxidation state
stability, 252
Ytterbium, dialkynyl-synthesis, 276
Ytterbium, diaryl-polyfluorinated
synthesis, 276
Ytterbium, phenyliodo-reaction with N,N-dimethylbenzamide
synthesis of benzophenone, 278
Ytterbium chloride
toxicity, 252
Ytterbium dibromide
solubility, 278
Ytterbium diiodide
Barbier-type reactions, 278
solubility, 278
Ytterbium reagents, 251–280
Barbier-type reactions, 278
Ytterbium salts
redox potentials, 278
Zearalenone
synthesis, 568
via cyclization, 553
Zinc, alkyl-addition reactions, 216
Zinc, allenylobromo-addition reactions, 220
Zinc, allyl-addition reactions, 218
Zinc, aryl-addition reactions, 216
Zinc, bis(perdeuteroethyl)-reaction with benzaldehyde, 223
Zinc, cinnamylbromo-synthesis, 214
Zinc, dialkyl-synthesis, 212, 215
Zinc, dialkyl-reactions with α-alkoxyaldehydes
stereoselectivity, 221
Zinc, dibenzyl-synthesis, 215
Zinc, dibutyl-reaction with benzaldehyde, 216
Zinc, di-t-butyl-synthesis
via transmetallation, 214
Zinc, di-crotyl-reactions with aldehydes
stereoselectivity, 220
Zinc, diethyl-
enantioselective addition reactions, 223
reaction with benzaldehyde, 223
reaction with 1,2-diketones, 217
Zinc, dimethyl-
 Tebbe reaction, 746
Zinc, divinyl-
 enantioselective addition reactions, 223
 synthesis
 via transmetallation, 214
Zinc, methyl-
 addition reactions
 chiral aldehydes, 221
Zinc, methylenedi-
 Tebbe reaction, 746
Zinc, 2-pentenylbromo-
 reaction with diisobutyl ketone, 219
Zinc, propargyl-
 addition reactions, 218
Zirconium, alkyl-
 reactions with carbonyl compounds, 145
Zirconium, alkyltributoxy-
 reaction with carbonyl compounds
 chemoselectivity, 149
Zirconium, aryl-
 reactions with carbonyl compounds, 145
Zirconium, aryltributoxy-
 reaction with carbonyl compounds
 chemoselectivity, 149
Zirconium, t-butyltributoxy-
 reaction with carbonyl compounds
 chemoselectivity, 149
Zirconium, dialkyl-
 synthesis, 143
Zirconium, diaryl-
 synthesis, 143
Zirconium, dienyl-
 reactions with carbonyl compounds, 162
Zirconium, monoalkyl-
 synthesis, 142
Zirconium, tetraallyl-
 reaction with carbonyl compounds, 157
Zirconium, tetramethyl-
 methylation
 carbonyl compounds, 150
Zirconium, vinyl-
 reaction with α,β-unsaturated ketones, 155
 synthesis, 143
Zirconium reagents, allylic
 reaction with carbonyl compounds, 156
Zirconocene, crotyl-
 reaction with carbonyl compounds, 158
 synthesis, 143
Zirconocene, diene-
 reactions with carbonyl compounds, 162
Zirconocene, isoprene-
 reactions with carbonyl compounds, 163
Zirconocene dichloride
 synthesis, 143