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Preface to the Third Edition 

The face of colloid and surface chemistry has changed dramatically in the 10 years since the 
last edition of this book appeared in print. Advances in instrumentation now make it possible 
for us to “see”- and, indeed, to manipulate-individual atoms on a surface. Molecular engi- 
neering of polymers, surfactants, and particles is now within reach for fabricating novel 
advanced materials and for preparing capsules (liposomes) for drug delivery and gene therapy. 
Direct measurements of colloidal and surface forces are now commonplace, and colloidal 
dispersions are now used as models for studying equilibrium and non-equilibrium thermody- 
namics and flow behavior of atomic (as well as geological) systems-phenomena that are 
otherwise not easily accessible to the experimentalist. Colloid and surface chemistry is a truly 
interdisciplinary subject today, and its content and significance have no bounds. 

This richness has its rewards, as has been documented in a number of advanced mono- 
graphs and a few graduate-level books in recent years. However, it has its drawbacks as 
well, as those who use colloids and surface chemistry are drawn from increasingly diverse 
backgrounds. Introductory textbooks that are suitable for such a diverse group of students 
and professionals remain almost as rare today as they were EL decade ago. This need for an 
introductory book accessible to everyone, regardless of background, even from the per- 
spectives of the traditional applications of colloid and surface chemistry, cannot be over- 
emphasized. For example, in the chemical industries alone, almost two-thirds of the oper- 
ations or products involve powders and suspensions. A report from Du Pont researchers 
[Ennis, B.,  Green, J . ,  and Davies, R., Chemical Engineering Progress, 90(4), 32-43 (1994)] 
notes that of the roughly 3000 products manufactured by Du Pont, about 60% are market- 
ed as powders, dispersions, or suspensions and that the processing of another 20% in- 
volves particles or suspensions. Industries employ engineers and scientists of all types, and the 
rather tight curriculum requirements in most areas of science and engineering seldom allow 
even a minimal preparation of university graduates for working with materials in particulate 
form. 

Factors such as the above have shaped our approach to the present edition. The philoso- 
phy behind the first two editions was that most of the material in the book should be a natural 
extension of an introductory physical chemistry course at the undergraduate level and should 
be accessible to anyone (students as well as practicing engineers and scientists) with such a 
background. This remains the rule in the present edition as well. In our opinion, this orienta- 
tion is essential for giving a firm foundation in colloids and surfaces to the diverse audience, 
which typically includes individuals from almost all branches of engineering and the sciences. 

Keeping these factors in mind, we have updated many topics and have introduced new 
features that draw attention to exciting developments that go beyond the scope of the present 
volume. Among the major revisions and additions made are the following: 

1. A major portion of Chapter 1 has been rewritten. In. addition to providing a broad 
overview of the basic issues of importance in colloids and to introducing much of 
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2. 

3. 

4. 

5 .  

6 .  

7.  

8.  

what is presented in the rest of the book, Chapter 1 now includes modern develop- 
ments in instrumentation such as scanning probe microscopy and spectroscopy, and 
atomic and surface force measurements; a brief introduction to “model” colloids and 
their uses; and an introduction to fractal dimensions of aggregates and surfaces. 
A number of vignettes are sprinkled throughout Chapter 1 to provide motivation for 
and to illustrate the concepts introduced in the chapter and in the rest of the book. 
These vignettes also serve as vehicles for conveying the excitement of the subject and 
as introductions to advanced concepts that are beyond the scope of the book. They 
cover a rat her broad array of disciplines ranging from environmental remediation 
and separation technologies to biological and medical sciences and polymer compos- 
ites, and they thus reveal the breadth of the present as well as the potential applica- 
tions. In addition to the vignettes in Chapter 1, each of the other 12 chapters contains 
a vignette highlighting the material covered in the chapter and establishing the connec- 
tions to other chapters or advanced developments. 
Chapter 4 now goes beyond an introduction to Newtonian viscosity and flow of 
Newtonian dispersions. In addition to a basic introduction to viscosity and the Na- 
vier-Stokes equation, the chapter now includes the Krieger-Dougherty relation for 
concentrated dispersions, elements of non-Newtonian rheological behavior of disper- 
sions, electroviscous effects, and a summary of the definitions and physical signifi- 
cance of dimensionless groups essential for estimating and quantifying rheological 
properties of dispersions. 
Chapter 5, on scattering techniques, has been updated to include measurement of 
fractal dimensions of aggregates, intraparticle and interparticle structure, dynamic 
light scattering and relation between light scattering and complementary measure- 
ments based on scattering of X-ray and neutrons. 
Chapter 7 now includes an introduction to structural transitions in Langmuir layers 
and examples of applications of Langmuir and Langmuir-Blodgett films. 
Chapter 8 has been revised to include a discussion of the critical packing parameter 
of surfactants and its relation to the structure of resulting surfactant aggregates. This 
simple geometric basis for the formation of micelles, bilayers, and other structures is 
intuitively easier to understand for a beginning student. 
Chapters 9 and 10 of the second edition (dealing with physical adsorption at gas/ 
solid interfaces and microscopy, spectroscopy and diffractometry of metal surfaces, 
respectively) have been pared down and consolidated into one chapter (new Chapter 
9, on adsorption on gadsolid interfaces). The outdated materials or materials extra- 
neous to the main thrust of the book from the old Chapter 10 have been eliminated 
and only the discussion of low-energy electron diffraction (LEED) has been retained. 
Chapters 11-13 of the second edition, which discussed van der Waals forces (old 
Chapter 1 l), electrical double layers (old Chapter 12), electrokinetic phenomena (old 
Chapter 13), and colloid stability (old Chapters 11 and 12), have been restructured 
and new materials on colloid stability and polymer/colloid interactions have been 
added. For example: 

In the new version, Chapter 10 focuses exclusively on van der Waals forces and 
their implications for macroscopic phenomena and properties (e.g., structure of 
materials and surface tension). It also includes new tables and examples and 
some additional methods for estimating Hamaker constants from macroscopic 
properties or concepts such as surface tension, the parameters of the van der 
Waals equation of state, and the corresponding state principle. 
Chapters 11 and 12 in the present edition focus exclusively on the theories of 
electrical double layers and forces due to double-layer interactions (Chapter 1 1) 
and electrokinetic phenomena (Chapter 12). Chapter 1 1 includes expressions for 
interacting spherical double layers, and both chapters provide additional examples 
of applications of the concepts covered. 
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The new Chapter 13 collects the material on colloid stability previously distributed 
between old Chapters 11 and 12 and integrates it with new material on stability 
ratio and slow and fast coagulation, polymer-induced forces, and polymer- 
induced stabilization and destabilization. 

This rearrangement makes the presentation of colloidal forces, colloid stability, and electroki- 
netic phenomena more logical and pedagogically more appealing. 

Numerous cross-references link the materials in the various chapters; however, many of 
the chapters are self-contained and can stand alone, thus offering the instructor the flexibility 
to mix and match the topics needed in a particular course. Moireover, we have also introduced 
a number of other features to make the present edition more useful and convenient as a 
textbook and for self-study. For example: 

A collection of Review Questions has been added at the end of each chapter. These 
should be useful not only for class assignments but also as a self-assessment tool for 
students. 
The references at the end of each chapter have been grouped into two sets, one 
containing annotated general references (usually other textbooks, monographs or 
review articles) and the second with special references of narrower scope. The level of 
each annotated reference (undergraduate, graduate, or advanced) has also been in- 
cluded in the annotations, as an additional aid to students and instructors. 

3 .  All illustrations have been redrawn, and a number of new illustrations, tables, and 
examples have been added. (Appendix D presents a list. of all the worked-out examples 
and the corresponding page numbers.) 
The presentation in each chapter has been divided into a number of sections and 
subsections so that the headings of the sections and subsections can serve as guide- 
posts for students. 

As it is often said, when it comes to textbooks, one never “finishes” writing a book-one 
just “abandons” it! There is a lot we would like to  do further with this book, but these changes 
must wait for the next edition. We would be pleased indeed to hear comments, suggestions, 
and recommendations for potential revisions and additions from anyone who uses this book, 
so that everyone can benefit from the collective wisdom of the community at large. 

1. 

2. 

4. 

Paul C. Hiemenz 
Raj Rajagopalan 
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Preface to the Second Edition 

In the preface to the first edition, I stated that this is “primarily a textbook, written with 
student backgrounds, needs, and objectives in mind.” This co’ntinues to be true of the second 
edition, and many of the revisions I have made are attempts to make the book even more 
useful than its predecessor to student readers. In addition, colloid and surface science continue 
to flourish. In preparing the second edition I have also attempted to “open up” the coverage to 
include some of the newer topics from an ever-broadening field. 

A number of differences between the first and second editions can be cited which are 
readily traceable to either one or both of the foregoing considerations. 

Two new chapters have been added which explore - via micelles and related structures and 
metal surfaces under ultra-high vacuum- both “wet” and “dry” facets of colloids and surfaces. 
Although neither of these areas is new, both are experiencing an upsurge of activity as new 
instrumentation is developed and new applications are found. 

A number of chapters have been overhauled so thoroughly that they bear only minor 
resemblance to their counterparts in the first edition. The thermodynamics of polymer solu- 
tions is introduced in connection with osmometry and the drainage and spatial extension of 
polymer coils is discussed in connection with viscosity. The treatment of contact angle is 
expanded so that it is presented on a more equal footing with surface tension in the presenta- 
tion of liquid surfaces. Steric stabilization as a protective mechanism against flocculation is 
discussed along with the classical DLVO theory. 

Solved problems have been scattered throughout the text. I am convinced that students 
must work problems to gain mastery of the topics we discuss. Including examples helps bridge 
the gap between the textbook presentation of theory and student labors over the analysis and 
mechanics of problem solving. 

SI units have been used fairly consistently throughout the book. Since the problems at the 
ends of the chapters are based on data from the literature ancl since cgs units were commonly 
used in the older literature, the problems contain a wider assortment of units. A table of 
conversions between cgs and SI units is contained in Appendix B. 

I am very much aware of the many important topics that the book fails to cover or, worse 
yet, even mention. However, lines must be drawn somewhere both to keep the book manage- 
able in size and cost and to have it useful as the basis for a course. As it is, I have added a 
good deal of new material without deleting anywhere near as much of the old. I have tried to 
select for inclusion topics of fundamental importance which could be developed with some 
internal coherence and with some continuity from a (prerequisite) physical chemistry course. 

A number of users of the first edition communicated with me, pointing out errors and 
offering suggestions for improvement. I appreciate the feedback of these correspondents, and 
hope that the revisions I have made at least partially reflect their input. 

I want to express my thanks to Carol Truett for expertly drawing the new illustrations and 
giving a “new look” to the old ones. I also appreciate the assistance of Lisa Scott in the 
preparation of the manuscript. Thanks, also, to Reuben Martinez for helping me with the 
proofreading and indexing. Lastly, let me again invite users to call errors and/or obscurities 
to my attention, and to thank them in advance for doing so. 

Paul C. Hiemenz 
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Preface to the First Edition 

Colloid and surface chemistry occupy a paradoxical position among the topics of physical 
chemistry. These are areas which have traditionally been considered part of physical chemistry 
and are currently enjoying more widespread application than ever due to  their relevance to 
environmental and biological problems. At the same time, however, colloid and surface chem- 
istry have virtually disappeared from physical chemistry courses. These topics are largely 
absent from the contemporary general chemistry course as well. It is possible, therefore, that 
a student could complete a degree in chemistry without even being able to identify what colloid 
and surface chemistry are about. 

The primary objective of this book is to bridge the gap between today’s typical physical 
chemistry course and the literature of colloid and surface chemistry. The reader is assumed to 
have completed a course in physical chemistry, but no prior knowledge of the topics under 
consideration is assumed. The book is, therefore, introductory as far as the topic subjects are 
concerned, although familiarity with numerous other aspects of physical chemistry is required 
background. 

Since physical chemistry is the point of departure for this presentation, the undergraduate 
chemistry major is the model reader toward whom the book is addressed. This in no way 
implies that these are the only students who will study the material contained herein. Students 
majoring in engineering, biology, physics, materials science, and so on, at both the undergrad- 
uate and graduate levels will find aspects of this subject highly useful. The interdisciplinary 
nature of colloid and surface chemistry is another aspect of tlhese subjects that contributes to 
their relevance in today’s curricula. 

This is primarily a textbook, written with student backgrounds, needs, and objectives in 
mind. There are several ways in which this fact manifests itself in the organization of this 
book. First, no attempt has been made to review the literature or to describe research frontiers 
in colloid and surface chemistry. A large literature exists which does these things admirably. 
Our purpose is to provide the beginner with enough background to make intelligible the 
journals and monographs which present these topics. References have been limited to mono- 
graphs, textbooks, and reviews which are especially comprehensive and/or accessible. Second, 
where derivations are presented, this is done in sufficient detail so that the reader should 
find them self-explanatory. In areas in which undergraduate chemistry majors have minimal 
backgrounds or have chronic difficulties - for example, fluid mechanics, classical electromag- 
netic theory, and electrostatics - the presentations begin at the level of general physics, which 
may be the student’s only prior contact with these topics. Third, an effort has been made to 
facilitate calculations by paying special attention to dimensional considerations. The cgs-esu 
system of units has been used throughout, even though this is gradually being phased out of 
most books. The reason for keeping these units is the stated objective of relating the student’s 
experiences to  the existing literature of colloid and surface chemistry. At present, the cgs-esu 
system is still the common denominator between the two. A fairly detailed list of conversions 
between cgs and SI units is included in Appendix C. Finally, a few problems are included in 
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each chapter. These provide an  opportunity to apply the concepts of the chapter and indicate 
the kinds of applications these ideas find. 

Not all who use the book will have the time or interest to cover it entirely. In the author’s 
course, about two-thirds of the material is discussed in a one-quarter course. With the same 
level of coverage, the entire book could be completed in a semester. To  cover the amount of 
material involved, very little time is devoted to derivations except to answer questions. Lecture 
time is devoted instead to outlining highlights of the material and presenting supplementary 
examples. 

The underlying unity which connects the various topics discussed here is seen most clearly 
when the book is studied in its entirety and in the order presented. Time limitations and special 
interests often interfere with this ideal. Those who choose to rearrange the sequence of topics 
should note the subthemes that unify certain blocks of chapters. Chapters 1 through 5 are 
primarily concerned with particle characterization, especially with respect to molecular weight; 
Chapters 6 through 8, with surface tension/free energy and adsorption; and Chapters 9 
through 11, with flocculation and the electrical double layer. Subjects of special interest to 
students of the biological sciences are given in Chapters 2 to 5, 7, and 11. 

Colloid chemistry and surface chemistry each span virtually the entire field of chemistry. 
The former may be visualized as a chemistry whose “atoms” are considerably larger than 
actual atoms; the latter, as a two-dimensional chemistry. The point is that each encompasses 
all the usual subdivisions of chemistry: reaction chemistry, analytical chemistry, physical 
chemistry, and so on. The various subdivisions of physical chemistry are also represented: 
thermodynamics, structure elucidation, rate processes, and so on. As a consequence, these 
traditional categories could be used as the basis for organization in a book of this sort. For 
example, “The Thermodynamics of Surfaces” would be a logical chapter heading according to 
such a plan of organization. In this book, however, no such chapter exists (although not only 
chapters but entire volumes on this topic exist elsewhere). The reason goes back to the premise 
stated earlier: These days most undergraduates know more about thermodynamics than about 
surfaces, and this is probably true regardless of their thermodynamic literacy/illiteracy ! Ac- 
cordingly, this book discusses surfaces: flat and curved, rigid and mobile, pure substances and 
solutions, condensed phases and gases. Thermodynamic arguments are presented - along with 
arguments derived from other sources - in developing an overview of surface chemistry (with 
the emphasis on “surface”). A more systematic, formal presentation of surface thermodynam- 
ics (with the emphasis on “thermodynamics”) would be a likely sequel to the study of this book 
for those who desire still more insight into that aspect of two-dimensional chemistry. Simi- 
larly, other topics could be organized differently as well. Only time will tell whether the plan 
followed in this book succeeds in convincing students that chemistry they have learned in other 
courses is also applicable to the “in between” dimensions of colloids and the two dimensions 
of surface chemistry. 

The notion that molecules at a surface are in a two-dimensional state of matter is reminis- 
cent of E. A. Abbott’s science fiction classic, Flatland.* Perusal of this book for quotations 
suitable for Chapters 6 ,  7, and 8 revealed other parallels also: the color revolt and light 
scattering, “Attend to Your Configuration” and the shape of polymer molecules, and so on. 
Eventually, the objective of beginning each chapter with a quote from Flatland replaced the 
requirement that the passage cited have some actual connection with the contents of the 
chapter. As it ends up, the quotes are merely for fun: Perhaps those who are not captivated by 
colloids and surfaces will at least enjoy this glimpse of Flatland. 

Finally, it is a pleasure to acknowledge those whose contributions helped bring this book 
into existence. I am grateful to Maurits and Marcel Dekker for the confidence they showed 
and the encouragement they gave throughout the entire project. 1 wish to thank Phyllis 
Bartosh, Felecia Granderson, Jennifer Woodruff, and, especially, Mickie McConnell and 
Lynda Parzick for making my sloppy manuscript presentable. My appreciation also goes to 
Bob Marvos, George Phillips, and, especially, Dottie Holmquist for their work on the figures, 

*E. A. Abbott, Flatland (6th ed.), Dover, New York, 1952. Used with permission. 
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which are such an important part of any textbook. I also wish to thank Michael Goett for 
helping with proofreading and indexing. Finally, due to the diligence of the class on whom 
this material was tested in manuscript form, the book has 395 fewer errors than when it 
started. For the errors that remain, and I hope they are few in number and minor in magni- 
tude, I am responsible. Reports from readers of errors and/or obscurities will be very much 
appreciated. 

Paul C. Hiernenz 
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Colloid and Surface Chemistry: 
Scope and Variables 

Next . . . come the Nobility, of whom there are several degrees, beginning at Six-Sided 
Figures, . . . and from thence rising in the number of their sides till they receive the 
honorable title of Polygonal. . . . Finally when the number of sides becomes so 
numerous, and the sides themselves so small, that the figure cannot be distinguished from 
a circle, he is included in . . . the highest class of all. 

From Abbott’s Flatland 

1.1 INTRODUCTION 
“Yesterday, I couldn’t define colloid chemistry; today, I’m doing it.” This variation of an old 
quip could apply to many recent chemistry and engineering graduates on entering employment 
in the “real world.” Two facts underlie this situation. First, colloid and surface science, 
although traditional parts of physical chemistry, have largely disappeared from introductory 
physical chemistry courses. Second, in research, technology, and manufacturing, countless 
problems are encountered that fall squarely within the purview of colloid and surface science. 
In this section we enumerate some examples that illustrate thi!; statement. The nine “vignettes” 
included in this chapter also illustrate the importance of colloid and surface science in a broad 
range of scientific and technological areas. 

The paradoxical situation just described means that it is entirely possible for a science or 
an engineering student to have completed a course in physical chemistry and still not have any 
clear idea of what colloid and surface science are about. A book like this one is therefore in 
the curious position of being simultaneously “advanced” and “introductory.” Our discussions 
are often advanced in the sense of building on topics from physical chemistry. At the same 
time, we have to describe the phenomena under consideration pretty much from scratch since 
they are largely unfamiliar. In keeping with this, this chapter is concerned primarily with a 
broad description of the scope of colloid and surface science and the kinds of variables with 
which they deal. In subsequent chapters different specific phenomena are developed in detail. 

1 . la  Colloid and Surface Chemistry: Some Definitions 
I .  la. I Definition of Colloids 
Our first tasks are to define what we mean by colloid science and how this is related to surfaFe 
science. For our purposes, any particle that has some linear dimension between IOW’ m (10 A) 
and 1 O P 6  m (1 pm or 1 p)* is considered a colloid. For us,, linear dimensions rather than 

*In this book SI (International System of Units) units are used fairly consistently in keeping with 
current practice. Some quantities are traditionally expressed in hybrid units - for example, the 
specific area is usually measured in m * g - ’ - and we continue this practice. The older literature uses 
cgs (centimeter-gram-second) units almost exclusively, so the reader must be cautious in consulting 
other sources. Appendix B contains a list of conversion factors between SI and cgs units. 

1 
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particle weights or the number of atoms in a particle will define the colloidal size range; 
however, other definitions may be encountered elsewhere. It should be emphasized that these 
limits are rather arbitrary. Smaller particles are considered within other branches of chemistry, 
and larger ones are considered within sciences other than chemistry. The statement above may 
be expanded still further. Colloid science is interdisciplinary in many respects; its field of 
interest overlaps physics, biology, materials science, and several other disciplines. It is the 
particle dimension - not the chemical composition (organic or inorganic), sources of the sam- 
ple (e.g., biological or mineralogical), or physical state (e.g., one or two phases)-that con- 
signs it to our attention. With this in mind, it is evident that colloid science is the science of 
both large molecules and finely subdivided multiphase systems. 

I .  la.2 Surfaces and Interfaces 

It is in systems of more than one phase that colloid and surface science meet. The word surface 
is thus used in the chemical sense of a phase boundary rather than in a strictly geometrical 
sense. Geometrically, a surface has area but not thickness. Chemically, however, it is a region 
in which the properties vary from those of one phase to those of the adjoining phase. This 
transition occurs over distances of molecular dimensions at least. For us, therefore, a surface 
has a thickness that we may imagine as shrinking to zero when we desire a purely geometric 
description. The term interface is also used in this context. This term simply highlights the fact 
that the surface of interest is the dividing region between two phases. 

It is self-evident that the more finely subdivided a given weight of material is, the higher 
the surface area will be for that weight of sample. In the following section we discuss this in 
considerable detail since it is the basis for combining a discussion of surface and colloid 
science in a single book. 

I .  la.3 

In subsequent sections of this chapter, we discuss further the distinction between macromolec- 
ular colloids and multiphase dispersions (Section 1.3), the use of the term stability in colloid 
science (Section 1.4), the size and shape of colloidal particles, the states of aggregation among 
particles, and the distribution of particle sizes that is typical of virtually all colloidal prepara- 
tions (Section 1.5). The fact that particles in the colloidal size range are not all identical in size 
also requires a preliminary discussion of statistics, which is the subject of Section 1 . 5 ~  and 
Appendix C. 

Other Concepts and Classifcation of Colloids 

VIGNETTE 1.1 ENVIRONMENTAL SCIENCES: Colloid-Enhanced Transport 
in Unconsolidated Media 

Contaminated bed sediments exist at numerous locations in the United States and around the 
world. These result mainly from past indiscriminate pollution of our aquatic environments 
and consist of freshwater and marine bodies including streams, lakes, wetlands, and estuaries. 
The bed sediments contain many hydrophobic organic compounds and metal ions that in the 
course of time act as sources of pollutants of the overlying aqueous phase. There are a 
number of transport pathways by which pollutants are transferred to the aqueous phase from 
contaminated sediments. One of the lesser known, but potentially important, modes of 
transport of pollutants from bed sediments is by diffusion and advection of contaminants 
associated with colloidal-size dissolved macromolecules in pore water. These colloids are 
measured in the aqueous phase as dissolved organic compounds (DOCs). (These are defined 
operationally as particles with a diameter smaller than 0.45 micrometer .) 

The facilitated transport of compounds by colloids, illustrated schematically in Figure 
1.1, is important in several areas and especially in the study of the fate and transport processes 
of hydrophobic organic compounds and metal ions in the environment. This facilitated 
transport also has implications in other areas in which colloid diffusion through porous 
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media is important, such as those processes utilizing porous sorbents to clean up water and in 
situ flushing of subsurface soil with surfactant solutions for both oil recovery and cleanup of 
soils contaminated with oil. The understanding of facilitated transport of hydrophobic 
compounds from unconsolidated media such as bed sediments and soils is therefore very 
important and requires a knowledge of colloid and surface science of pollutant/particle 
interactions and transport. 

In general, colloids are known to have a large capacity to bind hydrophobic compounds 
and have been reported to transport contaminants to very large distances in groundwater. It 
has been shown using simple mathematical models that orders of magnitude larger fluxes of 
contaminants are possible in the presence of colloids as compared to simple molecular 
diffusion of contaminants in the absence of any association with colloids. It is also known 
that contaminant binding to colloids is a fast, equilibrium process with partition constants 
larger than that between the bed sediment and water. In the literature there exists some 
information on the possible effects of colloids on the transport of pollutants from bed 
sediments. However, detailed studies on the flux of contaminants by colloids under controlled 
laboratory conditions are not available. 

This vignette, in fact, captures many of the concepts and phenomena we discuss in this 
book and highlights them in the context of a very practical problem of considerable 
significance to our environment (see also the legend for Fig. 1.1). 

FIG. 1.1 A schematic illustration of colloid-mediated transport in porous media. The sketch 
illustrates the transport of molecular solutes by colloidal particles. The extent of such transport and 
its importance are determined by a number of factors, such as the extent of adsorption of molecular 
solutes on the colloids and on the grains, the deposition and retention of colloids in the pores, the 
influence of charges on the colloids and on the pore walls, and so on. 
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1.1 b Impact of Colloid and Surface Chemistry in Science, Engineering, 
and Technology 

One of the basic premises underlying the selection of topics included in this book is that areas 
of similarity between diverse fields should be stressed. This is not to say, of course, that 
differences are unimportant. Rather, it seems more valuable to point out to the beginner that 
useful methods and insights are frequently part of the well-established procedures of other 
disciplines that deal with related phenomena. Too provincial a viewpoint, especially at the 
beginning, is apt to isolate the student from many potentially valuable sources of information. 
In the long run, this seems like a greater loss than the loss of time that occurs when one 
concludes too hastily that a technique that works well in one system should work equally well 
in another system in which the particles are larger or smaller by several orders of magnitude. 
Errors of this last sort are generally discovered quickly enough! 

I .  I b. I Examples of Applications 
Any attempt to enumerate the areas in which surface and colloid chemical concepts find 
applicability is bound to be incomplete and quite variable with time because of changing 
technology. Nonetheless, we conclude this section with a partial listing of such applications. If 
there is any difficulty in doing this, it is because of the abundance rather than scarcity of such 
examples. 

It should be evident from the partial list of examples summarized in Table 1.1 how many 
materials or phenomena of current scientific or everyday interest touch on colloid and surface 
science to some extent. Many of these areas, of course, have enormous technological and/or 
theoretical facets that are totally outside our perspective. Nevertheless, all share a common 
interest in small particles and/or large molecules. 

I .  I b.2 Vignettes 
In addition to Table 1.1 and the applications discussed in this book, we have included nine 
“vignettes” in this chapter and one each in the other 12 chapters.* These vignettes are examples 
selected from physical, biological, and engineering sciences and highlight the broad scope, the 
rich variety, and the scientific and engineering challenges in colloid and surface science. These 
vignettes are not meant to be comprehensive and complete; rather, the idea is to expose the 
student to fascinating topics and ideas that currently occupy researchers and technologists in 
the chosen areas and to convey a sense of excitement about the subject. 

The vignette included in each chapter (with the exception of Chapter 1) highlights an 
application (in practice or in advanced research) of some of the concepts discussed in that 
chapter. The vignettes included in Chapter 1, in addition to serving the above purpose and 
elaborating on the material discussed in the chapter, seek to link the introductory material in 
this chapter to more detailed, advanced topics treated in other chapters. 

VIGNETTE 1.2 BIOLOGICAL AND LIFE SCIENCES: Biological 
Membranes and Cells 

Life sciences provide a fascinating array of examples in which colloid and surface science 
plays a vital (pun intended!) role in maintaining and promoting supramolecular structures 
and processes that sustain life. A specific example is the phospholipid “bilayers” that form 
the “walls” of biological cells and separate the interior of the cells from the rest of the 
environment (see Fig. 1.2; see also Chapter 8,  Section 11). These bilayers arise from 
self-assembly of component molecules, each of which consists of a hydrophilic “head” group 

*For the purpose of cross-referencing, the vignettes in this chapter are numbered sequentially as 
Vignette I .  1 ,  1.2, and so on, whereas those in the other chapters carry only the chapter number as a 
Roman numeral (e.g., Vignette X for the vignette in Chapter 10). 
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and hydrophobic “tails.” The nature of the forces that create such layers (or membranes) and 
maintain their structure and functionality is a major topic of research today and is pursued 
by cell biologists, physiologists, biophysicists, biochemists, and engineers, among others. 
However, a bilayer by itself is insufficient to create and maintain a “living” cell. The cell 
membrane is actually a mosaic of a number of functional units that include protein molecules 
embedded in the membrane. The protein molecules themselves contain hydrophobic and 
hydrophilic components and provide the pathways for life-sustaining ions and polar 
molecules to move across the cell membrane. The arrangements of the hydrophilic and 
hydrophobic parts of a protein molecule are far more complex than those in a simpler 
structure such as a bilayer. The configuration of the hydrophilic and hydrophobic parts of a 
protein and how a protein is embedded in a bilayer are important for the molecular events 
that contribute to the functions of a biological cell (see Fig. 1.2 for some additional details). 
It therefore comes as no surprise that colloid and surface science plays a central role in such 
phenomena in life sciences (see Alberts et al. 1989; Tanford 1989; Bergethon and Simons 
1990; Goodsell 1993; Morowitz 1992*). 

In Figure 1.2, the hydrophobic parts of the protein molecules form the outer surface of 
the cylinders shown and hold the molecules in place, away from water, in the hydrocarbon 
part of the bilayer. The inner surfaces of the cylinders are hydrophilic and allow the transfer 
of ions and polar molecules from one side of the bilayer to the other. These pathways remain 
closed until an appropriate internal or external stimulus tl-iggers them to open to allow 
transport across the membrane. 

In addition to illustrating the importance of colloid and surface science in biological and 
life sciences, this vignette draws our attention to the importance of phenomena peculiar to 
surfactant systems. We discuss in Chapters 7 and 8 the behavior of surfactants in solutions 
and their tendency to self-assemble when dissolved in water or in water-oil mixtures. 

Protein Bilayer 

Lipid molecule 

FIG. 1.2 A simplified sketch of a hypothetical protein molecule embedded in a bilayer (a 
biological membrane). The bilayer shown is a two-dimensional cross section of a membrane. The 
bundle of cylinders shown represents the “helices” of a protein. The cylinders are part of the same 
protein and are joined together by other segments (not shown) of the protein protruding out of the 
bilayer on either side. 

*Morowitz presents an interesting (and controversial) theory of the beginning of cellular life; the theory 
is based on the spontaneous condensation of amphiphilic molecules to form vesicles (“protocells”). 
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TABLE 1.1 
Phenomena Are Important 

Some Examples of Disciplines and Topics for which Colloids and Colloidal 

Discipline Examples 

Analytical chemistry 

Physical chemistry 

Biochemistry and molecular biology 

Chemical manufacturing 

Environmental science 

Materials science 

Petroleum science, geology, and soil 

Household and consumer products 
science 

Imaging technology 

Adsorption indicators, ion exchange, nephlome- 
try, precipitate filterability, chromatography, 
and decolorization (see also Vignette 1.8) 

Nucleation; superheating, supercooling, and su- 
persaturation; and liquid crystals 

Electrophoresis; osmotic and Donnan equilibria 
and other membrane phenomena; viruses, nu- 
cleic acids, and proteins; and hematology (see 
also Vignettes 1.2 and 1.3) 

sives, and ink; paper and paper coating; pig- 
ments; thickening agents; and lubricants (see 
Vignettes 1.9 and IX) 

Aerosols, fog and smog, foams, water purifica- 
tion and sewage treatment; cloud seeding; and 
clean room technology (see also Vignettes I. 1 
and VIII) 

Powder metallurgy, alloys, ceramics, cement, fi- 
bers, and plastics of all sorts (see Vignettes 1.5 
and 1.6 for some modern examples) 

Oil recovery, emulsification, soil porosity, flota- 
tion, and ore enrichment 

Milk and dairy products, beer, waterproofing, 
cosmetics, and encapsulated products (see, for 
example, Vignette 1.7) 

inks; flat-panel displays (see, for example, Vi- 
gnettes 1.4 and XII) 

Catalysis, soaps and detergents, paints, adhe- 

Photographic emulsions; xerography; printing 

1.2 THE IMPORTANCE OF THE SURFACE FOR SMALL PARTICLES 

As we see in the rest of the book, many of the interesting properties of colloids are the result 
of their dimension, which lies between atomic dimensions and bulk dimensions. Two of the 
important consequences of the size range of colloids are (a) colloidal materials have enormous 
surface areas and “surface energies,” and (b) the properties of colloidal “particles” are not 
always those of the corresponding bulk matter or those of the corresponding atoms or mole- 
cules. Let us use a simple exercise or a “thought experiment” to illustrate these points. 

The contemporary science student is probably aware that the concept of the atom is 
traceable to early Greek philosophers, notably Democritus. More than likely, however, few 
have bothered to  follow through the hypothetical subdivision process that led to  the original 
concept of an  atom. The time has come to  remedy this situation since, as mentioned above, 
the colloidal size range lies between microscopic chunks of material and individual atoms. 

1.2a Increase in Surface Area and Energy with Decrease in Size 

Consider a spherical particle of some unspecified material in which the sphere has a convenient 
radius of, say, 1.0 cm. Let us “reapportion” this fixed quantity of material by subdividing it 
repeatedly into arrays of spheres, each with a radius half that of the original sphere. The 
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results of such an exercise are summarized in Table 1.2. These results are purely geometrical 
and therefore are (assumed to be) independent of any characteristic of the material. For 
example, it is implied in the calculations reported in Table 1.2 that the density of the material, 
whatever it may be, remains the same throughout the subdivision process. This is an assump- 
tion that breaks down when we reach sizes of the order of atomic dimensions; it is one of the 
points we consider below. 

We can learn two lessons of importance in colloid and surface science from this simple 
exercise of subdividing a bulk particle. The first is that the properties of a material can be 
sensitive to the amount of sample under consideration. To  see this point, assume that the 
material from which these spheres are made is water at a density of, say, 1.0 g cmP3. Using 
this we can convert the particle volumes in Table 1.2 into the number of water molecules per 
sphere after each cut, as shown in Table 1.3 corresponding to the cuts used in Table 1.2. It is 
evident that by the time we reach spheres of radius 1 O W 8  cm (i.e., typical atomic dimensions), 
we have begun chopping up the water molecules. As a matter of fact, calculating by this 
procedure we reach one water molecule per sphere after 25.62 halvings of all spheres, starting 
from one sphere of R, = 1.0 cm. This corresponds to a ra.dius of 0.193 nm for the water 
molecules if we use the formulas from Table 1.2 to evaluate the radius of the spheres. The 
radius of a water molecule estimated from the value of the van der Waals coefficient b (Atkins 
1994) is about 0.145 nm, so a substantial discrepancy a r k s  when a bulk property such as 
density is applied all the way down to molecular dimensions. It is not our purpose here to 
arrive at a precise estimate of molecular dimensions, but the above discrepancy does point out 
the fact that the characterization of a material may be sensitive to the size of the sample under 
consideration. A property such as density depends not only on the mass and volume of the 
molecules, but also on their packing in a bulk sample. 

The second lesson we learn from this exercise is concerned with the extent of increase in 
surface area and the surface energy as we go to smaller and smaller particles. Let us first 
calculate the average number of water molecules that reside at  the surface of the spheres in 

TABLE 1.2 The Radius, Area, and Volume per Particle, Number of Particles, and Total Area for 
Any Array of Spheres After n "Cuts," Where a Cut is Defined to Be the Reapportionment of 
Materials into Particles With Radius that Is Half the Starting Value 

Number Volume Area Total 
cu t  Radius of Per Per area 
number (cm) spheres sphere (cm3) sphere (cm2) (cm2) 

1 4.19 1.26 x 10' Original 
Original, 
symbol 
1 
2 
3 

1 1.26 x 10' 

Rs 
5 x 10-' 

2.5 x 10-' 
1.25 x 10-' 

No 
8 

6.4 x 10' 
5.12 x 102 

vo 
5.24 x 10-' 
6.55 x 10-2 
8.18 x 1 0 - ~  

A0 

3.14 
7.86 x - '  
1.96 x - I  

AT.0 

1.01 x 102 

2.51 x 10' 
5.03 x 10' 

(; )'Rs 8"No ( a )'A" n 

19.93 
23.25 
26.58 

10I8 
1 02' 
1 024 

4.2 x l O - ' "  
4.2 x 10-2' 
4.2 x 10-2" 

1.26 x 10-" 
1.26 x 1 0 - l ~  

1.26 x 10-l5 

1.26 x 107 

1.26 x 109 
1.26 x 108 
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TABLE 1.3 
Water After n Cuts (Also Total Surface Energy of the Array of Spheres of Water) 

Total Number of Water Molecules per Sphere and Number at Surface for Spheres of 

c u t  
number 

Number of Number of Fraction of 
water water total water 

Radius molecules molecules molecules Total surface 
(cm) per sphere at surface at surface energy (J) 

19.93 
23.25 
26.58 

1 .o 
5.0 x 10-’ 
2.5 x 10-’ 

1.25 x 10-’ 

1.38 x 102’ 1.26 x lOI5 9.13 x lops 9.07 x 10-5 
1.75 x 1022 3.14 x 1015 1.79 x lOP7 1.81 x 10-4 
2.18 x 102’ 5.03 x 10l6 3.64 x l O P 7  3.62 x l O P 4  
2.73 x io20 1.01 x 1017 7.32 x 1 0 - ~  7.27 x 1 0 - ~  

1.40 x 105 1.26 x 1022 9.13 x 1OP2 9.07 x 10’ 
1.40 x 102 1.26 x 1023 9.13 x 10-’ 9.07 x 102 
1.40 x 10-’ 1.26 x 1024 9.13 9.07 x 103 

Tables 1.2 and 1.3 by assuming* that the area occupied by each molecule at the surface is 
about 0.10 nm2. Using this estimate and the total area at various stages of subdivision from 
Table 1.2, we obtain an estimate of the number of molecules in the surface at each stage of the 
process (see Table 1.3). This quantity is also reported in the table as a fraction of the total 
number of molecules present. Note that this fraction approaches unity as molecular dimen- 
sions are approached. That is, as we decrease in size, a larger and larger number of atoms 
become surface atoms. 

Now, let us consider the last column in Table 1.3. In this column the total surface energy 
of the array of spherical water droplets is reported at each stage of the process. We see in 
Chapter 6 that the surface tension of a substance is the energy required to make a unit area of 
new surface. For water, this quantity is about 72 mJ m -2  at room temperature. This value of 
the surface tension of water and the total areas from Table 1.2 can be used to obtain the values 
listed under “total surface energy” in Table 1.3. It should be recalled that a fixed amount of 
material (4.19 cm3 water = 4.19 g water = 0.23 mole water) is involved throughout this 
entire process. It should also be noted that surface tension, like density, is a macroscopic 
property; its applicability is highly dubious for very small particles. Nevertheless, as the 
dimensions of the subdivided units decrease, the total energy associated with the formation of 
the surface takes on values comparable to other chemical energies. At R, = 1OP4 cm, the 
surface energy is about 0.9 J/0.23 mole or about 4 J mole - I .  When we reach R, = 10 - 7  cm, 
this quantity equals 4 kJ mole - I .  

1.2b Specific Surface Area 

The increasing importance of the surface area as the linear dimensions of particles decrease is 
stated concisely in a quantity known as the specific surface area A ,  of a substance. This 
quantity is determined as the ratio of the area divided by the mass of an array of particles. If 
the particles are uniform spheres, as we have assumed throughout this section, this ratio equals 

A ,  = Aioi/rnioi = (n 4nR:)/[n(4/3)nR: p ]  

where n is the number of spheres having a radius R, and made of a material of density p .  
Simplifying Equation (1) t  leads to the result 

*Our interest is in the order of magnitude of these quantities, so we need not worry about the 
cross-sectional shape or the surface packing efficiency of the water molecules in these calculations. 
?This manner of referencing is used for equations occurring in the same chapter. 
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This formula generalizes the conclusion reached in Tables 1.2 and 1.3. It shows clearly that 
for a fixed amount of material, the surface area is inverse1:y proportional to the radius for 
uniform, spherical particles. At the same time, the formula reminds us that some lower limit 
for R, must be imposed since the relationship is undefined for R, = 0. If SI units were used 
consistently, A, would be expressed in m 2  kg- ' ;  however, m 2  g - '  are the most commonly 
used units for this quantity. In the event of nonuniform or nonspherical particles, alternate 
expressions for Equation ( 2 )  have to be used. The following example considers the case of 
cylindrical particles. 

EXAMPLE 1 . 1  Variation of Specific Surface Area with Geometry. A material of density p exists 
as uniform cylindrical particles of radius R, and length L. Derive an expression for A, for this 
material and examine the limiting forms when either R, or L is very small. 

Solution: The area of each cylindrical particle equals the sum of the areas of both ends and 
the cylindrical surface: A = 2(7rR;) + 27rR,L. 

The volume of each cylindrical particle equals TREL and its mass is given by p7rR;L. 
For an array of n cylindrical particles, the total area per total mass equals A,, and is given 

A, = n(27rRE + 27rRCL)/(np7rR3-) 

by 

= [2(RE + R,L)]/pREL 
= (2/p)( l /R, + 1/L)  

For a thin rod, L >> R,: 

2 1  
A, -- 

P R c  

For a flat disk, R, s- L: 

2 1  
A, - -  

P L  

Note that in both of these limits, it is the smaller dimension that affects A,, with A, increasing 
as the smaller dimension decreases. 

* * *  

Both Example 1.1 and Equation (2) show that the surface plays an increasingly important role 
as the dimensions of the particles decrease. 

The concept of specific area defined by Equation (1) is important because this is a quantity 
that can be measured experimentally for finely divided solids without any assumptions as to the 
shape or uniformity of the particles. We discuss the use of gas adsorption to measure A, in 
Chapter 9. If the particles are known to be uniform spheres, this measured quantity may be 
interpreted in terms of Equation ( 2 )  to yield a value of R,. If the actual system consists of nonuni- 
form spheres, an average value of the radius may be evaluated by Equation (2). Finally, even if 
the particles are nonspherical, a quantity known as the radius of an equivalent sphere may be 
extracted from experimental A ,  values. This often proves to be a valuable way of characterizing 
an array of irregularly shaped particles. We have a good deal more to say about average dimen- 
sions in this chapter and about equivalent spheres in Chapter 2. 

In the discussion above we emphasized two-phase* colloidal systems, in which the concept 
of surface plays an important role. However, as we saw in S,ection 1.1, our definition of the 
colloidal range is based on the linear dimensions of particles, and there are numerous natural 

*We occasionally use the term two phase in this chapter to refer to colloids when the colloidal 
particles and the fluid in which they are suspended are distinct (e.g., solid particles in a liquid or 
liquid droplets in another, immiscible liquid or in a gas). 



10 HIEMENZ AND RAJAGOPALAN 

and synthetic polymer molecules with dimensions that, considered individually, fall within this 
range, as we illustrate in the following section. It is clear when we deal with single molecules 
that the concept of surface is greatly different from when we consider a particle made of many 
molecules. If, in a given situation, we tend to concentrate on the surface characteristics of a 
material, then the focus is on surface science. If, however, we look at the subdivided sample 
as an array of particles, then the focus is colloid science. As far as we are concerned, these two 
fields differ primarily in point of view. Their mutual concern with finely subdivided material 
is the common denominator that connects the two disciplines. 

1.3 

In the preceding section, we saw that either large molecules or finely subdivided bulk matter 
could be considered colloids inasmuch as both may consist of particles in the range 10-9 to 
10 -6  m in dimension. The difference between these two situations lies in the relationship that 
exists between the colloidal particle and the medium in which it is embedded. Macromolecular 
colloids are true soiutions in the thermodynamic sense. Subdivided bulk matter, on the other 
hand, forms a two-phase (at least) system with the medium. We have already noted that the 
word surface connotes the existence of a phase boundary and therefore has a specific chemical 
meaning in the multiphase case; this is, of course, inapplicable to macromolecular colloids. 
The intent of this book is to discuss as wide a variety of colloidal phenomena as possible from 
a unified point of view and using a single set of terms. We use the words continuousphase and 
dispersedphase to refer to the medium and to the particles in the colloidal size range, respec- 
tively. This distinction is somewhat vague in the case of macromolecular solutions. (See Table 
1.4 for a summary of the descriptive names for two-phase colloidal systems.) 

Colloids are also often classified on the basis of the affinity of the surfaces of the particles 
to the continuous phase. This classification is also ambiguous in some respects, but deserves a 
brief mention. 

The terms used to distinguish colloidal “particles” on the basis of their affinity to the fluid 
in which they are dispersed are iyophiiic and iyophobic. These terms mean, literally, “solvent 
loving” and “solvent fearing,” respectively. When water is the medium or solvent, the terms 
hydrophilic or hydrophobic are often used. This terminology is very useful when considering 
surface activity such as wettability of a surface; however, when used to classify colloids, the 
distinction is not always clear-cut. We consider these two types of colloids separately in the 
following subsections. 

CLASSIFICATION OF COLLOIDS BASED ON AFFINITY 
TO CARRIER FLUID 

1.3a Lyophilic Colloids 

The classical use of the term iyophiiic coiioids refers to soluble macromolecular materials in 
which the individual particles (macromolecules such as synthetic polymer chains or proteins) 

TABLE 1.4 
Two-Phase Colloidal Systems 

Summary of Some of the Descriptive Names Used to Designate 

Continuous Dispersed 
phase phase 

Descriptive 
names 

Gas 
Gas 
Liquid 
Liquid 
Liquid 
Solid 
Solid 
Solid 

Liquid 
Solid 
Gas 
Liquid 
Solid 
Gas 
Liquid 
Solid 

Fog, mist, aerosol 
Smoke, aerosol 
Foam 
Emulsion 
Sol, colloidal solution, gel, suspension 
Solid foam 
Gel, solid emulsion 
Alloy 
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are of colloidal dimensions. However, there are macromolecules of colloidal dimensions con- 
taining both lyophobic and lyophilic components (e.g., proteins with hydrocarbon [ hydropho- 
bic] portions and hydrophilic [peptide and carboxyl groups] portions, as mentioned in Vi- 
gnette 1.2). Another such example is the case of micelles (Chapter 8), which are clusters of 
small molecules that form spontaneously in aqueous solutions (mostly) of certain compounds 
(therefore these are often called association colloids). The onset of micellization occurs at a 
well-defined concentration - known as the critical rnicelle concentration - which makes micelle 
formation very much like a phase separation. However, the individual small molecules retain 
their identity in the micelles, which are not covalent entities like polymers, so their surface is 
problematic. We see in Chapter 8 that both chemical equilibrium and phase equilibrium can 
be used to discuss micelle formation, so the classification of micelles remains fuzzy on that 
basis also. By the time we reach Chapter 8, however, we will be more experienced with colloids 
and less dependent on the “black and white” categories of this section. 

Above we used the words continuous phase and dispersed phase to refer t o  the medium 
and to the particles, respectively, in the colloidal size range. I t  should be understood that these 
are solvent and solute in lyophilic systems. In micellar systems, the micelles are dispersed in an 
aqueous continuous phase, Furthermore, the system as a whole is generally called a dispersion 
when we wish to emphasize the colloidal nature of the dispersed particles. This terminology is 
by no means universal. Lyophilic dispersions are true solutions and may be called such, 
although this term ignores the colloidal size of the solute molecules. 

VIGNETTE 1.3 COLLOIDAL CARGO CARRIERS-FROM COSMETICS TO 
MEDICINE AND GENETIC ENGINEERING: Liposomes 
with a Molecular Cargo and a Mission 

Wouldn’t it be nice if we could package appropriate doses of medicine in physiologically 
friendly capsules that can deliver the medicine specifically to the organs that need it while at 
the same time keeping it away from areas that may find the medicine toxic? Or, perhaps, our 
interest is much more mundane and all we need-to satisfy our vanity-is a method to trap 
perfumes in our skins so that the fragrance lasts longer. These were hardly the questions that 
engaged the attention of Alec Bangham, a British scientist who discovered surfactant capsules 
known as liposomes in the early 1960s while studying the effect of lipid molecules on the 
clotting of blood. 

Liposomes are colloidal-size containers made of lipid bilayers (Fig. 1.3). A lipid molecule 
consists of’ a polar, hydrophilic head that is attached to (one or two) hydrophobic, 
hydrocarbon tails. At appropriate concentrations, the lipid molecules in water “self-assemble” 
to form bilayers since the hydrophobic tails like to avoid contact with the water. When such 
bilayers are broken up into small pieces, the fragments wrap themselves into closed structures 
known as liposomes and encapsulate some of the water inside. The potential applications of 
liposomes in cosmetics, pharmaceutical and medical technolog,y, and genetic engineering (for 
studying basic properties of genes by isolating them inside a liposome or for developing 
schemes for gene- or protein-replacement therapies) are numerous. 

Why should we be interested in using liposomes for drug delivery? In many cases, drugs 
administered in “free form” cause “side effects” because of their toxicity to areas of the body 
that are not affected by the disease or disorder. It appears possible to improve the 
effectiveness of drugs and minimize their toxicity by encapsulating the drugs in liposomes 
and delivering them efficiently and specifically to the affected organs. I t  is also possible to 
design liposomes that avoid detection* by “hunters” such as rriacrophages in the body so that 

*These are known by their registered tradename, Stealth liposomes (see Lasic 1993, p. 284). As discussed 
by Lasic, the “stealth effect” is the result of a “steric” layer surrounding the liposome, and these liposomes 
are also known as sterically stabilized liposomes. We discuss steric stalbilization in Chapter 13. 
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the drugs can be delivered to the cells that need treatment. Excellent descriptions of these and 
related issues in liposome technology are presented by Lasic in a lucidly written review in the 
American Scientist (Lasic 1992) and in a monograph (Lasic 1993). 

The above discussion illustrates that liposome technology lies at the interface of colloid 
and surface chemistry, physics, biology, and medicine. There are a number of problems of 
interest to  colloid scientists and engineers in this context, ranging from, for example, 
synthesis of new (short-chain as well as polymeric) surfactants for developing special 
membranes, artificial skins, pharmaceutical lotions, and (of course) drug delivery systems. 
Although many of these problems are outside the scope of our book, we consider some basic 
issues that are relevant to the above problems. For example, we discuss the formation of 
surfactant (e.g., lipid) layers in Chapter 7 and study some of their properties. Formation of 
surfactant micelles and the relation between the molecular architecture of the surfactants and 
the shapes of the self-assembled structures that result from the surfactants is covered in 
Chapter 8. In Chapter 8 ,  we also touch on the special opportunities afforded by the 
microenvironments inside surfactant micelles and liposomes for studying catalysis and 
material synthesis. 

FIG. 1.3 Molecular cargo in a liposome. The cargo molecules are carried in different parts of 
the liposome depending on their chemical nature. Hydrophobic molecules are carried inside the 
hydrophobic part of the bilayer, whereas hydrophilic molecules reside in the interior. More complex 
molecules are wholly or partly embedded in the bilayer or chemically bound to the interior or 
exterior surface. 
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1.3b Lyophobic Colloids 

Lyophobic colloids are known by a variety of terms, depending on the nature of the phases 
involved. Some of these are listed in Table 1.4. Some of the terms (e.g., aerosol, gel) are 
somewhat ambiguous, so the reader is warned to  make certain that the system is fully under- 
stood, particularly when the original literature is consulted. Re:member that a common feature 
of all systems we consider is that some characteristic linear dimension of the dispersed particles 
falls in the range defined in Section 1. la.  When we deal with two-phase colloids in this book, 
we are primarily concerned with systems in which the dispersed phase is solid and the continu- 
ous phase is liquid. 

As in the case of lyophilic colloids, the use of the adjective lyophobic does not necessarily 
mean that the surfaces of the colloids are uniformly “liquid repelling.” For example, ceramic 
sols such as silica and alumina powders in liquids do have surfaces with varying degrees of 
affinity to the liquid. Despite the ambiguities in the use of the terms lyophobic and lyophilic, 
such a classification is convenient. 

Next, we consider another difference between lyophobic and lyophilic colloids in addition 
to the presence or absence of surfaces between the continuous and dispersed species. This 
difference deals with the “stability” of the dispersion, and we examine the meaning(s) of this 
term in more detail below. 

VIGNETTE 1.4 IMAGING SCIENCE AND TECHNOLOGY: 
Colloid-Based Electrophoretic lmaging Devices* 

Colloids hold a considerable potential for applications that are unusual in the classical sense. 
Most of us are familiar with imaging devices such as the picture tube in a television set. These 
tubes are bulky and consume large amounts of electrical power. There is, therefore, a large 
incentive to develop compact imaging devices, known as flabpanel devices, that are easily 
portable and have lower power requirements. (Displays based on liquid crystal technology 
fall in this class.) 

Another possible flat-panel device is one known as an electrophoretic image display, or 
EPID. EPIDs contain submicron-size particles of pigments dispersed in a liquid along with a 
dye that provides contrast. When an electrical potential is applied to the system, pigment 
particles are driven to the interface between the suspending liquid and a viewing plate, usually 
made of glass. There they can be seen under normal illumination. EPIDs have the potential 
of providing an image that has extremely high optical contrast under normal lighting, that is 
legible over a wide range of viewing angles, that is inherently retained on the display (as 
opposed to an image needing constant refreshing as on a TV picture tube), and that requires 
low voltage and power. 

The EPID concept can be combined with other developments in imaging technology to 
produce optical devices such as light valves and x-ray imagers. An example of an electro- 
phoretic x-ray imager is illustrated in Figure 1.4. 

One of the most crucial aspects of this “chemical” display technology is the liquid 
dispersion of pigment particles and dye. The dispersion must be stable even when the particles 
are compressed (to concentrations as much as 10 times higher than in the bulk form) to form 
an image at the viewing plate. The pigment particles must be able to retain their charges 
after numerous switching operations. The fluid must allow a fast response time. Unwanted 
migration of particles when an electrical field is applied and other electrohydrodynamic 
effects must be controlled. 

Many of the crucial problems for research and development in this area are the same as 
those encountered in other areas of colloid and surface science. There are questions that need 
to be addressed. How do particles interact when they are repeatedly and forcefully packed 

*This vignette is a slightly revised version of the one prepared by one of the authors (RR) for a 
National Research Council report entitled, Frontiers in Chemical‘ Engineering: Research Needs and 
Opportunities, published by the National Academy Press (Washington, DC, 1988). 
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and unpacked in electrical fields? How are particles, counterions, polymers, and surfactants 
transported across an EPID cell? How does fluid motion in an EPID device affect this overall ' 

transport? How fast do structures formed by charged particles dissipate in applied fields? 
These are questions central to many of the problems of interest in colloid and surface science. 

1.4 CONCEPT OF STABILITY OF COLLOIDAL SYSTEMS 

As mentioned in the last section, lyophilic colloids form true solutions, and true solutions are 
produced spontaneously when solute and solvent are brought together. In the absence of 
chemical changes or  changes of temperature, a solution is stable indefinitely. Finely subdivided 
dispersions of two phases d o  not form spontaneously when the two phases are brought to- 
gether. As a matter of fact, if such a dispersion is allowed t o  stand long enough, the reverse 
process would spontaneously occur. For example, oil and water can be vigorously mixed to  
form a nontransparent, heterogeneous mass; however, on standing, the mixture will separate 
into two clear, homogeneous layers. 

We know from thermodynamics that spontaneous processes occur in the direction of 
decreasing Gibbs free energy. Therefore we may conclude that the separation of a two-phase 
dispersed system t o  form two distinct layers is a change in the direction of decreasing Gibbs 

FIG. 1.4 A large-area, solid-state x-ray receptor with an electrophoretic image display. When a 
voltage is applied across the image cell, pigment particles and counterions in the liquid separate. 
Most of the voltage drop occurs across the Se layer. X-ray exposure under this condition leads to 
the creation of a charge-image at the photoconductor-composite/liquid interface due to the genera- 
tion of x-ray-induced charges in the Se. After the x-ray exposure, the applied voltage is reduced to 
zero, and the pigment particles are driven to the viewing plate. The image becomes visible on 
illumination. 
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free energy. Using the logic employed in the discussion of Table 1.3, one can say that there is 
more surface energy in a two-phase system when the dispersed phase is in a highly subdivided 
state than when it is in a coarser state of subdivision. This suggests a correlation between the 
inherent instability of a highly dispersed lyophobic system and the thermodynamics of the 
surface. This is discussed in more detail in Chapter 6. For the present it is sufficient to note 
that lyophobic systems “dislike” their surroundings enough to ‘want to separate out. Lyophilic 
systems, on the other hand, are perfectly “happy” in a solution. The two categories differ 
radically in their definitions of stability. We elaborate these individually in the following 
subsections. 

1.4a Kinetic Stability 

Remember that equilibrium thermodynamics has nothing to say about the rate at which 
processes occur. It is a fact that many two-phase dispersions appear unchanged over very long 
periods of time, but the situation is analogous to the thermodynamic instability of diamond 
with respect to graphite. The kinetics of the diamond-graphite reaction are slow enough that 
the thermodynamic instability is of very little practical consequence. Likewise, many colloidal 
dispersions have kinetic stability, even though they are unstable thermodynamically. This type 
of colloidal “solution” (Table 1.4) resembles a true solution. This is one way in which two- 
phase dispersions and solutions of macromolecules are very siimilar and explains in part how 
the two can be grouped together in our study of colloidal phenomena. 

Above me noted that two-phase dispersions will always spontaneously change into a 
smaller number of large particles given sufficient time. However, many solutions of macro- 
molecules do not undergo spontaneous separation into two phases. Common usage tempts us 
to describe the first as “unstable” and the second as “stable.” Although these terms are used 
very frequently in colloid science, the reader should realize that rhe words are meaningless 
unless the process to which they are applied has been clearly defined. The situation is some- 
what analogous to the insistence in thermochemistry that one always keep in mind the bal- 
anced chemical equation to which the thermodynamic quantities ( A H ,  AC,,, etc.) apply. The 
coarsening described here is only one of a variety of possible processes that a dispersion might 
undergo. 

The coarsening process of a thermodynamically unstable dispersion is called coalescence 
or aggregation. It is important that we differentiate between coalescence and aggregation. By 
coalescence we mean a process by which two (or more) small particles fuse together to form a 
single larger particle. The central feature of coalescence is thLe fact that total surface area is 
reduced. Aggregation is the process by which small particles clump together like a bunch of 
grapes (an aggregate), but do not fuse into a new particle. In aggregation there is no reduction 
of surface, although certain surface sites may be blocked at the points at which the smaller 
particles touch. The term coagulation is also used to describle the process of aggregation. A 
colloid that is stable against coalescence or aggregation i q  called kinetically stable. This is 
illustrated in Figure 1.5. The classical use of the term “colloid stability” thus represents kinetic 
stability. In this sense, the word stability describes the extent to which small particles remain 
uniformly distributed throughout a sample. 

Incidentally, when small particles coalesce all evidence of the smaller particles is erased. 
Only the new, larger particle remains. With aggregation, however, the small particles retain 
their identity; only their kinetic independence is lost. The aggregate moves as a single unit. 
Likewise, the clusters that form as the products of the process may be called aggregates. The 
individual particles from which the aggregates are assembled are called primary particles. A 
system may be relatively stable in the kinetic sense with respect to one of these processes, say, 
coalescence, and be unstable with respect to the other, aggregation. 

Finally, remember that whether a stable or unstable dispersion is needed depends on the 
application. A dispersion that is too fine to settle out may be a source of great frustration in 
some parts of a manufacturing process. On the other hand, a dispersion that settles too 



16 HIEMENZ AND RAJAGOPALAN 

K in e tical I y Unstable 

I 
---c 

r 

J 
Kinetically Stable 

FIG. 1.5 Schematic illustration of kinetic stability of colloids. The figure shows the interaction 
energy (free energy) E as a function of the surface-to-surface separation r between two particles ( k ,  
and Tare the Boltzmann constant and the absolute temperature of the dispersion, respectively). (a) 
The free energy will reach the global minimum if the two particles can come close enough ( r  = 6). 
However, the energy barrier against coagulation, AE,., is of the order of the thermal energy k,T, 
and therefore the dispersion is kinetically unstable. (b) The energy barrier AE, > > k,T, and the 
dispersion is kinetically stable since the thermodynamically favored separation distance is not 
reachable. (See Chapters 1 1  and 13 for more details.) 

rapidly may be equally troublesome to  those who have to pump it around. The chemist doing 
gravimetric analyses wants coarse precipitates; one who uses adsorption indicators wants 
finely subdivided particles t o  form. We have seen an example in Vignette 1.4 in which stability 
of the dispersion is essential. Vignette I .5 illustrates another example from colloidal processing 
of ceramics in which stability of the dispersion needs to be maintained even as we “consolidate” 
the dispersion to form dense structures. 

VIGNETTE 1.5 ADVANCED MATERIALS: Colloid Stability and 
Ceramic Processing 

Considerable recent activity in the area of ceramic processing is aimed toward the formulation 
of materials with high strengths, comparable to the room temperature strength of metal 
alloys, at high temperatures (of the order of 2000 K ) .  The impetus comes from the significant 
gains made in the last 20 years with materials formed from submicron powders of silicon 
nitride and silicon carbide and the promise of similar improvements in the near future. 

The problems with the ceramics lie as much in reproducibility as in absolute strength. 
With brittle materials, microscopic flaws concentrate stress and cause failure at stresses, 
which vary according to the classical crack theory as 6 where 6 is the characteristic 
dimension of the flaw. For materials formed from powders, the flaws represent structural 
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imperfections, introduced in the initial forming stage, that survive the subsequent processing 
steps. Hence variability in the initial powder or incomplete control of the fabrication steps 
lead to  unreliable performance. 

Of the many methods that are explored, one class of techniques relies on what is known 
as the colloidal processing route (Brinker and Scherer 1990). Here, one starts with a 
dispersion of precursor powders and densifies the dispersion to an appropriate consistency. 
The resulting slurry may be slip cast to produce a so-called green specimen in the required 
shape of the product. Slip casting employs a porous mold that imbibes the fluid but excludes 
the particles. The type of operation used may employ drain, pressure, or vacuum casting and 
is determined by the geometry desired and the time constraints. Regardless of the choice of 
casting method used, a pressure difference draws the fluid into the mold and leaves a dense 
solid casting adjacent to the wall and a fluid slip in the interior. The physical mechanism 
bears a strong resemblance to filtration and sedimentation. A broad outline of the above 
process is illustrated in Figure 1.6. 

The structure of the green body depends on the processing technique and conditions as 
well as the underlying colloid science. For example, the dispersions are often stabilized using 
polymer additives (Chapter 13) so that the van der Waals attractive forces between the 
particles (Chapter 10) are minimized by polymer “brushes” adsorbed on the particle surfaces. 
This prevents “fractal” aggregates (Section 1.5b) that give rise to large voids and defects in 
the green body on consolidation. 

The questions of interest to  an engineer in this case are: How do the initial concentration, 
the particle size, and the nature of the interparticle potential affect the structure of the 
dispersion, the structure of the final specimen, and the processing time? How long does the 
process take? What kinds of chemical additives are suitable? The permeability and the 
capillary suction in the mold determine the rate of production of the specimens. How does 
one adjust the two to optimize production? These questions require a basic understanding of 
colloid and surface science and phenomena. 

FIG. 1.6 A schematic diagram of colloidal processing of ceramic specimens. The figure illustrates 
some of the ways in which a dispersion is densified and transformed into porous or compact films 
or bulk objects. (Adapted and modified from Brinker and Scherer 1990.) 
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1.4b Thermodynamic Stability 

In contrast to the above-described kinetic stability, colloids may also be thermodynamically 
stable. A stable macromolecular solution is an example we have already discussed. Formation 
of micelles beyond the critical micelle concentration is another example of the formation of a 
thermodynamically stable colloidal phase. However, when the concentration of the (say, 
initially spherical) micelles increases with addition of surfactants to the system, the spherical 
micelles may become thermodynamically unstable and may form other forms of (thermody- 
namically stable) surfactant assemblies of more complex shapes (such as cylindrical micelles, 
liquid-crystalline phases, bilayers, etc.). 

Similarly, charged solid particles (such as latex spheres) - kinetically stable lyophobic 
colloids - may exist in colloidal crystalline phases (with body-centered or face-centered cubic 
structures) as a consequence of thermodynamically favored reduction in free energies (see 
Chapter 13). Even neutrally charged spherical particles (“hard spheres”) undergo a phase 
transition from a “liquidlike” isotropic structure to face-centered cubic crystalline structures 
due to entropic reasons. In this sense, the stability or instability is of thermodynamic origin. 

It is, therefore, important that we keep several things in mind when the word stability is 
used in colloid science. First, whenever we describe a two-phase dispersion in these terms, the 
words are being used relatively and often in a kinetic sense. Second, there is little unanimity 
among workers about the nomenclature of various processes. Finally, whether a stable or 
unstable system is desirable depends entirely on the context. 

Other examples of thermodynamically stable colloidal structures are highlighted in Vi- 
gnette 1.6. 

VIGNETTE 1.6 POLYMER COMPOSITES: Polymer-Blend Composites as 
Thermodynamically Stable, Microstructured Materials 

All it takes is a simple demonstration with a salad dressing to show that oil and vinegar do 
not mix. What one has in this case is an emulsion, discussed in Chapter 8. However, if  we 
add a surfactant with molecules containing both oil-liking and vinegar-liking parts to the 
mixture, the surfactant molecules will preferentially position themselves at oil-vinegar 
interfaces, very much like the way a surfactant with hydrophilic and hydrophobic parts will 
behave in an oil-water mixture. One can then have a stable mixture consisting of very small 
oil droplets dispersed in vinegar or vice versa, depending on the proportion of oil to vinegar. 
Such microemulsions, also discussed in Chapter 8, can exist in very complicated and intricate 
structures of considerable significance in science and technology. 

One can have the same type of situation in a blend of two mutually immiscible polymers 
(e.g., polymethylbutene [PMB], polyethylbutene [PEB]). When mixed, such homopolymers 
form coarse blends that are nonequilibrium structures (i.e., only kinetically stable, although 
the time scale for phase separation is extremely large). I f  we add the corresponding 
(PEB-PMB) diblock copolymer (i.e., a polymer that has a chain of PEB attached to a chain 
of PMB) to the mixture, we can produce a rich variety of microstructures of colloidal dimen- 
sions. Theoretical predictions show that cylindrical, lamellar, and bicontinuous micro- 
structures can be achieved by manipulating the molecular architecture of block copolymer 
additives. 

In fact, even in pure block copolymer (say, diblock copolymer) solutions the 
self-association behavior of blocks of each type leads to very useful microstructures (see 
Fig. 1.7),  analogous to association colloids formed by short-chain surfactants. The optical, 
electrical, and mechanical properties of such composites can be significantly different from 
those of conventional polymer blends (usually simple spherical dispersions). Conventional 
blends are formed by quenching processes and result in coarse composites; in contrast, the 
above materials result from equilibrium structures and reversible phase transitions and 
therefore could lead to “smart materials” capable of responding to suitable external stimuli. 
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The colloidal structures described above are dictated by thermodynamics, and the re- 
sulting structures are thermodynamically stable. Similar thermodynamically stable struc- 
tures can develop even in a copolymer mett (i.e., there is no other polymer or solvent). Such 
colloidal systems differ from kinetically stable lyophobic dispersions of the type discussed in 
Vignettes 1.4 and 1 . 5 .  

1.5 SOME PHYSICAL CHARACTERISTICS OF COLLOIDS 

As has been emphasized in the sections above, one of the most important features of colloidal 
particles is their physical dimension, the defining characteristic of colloids. Many of the 
properties of colloids of scientific and industrial importance (e.g., specific surface area, viscos- 
ity, aggregation behavior, and microstructure) are strongly influenced by the dimension, as 
well as other characteristics such as surface charge and the chemical affinity of the particles to 
dissolved matter, among others. Clearly, uniform-size particles of spherical geometry are the 
easiest to deal with in this respect, but colloidal particles come in all sizes and shapes. Even in 
the case of spherical particles of uniform size, other physical and chemical properties (e.g., 
surface charge) may not be uniform due to surface heterogeneities at the molecular scale. 

What these imply is that, at the minimum, we need to be aware of the complexities in 
representing quantitatively particle sizes, shapes, and the extent of their variations. It is also 
important to be aware of some of the standard experimental tools that are available for this 
purpose. In this section and the next, we consider some of these items. For convenience, we 
restrict ourselves primarily to some of the most common methods and techniques. 

1.5a Particle Size and Shape 

Figure 1.8 shows an  electron micrograph of latex particles made from polystyrene cross-linked 
with divinylbenzene. Note that these latex particles are not the same as simple polystyrene 
molecules in a true solution. The particles shown in the figure display a remarkable degree of 
homogeneity with respect to particle size. Such a sample is said to be monodisperse (in size), 
in contrast to polydisperse systems, which contain a variety of particle sizes. We have a good 

FIG. 1.7 Some of the microstructures produced by the self-association behavior of diblock copol- 
ymer solutions. The figure illustrates the (a) spherical, (b) cylindrical, and (c) lamellar structures 
(among others) that are possible in such solutions. Each diblock polymer chain consists of strings 
of white beads (representing one type of homopolymer) and strings of black beads (representing 
the second type of homopolymer). (Redrawn from A. Yu. Grosberg and A. Khokhlov, Statistical 
Physics ofMacrornolecules, AIP Press, New York, 1994.) 
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FIG. 1.8 Electron micrograph of cross-linked monodisperse polystyrene latex particles. The latex 
i s  a commercial product (d  = 0.500 pm) sold as a calibration standard. (Photograph courtesy of 
R.  S. Daniel and L.  X.  Oakford, California State Polytechnic University, Pomona, CA.) 

deal more to say about polydisperse systems in other sections of this chapter. The particles of 
Figure 1.8 are also perfectly spherical. Except for the nature of the material involved, this 
figure could be a photograph of the hypothetical array of spheres discussed in Section 1.2. 

Monodisperse spheres are not only uniquely easy to characterize, but also very rarely 
encountered. Polymerization under carefully controlled conditions alloivs the preparation of 
the polystyrene latex shown in Figure 1.8. Latexes of this sort are used as standards for the 
size calibration of optical and electron micrographs (also see Section 1.5a.3). However, in the 
majority of colloidal systems, the particles are neither spherical nor monodisperse, but it is 
often useful 10 define convenient “effecti\.e” linear dimensions that are “representative” of the 
sizes and  shapes of the particles. There are many ways of doing this, and whether they are  
appropriate or not depends on the use of such dimensions in practice. There are excellent 
books devoted to this topic (see, for example, Allen 1990) and,  therefore, we consider only a 
few examples here for the purpose of illustration. 

1 . 5 ~ .  I Characterizing Variations in Shape: Particles with a High Degree of Symmetry 
Many solid particles are not actually spherical, but are characterized by a high degree of 
symmetry like a sphere and are often approximated as spheres. For example, a polyhedron 
approximates a sphere more and more close!y as the number of its faces increases. 

Figure 1.9 shows micrographs of carbon black particles. Broadly speaking, this material 
is soot, but a great deal of control over its properties may be accomplished by varying the 
conditions of‘ its preparation. Figure 1.9a shows what is known as a thermal black in which 
both discrete and  partially fused particles may be seen. Figure 1.9b shows the same carbon 
black preparation (not  the same field of particles) after heat treatment at 2700°C in the 
absence of oxygen. The particles take on a distinctly polyhedral shape with this treatment, 
known as graphitization. The primary particles of the graphitized thermal black shown in 
Figure 1.9b are sufficiently symmetrical to be approximated as spheres. Likewise, many sub- 
stances that display irregular but symmetrical particles are often described by a characteristic 
dimension called a diamefer. This terminology does not necessarily mean that the particles are  
spherical. 

The forms sketched in Figure 1.10a represent some irregularly shaped particles as they 
might be observed in a light or electron micrograph (see Section 1.6). The length of a line that 
bisects the projected area of a particle is a parameter known as Murrin diarneler. The direction 
along which the Martin diameter is measured is arbitrary, but it should be used consistently to  
avoid subjective bias. The lines sketched in the figure are intended to represent this quantity. 
The Martin diameter is most easily measured on micrographs, although movable crosshairs in 
the eyepiece of a microscope also permit such distances to be measured by direct observation. 

Another method of characterizing irregular particles consists of reporting the diameter of 
a circle that projects the same cross section as the particle in question. This is done by 
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FIG. 1.9 Electron micrograph (150,000 x ) of carbon black particles: (a) before heat treatment; 
and (b) after heating to 270OOC in the absence of oxygen. (Adapted from F. A. Heckman, Rubber 
Chem. Technol. 31, 1243 (1964.) 

FIG. 1.10 
Martin diameters. (b) the use of a graticule to estimate the characteristic dimension. 

Characterization of the “size” of irregular particles: (a) a schematic illustration of 
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inserting an object known as a graticule (an assortment of circles of different sizes etched on a 
transparent slide) into the eyepiece of a microscope and deciding which circle most closely 
approximates the projected area of the particle (see Fig. 1.10b). Both the graticule dimension 
and the Martin diameter are extremely tedious to evaluate since a large number of particles 
must be examined for the values to have any statistical significance, but instruments are 
available to classify images by size automatically. However, the fact that the labor can be done 
electronically does not decrease the importance of recognizing what is involved in particle 
sizing. 

1.5a.2 Characterizing Variations in Shape: Particles with a Low Degree of Symmetry 
The sphere is favored above all other shapes as a model for actual particles because it is 
characterized by a single parameter. Sometimes, however, the particles of a dispersion are so 
asymmetrical that no single parameter, however defined, can begin to describe the particle. In 
this case, the next best thing is to describe the particle as an ellipsoid of revolution. An 
ellipsoid of revolution is the three-dimensional body that results from the complete rotation of 
an ellipse around one of its axes. We define a as the radius of the ellipsoid measured along the 
axis of rotation and b as the radius measured in the equatorial plane. Obviously, if these two 
measurements of radius are equal for a particle, that particle is spherical. If a > b ,  the particle 
is called a prolate ellipsoid; if a < b ,  it is an oblate ellipsoid. These two geometries are 
illustrated in Figure 1.11. 

The ratio ( a / b ) ,  called the axial ratio of the ellipsoid, is frequently used as a measure of 
the deviation from sphericity of a particle. It plays an important role, for example, in our 
discussions of sedimentation and viscosity in Chapters 2 and 4, respectively. In the event that 
a S- b ,  the prolate ellipsoid approximates a cylinder and, as such, is often used to describe 
rod-shaped particles such as the tobacco mosaic virus particles shown in Figure 1.12a. Like- 
wise, if a 6 b, the oblate ellipsoid approaches the shape of a disk. Thus, even the irregular 
clay platelets of Figure 1.12b may be approximated as oblate ellipsoids. 

One other particle geometry deserves mention. Suppose we were to take a length of string 
or other flexible material and allow it to tumble freely for a while in a large container. The 
string would certainly be expected to emerge from this treatment as a tangled jumble. Many 
long-chain molecules have sufficient flexibility t o  take on a random configuration like this 
under the influence of thermal jostling. This “random coil” is likely to be symmetrical rather 
than stretched out. We accordingly refer to the “radius” of such a coil. The random coil is 
discussed in detail in Chapter 2, Section 7. 

FIG. 1.11 
ellipsoid. The figure shows the relationship between the semiaxes and the axis of revolution. 

Ellipsoids of revolution: (a) a prolate ( a  > 6 )  ellipsoid; and (b)  an oblate ( a  < b) 
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FIG. 1.12 Electron micrograph of two different types of particles that represent extreme varia- 
tions from spherical particles: (a) tobacco mosaic virus particles (Photograph courtesy of Car1 
Zeiss, Inc., New York); and (b) clay particles (sodium kaolinite) of mean diameter 0.2 pm (by 
matching circular fields). In both (a) and (b), contrast has been enhanced by shadow casting (see 
Section 1.6a.2a and Figure 1.21). (Adapted from M. D. Luh and R. A. Bader, J .  Colloid Interface 
Sci. 33, 539 (1970). 

1.5a.3 
So far, we have focused on how to deal with the variations in the sizes and shapes of colloidal 
particles encountered in practice. However, in recent years another equally important and 
highly useful perspective in the use of colloids has emerged from viewing the variations in size 
and shape (and surface chemistry) as controllable parameters. The question is, Can we control 
the shapes and sizes of the particles to produce “model” particles that can be used to study 
properties of colloids and to develop new uses for colloids? The answer is “yes” (within 
reason). 

We have already mentioned the use of the type of polystyrene latex particles shown in 
Figure I .8 for the calibration of magnification in electron microscopy. Such latex particles are 
also used as “supports” in microbiological assay techniques. However, depending on the 
crystal (or amorphous) structure of the material used, we can also produce particles of many 
different shapes and sizes by controlling the nucleation and growth conditions. Two such 
examples are shown in Figures 1.13 and 1.14. More details on the preparation of such colloids 
are available in numerous review articles (see, e.g., Matijevic 1993 and references therein). 
Such colloids are often called model colloids since they are useful as model systems (i.e., 
because of their controlled size, shape, and surface chemistry) for studying a variety of 
phenomena both within and outside colloid science, as illustrated by the following partial list: 

Spherical latex particles with a reasonably well-defined number of charges per particle 
can be synthesized and used to study the non-Newtonian behavior of charged disper- 
sions and related electroviscous phenomena (described in Chapter 4). The surface 

“Model Particles” of Various Shapes and Sizes 

1. 



t

FIG. 1.1 3 Spherical and cubic “model” particles with crystalline or amorphous microstructure: 
(a) spherical zinc sulfide particles (transmission electron microscopy, TEM, see Section 1.6a.2a); 
x-ray diffraction studies show that the microstructure of these particles is crystalline; (b) “cubic” 
lead sulfide particles (scanning electron microscopy, SEM, see Section 1.6a.2a); (c) amorphous 
spherical particles of manganese (11) phosphate (TEM); and (d) crystalline cubic cadmium carbon- 
ate particles (SEM). (Reprinted with permission of MatijeviC 1993.) 

chemistry of the particles and the chemical constituents in the solution can be con- 
trolled to  produce neutral “hard-spherelike” particles or charged particles. 
Such particles can also be used as models of atomic fluids or atomic solids of interest 
in physics, chemistry, and materials science (see, e.g., Section 13.2, Figs. 13.3 and 
13.4; see also Murray and Grier 1995). 
Since needlelike particles of controlled shape and size can be prepared (see Fig. 1.14, 
for example), the effects of asymmetry of the particles on flow and optical properties 
of dispersions can be studied in a systematic manner. 
Model particles can also be used to develop processing methods for the fabrication of 
advanced “structural” ceramics and composites of high strength (see, e.g., Vignette 
1.5). 
The magnetic, optical, and electrical properties of materials often depend on the 
microstructural details and the morphology of materials. Even if the final state is not 
a colloid, many products pass through colloidal processing routes prior to the final 
stage. The availability of methods to produce model particles allows us to study and 
control the desired properties of the final product. 

2. 

3. 

4. 

5 .  
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FIG. 1.1 4 “Model” particles of different shapes with the same or different chemical compositions: 
(a) rodlike particles of akageneite (0-FeOOH); ( b )  ellipsoidal particles of hematite (a-Fe,O,); (c) 
cubic particles of hematite; and (d) rodlike particles of mixed chemical composition (cu-Fe20, and 
/3-FeOOH). All are TEM pictures. (Reprinted with permission of Matijevid 1993.) 

Many additional examples of the above types and others are given in the references cited in 
Matijevic (1993). 

1.5b Particle Aggregates 

We have already introduced the idea that the primary particles of a dispersed system tend to 
associate into larger structures known as aggregates. The nature of the interparticle forces 
responsible for this aggregation is one of the most examined areas of colloid science. We defer 
our discussion of the aggregation (or coagulation) process until Chapter 13, but a few remarks 
about aggregates -the kinetic units that result from that process - and how their dimensions 
are represented quantitatively are in order at this time. 

In many situations the dispersed phase is present as aggregates, not as primary particles. 
In such cases, it is the size, shape, and concentration of the aggregates that determine the 
properties of the dispersion itself. As a matter of fact, some substances-for example, those 
carbon blacks known as channel and furnace blacks - possess rigidly fused, aggregatelike 
structures as their primary particles. 

Figure 1.15 shows some micrographs of aggregates of gold primary particles (with an 
average diameter of about 14 nm). The pictures are obtained using transmission electron 
microscopy (see Section 1.6a.2a), and the figure shows four aggregates at four different 
resolutions. Notice that these pictures show large amounts of open space within the aggregates 
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FIG. 1.1 5 Transmission electron micrographs of aggregates of gold particles. These aggregates 
were made from a gold colloid to study the relation between the kinetics of aggregation and the 
resulting structures of the aggregates (see also Section 1.5b.2). The a-d portions of the illustration 
show aggregates at various resolutions. (The pictures are not from the same aggregate.) (Adapted 
from D. A.  Weitz and J .  S. Huang, in Kinetics of Aggregation and Gelation, F. Family and D. P. 
Landau, Eds., Elsevier, Amsterdam, Netherlands, 1984.) 

despite the fact that the pictures are two-dimensional projections of three-dimensional ob- 
jects.’ This open structure is related to  what is known as the fractal nature of such aggregates. 
We consider this in the next subsection and discuss the relation between aggregation kinetics 
and the structure of the aggregates subsequently. 

I .5b. I 
Suppose we wish to measure the characteristic dimensions of aggregates or aggregatelike 
particles using micrographs. If  the aggregation process results in irregular but, on the average, 
symmetrical particles, we might characterize the aggregates in terms of the dimension of a n  
inscribing boundary, such as the Martin diameter or  the diameter of a n  equivalent circle 
determined from a graticule. Then suppose we wish to evaluate the mass of the aggregate 

Fractal Dimension of an Aggregate 

*When an electron micrograph shows evidence of aggregation, we must remember that this may be 
an artifact arising from the preparation of the sample for microscopy. In other words, the amount 
of aggregation that a colloid displays in its dispersed state and the amount that appears in an 
electron micrograph made from the same preparation may be quite different. Optical microscopy is 
safer in this regard since the actual dispersion may be examined without first evaporating the 
continuous phase to dryness. Also, in both optical and transmission electron microscopy, it is the 
projected image of the particle that is observed, and microscopic observation alone is often inade- 
quate to distinguish a particle such as that shown in Figure 1.15 from a true aggregate in which the 
structure is fairly readily disrupted. However, one can use other, “nondestructive” techniques to 
quantify the structure of aggregates; the use of light, neutron, and x-ray scattering is one such 
method and is illustrated in Section 5.6a. 
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enclosed within this boundary. To convert a linear dimension into a particle mass, the particle 
shape and density must be known. 

We have already commented on the approximations involv’ed in treating irregular particles 
as spheres. Here, however, we encounter an additional problem besides the geometrical ap- 
proximation already discussed. The question is, What do we use for the density of an aggregate 
to convert the particle volume into its mass? If the aggregate dimensions have been measured, 
it is clearly the aggregate density that must be used. The latter is intermediate between the 
densities of the dispersed and continuous phases, the exact value depending on the structure 
of the aggregate. Of course, one might attempt to estimate the number of primary particles in 
an aggregate and then use their size and density as an alternate means of evaluating the mass 
of an aggregate. The main point of this, however, is the following. Whenever the dispersed 
particles are in an aggregated form, the properties of the dispersed units are intermediate 
between those of the two different phases involved. We encounter this difficulty again in 
Chapter 2, in which the density of the settling unit, whatever it may be, is involved in sedimen- 
tation. 

Assume for the moment that the aggregate is a solid particle (i.e., without any empty 
interstitial space) with the same density p as that of the primary particles. Then, the mass m(r)  
of the aggregate enclosed within a distance r from a suitably chosen center will be given by 

m(r) = p(4/3)7rr3 (3) 

If we account for the fact that the region enclosed within the sphere of radius r is not 
completely filled by particles but contains empty spaces, then the actual mass will be less than 
that given by the above expression. In fact, it turns out that in many cases, one can write 

(4) 

where dJ < 3., the spatial dimension. The quantity dJ is known as the fractal dimension of the 
aggregate. In fact, it is known more precisely as the mass fractal dimension since it is the mass of 
the aggregate that we have used to specify the fractal dimension. This qualification is also meant 
to draw one’s attention to the fact that other properties can be used to specify the fractal 
dimension (e.g., surface area), and one would generally expect the fractal dimension to depend 
on the property used to determine it. In Section 1.5c, we see that this situation frequently arises in 
characterizing particle distributions. Fractal objects are often called self-similar objects. The 
adjective self-similar draws attention to the fact that such objects look similar when viewed over a 
range of length scales (see Example 5.4 in Chapter 5). This can be seen from the pictures of 
aggregates presented in Figure 1.15, which show that the aggregates look similar for a range of 
resolutions. The fractal dimension, which is a measure of self-similarity, can be specified exactly 
for “mathematically” produced fractal objects, but for real objects such as the ones shown in 
Figure 1.15 one obtains the fractal dimension by fitting the mass (or an appropriate property) of 
the object with the size using an equation like Equation (4). 

One way of measuring the fractal dimension of aggregates is discussed in Chapter 5 (See 
Section 5.6a and Example 5.4). In the example below, we illustrate the relation between the 
fractal structure of aggregates and the surface area of the aggregates. 

m ( r )  oc p(4/3) T rd/ 

EXAMPLE 1.2 Surface Area of Fractal Aggregates. An aerosol “reactor” is used to grow 
relatively large catalyst particles from monodispersed, spherical primary particles of diameter 
dp = 100 nm. The specific gravity of the primary particles is 1.5. An examination of the aggre- 
gates using an optical microscope shows that the aggregates are essentially spherical. The 
aggregates produced by the reactor are sieved, and aggregates in five classes of diameters di 
(see Section 1 . 5 ~ )  are selected for measurement of surface areas. A cylindrical column of 
volume V , ,  =1 10 cm3 is packed with fractionated aggregates having a narrow distribution with 
the average diameters shown below. Nitrogen adsorption experiments (see Chapter 9) are then 
conducted to measure the total area of the aggregates in each class. 

d, x 106, m 10 50 100 500 1000 
ATotaddJ9 m2 91 56 46 28 2:3 
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Assume that the actual volume of the aggregates in the nitrogen adsorption experiments is 
60% of the total volume (with the rest accounting for pore space between aggregates in the 
packing). Calculate the fractal dimension of the aggregates. 

An independent x-ray and light scattering analysis (see Section 5.6a and Example 5.4) of a 
dispersion of the aggregates suggests that the aggregates have a fractal structure with a fractal 
dimension of 2.65. Is this confirmed by your result? 

Solution: Assume that the aggregates are fractals with the mass m,(d) of an aggregate of 
diameter d being given by 

where C is a constant and d is specified in meters. (Notice that the numerical value of the 
“constant” of proportionality [i.e., C] depends on the dimensions used for the diameter d.] 

The number N,(d) of primary particles in an aggregate of diameter d is simply the mass of 
the aggregate divided by the mass of the primary particle: 

ma(d) = Cddt 

where p ,  is the density of the primary particle. 
If we assume that the surface area nd: lost by tne contacts between the primary particles 

during the process of aggregation is negligible, the surface area of the aggregate A,(d) will 
simply be the number of primary particles in the aggregate times the surface area of the primary 
particle: 

6C Aa(d) = - ddi = CAs,ddf 
dPPP 

where A, = (6/dpop) is the specific surface area of the primary particles, see Equation (2). The 
above equation shows that the surface area of a fractal aggregate is also a fractal of dimension 

The total surface area of the aggregates in the volume V,,, in the adsorption experiments is 
4. 

given by the number of aggregates in the cylinder times the area of each aggregate: 

For the given data, V,,, is 10-5 m3; E ,  the porosity of the packing, is 0.4; and A,, is 6/dpp, = 4 - 
104 m2/kg. The measured area can, therefore, be plotted against the diameter on a log-log 
graph to check if the aggregates are fractals and to determine the constant C. (Remember, the 
slope of a log-log plot gives the exponent.) 

Figure 1.16 shows a plot of the given data. It is clear that In ATofal is linear with respect to In 
d, with a slope equal to -0.3, giving a dfvalue of 2.7. Notice that if the “aggregates” had been 
smooth, solid spheres, the surface area of the aggregate would have been proportional to d2,  
i.e., df = 2. The fact that df > 2 is an indication of the porous nature of the aggregates. 

This result shows that the conclusion reached from scattering results is consistent with 
surface area measurements. 

The intercept can be obtained by extrapolating the line to d = 1 m (i.e., at In d = 0) and is 
2.85 m 2.3. Therefore, 

from which one gets C = 6.3 kg/m2.’. 
* * *  

with din meters. 

The fractal dimension 2.7 of the surface area of the aggregates in the above example is larger 
than 2, expected for a smooth, non-fractal surface. In contrast, the fractal dimension as 
defined in Equation (4) is less than the dimension of the space. Its value relative to the spatial 
dimension is a measure of the structure of the aggregate. For instance, the closer d,is to 3 in 
Equation (4), the denser (i.e., the more tightly packed) is the aggregate. There are ways in 
which one can measure the fractal dimension experimentally (e.g., using light, x-ray, or 
neutron scattering techniques; see Chapter 5, Section 6), but we are not concerned with that in 
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FIG. 1.16 The total area measured versus the diameter of the aggregate on a log-log scale for the 
data given in E:xample 1.2. 

this book. It is, however, important to note that fairly successful attempts have been made to 
link the fractal dimension of aggregates to the processing techniques used in forming the 
aggregated particles (Brinker and Scherer 1990, Chapter 3 ) .  

Computer simulations combined with experiments have also shown that one can deduce 
from the fractal dimension the nature of nucleation and growth of particles and what chemical 
and physical mechanisms control the formation of particle aggregates. We consider this briefly 
before proceeding to other topics. 

1.5b.2 Relating Aggregate Structure to Growth Mechanisms 
A very interesting and fast-growing approach to research coincerning aggregates is the tech- 
nique of computer simulation. By this method, aggregates are “assembled” by a computer, 
which uses random numbers to determine the coordinates from which each primary particle 
approaches the growing aggregate. The model that has been most studied consists of spherical 
primary particles, although linear sets of spheres have been used to simulate asymmetrical 
primary particles. 

The probability of adhesion on contact (say, p,)  can be rnade a variable quantity in such 
simulations. ’The probability of adhesion on contact can be thought of as the effectiveness of 
the “reaction” of forming an N-particle aggregate when a primary particle collides with an ( N  
- 1)-particle aggregate. 

One can also introduce in the simulation other physical mechanisms such as the rate of 
diffusion of the particles. If adhesion probability (“reaction”) controls the rate of formation 
of the aggregate, the aggregation process is known as a reaction-limited aggregation (RLA); if 
diffusion controls the rate of aggregation (i.e., the rate of diffusional transport of a particle 
to another particle or an aggregate is slow relative to adhesion on contact), the process is 
known as dijfusion-limited aggregation (DLA). In DLA, one assumes that p, = 1 (the parti- 
cles adhere on contact), whereas in RLA p ,  is less than unity (i.e., the particles do  not always 
stick to each other on contact). As might be expected intuitively, more open aggregates result 
when the probability of adhesion at initial contact is high. If, on the other hand, the added 
particle is permitted to roll along the surface of the growing aggregate before adhering, a more 
compact structure results. 

Variations of the above concepts are also possible to simulate other situations. For exam- 
ple, one variation is to permit the joining together of small aggregates to form larger ones 
rather than restricting the addition to primary particles only. This leads to structures that are 
even more expanded than those resulting from the addition of primary particles alone (see Fig. 
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1.17). Such a procedure is known as diffusion-limited cluster-cluster aggregation, or DLCCA, 
if diffusion of the aggregates (“clusters”) is the rate-limiting mechanism. (The above-described 
DLA is then more accurately described as diffusion-limited monomer-cluster aggregation, 
or DLMCA, since the aggregates in this case grow through contacts with single particles 
[“monomers”]). Figure 1.17 is a collection of examples of (three-dimensional) aggregates 
assembled in a number of different ways using computer simulations. The corresponding 
fractal dimensions are also shown in the figure. 

The resemblance of the aggregates in Figure 1.17 to an actual aggregate depends on the 
growth mechanism. In fact, results of simulations such as the ones shown are often used to 
model or to interpret the growth mechanisms of real aggregates. For example, the analysis 
of the clusters shown in Figure 1.15 suggests that the gold aggregates shown result from 
diffusion-limited cluster-cluster aggregation (see Weitz et al. 1985). 

These computer simulations permit the number density of primary particles within the 
aggregate to be evaluated, important information for relating the properties of the aggregate 
to its composition. As might be expected, however, it is difficult to know a priori what model 
to use for a particular system. However, this technique does allow some interesting a posteriori 
interpretations of known structures to be made. Another closely related problem that has been 
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Eden 

dr = 3.00 

RLCCA 

Ballistic 

Vol d 

df = 3.00 
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FIG. 1.1 7 Aggregates obtained through computer simulations using various growth models. The 
figure shows typical aggregates produced in the simulations under a number of conditions. The 
results show two-dimensional renditions of three-dimensional simulations. The column headings 
identify the “controlling step” in the aggregation process (i.e., the type of particle motion and 
probability of adhesion p, ) .  (Reaction limited implies p ,  1 ; ballistic implies that the “particle” 
motion is rectilinear [with the added assumption that p ,  = 11; diffusion limited implies that the 
“particle” motion is a random walk [with the assumption that p ,  = 11.) The row labels specify 
which type of collision is considered (i.e., monomer-cluster or cluster-cluster). The names associ- 
ated with the models are also shown. For example, diffusion-limited monomer-cluster aggregation 
(DLMCA) is known as the Witten-Sander model. (RLCCA signifies reaction-limited cluster-cluster 
aggregation.) (Redrawn from D. W. Schaefer, MRS Bulletin 8, 22 (1988). Simulations are from P. 
Meakin, in On Growth and Form, H. E. Stanley and N. Ostrowsky, Eds., Martinus-Nijhoff, 
Boston, 1986.) 
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studied by computer simulation is the volume occupied by a sediment. As with aggregates, it 
is found that sediments become more voluminous as the probability of adhesion on contact 
increases. 

This discussion of aggregates leads us to another important characteristic of dispersions 
we have not yet considered in sufficient detail: polydispersity . Monodisperse systems are the 
exception rather than the rule. Even in those rare cases in which a monodisperse system exists, 
any aggregation that occurs will result in a distribution of particle sizes because of the random 
nature of the aggregation process. 

1 . 5 ~  Polydispersity 

It is difficult to imagine an array of particles that would be easier to describe than the latex 
particles of Figure 1.8. A single parameter such as the radius of the spheres is sufficient to 
characterize the dispersed phase in terms of a linear dimension. However, the only realistic 
attitude to take toward the dispersed systems we are interested in is to assume that they are 
polydisperse (see, e.g., Vignette 1.7, which presents an extreme case). Even the particles in 
Figure 1.8, %hich appear remarkably uniform, have a narrow distribution of particle sizes. 
There are rare cases in which the distribution of dimensions is of negligible width, but, 
generally speaking, a statistical approach is required to describe a colloidal dispersion. A brief 
introduction to statistical analysis of polydispersed colloids, definitions of moments, and 
theoretical distribution functions is given in Appendix C. Here, we are mainly concerned with 
illustrating some of the essential ideas. 

VIGNETTE 1.7 FOOD SCIENCES: Structure and Processing 
of Food Products 

Most food products and food preparations are colloids. They are typically multicomponent 
and multiphase systems consisting of colloidal species of different kinds, shapes, and sizes 
and different phases. Ice cream, for example, is a combination of emulsions, foams, particles, 
and gels since it consists of a frozen aqueous phase containing fat droplets, ice crystals, and 
very small air pockets (microvoids). Salad dressing, special sauce, and the like are 
complicated emulsions and may contain small surfactant clusters known as micelles (Chapter 
8). The dimensions of the “particles” in these entities usually cover a rather broad spectrum, 
ranging from nanometers (typical micellar units) to micrometers (emulsion droplets) or 
millimeters (foams). Food products may also contain macromolecules (such as proteins) and 
gels formed from other food particles aggregated by adsorbed protein molecules. The texture 
(how a food feels to touch or in the mouth) depends on the structure of the food. 

One of the major concerns of a food chemist or technologist is the stability of food 
products with time (Dickinson 1992). Requirements change .with the type of food and may 
depend on nutritional requirements, governmental regulations, or economy of production. 
For example, products such as margarine, cream, and sprealds require specific textural and 
flow characteristics. Beers may require additives in order to produce froth on dispensing. 
Sauces and gravies need to maintain their structure at fairly high temperatures. In practical 
terms, these imply that one is concerned with the microstructure of the constituents; how it 
varies with chemical additives, temperature, etc.; and how to produce products with 
appropriate “shelf life” and structural integrity. 

In general terms these problems are not unlike those encountered in the manufacture of 
other colloidal products such as paints, face creams, and printing inks and toners, for 
example. The difference, of course, is that the inks and toners are hardly appetizing and one 
seldom cares about how they taste! (Of course, physical stability alone does not determine 
the taste or the worthiness of a food product. Chemical reactions play a role in taste and in 
determining the structure, and other considerations such as nutritional value and esthetic 
appeal may also apply.) 
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TABLE 1.5 A Hypothetical Distribution of 400 Spherical Particles” 

Class 
boundaries 
<d < (Pm) 

Class Number of Fraction of Total number 
mark d, particles total number with d < d,, 

(Pm) n, in classf,,, n , ,  

0-0.1 
0.1-0.2 
0.2-0.3 
0.3-0.4 
0.4-0.5 
0.5-0.6 
0.6-0.7 
0.7-0.8 
0.8-0.9 
0.9-1 .O 
1 .o-1.1 
1.1-1.2 

0.05 
0.15 
0.25 
0.35 
0.45 
0.55 
0.65 
0.75 
0.85 
0.95 
1.05 
1.15 

7 
15 
18 
28 
32 
70 
65 
59 
45 
38 
19 
4 

0.018 
0.038 
0.045 
0.070 
0.080 
0.175 
0.163 
0.148 
0.113 
0.095 
0.048 
0.010 

7 
22 
40 
68 

100 
170 
23 5 
294 
339 
377 
3 96 
400 

“The data are classified into twelve classes: the class marks, numbers, and fractions of particles per 
class and the total number of particles up to and including each class are listed. See text for 
clarification. 

As described in Appendix C ,  if we have a discrete set of measurements of a quantity such 
as the diameters of particles, one can represent the results in terms of a few useful quantities 
like the average diameter and standard deviation. Table 1.5 represents the frequency distribu- 
tion for a hypothetical array of spheres; all the numerical examples of this section are based 
on this sample of 400 particles. The particles have been sorted into categories called classes 
with a narrower range of dimensions. Each class is represented by the midpoint of the interval, 
a quantity called the class mark, symbolized by d, for class i. Similarly, we define the number 
of particles in each class as n,. 

A common graphical representation of a frequency distribution is the histogram, a bar 
graph in which the class marks are plotted as the abscissa and the height of the bar is 
proportional to the number of particles in the class. Sometimes the ordinate is defined as the 
fraction of particles in the class f,,,, with the first subscript n representing the fact that the 
fraction is based on the number of particles. Figure 1.18a is a plot of the histogram of the data 
in Table 1.5. Obviously, as the number of classes approaches infinity, the width of each 
interval approaches zero and the histogram approaches a smooth curve. Analytical distribu- 
tion functions give the equation for such smooth curves. However, in practice, a bar graph is 
a convenient approximation to the smooth function. 

Another way in which these kinds of data are sometimes represented is as a cumulative 
curve in which the total number (or fraction) of particles n , ,  having diameters less (sometimes 
more) than and including a particular d, are plotted versus d,. Figure 1.18b shows the cumula- 
tive plot for the same data shown in Figure 1.18a as a histogram. The cumulative curve is 
equivalent to the integral of the frequency distribution up to the specified class mark. Cumula- 
tive distribution curves are used in Chapter 2 in connection with sedimentation. 

I .5c. I Average Diameters and Standard Deviation 
Although the histogram is a convenient pictorial way to present data, a more concise represen- 
tation is often required. Most students will quickly identify the average as such a representa- 
tion, and we calculate this quantity here for the data in Figure 1.18. First, however, let us 
write a very general definition of “average” since this word will take on a considerably wider 
meaning than usual before we are finished with it. For classified data of the type presented in 
Table 1.5, average may be defined as follows: 
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“average” = (weighting factor), (quantity being averaged), ( 5 )  

This formulation may look somewhat unfamiliar, but we shall see that both the weighting 
factor and the quantity being averaged can mean many different things in colloid science. 
Appendix C presents a more detailed presentation of basic statistical concepts for both discrete 
and continuous distributions for those who desire more information on these topics. 

For the data in Table 1.5, the first kind of average we examine is what is known as the 
number average d, because the weighting factors f,,, are the number fraction of particles in 
each class: 

In evaluating the number average diameter d,, the d, values are the quantities being averaged. 
With these substitutions, Equation (5) becomes 

n d, = C - d, 
C n ,  

(7) 

This quantity is also known as the mean of the distribution. For the data in the table, d, = 
0.64 pm; this value has been marked in Figure 1.18 (and is denoted by 2). 

In experiments, often a single property is measured for a large number of particles - such 
as the surface area for a fine powder-rather than for individual particles as in microscopy, 
and an  effective size may be “backed out” from the quantity measured. This is the situation, 
for example, when Equation (2) is used to evaluate the radius of an equivalent sphere from 
experimental A ,  values. 

FIG. 1.18 
and (b) a cumulative distribution curve. 

Graphical representation of the data in Table 1.5. Data are presented as (a) a histogram 
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When polydispersity is present, we have no problem labeling the calculated equivalent 
radius an “average”. We have used quotation marks around this label to alert us to the 
possibility that this average may be something other than the mean. 

To  explore this further, we present some additional data about the 400 spheres in Table 
1.5, namely, that the sample possesses a total surface area of 5.85 * 102 pm2 or 5.85 - 102/ 
400 = 1.46 pm2 per particle. Likewise, the total volume of the 400 spheres is 76 pm’ or 0.19 
pm’ per particle. We see in Chapter 9 how the surface areas of actual powdered samples are 
measured and the volume is readily available from mass when the density of the bulk material 
is known. Now let us calculate the “average” diameter of an equivalent sphere from these data. 

1. Since A = r d 2 ,  the “average” diameter based on average area of the particle = (A /  
r)’l2 = 0.68 pm. 

2. Since V = ( r / 6 ) d 3 ,  the “average” diameter based on average volume of the particle 
= (6V/r)”’ = 0.72 pm. 

3. For this same population of spheres, the “average” diameter based on the number 
fractionf,,, of the particles in each class i = d, = 0.64 pm, as we have already seen. 

These calculations illustrate a very general feature of polydisperse systems: Different 
experimental approaches (e.g., measuring d‘s versus measuring areas) give different averages 
for what nominally (hence the quotation marks) might be called the same quantity. This 
divergence between “average” values determined by different methods can be a cause of 
consternation for the uninitiated, who might expect corroboration of a previous result deter- 
mined by a different method. In fact, the only time these different procedures would ever 
result in the same value would be in the event that all spheres in the sample had the same 
diameter. 

Herein lies the value of these different “averages”: the divergence between the “averages” 
calculated by different methods offers a clue as to the breadth of the distribution of particle 
sizes. Remember, the average, however evaluated, is only one measure of the distribution of 
sizes. A fuller description requires some measure of the width of the distribution as well. For 
classified data, the standard deviation (see Appendix C) is routinely used for this purpose. For 
characterizations based on macroscopic experiments such as we have been discussing, it is 
quantities such as a,/d, or d,/d, that quantify this spread. (The “averzges” d, and d, are 
defined below and are also discussed in Appendix C.) 

The disparity among the values calculated above reveals the inadequacy of simply calling 
them “average” (and justifies the quotation marks). What is needed now is a clearer under- 
standing of why these differences arise . . . and better terminology. Using the area as an 
example, we realize that the total area of the spheres can be represented by E, n, ( x d f )  and the 
“per particle” quantity is just the total area divided by C, n, or 

I I 

Comparing this result with Equation ( 5 )  shows that A/r is simply the average value of d2;  it 
is the square root of this quantity that was evaluated above. This kind of average is called the 
“surface average diameter,” z,, to distinguish it from the “number average” diameter d-,. (This 
terminology leaves a little bit to be desired since both as and 2, use number fractions as 
weighting factors.) An identical argument would lead to the result for volume “per particle”: 

so that 61//7r is recognized as the number average value of d’. The cube root of this quantity, 
evaluated above, is called the “volume average diameter,” 2,. These parameters are summa- 
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TABLE 1.6 Some of the More Widely Encountered Size “Averages”’ in Surface and Colloid Science 

Name 
Quantity Weighting 

Symbol Definition averaged factor 

Number average, 
or mean 

Second moment 
about origin 

Surface average 

Third moment 
about origin 

Volume average 

Radius of gyra- 
tion 

( a y 2  

- 
(d3)’l3 

Diameter 

Slquare of 
diameter 

Square of 
diameter 

Cube of 
diameter 

Cube of 
diameter 

Square of 
radius 

Number in 
class 

Number in 
class 

Number in 
class 

Number in 
class 

Number of 
class 

Mass in class 

rized in Table 1.6. Note that the relative magnitudes of the number, surface, and volume 
averages are given by the sequence 

for a polydisperse system. Only for a monodisperse system would all three parameters have 
identical values. Therefore, the divergence from unity of the ratio of any two of these, 
measured independently, is often taken as an indication of the polydispersity of the dispersion. 
We see in the next section that this comparison of averages evaluated by different techniques 
finds particular application in the characterization of molecular weight distributions. 

1.5c.2 Radius of Gyration 
Table 1.6 also lists the radius of gyration. This is an average dimension often used in colloid 
science to characterize the spatial extension of a particle. We shall see that this quantity can be 
measured for polydisperse systems by viscosity (Chapter 4) and light scattering (Chapter 5). It 
is therefore an experimental quantity that quantifies the dimensions of a disperse system and 
deserves to be included in Table 1.6. Since the typical student of chemistry has probably not 
heard much about the radius of gyration since general physics, a short review seems in order. 

We assume that the particle with the radius of gyration under discussion may be subdi- 
vided into a number of volume elements of mass m,. Then, the moment of inertia I about the 
axis of rotation of the body is given by 

I = C m1rf 
I 

where ri is the distance of the ith volume element from the axis of rotation. 
Regardless of the shape of the particle, there is a radial distance at  which the entire mass 

of the particle could be located such that the moment of inertia would be the same as that of 
the actual distribution of the mass. This distance is the radius of gyration R,. According to 
this definition, it is clear that 
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Therefore, we see that the value of R, for an array of volume elements is the 
r2,  with mass fraction (rather than number fraction) as the weighting factor: 

(12) 

average value of 

(13) 

We see in the following subsection that this type of weighting factor gives one of the common 
molecular weight averages for polydisperse systems. 

The radius of gyration is a parameter that characterizes particle size without the need to 
specify particle shape. However, the relationship between R, and the actual dimensions of a 
particle depends on the shape of the particle. Such relationships are derived in most elementary 
physics texts for rigid bodies of various geometries. To translate a radius of gyration into an 
actual geometrical dimension, some shape must be assumed. For example, for a sphere of 
radius R,, R, = ( 3 / 5 )  R:. It should be emphasized, however, that the radius of gyration in 
itself is a perfectly legitimate way of describing the dimensions of a particle. The specification 
of particle geometry is really optional. 

1.5c.3 Molecular Weight Averages 
The averages discussed above can also be extended to molecular weights. In Section 1.6b.2, we 
will discuss a technique called size-exclusion chromatography (SEC) that can be used to obtain 
number fractions and weight fractions of particles in various molecular weight classes. From 
this sort of information, the two most common molecular weight averages, number-average 
molecular weight and weight-average molecular weight, can be readily determined. 

Suppose a dispersion is classified into a 
set of categories in which there are nj  particles of molecular weight M, in the ith class. Then the 
number-average molecular weight equals 

I .5c.3a Number-Average Molecular Weight. 

where, as before, f,,, is the number fraction of particles in class i. 
1.5c.3b Weight-Average Molecular Weight. Alternatively, we could define the average 

in such a way that the weight of particles in each class wi rather than their number is used as 
- the weighting factor. This results in an average known as the weight-average molecular weight 
M u  

Note that f,,, = wl/Ciwi is the weight fraction of particles in class i. Since the weight of 
material in a particular size class is given by the product of the number of particles in the class 
and their molecular weight, Equation (15) may be written as 

We shall see that measurement of the osmotic pressure of a polydisperse system permits the 
experimental evaluation of Mn (Chapter 3), and light scattering experiments enable us t o  
measure M ,  (Chapter 5). It follows from the definition of these various averages that 

by analogy with the inequalities in Equation (10). The ratio given in Equation (17) is known 
as the polydispersity index of the material. Only when the system is monodisperse does the 
equality apply in Equation ( 17). 
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Here, too, the deviation of this ratio from unity may be tak;en as a measure of polydisper- 
sity. The relationship between the ratio Mu./M, and the standard deviation of the molecular 
weight distribution is easily seen as follows. From Equation (16), it is clear that 

- -  

From the general procedure for defining the mean, the left-hand side of Equation (18) may 
also be written as M 2 .  Substituting this result into Equation ( C . 5 )  of Appendix C (with M in 
place of +), we can write the standard deviation CJ of the molecular weight distribution as 

Therefore the square root of the amount by which the molecular weight ratio exceeds unity 
measures the standard deviation of the distribution relative to the number average molecular 
weight. 

Example 1.3 illustrates these relationships for a hypothetical polymer. 
* * *  

EXAMPLE 1.3 Polydispersity of a Synthetic Polymer. Columns (1) and (2) of Table 1.7 list the 
number of moles and thefiolecular weight, respectively, for eight fractions of a synthetic 
polymer. Calculate M, and M, from these data and evaluate 0 using 

(see Appendix C) and Equation (1 9). 

Solution. For each class of molecules calculate the quantities listed in columns (3)-(6) in 
Table 1.7. 

The sum of the values in column (1 ) equals C,n, = 0.1 36 mole. 
The product of columns (1) and (2) is w, and values for this quantity are listed in column 

Dividing 6700 g by 0.136 mole gives M, = 49,300 g mole -’. 
The product of columns (2) and (3) equals w,M,, and values for this quantity are listed in 

Dividing 3.378 - 108 by 6700 gives M, = 50,400 g mole -’. 
Thesquare of the difference between M, and M, is given in column (5), and column (6) lists 

(3). The sum of the entries in column (3) equals n,M, = 6700 g. 

column (4); C,w,M, = 337.8 - 106 g2 mok- ’ .  

n,(M, - M d 2 ;  

C,n,(M, - Mn)* = 7.68 - 106 

TABLE 1.7 Number of Moles and Molecular Weights for Eight Classes of a Hypothetical 
Fractionated Polymer (Remaining Quantities Calculated in Example 1.3) 

0.003 
0.007 
0.015 
0.024 
0.040 
0.032 
0.01 0 
0.005 

C = 0.136 

30,000 
35,000 
40,000 
45,000 
50,000 
55,000 
60,000 
65,000 

90 
245 
600 

1080 
2000 
1760 
600 
325 

C = 6700 

2.70 
8.58 

24.00 
48.60 

100.00 
96.80 
36.00 
21.10 

C = 337.78 

3.72 
2.04 
0.86 
0.18 
0.00 
0.32 
1.14 
2.50 

1.12 
1.43 
1.29 
0.43 
0.00 
1.02 
1.14 
1.25 

C = 7.68 
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TABLE 1.8 The Most Common Molecular Weight Averages, Their Definitions, and 
Their Methods of Determination 

~~ 

Average Definition Methods 

Osmotic pressure; other colligative properties Cl n, Ml 
Cl n, 

Light scattering; sedimentation velocity 

I /a 
C, n, M,]  

Intrinsic viscosity 

Dividing 7.68 - 106 by 0.136 gives o2 by Equation (A); therefore U *  = 5.65 . 10’ and (T = 

The ratio awlDn = 1.022 and, by Equation (19), ala, = (0.022)”2, or (T = 0.148(49,300) 

The discrepancy between the two values of U is a matter of significant figures and is not 

7500. 

= 7300. 

meaningful. 
* * *  

As in the case of particle sizes, averages of molecular weights can also be defined in terms of 
properties of the dispersions. Here we define one such average based on viscosities of the 
dispersions. 

I .5c.3c Viscosity-Average Molecular Weight. The viscosity average molecular weight 
M,, is written as 

The logic of this definition follows the logic used in defining average diameters based on 
surface area or volume discussed above and, as its name implies, M,,, is a molecular weight 
average determined from viscosity measurements on polydisperse polymer samples. The expo- 
nent a in this definition is called the Mark-Houwink coefficient, generally 0.5 < a < 1 .O. The 
exponent is characteristic of the polymer-solvent-temperature conditions of the experiment. 
We see how these experiments are conducted and the significance of the Mark-Houwink 
coefficient in Chapter 4. For now, we may take Equation (20) as merely defining another kind 
of molecular weight average. Note that M,,, = a, when a = 1. 

The various molecular weight averages we have discussed, their definitions, and the exper- 
imental methods that measure them are listed in Table 1.8. All these different “averages” are 
admittedly confusing. Without this information, however, it would be far more confusing to 
try to rationalize the discrepancy between two different molecular weight determinations on 
the same sample by methods that yield different averages. The divergence between such values 
is a direct consequence of polydispersity in the sample. As we have seen, it is not only 
unavoidable but also informative as to the extent of polydispersity. 

1.6 SOME CLASSICAL AND EMERGING EXPERIMENTAL TOOLS 

In this section, we present a few examples of instruments available for visual observation and 
imaging of colloids and surfaces, for measurement of “sizes” and for surface force measure- 
ments. Such a presentation can hardly be comprehensive; in fact, that is not our purpose 
here. Throughout the book, we discuss numerous other techniques such as osmotic pressure 
measurements, light and other radiation scattering techniques, surface tension measurements, 
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and electrokinetic measurements, among others. There are many more tools for which there is 
no space here. Some of the techniques described in other chapters can provide the type of 
information described in this section or serve as adjuncts to the techniques described here. 

The main objective of the present section, however, is to begin with a very standard 
technique such as optical microscopy and to use it to illustrate why colloids are difficult t o  see 
and what modern developments have emerged in recent years to allow us to “see” and do 
things that were considered impossible until a decade ago. We also use this opportunity to 
review briefly some new techniques that are currently available to measure interaction forces 
between particles directly. We appeal to some of these techniques in other chapters when we 
discuss colloidal forces. 

1.6a “Visual” Observation and lmaging 

I .  6a. I Optical Microscopy 
Because of the particle sizes involved, classically the optical microscope has been the instru- 
ment of choice especially for lyophobic colloids. Excellent books and manuals are available 
(Bradbury 1991; Cherry 1991; Schaeffer 1953) on the numerous variations of optical micro- 
scopy, and we do not go into all the details. Our purpose here is merely to point out some very 
elementary principles that make this method ideally suited for direct examination of colloids. 
We also use this introduction as a first step in pointing out modern techniques that fall under 
the class of “microscopy” but use principles (e.g., electron tunneling; see Vignette 1.8) and 
radiation (e.g., electron or x-ray) other than those used in optical microscopy. 

For a particle to be visible optically, there must be an acceptable 
difference between its refractive index and that of its surroundings; this is known as contrast. 
This requirement has nothing to do  with particle size: A glass rod can be made to “disappear” 
by immersing it in a liquid of matching refractive index. The fact that a technique is not 
applicable to all possible systems does not invalidate it; this only means that one must have 
access to more than one technique in order to deal with a variety of problems. Contrast is a 
generic term, and how the contrast between a partic!e and its surrounding arises depends on 

1.6a.Ia Contrast. 

FIG. 1.1 9 Basic optical principle governing the operation of an optical microscope: (a) the geome- 
try on which the resolving power d of a microscope is based; (b) detail showing how light from both 
sources must be intercepted by the lens to become part of the image. 
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the radiation and probing technique used. For example, in the case of scattering techniques, 
discussed in Chapter 5, contrast arises from the refractive index difference between the particle 
and surroundings when light scattering is used, whereas in neutron scattering it is the differ- 
ence in the interaction between the neutrons and the atomic nuclei that give rise to the contrast. 

The first thing we tend to think of in connec- 
tion with microscopes is the magnification they achieve. More important, however, is a quan- 
tity known as the resolving power, or limit of resolution, of the microscope. Magnification 
determines the size of an image, but the resolving power determines the amount of distinguish- 
able detail. Enlargement without detail is of little value. For example, a row of small spherical 
particles will appear simply as a line if the row is enlarged with an instrument of poor resolving 
power. Further magnification would increase the thickness of the line, but would not reveal its 
particulate nature. If the resolving power is increased, however, the individual spheres would 
be discernible. One may then choose a magnification that is convenient. Both the depth and 
area of the in-focus field decrease as the magnification is increased, so one pays a price 
for enlargement even though the amount of perceptible detail is not affected much by the 
magnification. 

A beam of light is always diffracted at the edges of an object to produce a set of images 
of the edge known as a diffraction pattern. The diffracted light is what our eye receives from 
an  object and from which our image of the object is constructed. The diffracted light contains 
sufficient information to assemble an image; any light that is not incorporated into the image 
will result in a loss of detail in the image. To estimate the efficiency with which an image 
reproduces the object, let us consider the situation in which all first-order diffracted light is 
intercepted by the lens, but light from all higher orders of diffraction is assumed to be lost. 

Suppose we have a set of pinholes in an opaque shield and that this shield is illuminated 
by a source far enough away that the incident light may be regarded as a set of parallel rays, 
as sketched in Figure 1.19a. To an observer on the opposite side of the shield, each pinhole 
will function as a light source from which a hemispherical wave front seems to emerge. If 
adjoining pinholes are separated by a distance d ,  the wave from one source, say S , ,  must travel 
a longer distance than light from S2 to reach a distant screen at  point P. If the distance between 
the shield and the screen is large compared to  the wavelength, the extra distance may be 
equated with d sin 8. Positive reinforcement through diffraction occurs whenever such an 
extra distance equals some integral number of wavelengths of light. For first-order diffraction, 
then, we require 

1.6a.lb Resolution and  Magnification. 

where A ’  is the wavelength in the medium between the screen and the shield. If the medium 
has a refractive index n,  then A ’  = h/n where h is the wavelength under vacuum. Therefore, 
Equation (2 1 ) becomes 

Equation (21) is called the Bragg equation after the father-and-son team of W. H. and W. L. 
Rragg (Nobel Prize, 1915); it is the underlying relationship for all diffraction phenomena. We 
encounter the Bragg equation again in Chapter 9 when we discuss the diffraction of low-energy 
electrons by surface atoms (see Section 9.8b). 

Recall that our objective is t o  consider an image constructed from only first-order diffract- 
ed light. To  do  this, we identify the perforated shield S,S, as the object, the screen as the 
objective lens of the microscope, and the distance PP’ as the diameter of the objective. It is 
clear from Figure 1.19b that light originating a t  S, must travel a distance d sin 8 longer than 
the light from S, to form an image at P; likewise, light originating at S2 must travel a distance 
d sin 8 longer than light from S ,  to form an image at  P’.  Thus, to be intercepted by the lens 
and thereby become part of the image, rays from different parts of the source must travel 
paths that differ by 2d sin 8. In order for this to happen and still consist of only first-order 
diffracted light, the difference in path lengths must equal A ‘ .  The resolving power is defined 
to be the magnitude of the separation between objects that is required to produce discernibly 
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different images when the angle subtended by the microscope is 28. Therefore, the resolving 
power is identical to d in Figure 1.19 and is estimated to be 

(23) d = W(2n sin 0) 

which is sometimes written 

d = X/2(NA) (24) 

where NA (i.e., n sin 0) is called the numerical aperture of the lens. 
The significance of Equation (23) is that any points closer together than the distance d 

will produce a first-order diffraction image with light having a wavelength equal to h/n 
at some angle greater than 6. This light would not be intercepted by the lens PP’ , so a signif- 
icant amount of detail about distances of this magnitude is lost. It is the wave nature of 
light that imposes a limit to the amount of detail an image may possess. Equation (23) 
shows that the resolving power is decreased by increasing 6 or by decreasing h/n.  The sub- 
tended angle 28 is increased by increasing the diameter of the lens and by decreasing the 
distance between the object and the lens; the design of the lens limits the range of these 
parameters. The ratio X/n may be decreased by decreasing X or by increasing n. Although 
shorter wavelengths improve resolving power, visible light is almost always used in micro- 
scopy, primarily because of the absorption of shorter wavelengths by glass. Since the refractive 
index of some oils is 50% higher than that of air, a significant improvement in the resolv- 
ing power is achieved by filling the gap between object and lens with so-called immersion 
oil. 

We may use Equation (23) to estimate the particle size that will be clearly resolved 
microscopically. As a numerical example, we may take X to be 500 nm, n = 1.5, and 26 = 
140°, all of which are attainable and are optimal values for these quantities. This leads to a 
resolving power of 142 nm, which represents the lower limit of resolved particle size under 
completely ideal circumstances. Under closer to average circumstances, a figure twice this 
value may be more typical. These figures reveal that direct microscopic observation is feasible 
only for particles at the upper end of the colloidal size range and then only if the particle 
contrasts sufficiently in refractive index with its surroundings. ’This is the reason for exploring 
the use of other radiations such as x-ray and neutron and other techniques to “visualize” 
submicroscopic particles and features of interest in colloid science. We briefly consider a 
rather straight forward extension of optical microscopy, i.e., electron microscopy, in Section 
1.6a.2. 

There are many variations of optical microscopic 
techniques in use today. One variation of direct microscopic examination extends the range of 
microscopy considerably but at the expense of much detail. By this technique, known as 
dark-field microscopy, particles as small as 5 nm may be detected under optimum conditions, 
with about 20 nm as the lower limit under average conditions. In dark-field microscopy, the 
sample is illuminated from the side rather than from below as in an ordinary microscope. If 
no particles were present, no light would be deviated from the horizontal into the microscope, 
and the field would appear totally dark. The presence of small dispersed particles, however, 
leads to the scattering of some light from the horizontal into the microscope objective, a 
phenomenon sometimes called the Tyndall effect. The presence of colloidal particles is indi- 
cated by minute specks of light in an otherwise dark field. 

In dark-field microscopy, the particles are only a blur; no details are distinguishable at 
all. Some rough indication of the symmetry of the particles is afforded by the twinkling that 
accompanies the rotation of asymmetrical particles, but this is a highly subjective observation. 
However, the technique does permit the rate of particle diffusion to be observed. We see in 
Chapter 2 how to relate this information to particle size and shape. The number of particles 
per unit volume may also be determined by direct count once the area and depth of the 
illuminated field have been calibrated. This is an important technique for the study of coagula- 
tion kinetics, a topic we discuss in Chapter 13. 

In dark-field, as in direct observation microscopy, the refractive index difference between 

1 . 6 ~ .  Zc Dark-Field Microscopy. 
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the particles and the medium is one of the crucial factors that influences the feasibility of 
the method. Very good resolving power is obtained with metallic particles, which offer maxi- 
mum contrast in refractive index. The technique of dark-field microscopy played an important 
historic role in colloid science, particularly in the study of metallic colloids. R. Zsigmondy 
(Nobel Prize, 1925), for example, made extensive use of this technique in his study of colloidal 
gold. Note that it is the deviation of a beam of light or scattered light that is utilized 
in dark-field microscopy. We have a good deal more to say about light scattering in Chap- 
ter 5. 

I .  6a.2 Electron Microscopy and Scanning Probe Microscopies 

There are numerous modern developments that have made atomic-scale resolution possible in 
recent years. In fact, some of these developments in instruments can also be used to measure 
forces between particles and surfaces. These developments for force measurements are dis- 
cussed briefly in Section 1 . 6 ~  and in Vignette 1.8. In this section, we review electron and 
scanning probe microscopies (SPMs), which allow atomic-scale visualization of surfaces and 
particles. 

It is clear from Equation 
(23) that the best prospect for extending the range of microscopy lies in the extension by 
orders of magnitude of the wavelength used to produce the image. The wave-particle duality 
principle of modern physics shows us how to make this extension. According to the de 
Broglie equation (see Atkins 1994), the wavelength of a particle is inversely proportional to its 
momentum: 

1.6a.2a Transmission and Scanning Electron Microscopy. 

X = h/mv (25) 

where h is Planck's constant and m and v are the particle mass and velocity, respectively. In an 
electron microscope, a beam of electrons replaces light in producing an image. An electron 
beam is produced by a hot filament, accelerated by an electron gun, and focused by electric or 
magnetic fields that function as lenses. In this section, we consider primarily a technique based 
on the transmitted electron beam. Accordingly, the method is called transmission electron 
microscopy (TEM). Some brief remarks are made near the end of this section about a tech- 
nique known as scanning electron microscopy. 

A schematic comparison of light and electron microscopes is shown in Figure 1-20. Al- 
though wavelengths on the order of 10-'* m (1 picometer or l pm) are easily achieved in 
electron microscopes, the numerical apertures of such microscopes are low. Accordingly, the 
resolving power of a conventional electron microscope is generally about 1 nm. However, 
because of this remarkable resolution, small features may be enormously magnified without 
loss of detail. 

The intensity of the electron beam that is transmitted through the specimen under observa- 
tion in an electron microscope depends on the thickness of the sample and the concentration 
of atoms in the sample. Thus, unless there are large differences in these characteristics between 
the particles of the sample and the support on which they rest, a very low contrast image will 
be produced. A poor-quality image results from these low-contrast situations; the image is 
analogous to a landscape viewed from an airplane with the sun directly overhead. The most 
common way of overcoming this difficulty is by means of a technique known as shadow 
casting. The sample to be examined in the electron microscope is placed in a chamber, which 
is then evacuated. Next, some gold or other metal is vaporized in the same chamber. The 
vapor condenses on all cooler surfaces, including the surface of the sample. If the vapor source 
is positioned to the side of the sample, the condensed vapor will deposit unevenly, effectively 
casting a shadow over the sample. The situation is shown schematically in Figure 1.21; Figure 
1.12 shows actual photomicrographs enhanced by this technique. With shadow casting, the 
field shows much more detail, just as the view from an airplane does when the sun is lower in 
the sky. 

When the angular position of the vapor source relative to the sample is known, the 
thickness of the particle may be evaluated from the length of its shadow by a simple trigono- 



COLLOID AND SURFACE CHEMISTRY 43 

0 p t ical U Microscope 

FIG. 1.20 
that perform parallel functions in each. 

Schematic comparison of (a) light and (b) electron microscopes showing components 

metric calculation. Alternatively, the length of the shadow cast by a spherical reference parti- 
cle, introduced for calibration, may be used as a standard to  calculate the thickness of parti- 
cles. 

In contrast to the TEM, the scanning electron microscope (SEM) works somewhat like a 
TV cathode-ray tube. An electron gun is used to scan a surface with the help of deflection coils 
and focusing “lenses” in a raster pattern, and the “reflected” electron signal is used synchro- 
nously to generate an image of very high magnification on a screen. The SEM has been in 

FIG. 1.21 Shadowing of a spherical particle using metal vapor: (a) side view; and (b) top view. 
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routine use since the 1960s and can be combined with spectroscopic methods to provide a 
powerful array of techniques for surface analysis (Adamson 1990; Hubbard 1995). 

At the beginning of this section, the microscope 
was proposed as an ideal tool for the study of colloidal particles. The light microscope is 
limited in range, but the electron microscope clearly has access to the entire colloidal size 
range. However, a very real disadvantage still persists even with the conventional electron 
microscope. The transmission and scanning electron microscopes require that the sample be 
placed in an evacuated enclosure for examination by the electron beam. Therefore, a disper- 
sion must be evaporated to dryness before examination. The result, although still informative, 
bears about as much resemblance to the original dispersion as a pressed flower bears to a 
blossom on a living plant. These limitations have served in recent years as incentives for the 
development of newer techniques such as environmental scanning electron microscopy (E- 
SEM) and scanning probe microscopy (SPM), some of which are highlighted in Vignette 1.8 
(see also Hubbard 1995). Each of these has its own advantages as well as disadvantages, but 
they all have increased our ability to “see” details that were not possible to see as recently as a 
decade ago. 

For example, the E-SEM, introduced around 1988, is an outcome of a serendipitous discov- 
ery of a new method of signal detection and combines the high resolution and the depth of field 
of the SEM with the flexibility and the ease of use of the optical microscope (Baumgarten 1989). 
It allows the use of high pressures (over 20 torr) and the examination of specimens in their natural 
state so that biological specimens and dynamic processes such as wetting and drying can be studied 
in real time. Some of the SPMs, on the other hand, require very low pressure environments, but 
others allow natural environments (see Vignette 1.8 and Section 1 . 6 ~ ) .  

In subsequent chapters, we discuss some in situ techniques for the characterization of 
colloidal particles, especially with respect to particle size, structure, and molecular weight. 

2.6a.2b Scanning Probe Microscopy. 

VIGNETTE 1.8 NEW EXPERIMENTAL TOOLS: Scanning Probe Microscopes 
for Surface Analysis at the Atomic Scale 

Speculations about the existence of atoms are often traced to ancient times, but a fierce (and 
sometimes vitriolic) debate was being waged in scientific circles about the reality of atoms 
even as recently as the dawn of the 20th century. In fact, Ludwig Boltzmann’s depression that 
drove him to suicide in 1906 is partly attributed to the criticism he faced from his detractors 
for his staunch advocacy of the atomic theory of matter. Who, then, would have thought 
that before the end of the century we would have the capability to not only “see” atoms, but 
to manipulate and move them one by one on a surface? Yet, that is what has been made 
possible by the ingenuity of Gerd Binnig and Heinrich Rohrer, two physicists at the IBM 
Zurich Research Laboratory, who invented what is known as the scanning tunneling micro- 
scope (STM) in 1982-an invention for which they shared the 1986 Nobel Prize in Physics 
with Ernst Ruska of Germany, the inventor of the electron microscope. 

When a probe, usually a metal tip down to the size of an atom, is brought to within a 
nanometer from the surface of a conductor or a semiconductor (see Fig. 1.22), electrons can 
be made to jump from the surface to the tip by applying what is known as a bias potential; 
this is called the tunneling effect, and the resulting current is known as the tunneling current. 
By keeping the tunneling current constant as one moves the probe along a surface, one can 
follow the surface contour with atomic-scale precision! In the constant current mode of 
operation, for example, the vertical displacement of the probe can be mapped with angstrom- 
level precision using the deflections of the piezoelectric ceramic piece on which the metal tip 
is mounted. The data can be converted to images to allow one to see the surface (see Fig. 
1.22, inset). 

In fact, what is mapped is not the topography of the surface but contours of constant 
electron densities; that is, the results are sensitive to the type of atom seen on the surface by 
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the probe. This implies that the STM can serve as a powerful and highly specific and sensitive 
local probe to study a surface (and materials adsorbed on a surface) with high precision. 

Vacuum tunneling of electrons is not the only option, however. The invention of STM 
has triggered the development of a whole family of techniques known collectively as scanning 
probe microscopy (SPM) that are not restricted to tunneling as the mechanism or to only 
conducting or semiconducting surfaces. One type of SPM, known as the atomic force micros- 
copy (AFM; see Section 1.6c.2), can be used to measure forces such as van der Waals forces, 
ion-ion interactions, and hydration forces on polymer-coated surfaces, biologically relevant 
bilayers, and so on. In the force-measuring mode, an SPM is often referred to as a 
surface force microscope (SFM), but the label SPM signifies the more general capability of 
these devices. For example, atoms on surfaces can be manipulated and rearranged individu- 
ally using STM and SPM, and conformation of polymers and biological macromolecules on 
surfaces can be probed. 

In addition, the STM can be combined with suitable spectroscopic techniques to design 
powerful local probes of a surface to a precision not possible through other techniques; these 
are known as scanning probe spectroscopy. Because of its precision, the STM/SPM family 
can provide details that are often missed by other techniques. For example, we discuss a 
diffraction technique known as low-energy electron diffraction (LEED) in Chapter 9 (Section 
9.8) for mapping the arrangement of atoms on a surface. Sharp diffraction spots obtained 
through LEED are taken to be indicative of ordered arrangements of the atoms on a surface. 
However, we know now from STM studies that even a surface showing clear and sharp 
diffraction spots in LEED experiments can in fact be highly defective. (This illustrates why 
more than one experimental technique [especially independent techniques] is often necessary 
in research.) 

The development of SPMs has significantly changed the “landscape” of the instru- 
mentation available to colloid and surface scientists, and the possibilities are endless! 

1.6b Size and Molecular Weight Measurements 

1.6b. I Particle Size Measurement 

Particle size measurement is one of the essential requirements in almost all uses of colloids. 
However, our discussion in Section 1.5 makes it clear that this is no easy task, especially since 
even the definition of particle size is difficult in many cases. A number of techniques have 
been developed for measuring particle size and are well documented in specialized monographs 
(e.g., Allen 1990). Optical and electron microscopy described in the previous section can be 
used when ex situ measurements are possible or can be acceptable, but we also touch on a few 
nonintrusive methods such as static and dynamic light scattering (Chapter 5 )  and field-flow 
fractionation (see Vignette 11; Chapter 2) in other chapters. 

In this chapter, we restrict our discussion to a chromatographic technique normally used 
for molecular weight measurements. The chromatographic concept can also be used for direct 
size (instead of molecular weights) measurement in the case of rigid particles, as we illustrate 
in our description of field-flow fractionation methods in Chapter 2. 

1.6b.2 Molecular Weights 
Lyophilic colloids, especially those of synthetic origin, also possess a distribution of particle 
sizes, but these are generally characterized by molecular weight rather than by linear dimension 
(except when R, is measured for such systems). We discuss the experimental methods used for 
molecular weight determination of particles in the colloidal size range in Chapters 2-5.  These 
methods yield the kinds of molecular weight averages discussed in Section 1.5c.3. Here, we 
consider a colloidal solution, say polystyrene in toluene, and discuss a chromatographic 
method for its fractionation. 

To  begin, a polymer like polystyrene is formed 
by the addition reaction in which styrene monomers CH2=CHC6H5 combine into long chains 
that may be thousands of repeat units long. This reaction is one of random addition, so not all 

1.6b.2a Chromatographic Techniques. 
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FIG. 1.22 One type of operation of a scanning tunneling microscope (STM). A tunneling current 
I flows between the sharp tip of the probe and the surface when a bias voltage V is applied to  the 
sample. A computer monitors the tunneling current and adjusts the distance between the probe and 
the surface such that a constant tunneling current Irefis maintained. The resulting changes in the 
position of the tip are then recorded and converted to  an image such as the one shown on the 
monitor or the one shown in the inset. The image shown in the inset is that of an atomically smooth 
nickel surface. The periodic arrangement of the atoms on the surface can be seen clearly in the STM 
image. (Adapted with permission of C. M. Lieber, Chern. & Eng. News 72(16), 28 (1994). The inset 
is adapted from T.  A. Hoppenheimer, in A Positron Narned Priscilla: Scientrfic Discovery at the 
Frontier, M. Bartusiak, B. Burke, A. Chaikin, A. Greenwood, T. A. Heppenheimer, M. Hoffman, 
D. Holzaman, E. J .  Maggio, and A. S. Moffat, Eds., National Acad. Press, Washington, DC, 
1994.) 
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chains are identical in length. Furthermore, chains containing slightly different numbers of 
repeat units will not differ enough in their properties to allow complete separation. Neverthe- 
less, procedures exist in which an initially polydisperse system is divided into fractions of 
narrower molecular weight distribution. One such method is called size-exclusion chromatog- 
raphy (SEC) because it segregates molecules in the distribution on the basis of their spatial 
extensions (see Section 1.6b.2b). 

In chromatography, a cylindrical column is packed with porous particles and then filled 
with solvent. Next, a portion of the colloidal solution is layered on the solvent, and the liquid 
is allowed to pass through the column. The eluted liquid is monitored for the colloid by an 
appropriate detection method; spectrophotometry and refractiv'e index are probably the most 
widely used methods of detection. What results is a chromatogram showing the detector 
output as a function of the volume of liquid eluted through the column. For a synthetic colloid 
like polystyrene, a broad peak results. Samples of biological origin often contain several 
components of' quite different molecular weight. Under optimum conditions, these may 
emerge as distinct peaks in the chromatogram. 

The volume at which a particular colloidal fraction emerges from the column is called the 
retention volume V,  of that fraction. Normally, a particular experimental system is calibrated 
with a colloidal solute of known molecular weight M. A plot of log M versus V, is generally 
linear over several orders of magnitude in molecular weight. Not only the solute but also the 
solvent, the column packing, and the operating conditions affect the calibration. Therefore, 
the calibration is set up on a system-by-system basis using molecular weights that have been 
determined by one of the absolute methods we discuss elsewhere in this book. Thus, the 
calibration process can be time consuming, but, once set up, chromatography provides a rapid 
method for fractionating polydisperse systems. 

Figure 1.23 shows how log A4 and the detector output vary with V,. By reading from the 
chromatogram to the calibration curve, the molecular weight of the fraction emerging at a 
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FIG. 1.23 Plot of log M and detector output versus retention volume for size-exclusion chroma- 
tography. Also shown is the relation among V,, V,, Vp,  and K,Vp as discussed in the text. (Redrawn 
with permission of P. C. Hiemenz, Polymer Chemistry: The Basic Concepts, Marcel Dekker, New 
York, NY, 1984.) 
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particular value of V, can be determined. Furthermore, for a molecular weight fraction M,, 
the height h of the detector output signal is directly proportional to the mass m, of the solute 
eluted in that particular fraction. Since m, 0: h,, C,h, a Elm, and m,/C,m, = h,/C,h,. Thus, the 
weight fractions of different molecular weight classes in the distribution are readily obtained 
by this method. Likewise, i f  n, is the number of moles of component i, h,/M, 0: n, and 
(h,/M,)/C,h,/M, = n,/C,n,. I f  we assume that suitable calibration exists, the chromatogram 
produced by SEC can be interpreted in terms of either number fractions or weight fractions of 
the various molecular weight classes. This kind of information can be used to calculate molec- 
ular weight averages (see Section 1.5c.3). 

Incidentally, this method is known by various names among workers in different fields. 
In biochemistry, the technique is called gel filtration chromatography (GFC), and in polymer 
chemistry, it is gel permeation chromatography (GPC). 

Now, however, let us briefly consider the 
mechanism by which molecules are fractionated by SEC. The basic idea is very simple. Large 
molecules cannot penetrate into the pores of the packing medium (the gel) and hence are 
eluted first. The smaller particles are distributed in the pores as well as in the voids between 
the gel particles and emerge later. 

The total volume of solvent in the column can be divided into two categories: V,, is the 
volume of solvent in the voids between the gel particles, and Vp is the volume of solvent in the 
pores. Not all of the pore volume is accessible to particles in a given molecular weight class. 
We define KfVp as the pore volume into which molecules from the ith class can permeate. 
Thus, K, describes what fraction of a pore is accessible to molecules in class i. The fraction K, 
is zero for very large particles and unity for very small particles and varies over this range for 
particles of intermediate size. The retention volume for molecules in class i is given by 

I .  6b.2b Size-Exclusion Chromatography. 

Figure 1.23 shows the relationship among V,, V,,, V,, and K,. 
It is fairly easy to arrive at a theoretical expression for K, based on a simple model of the 

permeation process. We picture the colloidal particle as a sphere of radius R, and the pore as a 
cylinder of radius R,. and length 4 ,  as shown in Figure 1.24a (Giddings 1991). The center of the 
solute particle cannot approach any closer than a distance R,  from the wall of the pore. 
Therefore, the radius of the pore that is accessible to the colloidal particle is (R,. - Rs). The 
layer of solution adjacent to the walls of the pore is “off limits” to the solute, so the concentra- 
tion of the colloid in the pore is only a fraction of its value in the bulk solution. This fraction 
is K, for the sphere of radius R, and equals the ratio of the accessible volume to the total 
volume of the pore: 

K, = T ( R ,  - R,)’ (4 - R,) = ( F ) ~  R,. - R, = (1 - :f;f‘>> R, 
TR:e 

Equation (27) is an approximation valid when the pore is long enough so that (P  - R,) = e ,  
so that the fraction on the right-hand side of the equation ranges between zero and unity as 
required for R, equal to R,. and 0, respectively, and thus gives the parameter K, as a function 
of particle size. 

The next stage of developing a theory would be to relate the radius of the particle to the 
molecular weight. Thus expanded, Equations (26) and (27) would provide a relationship 
between M and VR that -if the theory were successful - would eliminate the need for empirical 
calibration of SEC. For some systems, such as rigid globular proteins, establishing the connec- 
tion between R, and M is not difficult. For synthetic polymers, however, the flexible chains 
exist as random coils with an extension that depends on the interaction between polymer and 
solvent. In this case, relating R, to M i s  a complicated matter, so we are content with empirical 
calibration to interpret V, in terms of M. This, of course, is not the only modification that 
needs to be examined in a fully developed theory for K,. Models based on more complicated 
geometries for both the colloidal particles and the pores have been considered, but we shall 
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FIG. 1.24 Size exclusion of a particle in a pore: (a) exclusion of a spherical particle in a cylindrical 
pore; and (b) exclusion of macromolecules. Particles shown in dashed lines indicate positions or 
orientations that are excluded. (Redrawn with modifications from Giddings 1991 .) 

not pursue these. Yau et al. (1979) discuss additional theoretical models and experimental 
procedures in detail for those desiring more information on this topic. 

It is important to note that the implication of “size exclusion” is more general than its use 
in SEC might imply. The exclusion of particles based on size and shape (as illustrated for a 
simple case in Fig. 1.24b) finds applications in other important contexts. For instance, spe- 
cially designed zeolite catalysts are used in industry for accomplishing highly selective reac- 
tions, and the accessibility of the reactants to the sites on the surfaces of such catalysts is 
controlled using size-exclusion (and shape-exclusion) principles. This is illustrated in Vignette 
1.9. The size-exclusion and shape-exclusion properties of the zeolites of the type described in 
Vignette 1.9 are also taken advantage of in industrial separation processes (the zeolites are 
often called molecular sieves for this reason). 

VIGNETTE 1.9 SIZE EXCLUSION IN HETEROGENEOUS CATALYSIS AND 
SEPARATION PROCESSES: Zeolites-Molecular Cages for 
Selectivity in Separation and Catalysis 

The adjective heterogeneous in heterogeneous catalysis draws attention to the fact that an 
adsorbent in the form of one phase (e.g., solid) assists in reactions between molecules in 
another phase (e.g., gas). When a molecule adsorbs on a surface, whether by chemisorption 
or physisorption (see Chapter 9) ,  one or more of its atoms form strong (chemisorption) or 
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relatively weak (physisorption) bonds with the surface. This leads to  breaking or weakening 
of other bonds within the adsorbed molecules, thus promoting reactions with other species 
present in the system. The adsorbent in this instance contributes to  the disassembly of the 
adsorbate and becomes a catalyst (see Vignette IX in Chapter 9). 

In addition to  a large catalytically active surface and good capacity for adsorption, an 
efficient catalyst requires selectivity, that is, preferential affinity for the appropriate react- 
ants. Nonselectivity is a source of significant problems in catalysis, particularly in the petro- 
chemical industry, which has to deal with hydrocarbons of various types and isomers in a 
single stream. This situation has provided a strong incentive for the development of artificial 
(man-made) catalysts that offer the type of selectivity unthinkable on metal surfaces dis- 
cussed in the last section of Chapter 9 (see, for example, Ball 1994) and illustrates another 
example of molecular design (or “molecular engineering”) of advanced materials for use in 
science and industry. 

Zeolites, aluminosilicates originally found as minerals in nature, can now be synthesized 
in various forms and have intricate cagelike labyrinths (see Fig. 1.25) with shape- and size- 
selective properties. The channels in these materials can be enlarged, with remarkable preci- 
sion, by substituting phosphorus for silicon. Precise selectivity is achieved by a number of 
mechanisms, the simplest being the result of the size of the channels, as illustrated in Figure 
1.25. Molecular shape of the reactants and products also plays a major role. These mecha- 
nisms influence the selectivity of absorption (notice the spelling; absorption refers to the 
amount of gas molecules taken in by a material and not necessarily to the ability of a surface 
to adsorb the gas). But adsorptive selectivity is imparted through the chemical elements used 
in the material, as different chemical constituents have different “talents” (Ball 1994) for 
adsorption and for promoting reactions. 

The zeolites are also known as molecular sieves because of their capacity to discriminate 
between molecules; they find numerous uses in separation and catalytic processes. Although 
they appear to  be “solid” particles to the naked eye, they are highly porous, with a typical 
specific surface area of about 1000 m2/g. Catalysis is discussed in Chapter 9, but the scope of 
that chapter does not permit detailed discussions of the various types of catalysts and the role 
of physisorption and chemisorption in catalysis; this vignette provides a glimpse of the 
rationale used in the molecular design of new materials of interest in surface chemistry and 
how the concepts introduced in Chapter 1 and Chapter 9 fit into the larger scheme. 

FIG. 1.25 Shape selectivity of a zeolite cage. The cage allows (a) straight-chain hydrocarbons to 
snake their way into the pores while (b) preventing branched-chain hydrocarbons from entry. 
(Adapted from Ball 1994.) 
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1 . 6 ~  Force Measurements 

We have already seen in the sections above and in the vignettes that interaction forces between 
surfaces and among particles are important in colloidal systems. Stability of colloids, adhesion 
and wetting phenomena, xerography and printing, and the like depend on the types of forces 
that exist between surfaces and how they vary with physical and chemical conditions. Such 
forces may be approached or understood on at least two different levels. The first is a coarser 
level, e.g., the magnitude and strength of the surface forces as they manifest themselves in 
macroscopic phenomena. Examples of these include the magnitude of the repulsive barrier 
needed to stabilize a dispersion from coagulation and the strength of adhesive force needed 
for an adhesive film to meet the performance requirement. The second is on a finer scale, as 
in obtaining a detailed “force law” for interaction between two surfaces as a function of 
distance of separation. We discuss examples of these in Chapters 10 and 1 I .  

What is needed or sufficient depends on the application. For engineering applications, the 
first level might often be sufficient, whereas for developing new materials or understanding 
chemical and biological phenomena involving surfaces (see the vignette in Chapter 12), a more 
detailed understanding is necessary. 

A number of techniques have been developed over the years to determine colloidal and 
surface forces as well as interatomic and intermolecular forces of interest in colloid and 
surface chemistry. These methods can be divided into two groups: (a) indirect methods and 
(b) direct methods. We discuss examples of both in other chapters. It is therefore useful to 
consider these methods here briefly. 

I .  6c. 1 Indirect Methods 
Indirect methods are those in which we use some macroscopic property or phenomenon to 
deduce information about (colloidal or intermolecular) interaction forces. These methods are 
known as indirect since additional assumptions or approximations about the relation between 
the forces and the property or phenomenon measured are needed. Some examples of these 
methods are illustrated in Figure 1.26 and are described below (Israelachvili 1991). 

Figures 1.26a and 126b illustrate particle detachment and peeling experiments for 
estimating information on attractive short-range forces that are important in particle 
adhesion and adhesion energies between solid surfaces in contact. Such experiments 
provide information of importance in powder technology, xerography, ceramic pro- 
cessing, and the making of adhesive films. 
As we see in Chapter 6, surface tension and contact angle measurements provide 
information on liquid-liquid and solid-liquid adhesioin energies (Fig. 1 .26~) .  Contact 
angles measured under different atmospheric environments or as a function of time 
provide valuable insights into the states of surfaces and adsorbed films and of molecu- 
lar reorientation times at interfaces. 
The thicknesses of free soap films and liquid films adsorbed on surfaces (Figs. 1.26d 
and 1.26e), which can be measured using optical techniques such as reflected inten- 
sity, total internal reflection spectroscopy, or ellipsometry as functions of salt concen- 
tration or vapor pressure, can provide information on the long-range repulsive forces 
stabilizing thick wetting films. We see an example of this in Chapter 11. 
More sophisticated methods such as nuclear magnetic resonance (NMR), light scatter- 
ing, x-ray scattering, and neutron scattering can be used to measure dynamic interpar- 
ticle separations and motions in liquids (Figs. 1.26f and 1.26g). In such experiments, 
the “particles” can be globular or spherical (e.g., micelles, vesicles, colloidal particles, 
latex particles, viruses), sheetlike (e.g., clays, lipid bilayers), or rodlike (e.g., DNA). 
The interparticle forces can be studied as functions of the solution conditions and the 
mean separation between particles by changing the hydrostatic or osmotic pressure 
via a semipermeable membrane. Notable among these techniques is the compression 
cell or osmotic pressure technique from which the interaction force between particles 
can be obtained from the deviations from ideality in the PVT data (see Chapter 10 
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FIG. 1.26 Examples of various types of measurements that provide information on the forces 
between particles and surfaces: (a) adhesion measurements; (b) peeling measurements; (c) contact 
angle measurements (see Chapter 6); (d) equilibrium thickness of thin free films; (e) equilibrium 
thickness of thin adsorbed films (examples of practical applications include wetting of hydrophilic 
surfaces by water, adsorption of molecules from vapor, protective surface coatings and lubricant 
layers, photographic films; see Chapters 6 and 9); (f) interparticle spacing in liquids (examples of 
applications include colloidal suspensions, paints, pharmaceutical dispersions; see Chapter 13); (8) 
sheetlike particle spacings in liquids (examples of practical applications include clay and soil- 
swelling behavior, microstructure of soaps and biological membranes); (h) coagulation studies 
(e.g., basic experimental technique for testing the stability of colloidal preparations; see Chapter 
13). (Redrawn with permission of Israelachvili 1991 .) 
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for an example using van der Waals equation of state). These techniques are usually 
limited to measuring only the repulsive parts of a force law. 
Coagulation of colloidal dispersions (Fig. 1.26h) as a function of salt concentration, 
pH, or temperature of the suspending liquid medium can also be used to obtain 
information on the interplay of repulsive and attractive forces between particles in 
pure liquids as well as in surfactant and polymer solutions. 

The above methods are not usually sufficient when detailed information on the strength of 
interaction forces as a function of separation distance between surfaces is needed. Moreover, 
methods such as osmotic pressure measurements involve collective interactions of many mole- 
cules or particles so that the data obtained are of a thermodyinamic nature. Translating this 
information to interaction force as a function of distance is not straightforward and is often 
ambiguous. Direct force measurements have been made possible in recent years by develop- 
ments such as the scanning force microscopy (SFM) mentioned in Vignette 1.8 and discussed 
further in Section 1.6c.2b and have contributed to a significant change in the field of colloid 
and surface science. We consider two important examples of direct force measurement tech- 
niques below. 

I .  6c.2 Direct Methods 
As pointed out by Israelachvili (1991), the principle of direct force measurements is usually 
very straightforward, but the challenge is in measuring very weak forces at very small intermo- 
lecular or surface separations that must be controlled and measured to within 0.1 nm. Follow- 
ing Israelachvili (1991), we divide our description into two parts, namely, surface force mea- 
surements and interatomic force measurements. 

The surface force apparatus (SFA) 
was originally developed in the late 1960s by Tabor, Winterton, and Israelachvili (see Israel- 
achvili 1991) for measuring the van der Waals forces between molecularly smooth mica sur- 
faces in air or vacuum. The apparatus, which has since been modified for making measure- 
ments in liquids, consists of two curved surfaces of mica, the interaction forces between which 
are measured using highly sensitive force-measuring springs (see Fig. 1.27a). The two surfaces 
are in a crossed cylinder configuration and geometrically correspond locally to a sphere near a 
flat surface 01' to two spheres close together. The separation between the two surfaces can be 
measured by use of an optical technique (which employs multiple beam interference fringes), 
from microns down to molecular contact, usually to better than 0.1 nm. In addition, the exact 
shapes of the two surfaces and the refractive index of the liquid (or material) between them 
can also be measured. The ability to measure refractive index allows one to determine the 
quantity of material (e.g., lipid or polymer) deposited or adsorbed on the surfaces. 

The force is measured through the expansion or contraction of the piezoelectric crystal by 
known amounts and by determining optically how much the two surfaces have actually moved. 
The difference in the two values is then multiplied by the stiffness of the force-measuring 
spring to obtain the force difference between the initial and final positions. Thus, both repul- 
sive and attractive forces can be measured as functions of the distance between interacting 
surfaces, with a sensitivity of the order of 10 - *  N. Figure 1.2713 illustrates an example of force 
measurement for the case of attraction. 

In the past, mica has been the material of choice for the interacting surfaces because of 
the ease of handling and since molecularly smooth surfaces can be fabricated; mica surface 
coated with a thin film of other materials (e.g., lipid monolayers or bilayers, metal films, 
polymer films, or other macromolecules such as proteins) can also be used. The use of 
alternative materials such as molecularly smooth sapphire and silica sheets and carbon and 
metal oxide surfaces is also being explored. 

The invention and refinement of the SFA have been among the most significant advances 
in experimental colloid science and have allowed researchers to identify and quantify most 
of the fundamental interactions occurring between surfaces in aqueous solutions as well as 
nonaqueous liquids. Attractive van der Waals and repulsive electrostatic double-layer forces, 
oscillatory (solvation or structural) forces, repulsive hydration forces, attractive hydrophobic 

5 .  

I .6c.2a Surface Forces: Surface Force Apparatus. 
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FIG. 1.27 The surface force apparatus (SFA) and an example of direct force measurement. (a) 
The surface force apparatus for direct measurement of the forces between surfaces in liquids or 
vapors at the angstrom resolution level. With the SFA, two atomically smooth surfaces immersed 
in a liquid are brought toward each other, with the surface separation being controlled to 0.1 nm, 
and the forces between the two surfaces can be measured. Moreover, the surfaces can be moved 
laterally past each other and the shear forces also measured during sliding. (Redrawn with permis- 
sion of Israelachvili 1991.) (b) A schematic illustration of how the force between two surfaces is 
measured. As the two surfaces (inset) are brought together from separations x larger than x,, the 
spring deflects toward contact to reach mechanical equilibrium (i.e., the spring force matches the 
attractive force between the surfaces). However, beyond the point x, at which the gradient of the 
interaction force equals the spring constant K ,  mechanical equilibrium is no longer possible, and 
the separation distance jumps to x,. When the movement is reversed, the same thing happens again 
and x jumps from x3 to x,. By using springs of different spring constant K ,  one can also measure 
the force between the surfaces for x, > x > x3. (Adapted from W. B. Russel, The Dynamics of 
Colloidal Systems, University of Wisconsin Press, Madison, WI, 1987.) 
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FIG. 1.27 Continued 

forces, steric interactions involving polymeric systems, and capillary and adhesion forces have 
all been measured using this apparatus or variations of it (we see an example in Chapter 10). 
Moreover, the scope of phenomena that can be studied using the SFA has also been extended 
to measurements of dynamic interactions and time-dependent effects such as the viscosity of 
liquids in very thin films, shear and frictional forces, and the fusion of lipid bilayers. 

The impact of the SFA and similar direct measurement forces goes beyond simple testing of 
theories of intermolecular forces. For instance, such measurements are also useful for explaining 
more complex phenomena such as the unexpected stability of certain colloidal dispersions in high 
salt, the crucial role of hydration and ion correlation forces in clay swelling and ceramic process- 
ing, and the deformed shapes of adhering particles and vesicles (see Israelachvili 1991). Further, 
both static (i.e., equilibrium) and dynamic (e.g., viscous) forces can now be studied with remark- 
able precision and accuracy for obtaining information on the structure of liquids adjacent to 
surfaces and related interfacial phenomena. Such studies demonstrate that properties of ultrathin 
films are profoundly different from those of bulk liquids. 

As we have already seen in Vi- 
gnette 1.8, the SFM is an offshoot of the scanning tunneling microscope (STM) and is a hybrid 
between a surface profilometer and the SFA (Wiesendanger 1994). The difference between an  
SFM and the SFA is that forces at the atomic level can be measured using the former with the 
help of an atomically sharp tip that scans the surface (for this reason, the SFM with atomic 
resolution is often called the atomic force microscope [AFM]). The tip radii can be as small as 
one atom or larger than 1 mm, but the smaller tips are more popular since they allow one to 
measure directly the force between an individual atom and a surface or even between two 
individual atoms. 

In SFM, the probe tip is mounted on a highly sensitive, cantilever-type spring. The force 
of interaction between the sample and the tip can be calculated from the spring constant and 
the measured deflection of the cantilever. The deflection is sensed using the STM principle 
(Vignette 1.8) or capacitance or optical methods. The SFM can be operated in the “contact 
regime” or like the SFA. In the latter mode, one can measure van der Waals forces (see 
Chapter lO), ion-ion repulsion forces (see Chapter 1 l ) ,  and capillary forces and frictional 
forces, among others. In contrast to STM, the SFM can be used for both conductors and 

1.6c.2b Atomic Forces: Scanning Force Microscope. 
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insulators. The fact that nonconducting samples can be studied is very significant to colloid 
science since biological and polymeric surfaces can be probed using SFM. 

Further, a whole new technology has arisen devoted to fabricating highly sensitive, 
micron-size, force-sensing devices for SFM work. For example, force measurements between 
a flat surface and a sphere in aqueous salt solutions out to surface separations of 60 nm 
have been made recently by attaching a micron-size quartz sphere to the end of an SFM tip 
(Israelachvili 1991). 

Numerous research publications and monographs are available on the various versions of 
SFM (and STM) and on the interpretation of the data (Bonnell 1993; Wiesendanger 1994), 
but for our purpose here the above description is sufficient to illustrate the possibilities in 
force measurements at the atomic level and the opportunities they open up in more advanced 
studies of the materials discussed in subsequent chapters of this book. 

1.7 AN OVERVIEW OF THE BOOK 

The rest of the book can be divided into roughly three groups of chapters. A brief overview of 
these is given below. 

1.7a Basic Phenomena and Techniques 

Chapters 2-6 and Chapter 9 focus on many of the basic phenomena and techniques relevant 
to colloid and surface chemistry. These provide additional theoretical concepts and experimen- 
tal tools routinely employed in the area. These include 

The competition between diffusion and sedimentation and how this is used to measure 
particle size, solvation of particles, etc. (Chapter 2) 
Osmometry and Donnan equilibrium (Chapter 3) 
Flow and rheology of dispersions and viscosity of polymer solutions and how viscos- 
ity is used to characterize dispersions (Chapter 4) 
Turbidity measurements, static and dynamic light scattering, and a brief introduction 
to x-ray and neutron scattering (Chapter 5 )  
Surface tension and contact angle, wetting phenomena, effects of the curvature of the 
surface on capillarity and phase equilibria, and porosimetry (Chapter 6) 
Adsorption at solid-gas surfaces, derivation of adsorption isotherms, surface area 
measurement, and structural analysis of surfaces and adsorbed layers using low- 
energy electron diffraction (Chapter 9) 

1. 

2. 
3 .  

4. 

5 .  

6. 

1.7b Association Colloids 

Chapters 7 and 8 discuss surfactant solutions: 

1. In the Chapter 7, formation of monolayers in air-liquid interfaces and the resulting 
film pressure and phase transitions are discussed. This chapter also includes a brief 
discussion of adsorption on solid surfaces from solutions. 
Chapter 8 discusses self-assembly of surfactants to form micelles, models of micelliza- 
tion, use of micelles in catalysis and solubilization, and oil-in-water and water-in-oil 
microemulsions. 

2. 

1 . 7 ~  Colloidal Forces, Electrokinetic Phenomena, and Colloidal Stability 

The final group deals with colloidal forces and their applications to colloid stability and 
deposition phenomena. These include 

The van der Waals forces at the atomic level as well as those between macroscopic 
bodies (Chapter 10) 
Theories of electrical double layers and forces due to double-layer overlap (Chapter 
11) 

1. 

2. 



COLLOID AND SURFACE CHEMISTRY 57 

3. 

4. 

Electrokinetic phenomena such as electroosmosis, streaming potential, and viscoelec- 
tric effects (Chapter 12) 
The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of coagulation, polymer- 
induced forces, and steric stabilization (Chapter 13) 

As mentioned above, each chapter also includes a vignette that provides a glimpse of advanced 
concepts or techniques that are beyond the scope of this book. 

REVIEW QUESTIONS 

1. 
2. 

3. 

4. 
5 .  
6. 
7. 

8. 
9. 

10. 

11. 
12. 

13. 
14. 
15. 

16. 
17. 

18. 

19. 
20. 

21. 

What is the definition of a colloid? 
Name at least five industrial products in colloidal form and discuss what colloidal properties 
are essential for each of them. 
Name at least five examples in which a large surface area is desirable either from the processing 
standpoint or from the functionality of the end product. 
What are lyophilic colloids? What are lyophobic colloids? Give some examples. 
What are the difficulties with the characterization of colloids as lyophilic or lyophobic? 
Why is a foam considered a colloid? 
What is the meaning of stability as used in the context of colloids? What is the difference 
between kinetic stability and thermodynamic stability of a colloid? 
Give at least five examples of colloids that are thermodynamjcally stable. 
Define coalescence and aggregation. Give examples of processes or products in which aggrega- 
tion (i.e., coagulation) is desirable. Give some examples for which coagulation is not desirable. 
What is meant by the fractal dimension of an aggregate? 'What is the upper bound of the 
fractal dimension? Name at least one use of the fractal dimension of an aggregate. 
What are some of the measures of polydispersity? 
Why is the average diameter of a collection of polydisperse spheres different from the average 
diameter determined from the average of a property such as area or volume? 
What is meant by the term polydispersity index in the case of molecular weights of polymers? 
What is the limit of resolution of an optical microscope? Why? 
What is dark-field microscopy? How does it compare in terms of resolution and contrast with 
conventional optical microscopy? 
What is the limit of resolution of an electron microscope? Why? 
What is the difference between atomic forces and surface forces? Can you deduce the details 
of atomic forces from surface force measurements? Why or why not? 
Describe some of the recent developments for imaging surfaces and particles? What principles 
do they use? Name some advantages and limitations of each of the techniques. 
What is meant by scanning probe microscopy? 
Why is the measurement of atomic forces and surface forces important? Name some tech- 
niques for measuring atomic and surface forces. 
Explain how scanning probe techniques can be modified to provide spectroscopic information. 
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PROBLEMS? 

1. The specific area of dust particles from the air over Pittsburgh, Pennsylvania, has been 
determined by gas adsorption? 

Treatment A,,,(m2g -9 
4 h under vacuum at 2OOOC 
8 h under vacuum at 25 OC 

5.61 
2.81 

a. 

b. 
c. 

Colloidal palladium particles in an alumina matrix catalize the hydrogenation of ethene to 
ethane. The following data describe various catalyst preparations:$ 

Diameter of Pd particles (A ) 55 75 75 115 145 
Parts per million Pd in catalyst 170 250 200 250 250 
Percentage conversion per 25 mg catalyst 50 45 40.5 38.5 29 

Calulate the radius of these particles if  they are assumed to be uniform spheres of density 
2.2 g ~ m - ~ .  
Propose an explanation for the effect of degassing on particle size. 
What kind of average for the radius is obtained by this procedure? 

2. 

a. 

b. 

The accompanying table shows how the trace metal content of coal-ash aerosols depends on 
particle size: 1 

Calculate the activity of these catalysts on the basis of the weight of Pd and the area of 
Pd in the preparations. 
Does the catalytic role of Pd seem to be a bulk or surface phenomenon? 

3. 

Range of’ Trace element (pg/g ash) 

Pb T1 Sb Cd Se As 
diameters 
(Pm) 

4. 

30-40 300 5 9 < 10 < 15 160 
5-10 820 20 25 < 10 < 50 800 

1.1-2.1 1600 76 53 35 59 1700 

Discuss the implications of these results on human health in view of the following considera- 
tions: 
a. 
b. 

c. 

d. 

Select a field containing about 10 particles from Figure 1.12b and measure the Martin diame- 
ters of the population parallel to the bottom of the micrograph (a photocopy can be made and 

The intrinsic toxicity of these trace elements 
small particles travel to the lung, larger particles are stopped in the nose, pharynx, and so 
on 
Trace elements are absorbed from the alveoli 7-10 times more efficiently than from the 
upper respiratory spaces 
A possible mechanism for the effect of particle size on trace element content 

*The data for many of the problems in this book are taken frorn graphs appearing in the original 
literature. As a result, the values given do not necessarily reflect the accuracy of the original 
experiments. Likewise, the number of significant figures cited may not be justified in terms of the 
approximations involved in graph reading. 
?Corn, M.,  Montgomery, T. L., and Reitz, R. J .  Science 159, 1350 (1967). 
STurelevich, .J., and Kim, G. Science, 169, 873 (1970). 
YNatusch, D.F.S., Wallace, J. R., and Evans, C. A.,  Jr. Science 183, 202 (1974). 
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5 .  

6. 

7. 

8. 

9. 

the particles checked off to avoid duplication and omissions). Classify the data and calculate 
the mean and standard deviation. Repeat, measuring the Martin diameter parallel to the side 
of the micrograph. Discuss the agreement or discrepancy between the two means in terms of: 
a. Bias in the choice of the field 
b. Systematic orientation effects 
c. The size of the population 

Suppose that the particles in Figure 1.8 were actually oblate ellipsoids (all in their preferred 
orientation) rather than spheres. Would their volume be over- or underestimated if the parti- 
cles were assumed to be spheres? In terms of their axial ratio, calculate the factor by which the 
mass is under- or overestimated when the particles are assumed to be spheres. (Consult a 
handbook for the volume of an ellipsoid.) 

Mixtures of 50 g of ZnO-TiO, are each shaken with 250 ml of water and allowed to settle. 
After 14 days of equilibration, it is found that the sediment volume is 1.65 times larger when 
the weight ratio of ZnO to TiO, is 1.0 than when the ratio is loo.* Some particle characteristics 
are the following: 

Diameter (pm) Density (g ml-') Charge in water 

ZnO 1 .o 
TiO, 2.2 

5.6 
4.2 

Positive 
Negative 

a. Assuming the particles are uniform spheres, calculate the ratio of the number of particles 
of ZnO to TiO, for each of the weight ratios given. 

b. Propose an explanation for the more voluminous sediment that results when the weight 
ratio is 1 .O than when it is 100. 

The following data describe the particle size distribution in a dispersion of copper hydrous 
oxide particles in water:? 

di (pm) 0.426 0.401 0.376 0.351 0.326 0.301 0.276 0.251 0.226 0.201 
ni 1 0 6 6 17 14 11 12 6 6 

Calculate d,, 0, d,, and d, for this dispersion. 

A graticule was used to size sand particles and glass spheres.$ The percentage by weight of 
particles less than the stated size was found to be as follows: 

d(pm) 0.4 0.8 1.6 2.4 3.0 4.0 8.0 12.0 
Sand 0.01 0.07 0.23 0.56 1.23 2.35 11.77 18.06 
Glass 0.01 0.11 0.26 0.43 0.72 1.43 17.84 28.07 
d(pm) 16.0 20.0 30.0 40.0 60.0 75.0 90.0 120.0 

Sand 24.62 32.11 52.33 64.14 83.60 - 98.7 100.0 
Glass 36.89 47.68 59.47 61.78 91.49 100.0 - - 

Plot the results on probability and log-probability coordinates. Use the best representation to 
evaluate (the appropriate) average and standard deviation for the samples (see Appendix C). 

Particle size distributions were measured on aerosols collected in a New York highway tunnel, 
and the following results were obtained: 1[ 

Cumulative Vo mass <d, (pm) 30 40 50 60 70 80 

0.07 0.2 0.9 4.0 
dj weekend 0.5 1.0 2.50 5.0 - - 
d,, weekday - - 

*Princen, L. H., and DeVena, M. J .  J. Am. Oil Chem Soc. 39,269 (1962). 
TMcFadgen, P., and MalijeviC, E. J. Colloid Interface Sci. 44, 97 (1973). 
/Fairs, G. L. Chern. Ind. 62, 374 (1943). 
1[Lee, R. E., Jr., Science 178, 567 (1972). 
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10. 

11. 

Plot these results on log-probability coordinates and estimate the mean and standard deviation 
for each distribution (see Appendix C). What kind of “averages” are these quantities? How d o  
the weekend and weekday particle size distributions compare with respect to  the location and 
width of the maximum? The weekend results are attributed to  automobile exhaust, whereas 
the weekday results are assumed to be “diluted” by aerosols from outside the tunnel. 

The mass of bull sperm heads in a sample was determined by interference microscopy, and the 
following results were obtained:* 

n, 4 2 27 37 32 26 20 8 3 3 1 
w, x 10l2(g) 5 6 7 8 9 10 11 12 13 14 15 

Calculate the number average and weight average weights of these particles. 

Yau et al.? used polystyrene samples of known molecular weight in tetrahydrofuran to cali- 
brate the retention volume of a size-exclusion chromatograph. They obtained the following 
results: 

M x 1 0 - ~  (g mole-’) 4.0 50.0 110 179 390 1800 
V R  (mu 16.3 14.5 13.9 13.6 13.1 12.1 

Do these results display the expected correlation between M and VR? The flow rate in the 
instrument used in this research was 1.0 ml min-I; how long would it take for samples of 
moleculal- weight 104, 105, and 106 to emerge from the column? Is this order of elution times 
qualitatively consistent with Equations (26) and (27)? 

*Bahr, G.  F., and Zeitler, E. J.  Cell Biol. 21 , 175 (1964). 
TYau, W. W., Jones, M. E., Ginnard, C. R., and Bly, D. D. I13 Size Exclusion Chromatography 
(T. Provder, Ed.), American Chemical Society, Washington, DC, 1980. 



2 
Sedimentation and Diffusion 

and Their Equilibrium 

Even if you had completed your third year . . . in the University, and were perfect in the 
theory of the subject, you would still find that there was need of many years of experience, 
before you could move in a fashionable crowd without jostling against your betters. 

From Abbott’s Flatland 

2.1 INTRODUCTION 

2.la Sedimentation and Diffusion: Why Are They Important? 

Sedimentation and diffusion affect many colloidal phenomena. Sedimentation occurs under 
the influence of gravity and, considerably faster, in a centrifuge. Many analytical and prepara- 
tive techniques in colloid science (particularly in biophysics and biochemistry) take advantage 
of centrifugal force for physical characterization or purification of materials in the colloidal 
size range. In fact, because of the small sizes of the particles or macromolecules involved, the 
use of centrifugation is indispensable. In view of these, basic principles of (gravitational and 
centrifugal) sedimentation are an essential part of colloid science. 

Diffusion, of molecular species as well as colloidal particles, plays perhaps a more domi- 
nant role in many topics of interest to us. For example, without diffusion of ions we will not 
have the diffuse electrical double layers next t o  charged surfaces (discussed in Chapter 1 1 ) .  At 
the colloidal level, diffusion plays a central role in the transport and collision of particles in 
colloidal stability (discussed in Chapter 13). There are many more such examples. 

The equilibrium between gravitational or centrifugal force and diffusion is routinely taken 
advantage of in colloid science, as illustrated in Vignette 11. Our objective in this chapter is to 
examine the effects of sedimentation and diffusion, first taken separately and then combined, 
on particles in the colloidal size range. 

VIGNETTE II ANALYTICAL SEPARATIONS AND CHROMATOGRAPHY: 
Sedimentation Field Flow Fractionation 

Were it not for the never-ending, gentle tussle between gravity and diffusion, our planet 
would not have an atmosphere, nor would we be here to reflect on it! The barometric 
equation, which describes this “balance of power” between the above two well-known phe- 
nomena, is derived in most introductory physical chemistry books and is mentioned in the 
closing paragraph of this chapter. There are many more life-sustaining processes that are 
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affected by or rely on sedimentation and diffusion, but frequently it is the more mundane 
“practical” consequences of these phenomena that attract our attention. 

One such consequence is their use in the physical characterization of colloidal dispersions 
and macromolecular solutions. Let us highlight one such application through one element of 
a class of analytical separation techniques known as field flow fractionation (FFF). 

The name field flow fractionation stands for a family of techniques, invented in the 
196Os, that take advantage of the response of colloids and macromolecules to  electrical, 
thermal, flow, or centrifugal fields to produce a chromatography-type separation of the 
particles (Giddings 1966, 1991, 1993). In a typical set up, a suitable force field is applied in a 
direction normal to the axis of a thin chamber that contains the dispersion. The field forces 
the particles against one of the walls of the chamber, and, at steady state, a concentration 
profile is set up in the direction of the applied field as a consequence of the differences in the 
responses of the various species in the dispersion to  the applied field (see Fig. 2.la). The 
particles are then eluted by flowing an elutant fluid through the chamber. The fluid velocity 
decreases progressively from the axis toward the accumulation wall because of friction at the 
wall (see Chapter 4, Section 4a). As a consequence, the particles are carried along the axis at 
different velocities depending on their distance from the accumulation wall. For example, the 
component closest to the accumulation wall lags behind the one near the center of the 
chamber (see Fig. 2.lb). Samples can now be eluted through a detector or collection device. 
The detection is usually based on changes in standard properties such as refractive index or 
light absorption. 

One of the more advanced of the FFF techniques is sedimentation FFF (SdFFF), in 
which the applied field is a centrifugal force (see Fig. 2.lb). A typical separation achieved 
through SdFFF is also illustrated in Figure 2.lb. The SdFFF is suitable for species with 
molecular weights larger than about 106 and has proved u3eful for a large number of biocol- 
loids (e.g., subcellular particles), polymers, emulsions, and natural and industrial colloids 
(Giddings 199 1 ). 

It is our objective in this chapter to outline the basic concepts that are behind sedimenta- 
tion and diffusion. As we see in this chapter, gravitational and centrifugal sedimentation are 
frequently used for particle-size analysis as well as for obtaining measures of solvation and 
shapes of particles. Diffusion plays a much more prevalent role in numerous aspects of 
colloid science and is also used in particle-size analysis, as we see in Chapter 5 when we 
discuss dynamic light scattering. The equilibrium between centrifugation and diffusion is 
particularly important in analytical and preparative ultracentrifuges. 

FIG. 2.1 Sedimentation field flow fractionation (SdFFF): (a) an illustration of the concentration 
profile and elutant velocity profile in an FFF chamber; and (b) a schematic representation of an 
SdFFF apparatus and of the separation of particles in the flow channel. A typical fractionation 
obtained through SdFFF using a polydispersed suspension of polystyrene latex spheres is also 
shown. (Adapted from Giddings 1991.) 
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FIG. 2.1 Continued 

2.1 b Purpose and Content of This Chapter 

The purpose of this chapter is to introduce the basic concepts that govern sedimentation and 
diffusion of colloidal particles. The material presented is organized into roughly four major 
groups. 

The first group, consisting of Sections 2.2-2.4, covers sedimentation. After some 
preliminaries, we discuss Stokes’s law, a hydrodynamic equation that will appear 
again when we discuss electrokinetic phenomena in Chapter 12 and the kinetics of 
coagulation in Chapter 13. Stokes’s law is a key relationship in understanding the rate 
of sedimentation and is used in the derivation of the sedimentation equation for 
spherical particles. Following this, the equation for the sedimentation coefficient, a 

1. 
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standard measure of the steady-state velocity of a particle in a centrifugal field, is 
given and its use is illustrated through an example. 
The second major topic, diffusion, is covered in Section 2.5 from a classical perspec- 
tive, through Fick’s laws of diffusion and thermodynamic arguments. In discussing 
diffusion, we focus our attention on the diffusion coefficient, which is defined experi- 
mentally by Fick’s laws and theoretically by two equations derived by Einstein. 
The statistical basis of diffusion requires arguments that may be familiar from kinetic 
molecular theory. Elementary concepts from the theory of random walks and its 
relation to diffusion form the third topic, which is covered in Section 2.6. As is well 
known, the random walk statistics can also be used for describing configurational 
statistics of macromolecules under some simplifying assumptions; this is outlined in 
Section 2.7. 
Finally, we turn our attention to equilibrium between sedimentation and diffusion 
(Section 2.8). As our educated intuition might lead us to expect, larger particles 
sediment more rapidly and diffuse more slowly than smaller particles. The effects of 
sedimentation and diffusion, therefore, are not of comparable magnitude for all sizes 
of particles. There is a range of particle sizes, however, for which the two are compa- 
rable and equilibrium between them is established. This equilibrium between sedimen- 
tation and diffusion has been studied extensively by means of the ultracentrifuge. 
Since many of the particles thus investigated are of biological importance, we fre- 
quently use protein molecules as our examples in this chapter. 

Much of our discussion of sedimentation alone and of sedimentation combined with 
diffusion focuses on the determination of the mass or molecular weight of the dispersed 
particles. 

2. 

3. 

4. 

2.2 SEDIMENTATION: SOME BASIC CONSIDERATIONS 

To see how sedimentation occurs, consider the gravitational forces that operate on a particle 
of volume Vand density p 2  that is submerged in a fluid of density p I .  The situation is shown in 
Figure 2.2a for a spherical particle, but the discussion is independent of the actual shape of 

FIG. 2.2 
alone; and (b) due to gravity and the viscosity of the medium b2 > p l ) .  

The forces acting on a spherical particle due to gravity and viscosity: (a) due to gravity 
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the particle. The particle experiences a force F, due to gravity, taken to be positive in the 
downward direction. At the same time a buoyant force F, acts in the opposite direction. A net 
force equal to the difference between these forces results in the acceleration of the particle: 

This force will pull the particle downward - that is, F,,, will have the same sign as g - if p2 > 
p l ,  and the particle is said to sediment. If, on the other hand, p I  > p2,  then the particles will 
move upward, which is called creaming. 

2.2a Friction Factor and Stationary Settling Velocity 

As the net velocity of the particle is increased, the viscous force Fv opposing its motion also 
increases. Soon this force, shown in Figure 2.2b, equals the net driving force responsible for 
the motion. Once the forces acting on the particle balance, the particle experiences no further 
acceleration and a stationary state velocity is reached. It may be shown that, under stationary 
state conditions and for small velocities, the force of resistance is proportional to the station- 
ary state velocity v: 

Fv =fv 
where the proportionality constant f is called the friction factor. The friction factor has the 
dimensions mass time - I ,  kg s in SI units. We consider some aspects of the proof of Equation 
(2) for spherical particles in the following section. However, Equation (2) is independent of 
any particular geometry. The stationary state velocity is positive for sedimentation and nega- 
tive for creaming. 

Since the net force of gravity and the viscous force are equal under stationary state 
conditions, Equations (1) and (2) may be equated to give 

The stationary state is quite rapidly achieved, so Equation (3) describes the velocity of a 
settling particle during much of its fall. This velocity is known as the stationary settling 
velocity. 

2.2b Mass-to-Friction-Factor Ratio 

Equation (3) may also be written 

m l - -  g = f v  9 (4) 

where rn is the mass of the particle (p21/) .  This equation has the following features: 

1. 
2. 

3. 

4. 

The stationary sedimentation velocity of a particle is an experimentally accessible quantity 
for some systems, so item 4 summarizes much of our interest in sedimentation. Unfortunately, 
it is the ratio ( m / f )  rather than m alone that is obtained from sedimentation velocity in the 
general case of particles of unspecified geometry. The situation is comparable to the result of 
the classical experiment of J. J. Thomson in which the charge-to-mass ratio of the electron 
was determined. 

What is needed is a method for arriving at one of the quantities in the ratio independently. 
This information, in addition to the ratio, permits the evaluation of both the mass and the 

It is independent of particle shape. 
It assumes that the bulk density of the pure components applies to the settling units 
(i.e., no solvation). 
It permits the evaluation of v for a situation in which the mass-to-friction-factor ratio 
( m / f )  is known. 
It permits the evaluation of ( m / f )  in a situation for which v is known. 
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friction factor of the particle. In general, it takes two experiments to evaluate numerically 
these two parameters that characterize the dispersed particles. There are two ways of proceed- 
ing to overcome this impasse: 

The particle may be assumed to be a sphere, in which case its friction factor may be 
calculated theoretically and thus eliminated from Equation (4). We discuss the fric- 
tion factor of spherical particles in Section 2.3b. 
An experiment may be conducted that permits the evaluation o f f  from measured 
quantities. Diffusion studies are ideally suited for this purpose, as we see further in 
this chapter. 

1. 

2. 

2 . 2 ~  Sensitivity of Sedimentation to Density Differences 

Before turning to the two procedures above to eliminate f from the sedimentation equation, 
one other consideration inherent in the use of Equation (4) !;hould be discussed. As noted 
above, Equation (4) uses the bulk density of the pure components. If the continuous and bulk 
phases are totally noninteracting, this may be justified. However, for aggregates or solvated 
lyophilic particles, the density of the settling unit is intermediate between the densities of the 
two pure components. In these cases, choosing an appropriate density for the settling particle 
can be a real problem. 

Equation (3) shows that the sedimentation velocity increases with the density difference 
between the particle and the medium. Ar?y situation that brings the density of the settling unit 
closer to that of the solvent will decrease the sedimentation velocity. To an observer who is 
unaware of its derivation, however, the smaller velocity would be interpreted by Equation (4) 
as indicating a smaller value of ( r n / f ) .  Since the actual mass of colloidal material is unaffected 
by the solvation, it is more correct to attribute the reduced sedimentation velocity to an 
increase in the value of the friction factor. 

In the next section, we see how to deal quantitatively with solvation. Until now, the 
friction factor has been merely a proportionality factor of rather ill-defined origin. We shall 
not undertake a derivation of Equation (2) in any general sense. In the next section, however, 
we outline the derivation of an important result due to G. G. Stokes-the friction factor for 
an unsolvated sphere. 

2.3 GRAVITATIONAL SEDIMENTATION 

2.3a Stokes's Law for Spheres 

We begin our discussion of the Stokes equation by considering a single spherical particle of 
radius R, in a state of relative motion with respect to the surr'ounding fluid. For the purposes 
of this derivation, it does not matter whether the fluid is stationary and the particle is moving 
through it or whether the particle is stationary with the fluid :moving around it. Although the 
former describes sedimentation, it is somewhat more convenient to discuss the phenomenon in 
terms of the fluid flowing in the + z  direction with a velocity vz; this is the same as the particle 
moving in the - 2  direction with a velocity of the same magnitude. This situation is represented 
schematically in Figure 2.3. 

If  the spherical particle were not present in Figure 2.3, the volume elements of the flowing 
fluid would move upward in straight lines. In the presence of the particle, however, the flow 
profile is distorted around the sphere in the manner suggested by Figure 2.3. It is apparent 
that the velocity of any volume element passing the sphere is a function of both time and 
location and must be described as such in any quantitative treatment. The trajectory of such a 
volume element is called the flow streamline function. For spherical particles, this was ana- 
lyzed by G. G. Stokes in 1850. 

The streamline function is the solution of a differential equation, the details of which we 
will not pursue. We will have more to say about flow streamlines in our discussion of viscosity 
in Chapter 3.  For the present, however, it is sufficient to note that an important part of 
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FIG. 2.3 Distortion of flow streamlines around a spherical particle. 

solving any differential equation is the adequate incorporation of the boundary conditions 
that describe the problem. Since the disturbance of the flow streamlines in Figure 2.3 is 
centered at  the particle, it is convenient to discuss the boundary conditions in terms of the 
spatial variable r originating at the center of the sphere. Several aspects of the problem can be 
described in terms of this variable. 

1. The thickness of each successive layer in the fluid is the infinitesimal mathematical 
increment dr. Since the streamlines roughly follow the outline of the particle and are 
thin compared to the radius of the sphere R,,  we can think of each flow layer as 
moving tangentially to the surface of the sphere. 
The velocity varies from layer to layer in the fluid near the surface of the sphere; this 
variation can be described in terms of a velocity gradient dv/dr. Any integration over 
this gradient must be able to assign two different values of velocity to two different r 
values. 
When r = 00 ,  the disturbing influence of the particle has been damped away and the 
streamlines behave as if the particle was not present. 
When r = R,, the velocity is zero. This is described as a nonslip (or no-slip) condition 
between the stationary surface of the particle and the layer of fluid adjacent to it. 
There is nothing particularly self-evident about the nonslip condition between the 
solid and the fluid, but it is an experimental fact. Some commonplace evidence that 
suggests this is the layer of dust that accumulates on the blades of a fan. However 
stiff the breeze may be some distance in front of the blades, the air is still and travels 
with the surface of the blades. 

2 .  

3. 

4. 

The fact that the velocity of a fluid changes from layer to layer is evidence of a kind of 
friction between these layers. The layers are mathematical constructs, but the velocity gradient 
is real and a characteristic of the fluid. The property of a fluid that describes the internal 
friction or resistance to flow is the viscosity of the material. Chapter 4 is devoted to a 
discussion of the measurement and interpretation of viscosity. For now, it is enough for us to 
recall that this property is quantified by the coefficient of viscosity 7 of a material. The 
coefficient of viscosity has dimensions of mass length-] t ime- ' ,  kg m- l s - '  in SI units. In 
actual practice, the cgs unit of viscosity, the poise (P), is widely used. Note that pure water at 
2OoC has a viscosity of about 0.01 P = 1 O P 3  kg m - '  s - I  
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Because of internal friction, some of the translational kinetic energy of flow dissipates 
over a period of time. For the physical situation pictured in Figure 2.3, Stokes was able to 
show that the rate of energy dissipation dE/dt is given by 

dE/dt = 67r7v;Rs ( 5 )  

The product of the viscous force F, exerted by the particle on the fluid and the velocity v, of 
the fluid also equals the rate at which work is done on the fluid by the particle. Remember, a 
force times a distance equals energy, so a force times a velocity equals the rate of energy 
dissipation. Thus, we have two different ways of expressing the rate of energy dissipation 
associated with the presence of a spherical particle in the flowing liquid. Equating these two 
expressions gives 

It is clear that the force acting on the fluid acts in opposition to the flow. Therefore, if the 
fluid is flowing in the positive direction, the sphere resists the flow by a force in the negative 
direction. Conversely, if the particle is moving in one direction, the fluid resists the movement 
by a force in the opposite direction. This force is given by Stokes’s law, 

F = 67r7Rsv (7) 

where the subscripts for F and v are no longer needed, provided we remember that F and v are 
in opposing directions. (Note that F and v are vectors and, therefore, a direction as well as a 
magnitude must be specified for each.)* 

2.3b Sedimentation Equation 

Equation (7) expresses, for a spherical particle, the general result presented as Equation (2). 
Two aspects of the result are important: 

For small, stationary-state velocities, the viscous force on a particle is directly propor- 
tional to the velocity. 
For a spherical particle, the friction factor is given by 

1. 

2. 

j = 6n: r?R, (8 )  

It was just noted that the case of spherical particles is one in which the friction factor can be 
eliminated from Equation (4), yielding a result that permits th.e mass of a spherical particle to 
be evaluated from sedimentation data alone. To see how thi:s works, we return to Equation 
(3), using Equation (8) to evaluate f and (4/3)7rR; as a substitution for I/. Thus, for a 
spherical particle, Equation (3) becomes 

Equation (9) may be solved for the stationary-state sedimentation velocity 

2 R3P2 - P l ) g  

9 7 
v = - -  

and for the radius of the spherical particle 

Since the particle to which it applies is a sphere, Equation (1 1) may also be used to calculate 
the mass and friction factor of the particle: 

*Vectors are denoted by bold letters and their magnitudes by colrresponding roman letters. Such a 
differentiation is not used when only the magnitudes are important. 
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and 

Equation (9) is an important result since it describes the relationship among R,, v, 17, and A p ,  
the density difference. Any one of these quantities may be evaluated by Equation (9) when the 
other three are known. Thus, Equation (9) can be used to determine the density difference 
between two phases or to determine the viscosity of a liquid. In this chapter, however, our 
interest is in the characterization of colloidal particles by means of observations of their 
sedimentation behavior. Therefore, we are primarily concerned with Equations ( 1 1 ) and ( 12), 
which are specifically directed toward this objective. 

2 . 3 ~  Effects of Nonsphericity and Solvation 

Stokes’s law and the equations developed from it apply to spherical particles only, but the 
dispersed units in systems of actual interest often fail to meet this shape requirement. Equation 
(12) is sometimes used in these cases anyway. The lack of compliance of the system to the 
model is acknowledged by labeling the mass, calculated by Equation (12), as the mass of an 
“equivalent sphere.” As the name implies, this is a fictitious particle with the same density as 
the unsolvated particle that settles with the same velocity as the experimental system. If the 
actual settling particle is an unsolvated polyhedron, the equivalent sphere may be a fairly good 
model for it, and the mass of the equivalent sphere may be a reasonable approximation to 
the actual mass of the particle. The approximation clearly becomes poorer if the particle is 
asymmetrical, solvated, or both. Characterization of dispersed particles by their mass as 
equivalent spheres at least has the advantage of requiring only one experimental observation, 
the sedimentation rate, of the system. We see in sections below that the equivalent sphere 
calculations still play a useful role, even in systems for which supplementary diffusion studies 
have also been conducted. 

Actual particles can deviate from the Stokes model by being either solvated, asymmetrical, 
or both, in which case f increases so that a particle of mass rn will display a smaller sedimenta- 
tion velocity than it would if it were an unsolvated sphere. The justification for this statement 
is based on Figure 2.4, which shows an unsolvated sphere and represents its radius as R,. If 
this particle were solvated, it would swell to a larger radius R, associated with a larger friction 
factor. Small asymmetrical particles rotate through every possible orientation during settling 
because of Brownian motion. Figure 2.4 shows that an encompassing sphere drawn around 
the tumbling particle will also have a radius larger than R,. 

An increase in f is associated with this situation as well. To  deal with these ideas quantita- 
tively, it 

f/fn 

1. 

2. 

3. 

4. 

5 .  
6. 

is convenient to consider the following ratios: 

In Equation (14), f i s  the friction factor of the actual particle. 
The fo is the friction factor for an unsolvated sphere given by Stokes’s law to equal 
6nyR, in the present notation. This is the lowest friction factor possible for a particle 
with the required mass. 
The ratio f / f o  measures the amount by which the actual friction factor exceeds the 
minimum value. 
The f *  is the friction factor for a spherical particle having the same volume as the 
solvated particle of mass rn. 
The ratio f */fo measures the increase in f due to solvation. 
The ratio f/f* measures the increase infdue  to asymmetry. 
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FIG. 2.4 The effects of solvation and asymmetry on the effective radius of a particle. The figure 
illustrates how solvation and asymmetry have qualitatively equivalent effects in increasing the 
effective radius of an unsolvated sphere of radius R,. (Redrawn with permission of P. C. Hiemenz 
Polymer Chemistry: The Basic Concepts, Marcel Dekker, New York, 1984.) 

We see presently that both of the ratios on the right-hand side of Equation (14) can be 
expanded in terms of appropriate models, so the experimental f value - compared to fo for a 
particle of the same mass - can be analyzed in terms of solvation and asymmetry. 

Prior to this, however, let us consider how the mass of an equivalent sphere can be 
extracted from experimental data since this quantity is an important concept in its own right. 

2.3d Sedimentation Measurements 

We begin our discussion of the experimental aspects of sedimentation by considering settling 
caused by gravity; in Section 2.4, we examine centrifugation. Substitution of numerical values 
into Equation (10) reveals that the range of particle sizes that can be studied by sedimentation 
under gravity is quite limited. For example, taking A p / v  = 100 g cm - 3  P - I  yields values of v 
between 2.2 * 10 and 2.2 * 10 - 6  m s - I  for spherical particles of R, between 1 .O nm and 1 .O 
pm. This value of A p / v  corresponds physically to sulfur particles in water at 2OoC, in which 
Ap and v are both positive, and to gas bubbles in water, in which A p  and v are negative. 
Although sedimentation under gravity is feasible only at the upper size limit of the usual 
colloidal range, there are still a number of important applications of the technique. We 
consider only two of the procedures that have been developed for such studies. 

If a particle is large enough to be visible to  the unaided eye or in a traveling microscope, 
its velocity can be measured directly; however, smaller particles present more of a problem. If 
a dispersion consists of particles of uniform size, all will settle at  the same rate, so their 
positions relative to each other do  not change until they reach the bottom of the container. 
This means that a sharp boundary will exist between the domain occupied by the settling 
particles and that part of the system already swept free of particles. Even though the individual 
particles may not be visible, this boundary may be visible if the particles differ sufficiently in 
color or refractive index from the continuous phase. The velocity of the boundary and the 
velocity of the particles are the same. If the particles differ in size, no such boundary will 
develop. Each size fraction in a polydisperse system will settle at  its own characteristic velocity, 
so that at any given time one end of the column may be free of some size fractions but not of 
others. The “boundary zone” between the domain that clearly contains settling particles and 
the domain that is totally free of particles will appear to be a diffuse region across which the 
concentration of the disperse phase gradually diminishes. Since no sharp boundary develops, 
some other method must be devised to follow sedimentation velocity. Clearly, we would 



72 HIEMENZ AND RAJAGOPALAN 

like as much information as possible about the particle size distribution since the system is 
polydisperse. The following procedure shows how this information may be obtained. 

Suppose the pan of a balance is positioned at some convenient location below the surface 
of a dispersion. As sedimentation occurs, the settled material collects on the balance pan. The 
total weight W o f  the material on the pan is measured at various times t ,  either by adding 
counterweights to a second pan or by noting the displacement of a calibrated fiber that 
supports the pan. The following example suggests how this kind of data is analyzed. 

* * *  

EXAMPLE 2.1 Analyzing Cumulative Sedimentation Data for Most Probable Settling Velocity. 
The following data show-as a function of time-the weight (as percentage of total) of sus- 
pended clay particles W, which has accumulated on a plate submerged 20 cm beneath the 
surface in a sedimentation experiment (Oden 191 5). 

Time(s) 34 57 115 175 254 294 337 360 406 
W(%) 7.42 11.13 16.7 21.44 28.7 33.04 38.85 41.75 47.55 
Time(s) 458 503 558 648 705 773 862 982 1112 
W(%) 53.35 57.7 62.05 67.85 70.75 73.65 76.55 79.45 82.35 
Time (s) 1245 1318 
W(%) 83.8 84.52 

Criticize or defend the following proposition: The data give the time required for particles to fall 
20 cm, making it easy to convert time to sedimentation velocity for each point. Equation (1 1) 
may then be used to convert the velocity into the radius of an equivalent sphere. The resulting 
graph of W versus radius is a cumulative distribution function similar to that shown in Figure 
1.18b. 

Solution: The proposition is on the right track, but needs refinement to be quantitatively cor- 
rect. Remember, at any given time the weight of material that has accumulated equals the 
weight of all particles large enough to have settled onto the pan in the time of the experiment. 
Such particles come from two categories; they include all those particles large enough to have 
fallen through the full length of the container and a fraction of smaller particles that have only 
fallen from a fraction of the column but still land on the pan. Both of these contribute to the total 
weight observed at any time. 

The two contributions can be calculated as follows: The quantity dWldt at any instant t is 
the slope of the cumulative curve at a particular point. It represents the rate of deposition of 
particles in a size range that has not already settled out completely in the bottom during the 
time t. Since this size range has been settling at the same rate dWldt from the beginning of the 
experiment (i.e., t = 0), the weight of the particles in this size range that has collected on the 
pan until time t is given by t(dW/dt). Therefore, the remainder of the particles on the pan, that 
is, W - [t(dW/dt)], represents the weight w corresponding to larger particles that have already 
settled out by time t. That is, the total weight W at any time t can be written as 

d W  
W = w + t -  

dt 

The weight w represents the cutoff size corresponding to time t, and dWldt represents the rate 
of settling of particles smaller than the above cutoff size. 

Figure 2.5 shows this graphically; note that the intercepts of the tangent lines, drawn at 
different times, give w, the weight of particles in the size class associated with time under 
consideration. It is a plot of this last quantity against time that gives a representation similar to 
Figure 1.18b. 

In this example, about one-third of the solids are coarse enough to have settled out in 5 
minutes. The remaining particles have velocities of 6.7 - 10-4 m s - '  ( =  20 10-' ml300 s) or 
less, corresponding to equivalent spheres with radii of 12 pm or less. Incidentally, the equivalent 
sphere is a poor model for these clay particles, as can be seen from the electron micrographs 
in Figure 1.12b. 

* * *  

A slight variation of this method for analyzing particle size distributions is particularly conve- 
nient if the system contains particles of several discretely different particle sizes rather than a 
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FIG. 2.5 Sedimentation of clay particles. Cumulative weight (as percentage) versus time for the 
data given in Example 2.1. The figure also shows the graphical construction explained in the ex- 
ample for obtaining the cutoff weight w associated with any time t.. (Data from Oden, 1915.) 

continuous distribution of sizes. A thin band of such a dispersion is layered on top of a 
column of pure solvent. Particles in the different size categorieis will settle through the solvent 
at different rates so that, if the column is long enough, the first fraction collected at  the 
bottom of the column will contain only the largest particles, with smaller sizes showing up in 
progressively later fractions. The clear solvent is literally the column within which the various 
particle sizes are resolved. The “resolving power” of such an arrangement increases with the 
length of the column, at least up to some optimum length. It might be noted that there is a 
certain formal similarity between this situation and column chromatography. 

Provided the column is long enough to separate the different sizes of particles, this 
method gives w versus time directly. Any additional interpretations of the results are made in 
a manner entirely analogous to  the one just described. Since only a narrow band of the 
dispersion is used in this method, the weight of the dispersed phase in each fraction will be 
relatively low. Fairly sensitive analytical techniques are requireld for the fractions collected. 

Sedimentation runs should be conducted at  a constant telmperature, not only so that Ap 
and 7 are known, but also to minimize disturbances due to convection. Any sort of disturbance 
will obviously disrupt the segregation of the particles by size chat has occurred as a result of 
sedimentation. An intrinsic difficulty with the balance method lies in the fact that the liquid 
below the balance pan is less dense than the liquid with dispersed particles above the pan. 
Thus, there is a tendency for a counterflow of pure solvent to arise, which would introduce an 
error in the particle size analysis. 

The methods just discussed are only two of a wide variety of techniques that provide 
essentially the same kinds of information. In general, any measurement that gives (a) the 
amount of suspended material a fixed distance below the surface at various times or (b) the 
amount of material at  various depths at any one time can be interpreted in terms of particle 
size distribution. Pressure, density, and absorbance are additional measurements that have 
been analyzed this way. 

Instruments are commercially available that automatically carry out the analysis presented 
above. Although much of the tedium of the experiment is thereby relieved, automation does 
not alter the basic assumptions and/or approximations of the method. In one commercial 
instrument, a collimated beam of light or low-energy x-rays scans the settling compartment, 
measuring the absorbance of the suspended particles at various depths. Because the detector 
does not have to wait for settling particles to arrive at a fixed position, this method is more 
rapid than direct observation of sedimentation. A built-in computer converts the absorbance 
at a particular distance below the top of the sample to concentration after some time has 
elapsed from the start of settling. The distance-time combination is reduced to a velocity, 
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which is converted into the radius of an equivalent sphere by Equation (1 1). All of this is 
calculated automatically, and a recorder plots the cumulative weight percent of settling mate- 
rial versus the equivalent radius. The sample compartment is thermostated, and suspending 
media with a range of known densities and viscosities are used; the characteristics of the media 
are part of the input data of the operation. By utilizing the full range of operating parameters, 
this instrument allows equivalent diameters from 0.1 to 100 pm to be analyzed. Example 2.2 
considers the application of Stokes’s law to the output of such a particle analyzer. 

EXAMPLE 2.2 Use of the Sedimentation Equation for Particle Size Determination. A titanium 
dioxide pigment of density 4.12 g cm -3  is suspended in water at 33OC. At this temperature, the 
density and viscosity of water are 0.9947 g cm-3 and 7.523 10-3 P, respectively. A particle 
size analyzer (SediGraph, Micromeritics Instruments Corp., Norcross, GA 30093) plots the 
following data for cumulative weight percent versus equivalent spherical radius: 

C u m u I at i ve wt O/o 

Radius of an equivalent sphere (pm) 
95 90 80 70 60 50 40 30 20 10 5 

0.60 0.45 0.33 0.37 0.28 0.27 0.24 0.22 0.21 0.18 0.15 

To what sedimentation velocity does the most abundant component in this distribution corre- 
spond? 

Solution: These cumulative percentages are of the same form as in Figure 2.5; therefore, the 
particle size distribution peaks where the cumulative curve increases most steeply. This occurs 
at about 0.29 pm for this distribution. Equation (10) permits the sedimentation velocity for 
particles of this size to be calculated: 

2 R:(p, - p,)g - 2(2.9.10-5)2(4.12 - 0.99) 980 v = -  - 
9 r  g(7.52 * lOP3) 

= 7.62- 1 0-5 cm s-’ = 7.62- 1 OP7 m s-’ 

The distance-time combination corresponding to this weight percent is determined by the parti- 
cle size analyzer and converted to R,. 

* * *  

A basic limitation of all these methods is the narrow range of particle sizes that can be 
investigated by sedimentation under gravity. Therefore, we turn next to a consideration of 
centrifugation, particularly the ultracentrifuge, as a means of extending the applicability of 
sedimentation measurements. 

2.4 CENTRIFUGAL SEDIMENTATION 

A well-known fact from elementary physics is that a particle traveling in a circular path of 
radius r at an angular velocity w (in radians per second) is subject to an acceleration in the 
radial direction equal to 02r.  Since there are 27r radians per revolution, w equals the number of 
revolutions per second (rps) times 27r, or the number of revolutions per minute (rpm) times 
the ratio 2 ~ / 6 0 .  It is not particularly difficult t o  produce accelerations by centrifugation that 
are many times larger than the acceleration due to gravity. It is conventional, in fact, to 
describe the radial acceleration achieved by a centrifuge as some multiple of the standard 
gravitational acceleration or as being so many g’s, where g is about 9.8 m s - 2 .  

2.4a Ultracen trif uge 

The ultracentrifuge is an instrument in which a cell is rotated at very high speeds in a horizon- 
tal position. As we see below, the gravitational acceleration is easily increased by a factor of 
105 in such an apparatus. Accordingly, the particle size that may be studied by sedimentation 
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is decreased by the same factor. Two types of ultracentrifuges, analytical and preparative, are 
common, particularly in biological analyses. The analytical ultracentrifuges require very small 
amounts of samples (about 0.1 to 1 ml) and use optical systems designed to measure concen- 
tration or concenti ation gradients in the samples directly. Preparative ultracentrifuges typi- 
cally use larger volumes of samples (5 to 100 ml) and are run in “batch mode,” that is, the 
contents are removed from the centrifuge after a fixed amount of time, the purpose being 
fractionation for preparation or purification of samples. The ultracentrifuge has been used 
extensively for the characterization of colloidal materials, particularly those of biological 
origin, such as proteins, nucleic acids, and viruses (Cantor and Schimmel 1980). 

Because of the extreme importance of the ultracentrifuge, it seems appropriate to describe it 
in some detail. Although the particulars differ from instrument to instrument, the essential 
features are present in all ultracentrifuges. The actual sedimentation takes place in a cell mounted 
within an aluminum or titanium rotor. The cell is sector shaped; its side walls converge toward 
the center along radial lines. Since the radial acceleration is proportional to the distance from the 
axis of rotation, we see that this quantity varies from top to bottom in the cell. Although this 
variation is considered explicitly in a section below, it is sufficient for the present to consider 
the average acceleration at the midpoint of the cell, which is typically located 6.5 - 1 O p 2  m 
from the center of the rotor. For speeds of 10,000, 20,000, and 40,000 rpm, accelerations of 

FIG. 2.6 
ments, Inc., Spinco Division, Palo Alto, CA). 

Schematic of optical systems in the Spinco Model E Ultracentrifuge (Beckman Instru- 
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7.13 * 104, 2.85 * 10', and 1.14 * 106 m s P 2  are produced at  this radius. These correspond to 
7.27 * 103, 2.91 * 104, and 1.16 * 105 times the acceleration of gravity, respectively. 

An important part of the ultracentrifuge is the optical system that makes observation 
during operation a possibility; it is shown schematically in Figure 2.6. The sample compart- 
ment fits into a hole in the rotor and is positioned to intersect the light path of the optics. 
Those faces of the cell perpendicular to the light path are transparent to visible and ultraviolet 
light so that various optical methods of chemical analysis may be employed to measure the 
distribution of material along the sedimentation path. Schlieren refractometry, interferome- 
try, and spectrophotometry are all employed for this purpose, the last being particularly useful 
when very low concentrations are involved. The location of the settling particles may be 
followed by one of these methods, and the results recorded either photographically or on a 
chart recorder. Figure 2.7a shows how the concentration profile varies with radial location in 
the ultracentrifuge as the particles settle. Although the boundary between the solution and the 
solvent that has been swept free of solute seems clear in this representation, the use of schlieren 
refractometry makes the sedimentation even more easy to visualize. 

The schlieren system of optics is an analytical method that is particularly well suited to 
following the location of a chemical boundary with time. It is routinely employed in ultracen- 
trifuges and also in electrophoresis experiments, as we see in Chapter 12. Schlieren optics 
produces an effect that depends on the way the refractive index varies with position, that is, 
the refractive index gradient rather than on the refractive index itself. Therefore, the schlieren 
effect is the same at all locations along the axis of sedimentation, except at any place where 
the refractive index is changing. In such a region, it will produce an  optical effect that is 
proportional to the refractive index gradient. The boundary between two layers is thus per- 

FIG. 2.7 Location of the boundary for particles settling in an ultracentrifuge: (a) concentration 
profile; and (b) derivative profile as revealed by schlieren optics. (Redrawn with permission of P. 
C. Hiemenz, Polymer Chemistry: The Basic Concepts, Marcel Dekker, New York, 1984.) 



SEDIMENTATION AND DIFFUSION 77 

ceived by schlieren optics as a sharp peak on a flat baseline. The displacement of such a peak 
with time measures the velocity of the boundary. Likewise, a band of settling particles is seen 
as a broad schlieren peak with a width and velocity that measure the width and velocity of the 
band. The schlieren optical system works by using a diaphragm to cut off from a photographic 
plate the light that is deviated from the optical path by the refractive index gradient. The same 
effect may be produced on a ground-glass screen for instantaneous viewing by an ingenious 
system that combines a diagonal slit and a cylindrical lens to produce an image of the refractive 
index gradient. Figure 2.7b shows how the same data presented in Figure 2.7a would appear 
with schlieren optics. It is thus an easy matter to monitor the peak location as the sedimenta- 
tion proceeds. 

The usual precautions regarding temperature and vibration control also apply to the 
ultracentrifuge. To overcome air resistance and the attendant frictional heating, the compart- 
ment in which the rotor spins is evacuated and may be thermostated over a wide range of 
temperatures. The rotor is mounted on a flexible drive shaft that minimizes the need for 
precise balancing as a requirement for vibration-free operation. Finally, the rotor assembly is 
enclosed in an armored steel chamber for safety. At these speeds, a runaway rotor is deadly! 

2.4 b Sedimentation Coefficient 

The results of a sedimentation experiment in a centrifugal field are conventionally reported in 
terms of what is known as a sedimentation coefficient. This quantity is defined as 

drldt s = -  (15) 
w‘r 

that is, it equals the sedimentation velocity per unit of centrifugal acceleration. In the SI 
system, this ratio has the units m s - ’ /m s P 2  or seconds. In practice, the quantity 10-l3 s is 
defined to be I .O svedberg (1 .O S) after T .  Svedberg, the originator of the ultracentrifuge and 
pioneer in its use (Nobel Prize, 1926). Sedimentation coefficients are usually reported in this 
unit. If the location of a particle along its settling path is measured as a function of time, the 
sedimentation coefficient is readily evaluated by integrating Equation ( 15) using the following 
limits of integration. The component is at radial position r,  at time t ,  and at r, at t,. Therefore, 

n n 

U’S I dt = $ 
or 

The sedimentation coefficient depends on concentration; consequently, it is usually measured 
at several different concentrations, and the results are extrapolated to zero concentration. It is 
customary to designate this limiting value by a superscript zero. Experimental values are also 
generally labeled with respect to temperature, so a value listed as corresponds to a sedimen- 
tation coefficient measured at (or corrected to) 2OoC and extrapolated to zero concentration. 
Under stationary state conditions, the force due to the centrifugal field and the viscous force 
of resistance will be equal. Therefore, w2r replaces g in Equation (4) to give 

dr 
m ~ - -  w 2 r = f -  z:) dt 

wherefis the friction factor for the settling particle. Equations (18) and (15) may be combined 
to yield 
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which shows that the sedimentation coefficient is directly proportional to the ratio of the mass 
to the friction factor. As with sedimentation under the acceleration of gravity, any further 
interpretation of m/f  depends either on independent determination of the friction factor from 
diffusion or on the assumption of spherical particles, with Equation (8) used to evaluate f. 
Thus, experimental sedimentation coefficients may be analyzed to yield the mass, radius, and 
friction factor of an equivalent sphere. In the absence of supplementary data, this is as far as 
sedimentation alone can be interpreted. Example 2.3 illustrates the use of these relationships. 

* * *  

EXAMPLE 2.3 Sedimentation in an Ultracentrifuge. What should be the speed of an ultracen- 
trifuge so that the boundary associated with the sedimentation of a particle of molecular weight 
60,000 g mole-’ moves from rl = 6.314 cm to r2 = 6.367 cm in 10 min? The densities of the 
particle and the medium are 0.728 and 0.998 g cm - 3 ,  respectively, and the friction factor of the 
molecule is 5.3 * 10-“ kg s-‘. 

Solution: First we calculate the particle mass by dividing the molecular weight by Avogadro’s 
number: 

rn = 60,000/6.02- 1 023 = 9.97- 1 O-20 g molecule-’ 
= 9.97.10-~~kg molecule-’ 

Equation (1 9) allows us to calculate the sedimentation coefficient: 

s = ( d f )  [l - (p1/p2)]  = (9.97.10-23/5.3.10-11) [l - (0.998/0.728)] 
= 6.98. 10-13s = 6.98 S 

Equation (1 7) can now be solved for o2 

or w = 4.47 - 103 rad s-‘. Dividing by 27r converts this to revolutions per second: w = 711 
rn revolutions per second, or 42,700 rpm. 

* * *  

In the preceding sections of this chapter, we have considered sedimentation as if it were the 
only process that influenced the spatial distribution of particles. If  this were the case, all 
systems of dispersed particles, even gases, would eventually settle out. In practice, convection 
currents arising from temperature differences keep many systems well stirred. Even in care- 
fully thermostated laboratory samples, however, there is another factor operating that pre- 
vents the complete sedimentation of small particles, namely, diffusion. 

Diffusion and sedimentation are opposing processes inasmuch as the former tends to keep 
things dispersed, whereas the latter tends to collect them in one place. Diffusion is more 
important for smaller particles: remember that sedimentation is negligible for gases. For larger 
particles, diffusion is negligible. Of course, there is a range of particle sizes for which both 
effects are comparable; we examine the combined effects of sedimentation and diffusion in 
Section 2.8. Even for very small particles, the balance between diffusion and sedimentation 
becomes important if “sedimentation” is induced through centrifugal forces, as in the case of 
ultracentrifuges or separation techniques such as the sedimentation field flow fractionation de- 
scribed in Vignette 11. For the present, however, let us examine the phenomenon of diffusion. 

2.5 DIFFUSION 

If external forces such as gravity can be neglected, the composition of a single equilibrium 
phase will be macroscopically uniform throughout. This means that the concentration or 
density is constant throughout the phase. It should be noted that we are talking about the 
macroscopic description of the phase. At the molecular level, there will be local fluctuations 
from the mean value, a fact important in, for example, light scattering, as we see in Chapter 5 
when we discuss Rayleigh scattering from solutions (Section 5.3b). However, for the present, 
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x = o  

FIG. 2.8 Schematic of a diffusion process through a volume element of thickness Ax: (a) the 
volume element separates two solutions of concentrations c, and c:!; and (b) the element contains a 
solution at concentration co and separates two regions of pure solvents. 

we restrict ourselves to the macroscopic description. Fundamentally, it is the second law of 
thermodynamics that is responsible for the uniform distribution of matter at equilibrium 
since entropy is maximum when the molecules are distributed randomly throughout the space 
available to them. If for some reason a nonuniform distribution of matter should exist, the 
particles of the system will experience a force that tends to distribute them uniformly. Con- 
sider, for example, the situations shown in Figure 2.8a, in which two solutions of different 
concentrations are separated by a hypothetical porous plug of thickness dx. We can set dx = 
0; in this case, there will be a migration of solute from the high-concentration side to  the 
low-concentration side until a uniform distribution is obtained, that is, equilibrium is reached. 
The resulting transport of matter is called diffusion. In the following sections, we set up  the 
equations that describe the diffusional flux and the consequent readjustment of concentration 
and will develop an equation that relates the diffusion coefficient to the friction coefficient. 

2.5a Fick’s Laws of Diffusion 

Now let us define the following quantities. Suppose Q represents the amount of material that 
flows through a cross section of area A in Figure 2 . 8 .  The rate: of change in the quantity Q / A  
is called the flux of solute across the boundary; that is, the flux J i s  defined as 

Therefore, the amount of material that crosses A in a time interval At is 

A Q  = A J A t  (21) 
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The phenomenological equation that relates the flux of material across the 
concentration gradient at that location is given by Fick's first law: 

ac 

ax 
J =  -D- 

RAJAGOPALAN 

boundary to the 

(22) 

where D is defined as the diffusion coefficient of the solute. With the amount of material 
measured in the same units in both J and c ,  Equations (20) and (22) show that the SI units of 
D are square meters per second. 

Now, instead of a boundary of zero thickness, let us consider the concentration changes 
that occur within a zone of cross section A ,  which has a thickness Ax as shown in Figure 2.8a. 
Any change in the amount of material in this zone will equal the difference between the 
amount of material that enters the zone and the amount of material that leaves it: 

The quantity AQ also equals the product of the volume of the zone and the concentration 
change that occurs in it: 

AQ = AUAC (24) 

Equating Equations (23) and (24) and substituting Fick's first law from Equation (22), we 
obtain 

assuming that the cross section is uniform throughout the compartment and that D is indepen- 
dent of small changes of concentration. Finally, if we take the limit of Equation (25) as Ax 
and At approach zero, we obtain 

a result known as Fick's second law. 
Equation (26) is a differential equation with a solution that describes the concentration of 

a system as a function of time and position. The solution depends on the boundary conditions 
of the problem as well as on the parameter D. This is the basis for the experimental determina- 
tion of the diffusion coefficient. Equation (26) is solved for the boundary conditions that 
apply to a particular experimental arrangement. Then, the concentration of the diffusing 
substance is measured as a function of time and location in the apparatus. Fitting the experi- 
mental data to the theoretical concentration function permits the evaluation of the diffusion 
coefficient for the system under consideration. 

Rather than getting deeply involved in the mathematics of differential equations, we use a 
statistical model to find a solution to Equation (26) for a system with simple boundary 
conditions. This will be sufficient to illustrate the experimental technique by which diffusion 
coefficients are determined and will also lead to a better understanding of the random pro- 
cesses underlying diffusion. This statistical discussion and the experimental procedure it sug- 
gests are addressed in Sections 2 . 6 ~  and 2.6d. 

Next, it will be helpful to anticipate a description of experimental procedures and consider 
the magnitude of measured diffusion coefficients. The self-diffusion coefficients for ordinary 
liquids with small molecules are of the order of magnitude 10-9 m 2  s -'; for colloidal sub- 
stances, they are typically of the order 10-" m 2  s - ' .  In the next section, we see that for 
spherical particles the diffusion coefficient is inversely proportional to the radius of the sphere. 
Therefore, every increase by a factor of 10 in size decreases the diffusion coefficient by the 
same factor. Qualitatively, this same inverse relationship applies to nonspherical particles as 
well. Once again, we see that diffusion decreases in importance with increasing particle size, 
precisely those conditions for which sedimentation increases in importance. For larger parti- 
cles, for which D is very small, the diffusion coefficient also becomes harder to measure. For 
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spherical particles, the time required for the particle to diffuse a unit distance is directly 
proportional to its radius. For small molecules, this time is experimentally accessible; it be- 
comes experimentally inconvenient for particles at the upper end of the colloidal range. 

2.5b Diffusion Coefficient and Friction Factor: 
Thermodynamic Description of Diffusion 

As already noted, the driving force underlying diffusion can be thought of as thermodynamic 
in origin. A very general way to describe a force is to write it as the negative gradient of a 
potential. In the context of diffusion, the potential to be used is the chemical potential p,, the 
partial molal Gibbs free energy of the component of interest. Thus, the magnitude of the 
driving force (per particle) diffusion may be written as 

This is often called the thermodynamic force for diffusion. It is necessary to divide by Avo- 
gadro’s number NA since p, is a molar quantity. Thermodynamics show that 

(28) p, = ps) + RTln  a, = py + RTln  (y,c,) 

where a,, cj ,  and y, are the activity, concentration, and activity coefficient, respectively, of the 
ith component. Since we are interested in infinitely dilute systems, the activity coefficient may 
be assumed to equal unity. Substituting Equation (28) into Equation (27) gives 

where k, is Boltzrnann’s constant R/N,. Under stationary state conditions, this force will be 
equal to the force of viscous resistance, given by f v  according to Equation (2). Therefore, the 
magnitude of the velocity of diffusion equals 

where the subscript has been omitted from the concentration of the solute c because this is now 
the only quantity involved in the relationship. Finally, we make the following observation. The 
flux of material through a cross section equals the product of its concentration and its diffu- 
sion velocity: 

= cvdiff (31) 
Combining Equations (30) and ( 3  1) and comparing with Equation (22) leads to the important 
result 

It should be noted that this derivation contains no assumptioris about the shape of the parti- 
cles, However, when the particles are assumed to be spherical, we can substitute Equation (8) 
for f, and the resulting equation for the diffusion coefficient is the well-known Stokes-Einstein 
relation. 

Many of the relationships of this chapter have involved the friction factor f, which, until 
now, has been an unknown quantity except for spherical particles. Equation (32) breaks this 
impasse and points out the complementarity between sedimentation and diffusion measure- 
ments. For example, substitution of Equation (32) into (4) gives 
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and substituting Equation (32) into Equation (19) yields 

(34) 

Equations (33) and (34) show that diffusion studies combined with sedimentation studies, 
either under the force of gravity or in a centrifuge, yield information about particle masses 
with no assumptions about the shape of the particle. 

Human hemoglobin, for example, has a sedimentation coefficient of 4.48 S and a diffu- 
sion coefficient of 6.9 10-I' m2  s-l  in aqueous solution at 2OOC. The density of this material 
is 1.34 g cm - 3 .  Substituting these values into Equation (34) shows the particle mass to be 

k,Ts 

311 - ( P I h 2 ) l  

m =  

m = (1.38 - 10-")(293)(4.48 - 10-13)/(6.9 - lO-")(l - 1.0/1.34) 

= 1.03 - 10-22 kg particle-' (35) 

(36) 

or, in terms of molecular weight, 

A4 = (1.03 - 10 -22)(6.02 . 1023) = 62,300 g mol - '  
Since the friction factor was measured experimentally, this value is correct regardless of the 
state of solvation or ellipticity of the hemoglobin molecules in solution. We see below how the 
combination of these two experimental approaches may be interpreted further to yield some 
information about solvation and ellipticity. 

2 . 5 ~  Effect of Solvation 

We have already seen that the ratiof/fo describes the effect on the friction factor of either 
solvation, ellipticity, or both. This ratio equals unity for an unhydrated sphere and increases 
with both the amount of bound solvent and the axial ratio of the particles. We are now in a 
position to see how this ratio may be evaluated experimentally. The steps of the procedure are 
the following: 

1. 

2. 
3.  

4. 

5. 
6 .  

The diffusion coefficient and sedimentation velocity (or sedimentation coefficient) 
are used to evaluate rn by Equation (33) or (34). 
The friction factor is evaluated from the diffusion coefficient by Equation (32). 
If we assume the particle to be unsolvated, we can determine its volume by dividing 
its mass by the density of the dry material. 
The radius of the particle is calculated from its volume if we assume the particle to be 
a sphere. 
The friction factorf, of the equivalent unsolvated sphere is evaluated by Equation (8). 
The ratio of the experimental friction factor tofo is determined. 

As noted, the larger this ratio is than unity, the more the particle deviates from the unsolvated 
spherical shape assumed to calculate fo. Although this statement is qualitatively accurate, we 
realize that thef/fo value reflects some actual quantitative condition of the particles, and we 
search for additional ways to interpret this ratio. 

The factoring of f / f o  into two contributions in Equation (14) was introduced with this 
interpretation in mind. It turns out that the effect of solvation is easily handled by a physically 
reasonable model through f * / f o .  Dealing with particle asymmetry through f*/f is more com- 
plicated, but this has also been analyzed according to a model that is plausible for many 
situations. Let us now consider each of these developments in turn. 

When particles are solvated, a certain volume of the so:-ient must be counted as part of 
the dispersed phase rather than the continuous phase. In dilute solutions, the effect of this 
reclassification of some solvent is negligible for the remaining solvent (component l) ,  but the 
effect on the solute (component 2) may be considerable. The effect of the attached solvent on 
the volume of the solute particles may be calculated if some model is assumed for the mode of 
attachment. To assume the solvation occurs uniformly throughout the particle is a plausible 
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model for the solvation of lyophilic colloids. For example, protein molecules have ionic and 
polar substituent groups distributed at random along the po1,ymer chain. Such groups are 
expected to be extensively hydrated in an aqueous solution. 

If we assume that solvation occurs at numerous positions along the molecule, the volume 
of the solvated particle may be written as the sum of the volume of the unsolvated particle and 
the volume of the bound (subscript b )  solvent: 

(37 )  volume of solvated particle = V2 + Vl,b 

This can be rearranged as 

v2 + vl,b = v2 (1 + 2)  = v2[1 + 2 (E jl 
where M , , ~  is the mass of bound solvent and the last equality requires the density of the bound 
solvent to be identical to that of the free solvent. In the event that the solvated specie differs 
in density from its bulk counterpart, the ratio p 2 / p 1  may be replaced by (Tl/T2), where the V,'s 
are the partial specific volumes of the components, and measure the volume per unit mass of 
the indicated components in the solution at the indicated concentration and hence reflect any 
volume changes that accompany the interaction. We continue to discuss solvation in terms of 
Equation (38) ,  using the more familiar densities. 

We are explicitly looking for the effect of solvation on t'he friction factor of a sphere; 
particle asymmetry is handled by the second ratio fly. By Stokes's law, the ratio of the 
friction factors of solvated to unsolvated spheresf*/f, is equal to the ratio of their radii asOlv/ 
a,. This ratio equals the cube root of the volume ratio of the solvated to unsolvated spheres, 
or 

The ratio f * / f o  equals unity when M , , ~  = 0 and increases with increasing solvation, as re- 
quired. We examine an application of this relationship below. 

Asymmetry as well as solvation can cause a friction facto:r to have a value other thanf,. 
Next let us consider the ratiof/f*, which, according to Equati'on (14), accounts for the effect 
of particle asymmetry on the friction factor. We saw in Section 1.5 that ellipsoids of revolution 
are reasonable models for many asymmetric particles. 

Jean Perrin derived expressions for the ratiof/f* for ellipsoids of revolution in terms of 
the ratio of the equatorial semiaxis to the semiaxis of revolution b /a .  The following expres- 
sions were obtained: 

First, for prolate ellipsoids ( b / a  < l ) ,  

[ l  - ( 

Second, for oblate ellipsoids ( b / a  > l ) ,  

Equations (40) and (41) allow the ratiof/f* to be evaluated for any axial ratio. The reverse 
problem, finding an  axial ratio that is consistent with an experimental f/f* ratio, is best 
accomplished by interpolating from plots of Equations (40) and (41). These two equations, 
along with Equations (14) and (39), allow the states of solvation and ellipticity compatible 
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with an experimental friction factor to  be established. Example 2.4 considers this for the 
human hemoglobin molecule. 

* * *  

EXAMPLE 2.4 Solvation and Ellipticity of Human Hemoglobin from Sedimentation Data. The 
diffusion coefficient of the human hemoglobin molecule at 2OoC is 6.9 - 10 -11 m2 s -’. Use this 
value to determine f for this molecule. Evaluate fo for hemoglobin using the particle mass 
calculated in Equation (35). Indicate the possible states of solvation and ellipticity that are 
compatible with the experimental f/fo ratio. 

Solution: According to Equation (32), f =k,T/D = (1.38 - 10-23)(293)/6.9 * 10-” = 5.86 - 
10-”  kg s-’. 

10 -26 m as the particle volume. The 
radius of an unsolvated sphere of this volume is given by (3V14~)”~ = 2.64 - 10 -’ m. 

Equation (35) shows that the mass of one of these molecules is equal to 1.03 - 10-22 kg. 
Dividing this by the density (1.34 g cm - 3 )  gives 7.69 

Using the viscosity of water, 0.01 P, the friction factor fo is calculated by Equation (8): 

Since these calculations involve only empirical data, we can say the experimental value of f/fo 

fo = (6~)(10-~)(2.64 * 10-’) = 4.98 * 10-” k g s - l  

= 5.86 * 10-”/4.98 * 10-“ = 1.18. 
Next we recall Equation (14), which interprets f/fo as the product 

( f / f *  )( f*/f,) 

If f/f* = 1 .OO, the particle is a sphere and f * / fo  = 1.18. Using the bulk density of water and the 
protein and Equation (39), we can show that m, ,b/m2 = 0.48 g water per g hemoglobin. 

If f*/fo = 1 .OO, the particle is unsolvated and f/f* = 1.18. This corresponds to an axial ratio 
b/a = 0.24, according to Equation (40), if the particle is a prolate ellipsoid, or to b/a = 4.0, 
according to Equation (41), if the particle is oblate. These values are summarized in Table 2.1. 

* * *  

It is apparent that there are many combinations of f/f* and f */fo that form the product 1.18, 
which we attempted to  explain in Example 2.4. Setting either one of these contributions equal 
to  unity merely establishes an upper limit for the other. Intermediate cases between solvated 
spheres and unsolvated ellipsoids can also be calculated that are consistent with a given axial 
ratio. 

TABLE 2.1 
2OoC Based on Sedimentation and Diffusion Measurements 

A Summary of the Characterization of Human Hemoglobin at 

~~~ 

Quantity Value Determination 

Sedimentation coefficient, s 
Diffusion coefficient, D 
Density, p 

Mass of particle, m 
Molecular weight 

Volume of particle 
Radius of equivalent sphere 

f 

f o  
f l f o  
ml,b/m2, if spherical 
a / b  if unsolvated and prolate 
a /b  if unsolvated and oblate 

4.48 x 1 0 - 1 ~ ~  
6.9 x 10-I’ m2s-’ 
1.34 g cm-3 
1.03 x 10-22 kg molecule-’ 
6.23 x 104g mol-’ 
5.86 x 10-l’ k g s - ’  
7.69 x 10-26m3 
2.64 x lOV9m 
4.98 x 10-” kgs- ’  
1.18 
0.48 g H,O (g protein)-’ 
4.0 
0.24 

Experimental 
Experimental 
Experimental 
Eq. (35) 
m .  (36) 
a .  (32) 
Vunsolv = m/p 

Eq. (8) 
R,, = (3 v/4T)”3 

~ ~~ 

Source: Data from E. J .  Cohn, and J .  T. Edsall, Proteins, Amino Acids and Peptides, 
American Chemical Society Monograph, reprinted by Hafner, New York, 1965. 
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Figure 2.9 is a plot of possible combinations of hydration and asymmetry for protein 
particles in water. Similar curves could be drawn for other materials as well. For the human 
hemoglobin molecule discussed in Table 2.1, the combination of sedimentation and diffusion 
measurements gives an f / f o  value that lies within the domain defined by the 1.15 and 1.20 
contours of Figure 2.9. The current picture of the structure of human hemoglobin, deduced 
from x-ray diffraction studies, suggests that the molecule may be regarded as an ellipsoid with 
height, width, and depth equal to 6.4, 5.5, and 5.0 nm, respectively. Applying these dimen- 
sions to the dispersed unit leads us to describe the particle as being hydrated to the extent of 
about 0.4-0.5 g water (g protein) - I .  

Sedimentation and diffusion data allow for the unambiguous determination of particle 
mass and also allow the suspended particles to be placed on a contour in a plot such as that of 
Figure 2.9. This is as far as these experiments can take us toward the characterization of the 
particles. Of course, additional data from other sources, such as the x-ray diffraction results 
just cited, may lead to still further specification of the system. One such source of information 
is intrinsic viscosity data for the same dispersion. In Chapter 4 we discuss the complementarity 
between viscosity data and sedimentation-diffusion results (see Section 4.7b). 

2.6 BROWNIAN MOTION AND DIFFUSION 

A liquid that is totally homogeneous on a macroscopic scale undergoes continuous fluctua- 
tions at the molecular level. As a result of these fluctuations, the density of molecules at any 
location in the liquid varies with time and at any time varies with location in such a way that 
the mean density of the sample as a whole has its bulk value. This pattern of “flickering” 
molecular densities will produce continually varying pressures on the surface of any particle 
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FIG. 2.9 
sions. (Redrawn from L. Oncley, Ann.  NYAcad.  Sci. 41, 121 (1941). 

Variations of the ratio f / f o  with asymmetry and hydration for aqueous protein disper- 
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submerged in the liquid. Since the fluctuations are confined to domains of the order of 
molecular dimensions, this randomly variable pressure is quite small. A small particle will be 
displaced, however, by the resulting force imbalance at its surface. The pattern of its displace- 
ments will also be a totally random thing, a reflection of the fluctuations that cause the motion. 
As the size of the submerged particles increases, the effect of fluctuations on them decreases. In 
this section we consider the trajectory of a particle in the colloidal size range that is engaged in 
this pattern of motion. Such movements have been studied microscopically and are called Brown- 
ian motion after Robert Brown, a British biologist who described them in 1828. 

In this section we review random walk statistics and their relation to diffusion. More 
elaborate discussions of these and related topics are available in Berg (1993); the collection of 
the original papers of Einstein (reprinted in Einstein 1956) is another excellent source of this 
material. 

2.6a Random Walk and Random Walk Statistics 

In general, a dispersed particle is free to move in all three dimensions. For the present, 
however, we restrict our consideration to the motion of a particle undergoing random displace- 
ments in one dimension only. The model used to  describe this motion is called a one- 
dimensional random walk. Its generalization to  three dimensions is straightforward. 

To begin, the statistical nature of this phenomenon should be apparent. We might watch 
the pattern of displacements of thousands of otherwise identical particles and find no unifor- 
mity in the zigzag steps they follow. Only statistical quantities such as the “average” displace- 
ment after a certain number of steps or after a certain elapsed time make any sense. Let us 
consider how to  calculate such a quantity. 

Suppose we consider a game in which a marker is moved back and forth along a line, say, 
the x axis, in a direction determined by the toss of a coin. The rules of the game provide that 
we move the marker a distance P in the plus direction every time “heads” is tossed, and a 
distance P in the negative direction every time “tails” is tossed. If n ,  and n-  represent the 
number of heads and tails, respectively, in a game consisting of a total of n tosses, then we 
may write 

n ,  4- n-  = n (42) 

x = ( n ,  - n-)P 

We may also write 

(43) 

where x is the net displacement of the marker after n tosses. These two equations may be 
solved simultaneously for n ,  and n-  to give 

n ,  = ’ ( n  + 5 )  
2 

and 

The problem of interest may now be expressed as follows. What is 
the marker will be at position x after n moves? The answer to this 
well-known binomial distribution formula 

n! 
n,! n - !  

P ( n , x )  = ___ p y p r  

(44) 

the probability P(n,x) that 
problem is supplied by the 

in which pi- and p -  represent the probability of throwing a head or a tail, respectively, in a 
single toss. Although this formula is often used, its validity is not always fully appreciated. 
Accordingly, let us briefly examine the origin of Equation (46). 

Each time we toss an unbiased coin, the outcome is independent of all other tosses. The 
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probability of tossing n ,  heads is therefore p >  since the probabilities compound by multipli- 
cation when we require a specified set of outcomes. Therefore n., events, each of which occurs 
with a probability p + ,  will occur with a probability p",. . If we specify the outcome further by 
requiring n-  tails in addition to the heads already specified, then the probability is given by 
p t + p ? - .  What we have calculated is the probability of a particular, fully specified sequence of 
outcomes such as the following for n = 6 : HHHTTT. However, the same net number of 
heads and tails could come about in other ways. For example, HTTTHH, HHTHTT, and 
HTHTHT are also consistent with n = 6 and n ,  =n-  = 3, along with the distribution pre- 
viously given and other possibilities. Therefore we must multiply the probability of one speci- 
fied sequence by the number of other sequences that have the same net composition of heads 
and tails. 

At first glance, this factor may appear to be n ! ,  the number of different ways the n items 
can be rearranged, giving a probability of n! p y p p l .  This quantity overcounts, however, since 
not all rearrangements are recognizably different. For example:, we can interchange the first 
two members of the sequence TTHHHT to produce the sequence TTHHHT; the interchange 
obviously leaves the sequence unaltered. Therefore we must divide n! pt+p?- by the number of 
ways that identical members of the series can be interchanged without altering the sequence. 
Any of the n+ heads (or the n -  tails) may be interchanged among themselves with this result. 
There are n,! permutations of the heads and n-! permutations of the tails. Therefore these 
are the factors by which the previous result overcounted. Dividing by these factors leaves us 
with the binomial equation. The student should be so familiar with this argument as to be able 
to justify each factor in Equation (46). 

Since the probability of tossing either a head or a tail is equal to 1/2 for a fair coin, 
Equation (46) may be rewritten 

by incorporating Equations (44) and (45). The length P by which the marker is moved in our 
hypothetical game is equivalent to the displacement of a particle in a single fluctuation. 
Because of the nature of the fluctuations underlying the whole process, these individual steps 
are very small. Observable diffusion is always the result of a very large number of such steps. 
For the case in which n is a large number, the factorials of Elquation (47) may be expanded 
according to what is known as Sterling's approximation: 

(48) 

which is valid for large values of y .  Taking the logarithm o'f Equation (47) and applying 
Approximation (48) leads to the result 

lny! = y l n y  - y 

nP + x 
-1nP = - 

2P In (1 - $) (49) 

The net displacement x is always small compared to the total distance traveled nP since a good 
deal of the back-and-forth motion cancels out. Therefore the logarithmic terms in Equation 
(49) may be expanded as a power series (see Appendix A) in (x/nP), with all terms higher than 
second order in x/nP regarded as negligible. This leads to the result 

or 

P ( n ,  x) = C e x p  - - i 2 3  

where the factor C represents a normalization constant. 
A well-behaved probability function adds up to unity when the probabilities for all possi- 
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TABLE 2.2 
Encountered in This Chapter 

Integrals Related to Gamma Functions 

J J r / a i f n  = 4 
8a2 

1 
- i f n  = 1 
2a 

1 
- i f n  = 3 
2a ’ 
1 

- i f n  = 5 
a 3  

ble outcomes are totaled. Therefore, in order to evaluate the constant C in Equation (51), we 
should integrate Equation (51) over all possible values of x-which is equivalent to summing 
the probabilities-and set the result equal to unity. This leads to the expression 

The integral is a gamma function, the value of which can be determined from the list of related 
integrals in Table 2.2. Evaluating Equation (52) gives 

Substitution of this result into Equation (5 1) gives a continuous analytical expression for 
P(n,x),  which equals the binomial result for large values of n: 

Strictly speaking, we should multiply both sides of Equation (54) by dx. The equation now 
expresses the probability of a displacement between x and (x + dx) after n random steps of 
length P .  

2.6b Diffusion Coefficient from Random Walk Statistics 

The application of Equation (54) to at least one set of boundary conditions for a diffusion 
problem is easy. We let a modification of Figure 2.8a describe the system. This time, instead 
of having a solution on one side of the barrier and pure solvent on the other side, suppose we 
imagine that both sides of the barrier are filled with solvent. Furthermore, suppose that the 
solute under investigation is introduced into the system in the pores of the plug, assuming the 
latter to be infinitesimally thin. Thus at the beginning of the experiment all the material is 
present at x = 0, in the notation of the derivation above, at a concentration c,. With the 
passage of time, the material will gradually diffuse outward; the number of diffusion steps 
taken will be directly proportional to the elapsed time: 

n = Kt ( 5 5 )  

Equation (54) may be transformed into an expression that gives the probability as a function 
of x and t by substituting Equation ( 5 5 )  into Equation (54): 

This suggests that the concentration as a function of x and t in the diffusion cell just described 
is given by multiplying c, by P(x, t ) :  
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X 2  

2 K t P 2  
C ( X ,  t )  dx = co ( 2  7r K tk‘2)-”2 exp (--) dx (57) 

Since P(x, t )  is normalized, its integral over all values of x equals unity. Likewise, integrating 
Equation (57) over all values of x gives co: The same quantity of solute is present at all times 
whether it is concentrated at the origin or is spread out from -x to +x.  The function given by 
Equation (57) is a solution to Fick’s second law, shown in Equation (26), for a one- 
dimensional problem in which all the material is present initially at x = 0 and at a concentra- 
tion c,. 

The only ambiguity remaining at this point is the value of li: in Equations (55)-(57). This 
constant is easily evaluated as follows. If Equation (57)  is indeed a solution to Equation 
(26), then the right- and left-hand sides of Equation (26) must be equal when the indicated 
differentiations are carried out. Differentiating Equation ( 5 7 7 ,  substituting into Equation 
(26), and simplifying lead to the result 

Substituting this expression into Equation (57)  yields 

This relationship describes the diffusion of a solute in the x direction when i t  is concentrated 
initially in an infinitesimally thin layer at the origin. 

Equation (59) may be developed somewhat further as follows. We define a parameter z 
to be 

X z = -- 
(2  D t)”’ 

and then rewrite Equation (59) in terms of this quantity: 

Thus the concentration ratio c/c, is seen to be described at all times as a function of the single 
parameter z .  The function P(z )  defined by Equation (61) is the normal or Gaussian distribu- 
tion function, Equation (C. 10).* Example 2.5  considers how the concentration profile of the 
diffusing species changes with time according to the normal dktribution function. 

* * *  

EXAMPLE 2.5 Unsteady State Variation of Concentration Profiles Due to Diffusion: Gaussian 
Distribution. By consulting tables of the normal distribution function, draw curves that show 
the broadening of a band of material with time if the substance is initially at concentration co 
and in a plug of infinitesimal thickness at x = 0. Assume that the diffusion coefficient has the 
value 5 - 10 -” m2 s -’ for this material. Use t = 106 and t = 3 - 106 s to see how the concen- 
tration profile changes with time. 

Solution: Tables of the normal distribution function list values of P(z ) for different values of z. 
As examples, we cite the following entries from the tables (Beyer 1987): 

Z 0.3 0.7 
P(z) 0.3814 0.3123 

1.0 1.3 1.7 2.0 2.3 2.7 
0.2420 0.1 71 4 0.0941 0.0540 0.0283 0.01 04 

~~ ~~ 

*This manner of referencing 
appendices. The number (or 
appendix). 

is used to describe equations occurring in other chapters or in the 
the letter) to the left of the point is the chapter number (or the 
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Actual displacements x are obtained by multiplying z by (2Dt)”*; this means that the ordinate 
must be divided by this factor so that the area under the curve remains normalized: 

Fort = 106s, (2Dt)”2 = [2(5 - 10-1‘)106]1’2 = 10-*m 

Therefore x = 10 - 2  z. 

x(m) 0.003 0.007 0.010 0.013 0.017 0.020 0.023 0.027 
P(x)* lO-* 0.381 0.312 0.242 0.171 0.094 0.054 0.028 0.010 

For t = 3 + 106 s, (2Dt)”* = 1.73 . 10-2 m. Again, z is multiplied by this quantity to give x, and 
P(z) is divided by the same factor to give the relative value of the ordinate, P(x) :  

x(m) 0.0052 0.0121 0.0173 0.0225 0.0294 0.0346 . . . 
P ( X )  * 1OP2 0.221 0.181 0.140 0.099 0.054 0.031 

These values are plotted in Figure 2.10, in which the factor 10-2 for P(x) has been used as a 
scale factor for the ordinate to show the relative shapes of the curves. 

* * *  

Figure 2.10 indicates a gradual approach toward equilibrium by the fact that the concentration 
tends to be more nearly uniform as time increases. In Appendix C the function z is defined to 
be 6/a, where 6 is the deviation of a particular value from the mean of a distribution and (T is 
the standard deviation of the distribution. Since the net displacement of a diffusing particle is 
analogous to  6, we may infer that the quantity a is also analogous to the standard devia- 
tion. The point of this is the following. 

It is well known that the width of the normal error curve at its inflection point (where the 

-2.0 -1.0 0 1.0 2.0 

x x 102 (m) 

FIG. 2.10 Variation of concentration with time. The figure shows the variations of c/c, with 
distance from the origin at t = 106 and t = 3 - 106 s if D = 5 x I O - ”  m2 s - ’  for the data 
developed in Example 2.5. 



SEDl M ENT AT ION AND M FFUSION 91 

second derivative changes sign or the curve changes from concave to convex) is equal to D. 
Therefore we can conclude that the width of the c-urves shown in Figure 2.10, measured at 
their inflection points, increases in proportion to Jt. This is one method whereby D could be 
measured in an experiment that corresponds to the boundary conditions specified above. 

2 . 6 ~  Random Walk Statistics and Experimental Measurement of the 
Diffusion Coefficient 

With the mathematics of the one-dimensional random walk as background, we may visualize 
the following experimental arrangement by which D could be measured. Suppose that a 
narrow band of dispersion is layered between two portions of solvent in a long tube. We shall 
not worry about the practical difficulties in doing this since, in practice, other initial conditions 
that are easily obtained are actually used. The narrow band. we have pictured, however, 
approximates the initial state of the system described by Equation (59). We might further 
imagine observing this band by means of a schlieren optical system (Section 2.4a). The two 
edges of the band, where the refractive index gradient is large, would define the positively and 
negatively sloped branches of the schlieren peak. With the passage of time, the material in the 
band diffuses outward; the schlieren peak would also broaden. In other words, the schlieren 
pattern observed at successive times would generate a family of curves- for example, Figure 
2.7b- that very much resemble the theoretical curves of Figure 2.10. 

The curves in Figure 2.10 are drawn for an arbitrary value of the diffusion coefficient. 
The experimental profiles produced by the schlieren optics are characterized by the diffusion 
coefficient of the experimental system. The remaining question is how to extract the appro- 
priate D value from the experimental observations. 

Remember that the normal distribution function has an inflection point (where the second 
derivative changes sign at z = 1 .O. Therefore the x value at which the inflection point occurs 
at any time equals $- 2Dt according to Equation (60). By locating the inflection point at 
different times during a diffusion experiment, the appropriate D value may be evaluated for 
the diffusing species. For example, on the t = 106 s curve in Figure 2.10, the inflection point 
lies at x = 0.010 m. Substituting x = 0.010 m and t = 106 s when z = 1 into Equation (60) 
enables us to calculate the value of the diffusion coefficient that was used ( D  = 5 - 10-l’ m 2  
s -’) to draw the curves in Figure 2.10. A similar analysis may be conducted on experimental 
curves obtained by the schlieren method. 

As an experimental procedure, this method is less precise than others developed for the 
evaluation of D. It does point out, however, the intimate connection between diffusion and 
the random events at the molecular level that cause it. 

A more practical experimental method for the determination of D is based on Figure 2.8. 
The theoretical arrangement represented by Figure 2.8 is implemented experimentally in an 
apparatus like that sketched in Figure 2.11. One side of the sintered glass barrier contains 
solution; the other side contains pure solvent. The entire apparatus is thermostated and both 
compartments are magnetically stirred. Samples are withdrawn at various times, and the 
quantity of material that has diffused into the solvent compartment is measured. The primary 
difficulty with this procedure is the tendency of the pores to plug owing to the entrapment of 
air bubbles, clogging by solid particles, or adsorption of the diffusing molecules themselves. 
Nevertheless, what is obtained experimentally is a record of the approach toward a uniform 
distribution of material on both sides of the barrier. 

The situation represented by the apparatus in Figure 2.11 has also been analyzed theoreti- 
cally. The function c(x,t), which satisfies Fick’s second law when there is a solution of concen- 
tration c, on one side of a boundary at t = 0 and pure solvent on the other side is given by 

c = 3 [ I  - i; P ( z )  dzj = [l - 2 Erf ( z ) ]  (62) 

We can verify the plausibility of this expression as follows. Recall that z and t are inversely 
related and that the integral gives the area under one-half of the error curve between its 

2 
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FIG. 2.1 1 
between the poles of a magnet for stirring. 

Laboratory apparatus equivalent to that in Figure 2.8. The entire apparatus is rotated 

midpoint ( z  = 0) and some specified value of z .  Therefore, at t = 0, z is infinite, the integral 
equals 1/2, and c = 0. At t = 00 ,  z is zero, the integral equals zero, and c = 1/2 co. Thus 
Equation (62) makes sense at either extreme. The detailed profile of c/c, versus z is obtained 
by reading values of the integral in Equation (62) from tables that give the area under the 
normal error curve. The results of this procedure are plotted in Figure 2.12, in which c/c, is 
shown versus x at several different times. The approach toward a uniform distribution of 
material is evident. 

As in the case of diffusion from an initially thin layer, experimental concentration data 
and theoretical concentration profiles may be compared. From this comparison, the value of 
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FIG. 2.12 
at t = 106, 4 
Equation (62) .  

Diffusion of solute from solution into pure solvent. Here c/c, is plotted versus distance 
106, and 9 - 106 s for D = 5 * 10-" m2 s- ' .  The plot has been drawn according to 
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D that is consistent with the observed diffusion behavior may be evaluated. The diffusion 
coefficient is a function of concentration; therefore, it is measured at a series of different 
concentrations and extrapolated to zero concentration; the limiting value is given the symbol 
Do. Diffusion coefficients are temperature dependent, and it is sometimes necessary to adjust 
a value measured at one temperature to some other temperature. Example 2.6 considers how 
this is done. 

* * *  

EXAMPLE 2.6 Temperature Dependence of Diffusion Coefficients. Suppose the diffusion co- 
efficient of a material is measured in an experiment (subscript ex) at some temperature Te, at 
which the viscosity of the solvent is vex. Show how to correct the value of D to some standard 
(subscript s) conditions at which the viscosity is qs. Take 2OoC as the standard condition and 
evaluate Do,, for a solute that displays a D o  value of 4.76.10 -” m2 s - ’  in water at 4OOC. The 
viscosity of water at 20 and 4OoC is 1.0050. 10-2 and 0.6560- 10 - 2  P, respectively. 

Solution : By Equation (32), D is proportional to T/f and, by Equation (8), f is proportional to 17. 
Therefore D oc T/q, or 

Applying this relationship to the data provided gives 

D:o = (293/313) (0.6560/1.0050) (4.76 - 10-”) = 2.91 10-”  m2 s- ’ .  

The temperature dependence of the viscosity is seen to have the largest effect on the tempera- 
ture dependence of D. U 

* * *  

2.6d “Average” Displacements from Random Walk Statistics 

Having examined the connection between the phenomenologkcal equations of diffusion and 
the statistics of the random walk, let us now return to the random walk as a model for 
Brownian motion. The problem we wish to consider is the “average” displacement of a marker 
after an n-step, one-dimensional random walk. The foregoing discussion already supplies the 
answer to this problem. We have seen that the probability function for the one-dimensional 
walk is symmetrical about the origin, implying a mean displacement of zero. This simply 
reflects the fact that on the average the number of heads and tails will be equal. While we 
accept this result, we feel that there is something unsatisfactory about it. The average displace- 
ment is zero because positive and negative displacements are equally probable and effectively 
cancel one another. It is not because the marker scarcely moves from its initial location, a 
conclusion suggested by the value of the mean displacement. 

This shows that the mean displacement is simply not a useful parameter to characterize 
the trajectory of the particle and suggests we should seek an alternate quantity. Instead of 
averaging the displacements directly, suppose we first square them to eliminate the differences 
in sign, then average them and take the square root. This quantity, called the root mean square 
(rms) displacement, will give a better measure of the meanderings of the marker since the sign 
differences have been eliminated. 

The calculation of the rms displacement is quite simple. Any average is calculated by 
multiplying the quantity to be averaged by an appropriate probability function and then 
integrating the result over all possible values of the variable. This is a direct extension of 
Equation (C.3) using a continuous function for the weighting factor. Applying this procedure 
to the problem at hand gives the result 

r 0) 

2 = x 2 P ( n , x )  dx 
- - m  

in which P(n,x) is given by Equation (54). Making this substitution gives 
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the value of which is found in Table 2.2. Evaluating the integral leads to  the conclusion that 
- 
x2 = 2Dt (65) 

Note that we have taken the initial position to  be x = 0. Therefore, the left-hand side of 
Equation (65) is the average of the square of the displacement from the initial position. This 
important equation, also derived by Einstein, provides us with a means for measuring the 
diffusion coefficient for particles that are visible in a microscope. This is a particle size range 
for which measurement of D by following concentration changes with time is very difficult. 
Instead, the actual displacement of a particle in time t is measured microscopically. The rms 
displacement, evaluated from a statistically meaningful number of observations, permits D to  
be calculated. Jean Perrin (Nobel Prize, 1926) interpreted observations of a Brownian motion 
in terms of Equations (8) ,  (32), and (65) as a means of determining the first precise value of 
Avogadro’s number. * 

Equation (65) also permits us to assign a physical interpretation to the diffusion coeffi- 
cient in addition to the macroscopic meaning it has from Fick’s laws. Rearranging and factor- 
ing in a way that admittedly ignores the averaging procedure, we write Equation (65) as 

Since D is a constant for a particular substance, the ratio x / t  must vary inversely with x. The 
distance traveled by a diffusing particle divided by the time required for the displacement x/ t  
gives the apparent diffusion velocity of the particle. Equation (66) shows that the diffusion 
velocity is inversely proportional to the length of the path over which it is measured. This 
apparently paradoxical conclusion becomes less mysterious when we concentrate on the dis- 
tinction between the diffusion velocity and the actual velocity of the particle as it travels along 
its zigzag path. The actual velocity reflects the average translational kinetic energy of the 
particle; its average value depends on  the absolute temperature but is independent of the 
distance traveled. The diffusion velocity, on the other hand, decreases as the distance traveled 
increases. This simply means that large displacements are so much less probable than small 
displacements that they require disproportionately longer times to  occur. Note that if x = 1 
m, D has the significance of being equal to  half the diffusion velocity measured over that 
distance. This is a result that was anticipated at the end of Section 2.5a. 

2.7 

The dimensions of a randomly coiled polymer molecule are a topic that appears to  bear no 
relationship to  diffusion; however, both the coil dimensions and diffusion can be analyzed in 
terms of random walk statistics. Therefore we may take advantage of the statistical argument 
we have developed to  consider this problem. 

THE RANDOM COIL AND RANDOM WALK STATISTICS 

2.7a End-to-End Distance in a Polymer Coil 

Suppose we visualize a polymer molecule as consisting of n segments of length P connected by 
a completely flexible linkage at each joint. Imagine, furthermore, that the placement of each 
successive segment is determined by some sort of purely random criterion. We could anchor 

*Jean Perrin’s 1913 monograph, Les Atornes, on Brownian motion and some of the related topics 
on the molecular nature of matter has been reprinted recently (Perrin 1990) and is an interesting 
source of information on the evolution of ideas on diffusion and determination of Avogadro’s 
number. This monograph also contains some of Perrin’s sketches of random walks executed by 
colloidal spheres in his experiments. 
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one end of the chain to the origin of a hypothetical coordinate system, for example, and 
position successive segments as follows. Suppose we toss a single die and agree to orient the 
next segment in the + x  direction if the die shows a 1 and in the - x  direction if a 6 shows. 
Likewise, 2, 5, 3, and 4 correspond to + y ,  - y ,  + z ,  and - z ,  respectively. Our problem is 
this: On the average, what will be the end-to-end distance L for a chain of n segments? To  
calculate this, we must assume that n is very large, and we must ignore the sites excluded by 
previously positioned segments. 

We recognize first that the end-to-end distance can be resolved into x ,  y ,  and z compo- 
nents that obey the relationship 

(67) 

The probability that the loose end of the chain is in a volume element located at x, y ,  and z is 
given by 

(68) 

where P(x)  is the probability that the x coordinate has a value between x and x + dx ,  with 
similar definitions for PO/) and P(z) .  Equation (54) gives the expression for P ( x ) ,  except we 
must remember that now only n/3 segments will be aligned with the x axis since each of the 
directions is independent and equally probable. Since the x ,  y ,  and z directions are equivalent, 
the same expression holds for PO/) and P ( z )  with the appropriate change of variables. There- 
fore, on incorporating Equation (54), Equation (68) becomes 

L2 = x2 + y' + z ?  

P(x,Y,z) dx  dy dz = P(x)PO/)P(z) dx  dy dz 

This expression gives the probability that the loose end of the molecule is in a volume element 
located at some particular values of x ,  y ,  and z ,  as shown in Figure 2.13a. Our interest is not 
in any specific x ,  y ,  z coordinates, but in all combinations of x, y ,  z coordinates that result in 
the end of the chain being a distance L from the origin. This can be evaluated by changing the 
volume element in Equation (69) to spherical coordinates and then integrating over all angles. 

FIG. 2.13 Coordinate systems for a flexible random coil. One end of a flexible random coil lies at 
the origin and the other end is (a) in a volume element dx dy dz and (b) in a spherical volume 
element 47rL2dL. 
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This amounts to replacing the volume element in Equation (69) with the volume of a spherical 
shell of radius L and thickness dL: 

dx dy dz -+ ~ T L ‘ ~ L  (70) 

A geometrical representation of this situation is shown in Figure 2.13b. Incorporating this 
expression into Equation (69) gives the probability that the loose end of the molecule lies 
between L and ( L  + dL), irrespective of the direction: 

With this distribution function, it is an easy matter to calculate average quantities. Again, 
since positive and negative displacements are equally probable, we evaluate the average of L ’. 
Following the same procedure as used in Equation (63), we write 

Evaluation of this integral, using Table 2.2, leads to the result 
- 
L‘ = n!’ (73 1 

which is the desired quantity. 
Equation (73) shows that the rms end-to-end distance in a polymer coil equals the square 

root of the number of steps times the length of each step. We might ask, therefore, what is the 
physical significance of n and P for a polymer molecule? A general formula for a typical vinyl 
polymer is 

where n is called the degree of polymerization. Since this quantity measures the number of 
repeated segments in the chain, it seems reasonable to equate this with the number of steps in 
the three-dimensional random walk. If A4 represents the molecular weight of the polymer and 
MO is the molecular weight of the vinyl monomer, then M / M ,  equals n. Since MO and ! are 
constants, we see that the radius of the coil is predicted to  be proportional to M”2. 

The physical significance of P in Equation (73) is somewhat harder to define. At first 
glance it appears to be the length of the repeating unit, about 0.25 nm for a vinyl polymer. We 
must remember, however, that the derivation of Equation (73) assumed that the coil was 
connected by completely flexible joints. Molecular segments are attached at definite bond 
angles, however, so an actual molecule has less flexibility than the model assumes. Any 
restriction on the flexibility of a joint will lead to  an increase in the dimensions of the coil. The 
effect of fixed bond angles on the dimensions of the chain may be incorporated into the model 
as follows. 

A 360° rotation around any carbon-carbon bond in a vinyl chain will cause the next bond 
in the chain to  trace a cone with one carbon atom at the apex and the other carbon atom along 
the rim of the cone. Ignoring hindered rotation for the moment, we see that each position on 
the rim of such a cone is an equally probable site for the apex of the cone generated by the 
next bond in the chain. This situation is illustrated schematically in Figure 2.14. This effect 
has been shown to  increase the actual length of the repeating unit 

7 

by the factor 

) 
1 - cos 8 i I + cos e 

e2 = tn2 (74) 

8 is the bond angle. For a tetrahedral bond angle, cos 0 = -(  1/3), so the additional factor in 
Equation (74) equals 2. 
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FIG. 2.14 
tetrahedral bonds, 8 = 109O. 

The effect of fixed bond angle in restricting the flexibility of a polymer coil. For 

In Figure 2.14, it is implied that the terminal carbon atom can occupy any position on the 
rim of the cone; that is, there is assumed to be perfectly free rotation around the penultimate 
carbon-carbon bond. This is equivalent to saying that all values of 4, the angle that describes 
the rotation (see Fig. 2.14), are equally probable. Any hindrance to free rotation will block 
certain configurations, expanding the coil dimensions still further. 

Finally, interactions between the polymer segments and the solvent molecules may intro- 
duce a bias that tends to position segments as close or as far as possible from other segments, 
depending on the nature of the interaction. As a matter of fact, those properties of polymer 
solutions that are sensitive to the dimensions of the molecules, such as viscosity, vary widely 
with solvent “goodness.” A good solvent may be defined as one in which polymer-solvent 
contacts are favored; a poor solvent is one in which polymer-polymer contacts are favored. 
Therefore the value of P in Equation (74) will be increased in a good solvent and decreased in 
a poor solvent. In discussing size-exclusion chromatography in Section 1.6b, we anticipated 
this conclusion by noting that polymer-solvent interactions complicate the relationship be- 
tween M and L for a random coil. 

2.7b Radius of Gyration of a Polymer Coil 

The statistical relationships of this section can also be applied to Equation (1.13), which 
defines the radius of gyration. If the masses in that equation are identified with the mass rn, of 
the repeat units of the polymer - of which there are n in the molecule- then Equation ( I .  13) 
can be written as 
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Next, the summation over discrete values of ri2 is replaced by the integral of r2P(r)dr. This 
sounds exactly like the procedure that results in Equation (72), but there are some differences. 
To  evaluate the radius of gyration, we consider the masses relative to  the center of mass of the 
swarm. We proceed in two steps. First, an arbitrary segment, say, segment j ,  is considered to  
be the center of mass, and r in Equation (75) is measured outward in both directions f romj .  
Using k to  index the segments outward from j (on either side) one obtains the following 
expression for the radius of gyration relative to segment j :  

where rk denotes the distance of the kth segment (mass point) from segment j and p(rk)drk is 
the probability that rk lies in the interval [rk,rk + drk] .  The integral, in essence, accounts for 
the various possible configurations of the chain. Finally, this quantity must be totaled for all 
values of j between 1 and n since any one of the segments might lie at the center of mass of the 
coil. This summation must also be divided by n since we are effectively determining the 
average value for j .  The result must also be divided by 2 since, otherwise, we will be counting 
each distance twice. (For example, i f  the focus is on two segments p and q,  the distance 
between p and q is counted when we take q to be the center and later when p is taken as the 
center.) Mathematically, the above procedure is fairly complicated, but when all of these steps 
are carried out - using Equation (69) as the expression for P(r)  - the radius of gyration for the 
random coil may be shown to equal 

which is simply one-sixth the value of the mean of L 2  as given by Equation (73). Since the 
radius of gyration can be measured by viscosity and light scattering for random coils, it is 
apparent that Equation (77) may be used to  measure P. In this way, the effects of hindered 
rotation around bonds and of imbibed solvent may be evaluated quantitatively. 

2 . 7 ~  Relation to the Kinetic Theory of Gases 

Finally, we note that all the statistical equations of this chapter could have been borrowed 
directly from the kinetic theory of gases by simply changing the variables. We illustrate this 
now by going in the opposite direction. For example, if we replace the quantity 3/nP2 by m/ 
k,T and replace L by v in Equation (69), we obtain the Boltzmann distribution of molecular 
velocities in three dimensions. If we make the same substitutions in Equation (73), we obtain 
an important result from kinetic molecular theory: 

This shows that Equation (73) occupies a position for the random coil that is analogous to the 
position of average kinetic energy in the kinetic molecular theory. This is not just a fortuitous 
similarity, but a reflection of the statistical basis of both. As a little self-test: Did you recognize 
the similarity between the formalisms of the last few sections and kinetic theory as we went 
along? 

2.8 EQUILIBRIUM BETWEEN SEDIMENTATION AND DIFFUSION 

We have already noted that sedimentation and diffusion are opposing processes, the first 
tending to collect and the second to  scatter. Let us now consider the circumstances under 
which these two tendencies equal each other. Once this condition is reached, of course, there 
will be no further macroscopic changes; the system is at equilibrium. In order to formulate 
this problem, consider the unit cross section shown in Figure 2.15, in which the x direction is 
in the direction of either a gravitational or a centrifugal field. Suppose this field tends to pull 
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+X 

FIG. 2.15 The relationship between the flux due to sedimentation and that due to diffusion. At 
equilibrium, the two are equal. 

the particles in the --x direction. Gradually the concentration of the particles will increase in 
the region below the cross section of interest. 

Back-diffusion occurs at a rate that increases with the buildup of a concentration gradient. 
When equilibrium is finally reached, we may write 

where Jsed is the flux across the area due to sedimentation and JdIffis the flux due to diffusion. 
The Jdlff is given by Equation (22), and Jsed by 

Jsed = vc (80) 

in which v is the sedimentation velocity and c is the concentration at the plane. Substituting 
Equations (22) and (80) into Equation (79) gives 

d C  
v c  = D-- 

d X  

If we substitute the value for the rate of sedimentation under gravity, Equation (4), we obtain 

(1 - ri)g c = D z  dc 

f 
If the Sedimentation occurs in a centrifugal field, on the other hand, g must be replaced by w2x 
in Equation (4): 

Equations (82) and (83) are easily integrated to produce expressions that give c as a function 
of x at equilibrium. Defining c ,  and c2 to be the equilibrium concentrations at x ,  and x,, 
respectively, and then integrating, we obtain for Equation (82) 
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and for Equation (83) 

Finally, we recall Equation (32), which permits us to substitute k,T for Df, giving 

for sedimentation equilibrium under gravity and 

for sedimentation equilibrium in a centrifuge. Note that sedimentation equilibrium studies 
permit the evaluation of particle mass with no assumptions about particle shape. More elabo- 
rate mathematical formulations of sedimentation/diffusion equilibria may be found in ad- 
vanced textbooks (see, for example, Probstein 1994). 

It should now be apparent why the ultracentrifuge is such an important tool in molecular 
biology. Although the method is in no way restricted to particles of biological significance, 
these particles are of a size and density that are ideally suited to the ultracentrifuge. An 
ultracentrifuge permits the evaluation of particle mass through equilibrium studies - see Equa- 
tion (87)-and the evaluation of the ratio m/f through studies of the rate of sedimentation- 
see Equation (18). Combining these data permits the separate evaluation off.  From the mass 
and density of the material, the volume and radius of an equivalent sphere, and hencef,, can 
be calculated. Then, Figure 2.9 may be consulted to determine particle characterizations that 
are consistent with the ratio f / f o .  Although both utilize the same instrument, sedimentation 
rate and sedimentation equilibrium are two different experiments that complement one an- 
other very nicely. 

It might be noted that sedimentation equilibrium is approached very slowly; however, 
techniques that permit equilibrium conditions to be estimated from preequilibrium measure- 
ments have been developed by W. J .  Archibald. Equations (86) and (87) predict a linear 
semilogarithmic plot of c versus x or J? for gravitational and centrifugal studies, respectively. 
The slope of such a plot is proportional to the mass of the particles involved. Remember that 
monodispersity was assumed in the derivation of these equations. If this condition is not met 
for an experimental system, the plot just described will not be linear. If each particle size 
present is at equilibrium, however, each component will follow the equations and the experi- 
mental plot will be the summation of several straight lines. Under certain conditions these may 
be resolved to give information about the polydispersity of the system. In any event, nonlinear- 
ity implies polydispersity once true equilibrium is reached. 

We conclude this chapter with a final observation about Equation (86). If the particles in 
question are gas molecules instead of suspended particles, then the concentration ratio equals 
the ratio of pressures measured at two locations, and the particle mass requires no correction 
for buoyancy. Under these conditions, Equation (86) becomes 

This familiar equation gives the variation of barometric pressure with elevation and is known 
as the barometric equation. Once again we are reminded of the connection between the 
material of this chapter and kinetic molecular theory. 
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1 .  

2. 

3. 
4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 
13. 

14. 
15. 

16. 

17. 

18. 

List a few examples from your experience of phenomena in which sedimentation and diffusion 
play major roles, individually or together. 
Describe the reasons for hydrodynamic friction. What is the physical significance of the 
friction factor? What are its units? 
What is Slokes’s law? Under what conditions is it valid? 
Describe what types of information can be obtained from the sedimentation equation? What 
are the restrictions on the applicability of the equation derived in the text? 
How is the expression for the sedimentation coefficient dernved? What are the units of the 
sedimentation coefficient ? 
State Fick’s laws of diffusion. Describe at  least two different techniques to use Fick’s laws to 
measure the diffusion coefficient. 
Sketch qualitatively the variation of concentration profiles with time that you would expect 
from the solution of Fick’s second law. Assume suitable boundary and initial conditions. 
How would you combine sedimentation and diffusion measurements to determine the mass of 
a particle without any information on the shape of the particle. 
Describe how the random walk statistics are used to relate the random walk to the diffusion 
coefficient . 
What assumptions are made in the development of the random walk statistics discussed in the 
text, and what do they imply for the correspondence between random walk and diffusion? 
What is the difference between the mean of the displacement and rms displacement? Can they 
be equal under any circumstance? 
What is the relation between the diffusion coefficient and the rms displacement? 
Describe an experiment to determine Avogadro’s number from the average root mean square 
displacement of a particle due to random walk. 
What is the Stokes-Einstein equation? Suggest at least two uses for that equation. 
Why can one use random walk statistics to derive expressions for the end-to-end distance of a 
polymer chain? Under what conditions can this be done? 
What is the difference between the radius of gyration of a polymer chain and the end-to-end 
distance? 
What is the physical significance of the segment length used in the derivation of polymer chain 
statistics? 
Describe the relation between sedimentation/diffusion equilibrium and the barometric equa- 
tion. 
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PROBLEMS 

1. The following results describe the rate of accumulation of rutile (TiO,; p = 4.2 g cmP3) 
particles on a submerged balance plan.* 

Time t (min) W (g) Time t (min) W (g) 

0.0 
1.5 
2.0 
2.5 
3.0 
4.0 
5.5 
8.0 

14.0 
24.0 

0,000 
0.045 
0.060 
0.075 
0.090 
0.110 
0.125 
0.160 
0.210 
0.260 

35 
60 
84 

127 
159 
226 
274 
327 
3 84 
420 

0.310 
0.403 
0.480 
0.610 
0.702 
0.880 
0.998 
1.110 
1.240 
1.320 

(a) Plot Wversus t and use this to  evaluate w as a function of time. Prepare a plot of w 
versus t. 

(b) At what time (lmux) does the greatest increment in w appear to  occur? 
(c) Calculate the radius of an equivalent sphere corresponding to  t,, (psorn = 0.997 g 

~ m - ~ ,  7 = 0.00894 P ,  h = 12 cm). 

2. A preparation of reduced and carboxymethylated Mouse-Elberfeld virus protein particles 
in water reached sedimentation equilibrium at 25OC after 40 hr at 12,590 rpm. The 
following data show the recorder displacement (proportional to  concentration) versus r 
for this protein:? 

c(arbitraryunits) 2.29 2.51 2.79 3.09 3.51 3.89 4.47 5.01 5.89 6.61 7.41 8.51 
6.55 6.58 6.60 6.65 6.67 6.69 6.71 6.74 6.76 6.79 6.81 6.84 (cm) 

"Sullivan, W. F., and Jacobson, A. E. Symposium on Particle Size Measurements, ASTM Publica- 
tion No. 234, 1959. 
TRueckert, R. R. Virology 26, 345 (1965). 
SVinograd, J . ,  Bruner, R., Kent, R., and Weigle, J. Proc. Nat. Acad. Sci., USA 49, 902 (1963). 
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3 .  

4. 

5 .  

6. 

7. 

(a) Use these results to evaluate the mass of the particles present (pprotein = 1.370 g 
cm-') and estimate Ro and f o  for the molecules. Does the sample appear to be 
monodisperse? 

(b) The sedimentation coefficient is known to be 2.7 S for this preparation. Evaluate f 
and . f / f O .  

(c) What can be said about the possible axial ratio-hydration combinations of this 
protein in terms of Figure 2.9? 

Southern bean mosaic virus (SBMV) particles are centrifuged at 12,590 rpm and the 
absorbance at 260 nm is measured along the settling direction as a function of time, The 
center of the absorption band varies with distance from the center of the rotor as follows:$ 

t (min) 

16 
32 
48 
64 
80 
96 

112 
128 
144 

6.22 
6.32 
6.42 
6.52 
6.62 
6.72 
6.82 
6.92 
7.02 

Phosphatidylcholine micelles are spherical particles having a molecular weight of 97,000 
g mole-'. Assuming that the density of the dry lipid (p = 1.018 g ~ m - ~ )  applies to the 
micelles, calculate the radius R, and the diffusion coefficient D for these particles in 
water at 2 O O C .  The experimental value of the diffusion coefficient is 6.547 x lO-' cm2 
s-' under these conditions.' Evaluate f/f* and estimate the hydration of the lipid. 

Calculate the diameter of a spherical particle ( p  = 4 g CITL-~)  for which the rms displace- 
ment due to diffusion at 25OC is 1 %  the distance of sedimentation in a 24-hr period 
through a medium for which p = 1 g cm-3 and q = 9 >< 10-3 P. For what diameter is 
the diffusion distance 10% of the settling distance? 

The diffusion of alkyl ammonium ions into clay pellets has been studied by bringing the 
pellet into superficial contact with an isotopically labeled salt and then, after a suitable 
time, using a microtome to slice the pellet. The radioactivity is then measured in succes- 
sive thin slices of the pellet. Assuming that Equation (62) describes the diffusion process, 
estimate how long it would take for 1 %  of the initial activity of each of the ions to 
appear in the 15th slice inward from the exposed surfacle of the dry clay if each slice is 
40-pm thick. The diffusion coefficients for the methyl and trimethyl ammonium cations 
under these conditions are 7.03 x 10-l2 and 2.65 x 10-I' cm2 s-I,  respectively.? 

Suppose two reservoirs 4-cm apart are cut into an agar gel in a petri dish. Solutions of 
Pb(N03), and Na2Cr0, are introduced simultaneously into the two reservoirs. At what 
distance into the gel does PbCrO, precipitate if the diffusion coefficients of Pb2+ and 
CrOi- in agar are 0.657 x 1 O - j  and 0.752 x 1 O - j  cm2 s - ' ,  respectively?$ Where would 
Prussian blue precipitate if the reservoirs contained Fe" (D = 0.434 x 10-5 cm2 s-I) 
and Fe(CN):- (D = 0.557 x 10-5 cm2 s-')? 

'Hasser, H. In Water, a Comprehensive Treatise, Vol. 4 (F. Franks, Ed.), Plenum, New York, NY, 
1975. 
YGast, R. G. ,  and Morfland, M. M. J. Colloid Interface Sci. 37, 80 (1971). 
$Lee, R .  E. ,  and Meeks, F. R .  J. Colloid Interface Sci. 35, 584 (1971). 
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9. 

10. 

11. 

12. 

13. 
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Use a compass to inscribe a circle around the aggregate shown on the cover of the book. 
Such a “graticule” might be used to define an average diameter for the aggregate. Com- 
pare the radius of the inscribed circle to that of the primary particles in the aggregate. 
How does the ratio of these radii compare with the value that would be obtained for the 
case n = 76 if the aggregate were built up according to a random walk model? Compare 
the features of the two models with the objective of accounting for the relative magnitude 
of the aggregate radius relative to the primary particle radius in the two cases. 

The molecular weights and sedimentation coefficients of human plasminogen and plas- 
min (p  = 1.40 g ~ m - ~ )  are as follows:* 

Plasminogen Plasmin 

M (g mole-’) 8 1,000 75,400 
s at 2OoC (S) 4.2 3.9 

(a) Calculate the diffusion coefficient for each. 
(b) Prepare a graph such as that of Figure 2.10 showing quantitatively how an initially 

thin band of these proteins widens with time. Show at least three different times. 

Colloids (casein micelles) of two different particle sizes are isolated from skim milk by 
centrifugation under different conditions. The sedimentation and diffusion coefficients 
of the two preparations are as follows:? 

Preparation conditions D x l@ (cm2 s-’) s x 10J3 (s) 

5 min at 5,000 rpm 0.97 2200 
40 min at  20,000 rpm 2.82 800 

Calculate the mass per particle and the gram molecular weight of the two micelle frac- 
tions, assuming p = 1.43 g cmw3 for the dispersed phase. 

The following data give the number of gold particles (as log,,) versus depth beneath the 
surface for an aqueous dispersion allowed to reach sedimentation equilibrium under the 
influence of gravity: $ 

Depth(mm) 4.44 5.06 5.67 6.30 6.90 7.53 8.15 
log n 10.36 10.51 10.63 10.75 10.89 11.05 11.22 

Calculate the radius of the gold particles (pAu = 19.3 g ~ m - ~ ) ,  treat 
as equivalent spheres. 

At equilibrium at 2OoC the concentration of tobacco mosaic virus 

8.65 
11.39 

ng the dispersed units 

TMV) shows a linear 
semilogarithmic graph when plotted against the square of the distance to  the axis of 
rotation in a centrifuge. Evaluate the molecular weight of the TMV particles if In c = 
- 1.7 at r2  = 44.0 cm2 and In c = - 2.8 at r 2  = 41.2 cm2 when the dispersion is centri- 
fuged at 6.185 rps. The density of the TMV is 1.36 g ~ m - ~ . §  

Verify that the expansion (see Appendix A) of Equation (49) leads to Equation (50). 
Retain no terms higher than the second order in expansions. Verify that the integration 
(see Table 2.2) of Equations (64) and (72) leads to Equations (65)  and (73), respectively. 

*Barlow, G. H., Summaria, L., and Robbins, K. C. J .  Biol. Chem. 244, 1138 (1969). 
tMorr, C. V., Lin, S. H. C., Dewan, R. K . ,  and Bloomfield, V. A. J .  Dairy Sci. 56, 415 (1973). 
SMcDowell, C. M., and Usher, F. L. Proc. R. Soc. London 138A, 133 (1932). 
§Weber, F. N.,  Jr., Elton, R. M., Kim, H. G., Rose, R. D., Steere, R. L., and Kupke, D. W. 
Science 140, 1090 (1963). 



3 
Solution Thermodynamics 
Osmotic and Donnan Equilibria 

All faults or defects, . . . Pantocyclus attributed to some deviation from perfect 
Regularity in the bodily figure, caused perhaps . . . by some collision in a crowd; by 
neglect to take exercise, or by taking too much of it; or even by a sudden change of 
temperature. 

From Abbott’s Flatland 

3.1 INTRODUCTION 

3.la What Are Osmotic Pressure and Donnan Equilibria? 

Osmotic pressure is a property of solutions of organic or inorganic solutes and appears in a 
number of contexts in the study of colloidal systems. As we see below, it is usually defined 
using a real or thought experiment involving a solution separated from the pure solvent by a 
membrane permeable only to the solvent. In such a setup, the pure solvent would flow through 
the membrane in an attempt to equalize the concentration difference. The pressure necessary 
to stop this flow is known as the osmoticpressure (from the Greek word osmos, meaning “to 
push or thrust”). In thermodynamic terms, the concentration difference created by the mem- 
brane represents a difference in the chemical potentials in the two compartments separated by 
the membrane, and the osmotic pressure counteracts the difference in the chemical potential. 

It is important to note that the concept of osmotic pressure is more general than suggested 
by the above experiment. In particular, one does not have to invoke the presence of a mem- 
brane (or even a concentration difference) to define osmotic pressure. The osmotic pressure, 
being a property of a solution, always exists and serves to counteract the tendency of the 
chemical potentials to equalize. It is not important how the differences in the chemical poten- 
tial come about. The differences may arise due to other factors such as an electric field or 
gravity. For example, we see in Chapter 11 (Section 11.7a) how osmotic pressure plays a 
major role in giving rise to repulsion between electrical double layers; here, the variation of the 
concentration in the electrical double layers arises from the electrostatic interaction between a 
charged surface and the ions in the solution. In Chapter 13 (Section 13.6b.3), we provide 
another example of the role of differences in osmotic pressures of a polymer solution in giving 
rise to an effective attractive force between colloidal particles suspended in the solution. 

A related phenomenon occurs when the membrane in the above-mentioned experiment is 
permeable to the solvent and small ions but not to a macroion such as a polyelectrolyte or 
charged colloidal particles that may be present in a solution. The polyelectrolyte, prevented 
from moving to the other side, perturbs the concentration distributions of the small ions and 
gives rise to an ionic equilibrium (with attendant potential differences) that is different from 
what we would expect in the absence of the polyelectrolyte. The resulting equilibrium is known 
as the Donnan equilibrium (or, the Gibbs-Donnan equilibrium) and plays an important role in 
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a number of problems of interest in colloid and surface chemistry, electrochemistry, and 
biology, as illustrated through an  example in Vignette 111. 

3.1 b Importance of Osmotic Pressure and Donnan Equilibrium 

The osmotic pressure can be measured accurately for colloidal solutes, and one molecular 
parameter of interest that is readily determined by osmometry is the number average molecular 
weight of the solute. Molecular weights determined by osmometry are absolute values; no  
calibration with known standards or any assumed theoretical models is required. Even the 
assumption of solution ideality is not a problem, since results are extrapolated to zero solute 
concentration before calculations are made. 

Equilibrium thermodynamics of solutions of colloidal solutes determines the quantitative 
details of osmotic and Donnan equilibria and occupies our concern in this chapter. In particu- 
lar, our discussion here centers on the osmotic pressure. 

VIGNETTE 111 BIOPHYSICS AND PHYSIOLOGY: Donnan Equilibrium 
and the “Resting States” of Nerve Cells 

A major function of biological cell membranes is to regulate the transport of ionic and 
nonionic nutrients and reject metabolic wastes while maintaining the intracellular ionic atmo- 
sphere necessary for life-sustaining functions. The transfer of materials often has to be 
accomplished against concentration gradients. Understanding how the cells regulate such 
transport is essential in health care. 

A cell is enclosed by a lipid bilayer known as the plasma membrane. In Vignette 1.2 in 
Chapter 1 we discussed an example of a membrane, a complex structure with a mosaic of 
embedded or adsorbed moieties such as proteins. It is these membranes that protect the 
intracellular contents from the exterior environment of the cells and regulate the transport of 
materials into and out of the cells. They can also act as signal transducers and control the 
electrical excitation in the nervous system by altering the (membrane) permeability to particu- 
lar ions in response to stimuli. Such electrical activities can propagate over long distances and 
represent one of the most spectacular of the membrane functions. 

For our purpose here, we are interested in the following question: How do the mem- 
branes maintain the ionic environments in the cell over long periods of time while simultane- 
ously allowing transmembrane passage of the needed ions? The mechanism that makes this 
possible is the so-called Donnan equilibrium; we discuss the details of this equilibrium in this 
chapter, but a qualitative picture of the Donnan effect can be obtained with the help of a 
simplified model of a cell shown in Figure 3.1 (See, also, Section 3.5a.). 

Figure 3.la shows a membrane that is permeable to water and K +  and C1- ions but 
impermeable to colloidal electrolytes (polyelectrolytes such as charged proteins). Let a denote 
the interior of the cell and ,d the extracellular region. In the absence of the polyelectrolyte, 
water, K + and C1- partition themselves into the two sides such that the chemical potentials 
of each species are the same inside as well as outside, as thermodynamics would demand. 
Moreover, the requirement of electroneutrality in both a and 0 demands that the concentra- 
tions of each species K + and C1- be the same on either side of the partition. 

Now, what can we expect if polyelectrolyte ions P z - ,  each with z negative charges, are 
present in a? Since the electroneutrality in a is disturbed by the presence of the polyelectro- 
lyte, some of the C1- ions will be pushed out to the extracellular region; similarly, there will 
be an accompanying increase in the concentration of the K + ions inside the cell. Eventually 
the system will reach a state illustrated in Figure 3.lb, with a higher concentration (hence, 
higher chemical potential) of C1- outside and a higher concentration of K +  inside. This 
effect is the Donnan effect and is behind the maintenance of what is known as the “resting 
state” of the cell, that is, the polyelectrolyte maintains the concentrations in its environment 
against the chemical potential gradients. This is one of the reasons why cell and molecular 
biology books begin with a description of the Donnan equilibrium and the attendant osmotic 
pressure effects in their discussions of cellular functions. 
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Elementary and advanced treatments of such cellular functions are available in special- 
ized monographs and textbooks (Bergethon and Simons 1990; Levitan and Kaczmarek 1991; 
Nossal and L.ecar 1991). One of our objectives in this chapter is to develop the concepts 
necessary for understanding the Donnan equilibrium and osmotic pressure effects. We define 
osmotic pressures of charged and uncharged solutes, develop the classical and statistical 
thermodynamic principles needed to quantify them, discuss some quantitative details of the 
Donnan equilibrium, and outline some applications. 

3.1 c Focus of This Chapter 

As mentioned above, the primary focus of this chapter is on  osmotic pressure and its basis in 
solution thermodynamics. We consider both classical and statistical thermodynamic interpre- 
tations of osmotic pressure. The next three sections are devoted1 to this. The last two sections 
describe osmotic effects in charged systems and a few applications of osmotic phenomena. 

1. The thermodynamic preliminaries and concepts needed for defining osmotic pressure 
are discussed in Sections 3.2a-c. The nonideality of coliloidal solutions can be appre- 
ciable since the solvent and solute particles are so different in size. Classical thermo- 

* 
Direction of 

-v 
Direction of 

Electrical Gradient Concentration G radicnt I 
FIG. 3.1 Donnan equilibrium and regulation of ionic concentrations resulting from the presence 
of a semipermeable membrane: (a) conditions in the absence of polyelectrolyte molecules; and (b) 
ionic concentrations and electrical gradients in the presence of the polyelectrolyte. The membrane 
is nermeable t o  water a n d  K "  a n d  Cl-. but n o t  to the nolvelectrolvte Pz-. 
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dynamics allows this nonideality to be quantified in terms of the so-called virial 
coefficients, as outlined in Section 3.2d. 
Some of the experimental details of osmometry and the use of osmometry for deter- 
mining molecular weights and second virial coefficients are discussed in Section 3.3. 
If we turn from phenomenological thermodynamics to statistical thermodynamics, 
then we can interpret the second virial coefficient in terms of molecular parameters 
via a model. We pursue this approach for two different models, namely, the excluded- 
volume model for solute molecules with rigid structures and the Flory-Huggins model 
for polymer chains, in Section 3.4. 
We conclude the chapter with a discussion of the Donnan equilibrium and the thermo- 
dynamic behavior of charged colloids, particularly with respect to osmotic pressure 
and molecular weight determination (Section 3.5), and some applications of osmotic 
phenomena (Section 3.6). 

2. 

3. 

4. 

Although this is the first place in this book that we have devoted any attention to charged 
particles, it is not the last. Chapters 11-13, in particular, devote a good deal of attention to 
such systems. A part of Chapter 4 is devoted to  the effects of charges on particles on viscous 
behavior of dispersions. 

3.2 OSMOTIC PRESSURE: THERMODYNAMIC FOUNDATIONS 

3.2a Gibbs Free Energy and Chemical Potential 

An extremely useful quantity in the thermodynamic treatment of multicomponent phase equi- 
libria is the chemical potential. The chemical potential for component i, pl ,  is the partial molal 
Gibbs free energy with respect to component i at  constant pressure and temperature: 

Although the notation of this mathematical definition of chemical potential is somewhat 
cumbersome, the physical significance is fairly clear. The chemical potential is the coefficient 
that describes the way the Gibbs free energy of a system changes per mole of component i if 
the temperature, pressure, and number of moles of all components other than the ith are held 
constant. Although it is expressed on a molar basis, it is important to note that pl is a 
differential quantity; that is, it represents the local slope of the line that shows the variation of 
G with n,. The line itself arises from slicing across the complex surface that describes G at the 
specified values of p ,  T,  and n,. For a pure substance, p, is identical to the Gibbs free energy 
per mole of that substance. For the present we regard the pure substance as the standard state 
for p, and represent it by the symbol p:. 

The great utility of the chemical potential in phase equilibrium problems arises in the 
following way. In open systems in which the number of moles of any component may increase 
or decrease, any change in the Gibbs free energy of the system as a whole may be expressed as 
the sum of the following contributions: 

This equation may be written 

dG = - S d T  + V d p  + c pidn, (3) 

by substituting into Equation (2) the definition of chemical potential and the familiar relation- 
ships 
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and 

= 

For any equilibrium that occurs at constant temperature and pressure, the first two terms from 
the right-hand side of Equation ( 3 )  equal zero, reducing the equation to the form 

If the total system consists of several different phases, which we designate by Greek subscripts 
a,  0, . . . , then we may also write 

(7 )  dG = dG, + dG, + . . . 
Finally, the equilibrium condition requires that 

dG = 0 

Therefore, the equilibrium between two phases means that 

That is, for each of the components, the following holds: 

LL,,,dn,,, + Pl,@dnl,a = 0 

If the entire system consists of only two phases, the hypothesis here, the conservation of 
matter requires that any substance lost from one phase must appear in the other: 

dn,, = -cln,, (11) 

Combining these last two results leads to the conclusion that the condition for phase equilib- 
rium at constant temperature and pressure is 

PI,, = Pl.0 (12) 

It is important to realize that the chemical potential of each component must be the same in 
all equilibrium phases, although the value for this quantity will, in general, be different for 
each component. 

3.2b Thermodynamic Activities of Components 

Perhaps the most basic equation involving the chemical potential is the one that relates this 
quantity to the activity of component i in the solution, a,: 

(13) 

For the present a, is expressed in mole fraction units. We see, therefore, that p, approaches p: 
as a, approaches unity. Furthermore, since p, is the partial molal Gibbs free energy, Equation 
( 5 )  also applies to p, provided we replace Vwith v,, the partial rnolal volume of component i: 

p, = p: + R T l n  a, 

Suppose we apply these relationships to the equilibrium of a liquid mixture and its vapor. At 
equilibrium, p, must have the same value for each component. in both the liquid and vapor 
phases. Therefore 

P 1 , L  = CL,, v (15) 
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where the last relationship assumes the vapor to behave ideally. If Equation (13) is used to  
evaluate the left-hand side of this equation, we obtain 

JP  RTalna ,  = RT-  
PI 

Recalling that p ,  = p:, the normal vapor pressure of the pure liquid, when a, = 1, we may 
integrate Equation (17) to give 

This relationship constitutes the basic definition of the activity. If the solution behaves ideally, 
a, =x, and Equation (18) define Raoult's law. Those four solution properties that we know as 
the colligative properties are all based on Equation (12); in each, solvent in solution is in 
equilibrium with pure solvent in another phase and has the same chemical potential in both 
phases. This can be solvent vapor in equilibrium with solvent in solution (as in vapor pressure 
lowering and boiling point elevation) or solvent in solution in equilibrium with pure, solid 
solvent (as in freezing point depression). Equation (12) also applies to osmotic equilibrium as 
shown in Figure 3.2. 

3 . 2 ~  Osmotic Equilibrium: Relating Chemical Potentials and Compositions 
to Osmotic Pressure 

Figure 3.2 shows schematically two liquid phases - one solution, the other pure solvent - 
separated by a partition known as a Semipermeable membrane. In many ways this membrane 
is the central feature of osmometry; we have more to say about it, but for now it is sufficient 
to define a semipermeable membrane as one that is permeable to the solvent and impermeable 

FIG. 3.2 Schematic representation of an osmotic pressure experiment. 



SOLUTION THERMODYNAMICS 111 

to the solute. Thus the semipermeable membrane in Figure 3.2 prevents the two liquids from 
mixing and at the same time allows both sides of the membrane to come to equilibrium. 

In order for solvent and solution to be in equilibrium in an apparatus such as that shown 
in Figure 3.2, the solution side must be at a higher pressure than the solvent side. This excess 
pressure is what is known as the osmotic pressure of the solution. If no external pressure 
difference is imposed, solvent will diffuse across the membrane until an equilibrium hydro- 
static pressure head has developed on the solution side. In practice, to prevent too much 
dilution of the solution as a result of the solvent flow into it, the column in which the pressure 
head develops is generally of a very narrow diameter. We return to the details of osmotic 
pressure experiments in the next section. First, however, the theoretical connection between 
this pressure and the concentration of the solution must be established. 

Since the two sides of the membrane are in true isothermal equilibrium in an osmotic 
pressure experiment, the chemical potential of the solvent must be the same on both sides of 
the membrane. On the side containing pure solvent, p, equals p.:. On the solution side of the 
membrane, the chemical potential of the solvent must also equa.1 the same value according to 
the equilibrium criterion of Equation (12). 

Equation (13) reminds us that the chemical potential has its greatest value, po, , for a pure 
substance. Any value of a, less than unity will cause p, to be altered from pI) by an amount RT 
In a,, which will be negative for a, < 1. Second, any pressure on a liquid that exceeds p: 
increases p,, above p:. This is seen from the combination of Equations (13) and (18). Thus 
consideration of the chemical potential of the solvent makes it clear how osmotic equilibrium 
comes about. The presence of a solute lowers the chemical potential of the solvent. This is 
offset by a positive pressure on the solution, the osmotic pressure T, so that the net chemical 
potential on the solution side of the membrane equals that of the pure solvent on the other 
side of the membrane. This is summarized by the expression 

Pp+ 

py = py + RTlna ,  + I o  V , d p  (19) 
PI 

In which subscript 1 indicates the solvent. We use the subscripts 1 and 2 to indicate solvent 
and solute, respectively, throughout this chapter. In order to relate n to the concentration of 
the solution, then, we must find a way to integrate Equation (19). The easiest way of doing 
this is to assume that v, is constant. This approximation is justified because the solution is a 
condensed phase and shows negligible compressibility. Making this assumption and integrat- 
ing Equation (19) gives 

- 
n v ,  lna,  = -- 
RT 

Combining Equations (13) and (20) permits us to express the chemical potential in terms of 
osmotic pressure instead of activity: 

PI = d -- 

This relationship will be useful in Chapter 5. 
Equation (20) provides the relationship we have sought between osmotic pressure and 

concentration. If  the solution is ideal, we may replace activity by mole fraction. Then Equa- 
tion (20) becomes 

where the approximation arises from the expansion of the logarithm (see Appendix A). There- 
fore for ideal, two-component solutions, we write 

Since real solutions tend toward ideality as the solute concentration decreases, 
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in which the n’s are the number of moles of the indicated component. The approximate form 
of Equation (24) applies in the case of dilute solutions for which n, + n,. Introducing the 
dilute solution approximation of Equation (24) into Equation (23) yields 

where V,  is simply the volume of the solvent in the solution, n, r,. This relationship, known as 
the van? Hoff equation (after J. H. van? Hoff, recipient of the first Nobel Prize in chemistry, 
1901), is analogous in form to the ideal gas law and, like the ideal gas law, is a limiting law 
that applies perfectly only in the limit of n, + 0 or nz /V,  -+ 0. Equation (25) shows that 
osmotic pressure experiments provide a means of measuring the number of solute particles in 
a solution. If the weight of solute in the solution is also known, this information may be used 
to evaluate molecular weights. We consider the application of osmometry to problems of 
molecular weight determination in Example 3.1. For now it is sufficient to note that even high 
molecular weight solutes - for which the number of molecules per weight of sample is orders 
of magnitude less than for low molecular weight compounds - produce appreciable osmotic 
pressures. For example, if a 1% aqueous solution is assumed to be ideal at 25OC, then 
Equation (25) shows that solutes of molecular weight 103, 104, 105, and 106 have osmotic 
pressures of 2530, 253, 25.3, and 2.53 mm of solution, respectively. Thus even very high 
molecular weight solutes generate pressures that result in easily measured liquid columns. We 
see below how to get around the assumption of ideality in Equation (25) so this result can be 
applied with confidence to real solutions. 

3.2d Nonideality: Virial Expansion for the Osmotic Pressure 

After reaching Equation (20) we abandoned a completely general discussion of osmotic pres- 
sure in favor of the simpler assumption of ideality. The ideal result, Equation (25), applies to 
real solutions in the limit of infinite dilution. The objective of this section is to examine 
the extension of Equation (20) to nonideal solutions or, more practically, to solutions with 
concentrations that are greater than infinitely dilute. 

Since both the osmotic pressure of a solution and the pressure-volume-temperature behav- 
ior of a gas are described by the same formal relationship of Equation (25), it seems plausible 
to approach nonideal solutions along the same lines that are used in dealing with nonideal 
gases. The behavior of real gases may be written as a power series in one of the following 
forms for n moles of gas: 

E = 1 + Bp + Cp2 + . . . 
nRT 

or 

nRT 

Equations of this type are known as virial equations, and the constants they contain are called 
the virial coefficients. It is the second virial coefficient B that describes the earliest deviations 
from ideality. It should be noted that B would have different but related values in Equations 
(26) and (27), even though the same symbol is used in both cases. One must be especially 
attentive to the form of the equation involved, particularly with respect to units, when using 
literature values of quantities such as B. The virial coefficients are temperature dependent and 
vary from gas to gas. Clearly, Equations (26) and (27) reduce to the ideal gas law a s p  -+ 0 or 
as n/V -+ 0. Finally, it might be recalled that the second virial coefficient in Equation (27) is 
related to the van der Waals constants a and b as follows: 
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a 

RT 
B = b - - -  

This last relationship points out that for gases the second virial. coefficient arises both from 
the finite size and from the interactions of the molecules of the gas since these are the origins, 
respectively, of b and a. We have more to say about this in Chapter 10 (see, for example, 
Sections 10.4 and 10.5). 

As we extend these ideas to nonideal solutions, a similar set o f  statements will apply to  the 
resulting power series: 

The second virial coefficient is our primary concern since we focus attention on the 
first deviations from ideality. 
The value of B will depend in part on the units chosen for concentration, as well as 
on the temperature and the nature of the system. 
The virial equation for osmotic pressure must reduce iio the van7 Hoff equation in 
the limit of infinite dilution. 
The second virial coefficient may be expected to reflect both the finite size and the 
interactions of the molecules. 

Each of these points is taken up in the following discussion. 
The easiest way to extend these considerations to the osmotic pressure of nonideal solu- 

tions is to return to Equation (22), which relates t t o  a power series in mole fraction. This 
equation applies to ideal solutions, however, since ideality is as:sumed in replacing activity by 
mole fraction in the first place. To  retain the form and yet extend its applicability to nonideal 
solutions, we formally include in each of the concer,tration terrns a correction factor defined 
to permit the series to be applied to nonideal solutions as well: 

- 
1 

= A ‘ x ,  -+ -B‘d -+ . . . 
RT 2 
nV, 

The coefficients A ’, B ’ ,  . . . must all equal unity in ideal solutions in order to recover Equa- 
tion (22). Since the van’t Hoff equation is a limiting law, the coefficient A ’ must equal unity 
in all solutions. Therefore Equation (29) becomes 

- 
1 

- = x ~ + - B ’ $ +  . . .  7r v ,  
RT 2 

Next, let us consider the transformation of mole fraction concentration units into other units 
more appropriate for use with solutes with molecular weights that might be unknown. In 
working with unknowns, mass volume - I  units offer the greatest flexibility since only a balance 
and a volumetric flask are needed to quantitatively characterize a solution in these units. We 
represent this unit of concentration by c in this chapter. For the reasons presented here, this 
same concentration unit is used in viscosity and light scattering work with solutes of unknown 
molecular weight. If Vis the volume of a solution of components 1 and 2, it may be written as 
n , l / ,  + n2v2 ,  where the vl’s are partial molar volumes. Remember, the partial molar volumes 
give the volume occupied by a mole of the indicated component in a mixture; their precise 
value depends on the concentration of the solution. Therefore, if m, is the mass of solute in 
the solution, 

where the approximation applies to dilute solutions in which n, e n, .  Since rn, is equal to the 
product of n2 and M,, 
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in which the dilute solution form of Equation (24) has been used to introduce x,. Substituting 
this result into Equation (30) gives 

Ignoring higher order terms, we can rearrange Equation (33) to yield 

The quantity T / C  is called the reduced osmotic pressure, and ( T / C ) ~  the limiting reduced 
osmotic pressure. Osmotic pressure results are most commonly encountered as plots of re- 
duced osmotic pressure-with or without the RT-versus c. This form suggests that a plot of 
T/RTc versus c should be a straight line, the intercept and slope of which have the following 
significance: 

1 intercept = (“)o = - 
M2 

1 B ’ V l  
slope = B = -- 

2 M:: 

(35) 

Note that the value of the intercept, the value of r /RTc  at infinite dilution, obeys the van7 
Hoff equation, Equation (25). At infinite dilution even nonideal solutions reduce to this limit. 
The value of the slope is called the second virial coefficient by analogy with E q u a t i o ~ ( 2 7 ) .  
Note that the second virial coefficient is the composite of two factors, B’ and (1/2) V,/M:. 
The factor B’ describes the first deviation from ideality in a solution; it equals unity in an  
ideal solution. The second cluster of constants in B arises from the conversion of practical 
concentration units to mole fractions. Although it is the nonideality correction in which we 
are primarily interested, we discuss it in terms of B rather than B’ since the former is the 
quantity that is measured directly. We return to an interpretation of the second virial coeffi- 
cient in Section 3.4. 

3.3 OSMOMETRY: SOME APPLICATIONS 

3.3a Experimental Considerations 

To carry out an osmotic pressure experiment, we need to prepare a solution, find a suitable 
semipermeable membrane, achieve isothermal equilibrium, and measure the equilibrium pres- 
sure. Aside from noting that the pressures produced by colloidal solutes are large enough to  
be measurable, we have not yet considered any of the experimental aspects of osmometry. 
This is our present task. 

First, a suitable solvent and membrane must be found. The solvent must dissolve enough 
solute to produce an adequate pressure. The results of measurements made at relatively high 
concentrations may be extrapolated, as discussed in Section 3.2d and illustrated below, to zero 
concentration, so we need not worry about the effects of nonideality. As low a solvent 
viscosity as possible is desirable to minimize the time required for equilibration. 

It is important that the materials be free of contaminants in osmotic pressure experiments. 
Suppose, for example, that the solvent contains a small amount of impurity that, like the 
colloidal solute, is retained by the membrane. Then, as far as the osmotic pressure is con- 
cerned, that impurity will contribute to the osmotic pressure in the same way that the colloid 
does. Since the osmotic pressure responds to the number of solute particles present, a low 
molecular weight impurity in extremely small amounts may contain as many or more particles 
as a dilute solution of a colloidal solute of very high molecular weight. Quite large errors in 
molecular weight may arise in this way. The confusion may be compounded if the same system 
is investigated using a different membrane material. It is conceivable that another membrane 
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would be permeable to the impurity. This would result in a different apparent molecular 
weight for the colloid. We have approached the issue of impurities from the viewpoint of the 
solvent. Actually, the colloid is more likely to be the source of the impurity since these 
materials are often difficult to purify. We discuss some additional aspects of this problem in 
the sections on average molecular weight (Section 3.3c), charged colloids (Section 3.5b), and 
dialysis (Section 3.6a). 

The membrane is the source of most of the difficulties in osmometry. There is no general 
way to select a membrane material that will be permeable to one component and impermeable 
to another for any conceivable combination of chemicals. Very high molecular weight compo- 
nents are generally more easily retained, however, so we have a slight advantage in this regard. 
The membrane must be sufficiently thin to permit equilibration at a reasonable rate. At the 
same time, it must be strong enough to withstand the considerable pressure differences that 
may exist across it. This problem may generally be overcome., at least in part, by suitable 
mechanical support of the membrane. A more serious problem is the preparation of thin 
membranes that are free from minute imperfections that would constitute a “leak” between 
the two compartments. Such a leak would totally invalidate the experimental results. One 
peculiarity of membranes is their tendency to  display what is known as an asymmetry pressure; 
that is, an equilibrium pressure difference may exist across a rnembrane even when there is 
solvent on both sides. This must be measured and subtracted as a “blank correction.” 

Equilibrium osmometry is a thermodynamic phenomenon. As such, it makes no differ- 
ence what mechanism the membrane uses to retain the solute, nor do we learn anything about 
the mechanism from equilibrium studies. It is easy to visualize that some solutes, especially 
those in the colloidal size range, are retained by a sieve effect; that is, the molecules are 
simply too large to pass through the pores in the membrane mai:erial. Another possibility is a 
mechanism by which the membrane displays selective solubi1it:y. This means that the mem- 
brane dissolves the solvent but not the solute. In this way the solvent can pass through the 
membrane, while the solute is retained. An analogous mechanism for charged particles may 
arise by the membrane repelling (and thus retaining) particles of one particular charge. 

A great many different materials have been used in osmotic pressure experiments. Various 
forms of cellophane and animal membranes are probably the most common membrane materi- 
als. Various other polymers, including polyvinyl alcohol, polyurethane, and polytrifluorochl- 
oroethylene, have also been used along with such inorganic substances as CuFe(CN), precipi- 
tated in a porous support. 

Once a suitable membrane and solvent are selected, an experimental arrangement must be 
devised that measures the equilibrium pressure under isothermal conditions. Many variations 
in apparatus design have been studied. Two particularly instructive pieces of apparatus are 
shown in Figure 3.3. The assembly shown in Figure 3.3a consists of an inner solution compart- 
ment with a relatively large opening at the membrane end and a capillary at the small end. The 
entire solution chamber is then immersed in a tube containing the solvent. Once assembled, 
the entire apparatus is placed in a constant temperature bath for equilibration. 

Another osmometer design is shown assembled in Figure 3.3b and in detail in Figure 3 . 3 ~ .  
The membrane is pressed between two grooved faces that contain solvent on one side and 
solution on the other. The grooves are attached to filling tubes and to capillaries in which the 
pressure head develops. This apparatus permits a large contaci: area between liquids with a 
minimum volume of liquids involved. 

Several times in this discussion we have noted the importance of experimental conditions 
that permit as rapid an equilibration as possible. The implication of these remarks is that 
osmotic equilibrium is reached slowly. In some cases as much as one week may be required for 
equilibrium to be achieved. To  shorten this time, procedures based on measuring the rate of 
approach to equilibrium have been developed. The osmometer of Figure 3.3b is especially 
suited for this procedure. 

In successive runs, the capillary on the solution side of the membrane is filled with 
solution to some initial setting that will be above or below the equilibrium location of the 
meniscus. At various times after the initial settings, the height of the liquid column is mea- 
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FIG. 3.3 Two types of osmometers: (a) the solution compartment is submerged in solvent. 
(Adapted from D. M. French and R. H. Ewert, Anal. Chem., 19, 165 (1947)); and (b) the solution 
and solvent occupy grooves on opposite faces of the central unit, as shown in detail in (c) (Adapted 
from R. M. Fuoss and D. J. Mead, J. Phys. Chem., 47, 59 (1943)). 

sured. It is found that the ascending and descending branches of the curve converge to the 
same point - a value that equals the equilibrium osmotic pressure. This is shown in Figure 3.4. 
The rate at  which equilibrium is achieved decreases as equilibrium is approached. Therefore it 
is desirable to bracket the true value as narrowly as possible to take full advantage of this 
approach-to-equilibrium extrapolation procedure. With some judicious planning, the time for 
an osmotic experiment may be shortened considerably by this dynamic method. 

Once equilibrium has been reached, the height difference between the two liquid surfaces 
is all that remains to be measured. The primary factor to note here is that capillaries are used 
to minimize the dilution effects. This means that corrections for capillary rise must be taken 
into account unless the apparatus allows the difference between two carefully matched capil- 
laries to be measured. We discuss capillary rise in Chapter 6, Sections 6.2 and 6.4. Finally, 
there is an extremely important practical reason, in addition to the theoretical requirement of 
isothermal conditions, for good thermostating in osmometry experiments. The apparatus 
consists of a large liquid volume attached to a capillary and therefore has the characteristics of 
a liquid thermometer: The location of the meniscus is quite sensitive to temperature fluctua- 
tions. 

3.3b Measurement of Molecular Weight Using Osmometry 

We now illustrate the use of the equations developed in Section 3.2 for interpreting osmotic 
pressure data. Figure 3.5 shows examples of two plots of r /RTc  versus concentration. In 
Figure 3.5a the data all describe different molecular weight fractions of the same solute, 
cellulose acetate, in acetone solutions. Since the lines in this plot all have essentially the same 
slope, B must be the same for each. 

Figure 3.5b shows data for a sample of nitrocellulose in three different solvents. All show 
the same intercept corresponding to a single molecular weight as required. Note, however, that 
the slopes are different, including even a negative slope, indicating that wide variations in B 
are possible. We examine the factors that determine B in Section 3.4. 

Example 3.1 considers the molecular weights of the polymers in Figure 3.5 in terms of 
Equation (35). 
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FIG. 3.4 Data showing the approach to osmotic equilibrium from initial settings above and below 
the equilibrium column height. (Adapted from R. U. Bonnar, M. Dimbat, and F. H. Stross, 
Number Average Molecular Weights, Wiley, New York,  1958.) 

* * *  

EXAMPLE 3.1 Molecular Weights from Osmotic Pressure Measurements. To what molecular 
weights do the limiting reduced osmotic pressures obtained from Figure 3.5 correspond? The 
data in Figure 3.5 are presented in such a way that unit problems do not enter the picture. We 
are not usually so lucky! Consider some possible combinations of units for T, V ,  and R that are 
compatible with the units of the ordinate in Figure 3.5. 

Solution: According to Equation (35), the molecular weights of the various polymers are simply 
the reciprocals of the limiting reduced osmotic pressures in the units that have been used for 
the ordinate in Figure 3.5, namely, mole g -’, Therefore 

I J  
asJ 

FIG. 3.5. Plots of r/RTc versus concentration: (a) various cellulose acetate fractions in acetone 
(data from A. Bartovics and H. Mark, J.  A m .  Chem. Soc., 65, 1901 (1943)); and (b) nitrocellulose 
in three different solvents (data from A.  Dobry, J.  Chem. Phys., 32, 50 (1935)). 
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Part in 
Figure 3.5 

( T / R T C ) ~  - I O - ~  (mote g -’) M (g mole -’) 

1.92 
1.59 
1.09 
0.79 
0.90 

52,000 
63,000 
92,000 

1 26,000 
11 1,000 

Osmotic pressures may be expressed in any of the usual pressure units (and then some!) and 
volumes are often-but not always-expressed in cubic centimeters (milliliters); compatible 
units of R must be chosen: 
If T is in atm and V in cm3, use R = 82.05 atm cm3 K -’ mole -’. 
If T is in torr and V in em3, use R = 62,360 torr em3 K -’ mole -’. 
If T is in mm of solution and V in cm3, use R = 62,360 (pHS/pSoln) mm cm3 K - ’  mole -’, where 

If T is in dyne cm - 2  and Vin cm3, use R = 8.314 
If T is in N m - 2  and V in m3, use R = 8.314 J K - ’  mole-’ 
If the masses (in c) are expressed in g and kg, respectively, in the last two situations, then the 
units of the ordinate reduce to cm2 s P 2  and m2 s - ~ ,  respectively, which do not bear much 
resemblance to molecular weight units. Note, however, that the acceleration of gravity in appro- 
priate units can be factored out of these latter quantities to leave units of cm and m, respec- 

the p’s are densities. 
10’ erg K - ’  mole -’. 

tively, for reduced osmotic pressure. 
* * *  

3 . 3 ~  Osmometry and Polydispersity of Molecular Weights 

As we saw in Section 1.5c, the condition of polydispersity is quite normal with colloidal 
solutes. Our discussion of osmometry has shown that it is possible to evaluate the molecular 
weight of a colloidal solute by osmotic pressure measurements. Next we consider the fact that 
the sample on which such a measurement is made is more than likely polydisperse and that the 
molecular weight obtained from such an experiment is some average quantity. The objective 
of this section is to show that it is the number average molecular weight that is determined in 
an osmotic pressure experiment on a polydisperse system. For the purposes of this demonstra- 
tion, the solution is assumed to  be ideal. (Notice, however, that, in the case of surfactant 
aggregates, i.e., micelles, discussed in Chapter 8,  osmometry can lead to weight average 
molecular weight M,,, as shown by Puvvada and Blankschtein in 1989.) 

Experimental results from a polydisperse system may be related as follows: 

where T~~~ and cexp represent the experimental osmotic pressure and concentration, respectively, 
and M is the average molecular weight. It is the method of averaging in Equation (37)  that we 
seek to  determine. This relationship applies to the observable quantities. Precisely the same 
equation may be written, however, for each of the molecular weight fractions of the solute, 
designated here by the subscript i: 

clR T 
T, = - 

Ml 

Two additional relationships are fairly evident. The experimental osmotic pressure is the sum 
of the pressure contributions of the individual components: 

*exp = C ~i 

I 

and the experimental concentration is the sum of the concentrations of the components: 

(39) 
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Next, Equations (37)-(40) can be combined as follows: 

Equation (41) may be simplified to yield 

This result still fails to resemble any of the standard averages listed in Table 1.8. However, if 
we introduce the expression 

we obtain 

(44) 

Equation (44) shows the average molecular weight determined from osmometry to be the 
number average molecular weight as defined by Equation (1.14). 

This same conclusion may also be reached by the following argument. The product n,M, 
in Equation (43) equals the weight of component i in the solution; the total weight of solute in 
the solution equals C,n,hll. The experimental osmotic pressure depends on and therefore mea- 
sures the total number of moles of solute C,n,. The ratio of the total weight to the total number 
of moles of solute defines the number average molecular weight. 

Any experiment that “counts” the number of molecules in ,a given weight of polydisperse 
material can be interpreted in terms of a number average molecular weight. All of the colliga- 
tive properties have this as a feature of their shared thermodynamic origin. Another technique, 
known as end-group analysis, may be used to determine the molecular weight of certain 
polymers. Example 3.2 makes it clear that this too yields a number average molecular weight 
for polydisperse samples. 

( 1 W  C,nM, - WMI - 
M = -  - 

( 1/V)  Cl (nM,/MJ C,n, 

EXAMPLE 3.2 Degree of Polymerization and Molecular Weight Distribution. Polycaprolac- 
tam-otherwise known as nylon 6-with a degree of polymerizatiion n has the following molecu- 
lar structure: H,N(CH,),CO[ NH(CH,),CO],-,NH(CH,),COOH. A 1.06-9 sample of this material 
is dissolved in an appropriate solvent and titrated with an alcoholic KOH solution of normality 
0.0250 N. Exactly 5.00 ml of base are required to neutralize the carboxyl groups of the sample. 
What is the molecular weight of the sample? What is n? Criticize or defend the following 
proposition: This method can only be used for molecules that contain just one of the analyzed 
functional groups per molecule. 

Solution: This problem is really no different from the molecular weight determinations of un- 
known acids that are often conducted in general chemistry lab courses. What is important to 
recognize is that there is one carboxyl group per molecule or one equivalent per mole. Therefore 
the molecular weight of the polymer is given by 

.-.- 103mEq Eq = 8480 g mole-’ 
- 1.06 g M = -  

(5.0)(0.025) mEq Eq 1 mole 
This is the same average molecular weight that would be determined by an osmotic pressure 
experiment on the same sample. Since the molecular weight of the repeat unit is 113 g mole -’, 
the degree of polymerization n = 8480/113 = 75. 

The proposition recognizes the importance of knowing the number of analyzed groups per 
molecule, but incorrectly requires that there be only one such group. Some polymers might 
contain the same functional group at both ends of a linear chain. In this case there are 2 Eq/ 
mole. A Y-shaped molecule could have three such groups, an X:-shaped molecule four, and so 
forth. These last cases would have 3 and 4 Eq/mole, respectively. The number of groups does 
not matter as long as that number is known. II 

* * *  
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That end-group analysis and osmometry give number averages for polydisperse samples is 
simply because the number of solute molecules is counted in each case. We see in Chapter 5 
that light scattering effectively weighs the molecules rather than counts them (see, for example, 
Section 5.4d). Hence light scattering gives a weight average value for M .  The fact that osmotic 
pressure “counts” solute particles has some interesting consequences for charged colloids, as 
we see in Section 3.33. 

3.4 STATISTICAL FOUNDATIONS OF SOLUTION THERMODYNAMICS 
By analogy with Equation (28), we might expect the second virial coefficient to depend on the 
size and/or the interactions of the molecules in solution. Although this expectation is basically 
correct, we must not take the form of Equation (28), a gas equation, too literally in discussing 
solutions. Furthermore, it must be recalled that, in gases, only interactions between the mole- 
cules of the gas are possible. In solution, we may consider solvent-solvent, solute-solute, and 
solvent-solute interactions. This is a good reminder that the analogy with gases cannot be 
pushed too far. 

By itself, classical thermodynamics provides us with no  information on the molecular 
origin of the second virial coefficient, which is merely a phenomenological coefficient from 
an exclusively thermodynamic viewpoint. Statistical thermodynamics undertakes the task of 
providing molecular interpretations to such quantities. The added complication is that the 
statistical thermodynamic approach requires the use of models, and models inevitably over- 
simplify things. Nevertheless, we have arrived at  that point at  which we add insight only to the 
extent that we do  some modeling. Thus, for example, we can learn something about solute- 
solute interactions and solute-solvent interactions from experimental B values, but only if we 
are willing to accept the models on which these interpretations are based. Toward this end, it 
is important to know what goes into these models. A model that is very plausible in one system 
may not make any sense for another. 

In Section 3.4a we examine a model for the second virial coefficient that is based on the 
concept of the excluded volume of the solute particles. A solute-solute interaction arising from 
the spatial extension of particles is the premise of this model. Therefore the potential exists for 
learning something about this extension (i.e., particle dimension) for systems for which the 
model is applicable. In Section 3.4b we consider a model that considers the second virial 
coefficient in terms of solute-solvent interaction. This approach offers a quantitative measure 
of such interactions through B. In both instances we only outline the pertinent statistical 
thermodynamics; a somewhat fuller development of these ideas is given in Flory (1953). 
Finally, we should note that some of the ideas of this section are going to reappear in Chapter 
13 in our discussions of polymer-induced forces in colloidal dispersions and of coagulation or 
“steric” stabilization (Sections 13.6 and 13.7). 

3.4a Excluded-Volume Effect 
Before considering how the excluded volume affects the second virial coefficient, let us first 
review what we mean by excluded volume. We alluded to this concept in our model for 
size-exclusion chromatography in Section 1.6b.2b. The development of Equation (1.27) is 
based on the idea that the center of a spherical particle cannot approach the walls of a pore 
any closer than a distance equal to its radius. A zone of this thickness adjacent to the pore 
walls is a volume from which the particles-described in terms of their centers-are denied 
entry because of their own spatial extension. The volume of this zone is what we call the 
excluded volume for such a model. The van der Waals constant b in Equation (28) measures 
the excluded volume of gas molecules; for spherical molecules it equals four times the actual 
volume of the sphere, as discussed in Section 10.4b, Equation (10.38). 

3.4a. I 
A point of entry for statistical considerations into thermodynamics is the Boltzmann entropy 
relationship 

Statistical Entropy and Entropy of Mixing: Definitions 

S = k,ln Q (45) 
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in which Q is called the thermodynamic weight or the partition function and k,  is the Boltz- 
mann constant, which is replaced by R when we are working on a “per mole” rather than a 
“per molecule” basis. The thermodynamic weight is the tricky part of Equation (45); it counts 
the number of ways a particular state can come about. On a qualitative basis, chemists learn 
to use this relationship almost intuitively. One associates higher entropy with states that are 
more disordered, and disordered states can come about in a larg,er number of ways than states 
of higher order. The familiar analogy that is often used here is to note that there are more 
ways for a deck of cards to exist as “shuffled” than as “arranged by suits.” We can readily see 
that Equation (45) encompasses the third law of thermodynamics: There is only one way to 
organize a perfect crystal at absolute zero, hence Q = 1 and S == 0. 

Entropy changes can also be developed in terms of Equation (45): 

Our interest is in the entropy of mixing-that is, AS for 1 + 2 -+ mixture-which may be 
written 

AS,,, = k, In (&) (47) 

by virtue of Equation (46). Note that we use the subscripts m for the mixing process and mix 
for the mixture itself. What remains to be done is to count the ways in which N I  molecules of 
component 1 and N2 molecules of component 2 exist when mixed together or, more specifi- 
cally, the factor by which this number exceeds the number of w,ays the separate molecules can 
exist. 

The derivation we follow proceeds through four stages: 

1. 
2. 

3 .  

4. 

3.4a.2 

We must devise an expression for Q,,,,,. 
From Q,,,,, a straightforward application of Equation (45) is required to obtain an 
equation for S,,,,. It takes a bit of additional argument to convert this to an expression 
for AS,l,. 
A single approximation will enable us t o  go from ASln to AG,,, but the implications of 
this assumption deserve some comment. 
Some mathematical manipulations convert AG,,, into an expression for p, - p, ’ ,  
which is directly related to 7r through Equation (21). 

Development of Partition Function 

We begin by considering the number of ways a solute molecule of excluded volume U can be 
placed in an otherwise empty volume V. Suppose we imagine V t o  be sectioned off a number 
of sites (say, N J ,  each of which can accommodate the volume U. Since V is intended to  
represent the volume of the solution - a macroscopic quantity -- and U is a molecular parame- 
ter, the number of such sites is large. The first solute molecule to enter V can occupy any one 
of these sites, and we represent by o, the number of possible placements for the first solute 
molecule. Because the total volume is partitioned into these site:;, it follows that 

w I  = KV = N ,  

where K is an appropriate proportionality constant, equal to (]./U) in our present model. (In 
general, K may differ from l / u  since small amounts of unfilled [unfillable] space may exist 
even when the N, units of volume l / u  each are closely packed,. i.e., N,u can be less than the 
total volume V.  Therefore, for the sake of generality, we develop the equations here in terms 
of K also, instead of restricting ourselves to K = l / u  only.) 

The second molecule to be placed can go into any one of the remaining sites, hence the 
number of ways to place the second molecule is given by 

(49) ~2 = K ( V  - U )  = ( N ,  - 1) 
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For the third molecule, this quantity is given by o3 = K( V - 2u), and for the j th  it is 

U; = K [V - (j - 1) U] = [Ns - ( j  - l ) ]  (50) 

The number of ways of placing the first, the second, the third, and so on to the ith is 

(51) 
N, ! 

Gl a ~ 1 ~ 2 ~ 3 .  . . U ,  = N, (N, - 1)  (N, - 2)  . . . [N, - ( i  - l ) ]  = (N, - i)! 

We have written Equation (51) as a proportion rather than as an equality since the given 
expression actually overcounts the number of possible placements. I f  there is a total of N,  
solute molecules, then there are N,! different permutations of these molecules, and Equation 
(51) should be divided by N,! because of the interchangeability of the molecules. Incorporating 
this idea and Equation (50) into Equation (5 1) gives 

N 2  

1 N, ! 
cl = - - r I K [ V -  ( j  - l ) u ]  = 

NI! ] = I  N,! (N, - N,)! 
where II represents the product of terms. Letting i = j - 1 allows Equation (52) to be written 
more concisely as 

N - I  N z -  I 

After the N2 solute molecules are placed, all remaining sites are filled with solvent molecules. 
Since our model is specifically interested in the solute-solute excluded-volume effect, we may 
say that there is only one way for the solvent molecules to be placed. Although this overlooks 
details about the solvent, we see presently that such details would eventually be subtracted, so 
we lose nothing by this simplification. Equation (53) therefore gives the expression for Q,,,, we 
sought as the first step of our derivation. 

3.4a.3 Expression for Entropy of Mixing 
Substituting Equation (53) into Equation (45) gives a statistical expression for the solute 
contribution to the configurational entropy of the mixture: 

N - I  

The summation replaces the product in going from Equation (53) to Equation (54) since we 
are dealing with logarithms in the latter. Note that the configurational entropy refers explicitly 
to the entropy associated with the mixture itself; the internal entropy of the molecules them- 
selves is clearly not included. Next a series of mathematical manipulations will transform 
Equation (54) into a more useful form: 

1. Divide the summation in Equation (54) into two terms: 

2 .  

3. 

Note that C In (KV)  = N2 In ( K V )  since there are N ,  identical terms in the summa- 
tion. 
Since U/ V < < 1 as already noted, In (1 - iu/ V) can be expanded as a series (see 
Appendix A)  with only the leading term retained to give 

4. The sum of integers from 0 t o y  is y(y + 1)/2; hence 
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N, - I 

since N, is large. 
We can change the equation from dealing with numbers of molecules (N) to numbers 
of moles ( n )  by dividing both sides by Avogadro’s nurnber NA and writing kBNA = R. 

5 .  

Applying these manipulations to Equation (54) gives 

s,,,,,- 1 1 U 
- -In N2! + n, ln(KV) - - N A  ni- - 

R N A  2 V ( 5 5 )  

Replacing V by the mole-weighted sum of the partial molar volumes, as was done in develop- 
ing Equation ( 3 1 ) ,  we write 

1 1 N,niu 
In N,! + n, ln[K(n,V, + n , V , ) ]  - - -- Sn11, - 

R NA 2 n , V ,  + n2V2 
- -__ - 

If we set n, equal to  zero in Equation (56), the physical system described corresponds to  pure 
solvent, and the equation reduces to S ,  = 0. If we set n, equal to  zero, we are describing pure 
solute, and Equation (56) becomes 

1 NAn, U - 
= n , h K  + In ( n 2 V 2 )  - -In N,! - ~ 

s2 
R N4 2 F2 
- (57) 

Subtracting these expressions for S ,  and S, from S,,,,, gives AS,,,, which was the goal of the 
second stage of our derivation: 

Note that whatever configurational entropy we had attributed to  the solvent would have 
disappeared at this point. 

As outlined above, our next objective is to write an expression for AG,,,. Since AG = [ A H  
- TAS] for a constant temperature process such as this, we can immediately write 

1 n,u 
RT n2 v2 2 n , V ,  + n2V2 2 V ,  

- -I- - N,,,-=z- - -  “n1 := n2 In (n ,V,  +n2V2) - - N , u  I - n: (59) 

by assuming AHm = 0. In making this assumption we imply that the energetic interactions 
between solvent-solvent pairs, solute-solute pairs, and solvent-solute pairs are all the same. 
Thus, removing a solvent molecule from a bulk sample of the liquid and replacing it with a 
molecule of the solute does not involve an enthalpy change. I t  is the introduction of this 
assumption that leaves the excluded volume as the sole contributor to the second virial coeffi- 
cient. In the next section we assume a nonzero value for AH,,, and examine the effect this has 
on B. For now, it is enough to note that the present model attributes solution nonideality 
to molecular size and not to  the energetics of molecular interactions. The model is clearly 
inappropriate for any system in which the molecular interactions are important. 

3.4a.4 
The final stage of our derivation converts Equation (59) to  an expression for ( p ,  - p,) by 
differentiating Equation (59) with respect to  n ,  according to Equation (1) :  

Chemical Potential, Osmotic Pressure, and Second Virial Coefficient 

Equation (21) shows how to convert Equation (60) into an expression for osmotic pressure: 
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Since n2/V  = c/M2, Equation (61) may be written in practical concentration units: 

Comparing this result with Equation (34) shows that 

1 NA U 

2 M 2  
B = -- 

according to this model. 
The essence of this model for the second virial coefficient is that an excluded volume is 

defined by surface contact between solute molecules. As such, the model is more appropriate 
for molecules with a rigid structure than for those with more diffuse structures. For example, 
protein molecules are held in compact forms by disulfide bridges and intramolecular hydrogen 
bonds; by contrast, a randomly coiled molecule has a constantly changing outline and imbibes 
solvent into the domain of the coil to give it a very “soft” surface. The present model, 
therefore, is much more appropriate for the globular protein than for the latter. Example 3.3 
applies the excluded-volume interpretation of B to an aqueous protein solution. 

* * *  

EXAMPLE 3.3 Excluded Volume of Bovine Serum Albumin from Osmotic Pressure Measure- 
ments. A plot of nlc versus c for an aqueous solution of the bovine serum albumin molecule at 
25°C and pH = 5.37 is shown in Figure 3.6. The molecule is known to be nearly spherical and 
uncharged at this pH. Evaluate the molecular weight and the excluded volume of this protein 
from the intercept and slope of this line, 0.268 torr (g kg- ’ ) - ’  and 1.37 - 1 O P 3  torr kg2 g-2, 
respectively. From the particle mass and volume, estimate the partial specific volume of the 
solute in solution. The specific volume of the unsolvated protein is about 0.75 cm3 g -l; does 
the solute appear to be solvated? 

0.50 

0.40 

0.30 

0.20 

I 

I I 

FIG. 3.6 Plot of T / C  versus concentration for bovine serum albumin in 0.15 M NaCl at pH 7.00 
and 5 . 3 7 .  (Adapted from G. Scatchard, A. C. Batchelder, and A. Brown, J .  Am.  Chern. Soc., 68, 
2320 (1946).) 
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Solurion: First, convert to SI units, assuming the density of the solution to be 1 .O g cm - 3 .  

For the intercept 

= 35 ,6Nm-2(kgm .,)-, 0.268torr(g kg- ’ ) - ’ .  
760 torr 

For the slope 

1.01.10’Nm‘‘ 10 - ’m  10’9 = 0,812Nm4kg-z . -  1.37.10-‘torr kg’g-*. 760 torr 
kg ’f’(Tg1’ 

Calculate the molecular weight by Equation (35): 

M = RT(a/c), ’ = (8.314)(298)/35.6 = 69.6 kg mole ’ = 69,600 g mole - ’  
The mass per particle is obtained by dividing by NA: 

69.6/6.02 . 1023 = 1.16 . 10 2p kg molecule ’ 
Divide the slope by RT to get 8: 

0.182/(8.314)(298) = 7.35 . 10.-5 m:’kg -‘mole 

Use Equation (63) to calculate the excluded volume: 

Since the actual volume of a spherical particle is one-quarter the excluded volume, the volume 
of the molecule is 2.95 . 10 - 2 5  m3 molecule-’. 

The partial specific volume is given by the ratio of the molecular volume to the molecular 
mass: 

2.95. 10 -25/1.16. 10 .22  = 2.54. 1 0 - 3 m 3 k g ’ - ’  = 2.54cm3g - ’  
Comparing this with the nonsolvated value of 0.75 cm3 g - ’  definitely suggests that the particle 
is hydrated. 

Note that the volume of the spherical molecule may also be converted to a molecular 
W radius, which equals 4.1 1 nm for this molecule. 

t t t  

The second set of data  points in Figure 3.6-measured for the same solute but at a pH = 
7.00-shows a steeper slope and therefore a larger B value. I t  would be incorrect to analyze 
this slope by Ihe procedure used in the example above, however. The reason for this is that the 
protein acquires a charge in going from p H  5.37 to 7.00. The charge must be explicitly taken 
into account 1 0  interpret B in this case. We discuss this in Section 3.5b. I t  is pertinent to note, 
however, that charged particles require counterions to give them electrical neutrality. These 
counterions occupy a region in thc solution that surrounds the charged colloid; we describe 
them as setting up  a n  ion atmosphere around the central particle. It makes sense that the 
particle plus its ion atmosphere should have a larger excluded volume than the uncharged 
particle, which entrains no ion atmosphere. 

3.4b Inclusion of Energetic Interactions: Flory-Huggins Theory 

I n  many colloidal solutions the solute is best described as a random coil in which the domain 
of the molecule contains both polymer segments and  solvent molecules. Vinyl-type synthetic 
polymers in organic solvents are especially well suited for this representation. Depending o n  
the energetics of the interaction between solvent molecules and polymer chain segments, the 
solvent may be imbibed into the coil domain to a greater or lesser extent, and the spatial 
extension of the chain depends on these interactions, as well as  o n  the size of the molecule 
itself. A solvent that swells the coil dimensions is called a good solvent, and one that causes 
the coil t o  shrink is called a poor solvent. The former situation arises when solvent-solute 
contacts are  favored, and the latter when solute-solute contacts are  favored. The “goodness” 
of a solvent for a particular polymer depends not only on the nature of the species involved, 
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but also on the temperature. Generally speaking, lowering the temperature causes a decrease 
in solvent goodness. 

In this section we look at a statistical model for a solution that allows for both the random 
coil geometry of the solute molecule and the variability of interactions between the solute and 
different solvents. We merely sketch the general outline of the theory; in the next section we 
examine the implications of this model for interpreting the second virial coefficient as a 
measure of solvent goodness. The approach we adopt is generally known as the Flory-Huggins 
theory, after P. J. Flory and M. L. Huggins, whose independent efforts merged in the final 
result. Flory was awarded the Nobel Prize in 1974 for his numerous contributions to polymer 
chemistry. 

3.4b. I Entropy of Mixing 

The Flory-Huggins theory begins with a model for the polymer solution that visualizes the 
solution as a three-dimensional lattice of N sites of equal volume. Each lattice site is able to 
accommodate either one solvent molecule or one polymer segment since both of these are 
assumed to be of equal volume. The polymer chains are assumed to be monodisperse and to 
consist of n segments each. Thus, if the solution contains N I  solvent molecules and N2 solute 
(polymer) molecules, the total number of lattice sites is given by 

N = N I  + nN2 (64) 

Without spelling out the geometry of the lattice explicitly, we further assume that each site in 
the lattice is surrounded by z neighboring sites, making z the coordination number of the 
lattice. 

On the basis of this model, an expression for AS,, can be derived. We will not go through 
the details of the derivation, but merely note the following similarities and differences between 
this derivation and the one that leads to Equation (58) for the excluded-volume model: 

Instead of counting the ways to place solute molecules, this derivation counts the 
ways to place solute segments. 
The placement of successive segments is subject to a restriction that did not arise in 
the previous derivation, namely, segments from the same chain must occupy adjacent 
lattice sites because they are covalently bonded together. 
The derivation considers the number of ways a, of placing each of the n segments in, 
say, the ith solute molecule, then goes on to count the number of ways of scaling this 
up for N2 solute molecules. The thermodynamic probability of the mixture Cl,,,,, results 
from these steps. 
The entropy of the mixture is calculated from this by the Boltzmann entropy equa- 
tion, Equation (45). By separately letting N2 and N ,  equal zero, the configurational 
entropies of the solvent and the solute, respectively, are obtained from S,,,,,. Finally, 
by subtracting S ,  and S, from S,,,,, an expression is obtained for AS,,,. 

Except for the complication of positioning connected segments in adjacent sites, the general 
outline of this derivation clearly parallels the previous derivation. 

For a mole of solution-i.e., N, + N2 = NA-the theory outlined above results in the 
following expression for AS,,,: 

The ratios N l / N A  and N*/NA are mole fractions of the two components since NA is the total 
number of molecules in a mole of solution. On the other hand, N is the total number of lattice 
sites and N ,  and nN, are the numbers of sites occupied by solvent and solute, respectively. 
Since all of the lattice sites have equal volumes, the ratios in the logarithms are the volume 
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fractions occupied by the two components. Letting x, be the mole fraction of component i and 
4, the volume fraction of that component, Equation ( 6 5 )  can be written 

AS, = R[x ,  In 4, + x, In 4J 

Note that 4, -+ x, as n -+ 1; that is, Equation ( 6 6 )  reduces to the expression for the entropy 
of mixing for an ideal solution in the event that the solute molecule is no larger than the 
solvent molecule. 

3.46.2 Energetic Interactions and Enthalpy Change Due to ]Mixing 

At this point we could proceed as in the previous derivation of an expression for B: Evaluate 
AG,,,, ,U,,, and x by setting AHm = 0. Doing this, however, would sacrifice this model's ability 
to deal with different interaction energies between solvent and solute segments. Hence our 
next objective is to find an expression for A H ,  in terms of the lattice model we have developed. 
Once this is done, we can combine AS, and AH, into an expression for AG,,, and then proceed 
as above. 

To  do this we assign an energy of interaction w, ,  to a paiir of solvent molecules and w,, to 
a pair of polymer segments. The latter arises from the intermolecular forces between segments 
and not from the covalent bonds between them. In the same fashion, we define w,? to be the 
energy of the solvent-segment interaction. 

As noted above, a lattice site in the polymer solution has z nearest neighbors that may be 
occupied by either solvent molecules or solute segments. If  4, is the volume fraction of the 
solution occupied by species i ,  then we assume that this fraction also applies to the z sites that 
adjoin the specific site under consideration. Hence any site is surrounded, on the average, by 
z4, solvent molecules and 24, chain segments. I f  the central site is occupied by a solute 
segment (component 2), then the intermolecular forces between this segment and its neighbors 
contribute ( ~ 4 ~  w,, + z ~ , w Z , )  to the energy of the system. Since the lattice consists of N sites 
of which 4,N are occupied by solute segments interacting in the manner just described, we 
write [(1/2)N~,(z~$,w,, + Z ~ ~ W , , ) ]  for the total interaction energy of all such segments. The 
factor 1/2 enters the expression because each pair of interacting species is counted twice by 
this procedure. If  the lattice is completely filled with polymer segments, then the interaction 
energy is simply given by [( 1 /2)z+,Nw,,]. 

Precisely the same series of steps gives the energy contribution by sites occupied by solvent 
molecules: 

1.  The contribution of interactions 

2. The number of sites occupied by 
3. The total energy contribution by 
4. I f  the lattice is completely filled 

( Z 4 , W I l  + Z 4 , W I d .  

( 1 / ~ ) Z $ , N W ,  1. 

with its neighbors made by each solvent molecule is 

solvent molecules is 4, N. 
all solvent molecules is (l/2)Nq51(z41wil + ~ 4 2 ~ ~ ~ ) .  
with solvent, then the interaction energy is given by 

Now consider the change in interaction energies that accompanies the mixing process 1 + 
2 -+ mixture. We must total the interactions of all chain segments and all solvent molecules to 
obtain the interaction energy of the mixture and then subtract from this the interactions 
corresponding to pure solute and pure solvent. Assembling the required values from above, 
we write 

Since + 4: = 1, Equation ( 6 7 )  can be rearranged as 
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In terms nf pirtvise interactions, the solution process can be represented 

(1 ,1)  + (232) -+ 2(1 ,2)  

AW = 2 ~ , 2  - w,,  - ~ 2 2  

(69) 

(70)  

and, following the usual thermodynamic notation, we can write Aw for the process as 

Combining Equations (68) and (70)  gives 

The forces between molecules that we measure by these w’s are (usually) forces of attraction 
and, by convention, are represented by negative numbers. Thus when 1,2 attractions are 
stronger than 1 , l  and 2,2 attractions, Aw and AH,, are both negative. Since a negative enthalpy 
of mixing makes a favorable contribution to a negative value for AG,, this sign convention 
makes sense. Conversely, if the 1 , l  and 2,2 attractions are stronger (more negative), then Aw 
and AH, are positive. The case in which AH,, is zero is called athermal mixing; Equation 
(70)  shows that this corresponds to a situation in which solute-solute, solvent-solvent, and 
solute-solvent interactions are all equivalent in energy. This was assumed to be the case in the 
excluded-volume model for solution nonideality discussed in the last section. 

An additional development of Equation (70 )  can be made by assuming that w , ~  is the 
geometric mean of w,,  and w22. It makes sense that the energy of interaction between unlike 
molecules is somehow related to the homogeneous interactions; this manner of averaging the 
latter has advantages that will be evident below. By assuming w,, = ( w , , w ~ ~ ) ” ~ ,  Equation (70)  
becomes 

This development cannot result in a negative value for Aw or AH,,, and is therefore definitely 
inapplicable for systems in which the solute and solvent display some specific type of interac- 
tion, such as hydrogen bonding. However, when purely physical interactions are involved, 
Equation (72)  has proved to be quite useful. 

The utility of this approach lies in the fact that Equation (72)  describes the mixing process 
in terms of homogeneous interactions, which are readily measured for pure liquids. The heat 
of vaporization, for example, is a liquid property that increases as the strength of intermolecu- 
lar attractions increases. Rather than working with molar heats of vaporization, it is more 
convenient to divide the molar heat by the molar volume to define what is known as the 
cohesive energy density (CED) of a material. As the name implies, the CED measures the 
energy per unit volume that holds the molecules of a liquid together. As such, it is directly 
proportional to the w’s of our discussion and can be evaluated from readily available data. 
Introducing the concept of cohesive energy density into Equation (72)  enables us to write 

r 

Polymers decompose before they evaporate, so it appears that the concept of CED is not 
applicable to these materials. However, by finding a solvent with which a particular polymer 
mixes athermally, we can assign to the polymer by Equation (73)  the same CED as that 
solvent. Thus cohesive energy densities for a number of polymers, as well as low molecular 
weight solvents, have been determined. Table 3.1 lists some representative examples of such 
data. 

Cohesive energy densities can be used on a limited basis to give quantitative meaning to 
the chemist’s rule of thumb, “like dissolves like.” Specifically, the more alike a solvent and a 
polymer are in CED, the more nearly athermal their mixing will be. The more different the 
two are in this property, the more endothermic the mixing process will be. Remember that 
Equation (72)  makes no provision for exothermic mixing. In the next section we see how such 
information might be used. Remember that Equation (71)  is not limited to endothermic 
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TABLE 3.1 
Low Molecular Weight Solvents 

Values of the Square Root of the Cohesive Energy Density for Some Polymers and 

Solvent 
(CED)'l2, 

(cal cm -3)1/2 Polymer 

n-Decane 
Cyclohexane 
Toluene 
Acetone 
Cyclohexanol 
Ethanol 
Methanol 
Water 

6.6 
8.2 
8.9 
9.9 

11.4 
12.7 
14.5 
23.4 

Poly(tetrafluor0 

Polyethylene 
Polystyrene 
Poly(methy1 

methacrylate) 
Polypropylene 
Poly(viny1 chloride) 
Poly(ethy1ene 

terephthalate) 
Poly(acrylonitri1e) 

ethylene) (Teflon) 6.2 
7.7-8.2 
8.5-9.1 

9.1-9.5 
9.2-9.4 
9.7-9.9 

10.7 
12.3-12.8 

Source: H. Burrell in Polymer Handbook, 2d ed., (J. Brandrup and E. H. Immergut, Eds.), Wiley, 
New York, 1975. 

situations. In the next section we use the more general form of AH, to consider the Flory- 
Huggins theory as it applies to the second virial coefficient. 

3.46.3 
Equations (65) and (71), respectively, give AS, and AH, according to the Flory-Huggins 
theory. From these components, AG, can be assembled directly, and by differentiation with 
respect to N I  the Flory-Huggins expression for ( p ,  - py) may be obtained: 

Chemical Potential, Osmotic Pressure, and Second Virial Coefficient 

(74) 
1 

p ,  - py = RTln$ ,  + R T  

It is conventional t o  let 1/2 zAw = xRT, where x is called the Flory-Huggins interaction 
parameter. Note that 1/2 Aw is the energy change per 1,2 pair according to Equation (69); 
therefore, with the coordination number z absorbed, the parameter x measures this in units of 
R T. Finally, Equation (21) establishes the connection between chemical potential and osmotic 
pressure; according to this equation, 

By expressing all volume fractions in terms of the solute, the first term on the right-hand side 
of Equation (75) becomes In (1 - 5b2), which may be expanded (see Appendix A) as ( -$2  - 

&2). With this modification, Equation (75) becomes 

All that remains to  be done to complete our derivation of the ;second virial coefficient in terms 
of the Flory-Huggins theory is convert volume fractions into practical concentration units. 
First, we can express the volume fraction of the solute in terms of partial molar volumes: 

where the approximate form applies to dilute solutions. If WE: recall Equations (24) and (32), 
Equation (77) may be written 
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Introducing practical concentration units t o  Equation (78), the Flory-Huggins theory yields 

1 I 

The last simplification is possible because the solute molecule is n times larger than a solvent 
molecule, and the same size relationship applies to the partial molar volumes. According to 
Equation (79), the second virial coefficient is given by 

1 

Since x measures Aw for the process described by Equation (69), we see that Equation (80) 
accomplishes what we set out to do, namely, relate the second virial coefficient to differences 
in the interaction energies between various pairs of molecules. 

3.4b.4 

One of the first things to observe about Equation (80) is the fact that it allows the second virial 
coefficient t o  be positive, negative, or zero, depending on whether x is less than, greater than, 
or equal to 1/2, respectively. Figure 3.5b reveals that positive and negative slopes are both 
observed in plots of reduced osmotic pressure versus concentration. We have more to say 
about this. For now, it is enough to note that under conditions with x = 1/2, B = 0 and 
solutions that are not too concentrated behave ideally. This is an advantage from the point of 
view of molecular weight determination since a polymer-solvent system that meets this require- 
ment satisfies the van? Hoff equation. This means that the molecular weight can be deter- 
mined from a single solution without the need to do a series of experiments and extrapolate to 
infinite dilution. 

The condition of B = 0 also marks the demarcation between good and poor solvent 
conditions. Positive values of the second virial coefficient characterize good solvents, and 
negative values characterize poor solvents. This state of affairs - which is usually called the 8 
condition -is very important in polymer chemistry. We encounter it again in our discussions 
of viscosity (Chapter 4) and light scattering (Chapter 5). Before examining the significance of 
the 8 condition any further, let us first consider the two states on either side of it. 

A positive B value indicates a good solvent. According to Equation (80), this is guaranteed 
for negative (or small positive) values of x. Since x is proportional to Aw and AH,,,, a positive 
value for the second virial coefficient corresponds to an exothermic (or small endothermic) 
enthalpy of mixing. Conversely, a negative value for the second virial coefficient corresponds 
to a positive (or small negative) value of x and an endothermic (or small exothermic) enthalpy 
of mixing. Classifying the solvent as good or poor on the basis of the slope of a plot of T / C  

versus c is therefore consistent with the contribution of AH,,, to favorable mixing. 
The Flory-Huggins expression for AG,, can be related to other quantities besides osmotic 

pressure. One of the things that can be done is to calculate solubility limits, and therefore 
miscibility diagrams, for various polymer-solvent systems. Although we shall not pursue this 
in detail, it is of interest to note that this approach leads to the conclusion that x = 1/2 is a 
critical value for this parameter; that is, the critical point on a miscibility diagram corresponds 
to x = 1/2 for a polymer of infinite molecular weight ( n  = 00). What is significant about 
this is the following: Suppose that we could somehow adjust the “goodness” of a particular 
solvent-polymer system, decreasing this quality from an initially good state. At x = 1/2 the 
solvent would go from good to poor for a polymer of infinite molecular weight, and that 
particular molecular weight fraction would undergo phase separation. A polymer of somewhat 
lower molecular weight does not undergo phase separation until the value of x is somewhat 

Solvent Goodness and Theta Temperature of Polymer Solutions 
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larger than 1/2. The shorter the polymer chain, the more x must exceed 1/2 to reach the 
threshold of miscibility. Remember that x > 1/2 corresponds to “poor” solvent conditions in 
terms of the second virial coefficient. The extension of these ideas to miscibility limits shows 
that systems of this sort are on their way to phase separation. ]It is only because the molecules 
have finite molecular weights that they remain in solution at all. 

In the remarks above we considered adjusting solvent goodness as if it were an imaginary 
process. In fact, it can be carried out physically in two different ways for a particular polymer 
solution. One way is to lower the temperature of the system; another way is to dilute the initial 
system with a poor solvent. An application such as this is one in which the cohesive energy 
densities listed in Table 3.1 can be put to use. The utility of changes in solvent goodness lies in 
the possibility of fractionating a specimen with respect to molecular weight by such a varia- 
tion. Since synthetic polymers are almost always highly polydisperse, the addition of a poor 
solvent to a solution of the polymer (or lowering its temperature) causes the highest molecular 
weight fraction to separate out of solution. The separated phase can be physically removed 
and the process repeated until a series of fractions is obtained. The same thing can be accom- 
plished by temperature variations for a fixed polymer-solvent system. 

Since the goodness of a polymer-solvent system can be adjusted by changing the tempera- 
ture, it is desirable to recast Equation (80) in a way that shows this effect explicitly. Toward 
this end, we define the following identity to introduce a temperature variable into Equation 
(80): 

(; - .) = \k ( l  - W T )  

We discuss this more fully below, but one thing to note immediately is that T = 8 describes 
the same state as described by x = 1/2, namely, the condition of B = 0. It is apparent that 8 
is a temperature - variously known as the theta temperature or the Flory temperature. Intro- 
ducing this parameter indicates why the B = 0 situation is called the 0 condition. In order to 
justify the equivalence of the two sides of Equation (81), consider the following steps: 

1. The term 1/2 on the left-hand side of Equation (81) enters the Flory-Huggins theory 
as part of the series expansion of In (1 - &) in the transition between Equations ( 7 5 )  
and ( 76). 
Thus (1/2) R is an entropy contribution to the second. virial coefficient. 
Our expression for AS,,,-on which this term is based-was derived by assuming 
purely random placement of polymer segments and solvent molecules. This may not 
be fully justified because of intermolecular forces that we did not consider in arriving 
at Equation (66). We take advantage of this opporturiity to allow for some bias in the 
placement of particles on the lattice and replace 112 R with AS, as the contribution 
of eritropy to the second virial coefficient. 
We recall from the transition between Equations (7.4) and (75) that xRT  is the en- 
thalpy contribution to the second virial coefficient. In the present context, we desig- 
nate this AH,. 
By multiplying the numerator and denominator of the terms by the same factors, the 
left-hand side of Equation (81 ) can be transformed a s  follows: 

2. 
3. 

4. 

5 .  

6. If AS,/R is factored out of the last version, we obtain 

where A S J R  has been written \k. 
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7 .  The ratio of AHH, to ASq has kelvin units; this quantity is called the theta temperature. 
Substituting 8 for this ratio gives the right-hand side of Equation (81). 

These manipulations may appear to add little except for needless complication to an 
interpretation of the second virial coefficient for random coils. Recall, however, that Equation 
(81) allows the variation of solvent goodness caused by temperature changes to be described 
quantitatively. Thus the interaction parameter x is used to describe how B changes when a 
polymer is dissolved in different solvents. By contrast, 8 is used to describe the variation in B 
when a given polymer-solvent system is examined at  different temperatures. This has been 
done for the polystyrene-cyclohexane system at three different temperatures; the results are 
discussed in Example 3.4. 

EXAMPLE 3.4 Theta Temperature of A Polymer Solution from Second Virial Coefficient Data. 
Values of the second virial coefficient along with some pertinent volumes are tabulated below 
for the polystyrene-cyclohexane system at three temperatures. 

- - 
T (K) B . 10 (cm g - 2  mole) V ,  (cm3 mole -’) VJM, (cm3 g-’) 

303 - 
31 3 
323 

4.55 
4.45 
9.01 

109.5 
110.9 
112.3 

0.930 
0.935 
0.940 

Use these data to estimate 0 and 9 for this system. Does AS, agree with the expected entropy 
contribution to the second virial coefficient? 

Solution: The theta temperature is that value of Tat which 5 = 0. It is apparent that 6 changes 
sign (i.e., passes through zero) about midway between 303 and 313K. Equations (80) and (81) 
can be combined to give 

which can be solved for 9 once 8 is known. Using 8 = 308K = 35OC, the following values of 
9 can be calculated using the volumes provided: 

- 
T (K) 1 - 81T v1 5( V*/M2) - 9 

303 - 0.01 7 -5.76 * 1OP3 0.339 
31 3 0.016 5.65 10 - 3  0.353 
323 0.046 1.15 * 10 -2  0.249 

For reasons not discussed, it is correct to use the value of 9 interpolated to 0 conditions rather 
than, say, average the divergent values. Thus we estimate 9 = 0.34, or ASq = 0.34 R. Since 
the Flory-Huggins theory predicts a contribution of 112 R to the second virial coefficient, it seems 
that an additional entropy effect-given by -0.16 R-must be included in order to account for 
the experimental B value. The fact that this “correction” to AS, is negative implies that the 
entropy of mixing has been slightly overestimated by assuming random placement of the con- 
stituents on the lattice. m 

* * *  

We have now looked at two models for the second virial coefficient of uncharged colloidal 
solutes. In Section 3.5b we see that B depends on  the magnitude of the particle charge for 
polyelectrolyte solutes. 

3.5 

We have had no occasion as yet in this book to note that colloidal solutes may possess an 
electrical charge just like their low molecular weight counterparts. Portions of Chapter 4 and 
Chapters 11-13 are concerned with those properties of colloids that are direct consequences of 

OSMOTIC EQUILIBRIUM IN CHARGED SYSTEMS 
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the charge of the particles. For the present we introduce the idea of charged particles by 
examining the effect of the charge on the osmotic pressure of the system. 

The charge on a colloidal particle may originate either from the dissociation of functional 
groups that are covalently bonded to the colloid or from the preferential adsorption of ions to  
the surface. The charge of a colloid cannot be regarded as a fixed quantity like molecular 
weight, but must be treated as a variable with a value that depends on the nature and concen- 
tration of other components of the system. For example, proteins are positively charged at 
very low pH levels and negatively charged at very high pH levels; the point of electroneutrality 
varies from one protein to another. In the case of proteins, it is clearly the ionization of acidic 
and basic functional groups attached to the polypeptide chain that is primarily responsible for 
the charge characteristics of the molecules. 

At this point we shall not concern ourselves any further with the origin of the charge of a 
colloidal system; rather, our attitude is that charge is one more characteristic that must be 
measured and understood in order to characterize certain systems fully. 

Although i t  is not particularly difficult to formulate the thermodynamics of charged 
systems in perfectly general terms, the resulting notation is cumbersome. Instead of the com- 
pletely general form, therefore, we consider a very specific case. The principal features will 
emerge clearly from this example; other situations may be readily derived by parallel argu- 
ments. The system we are concerned with consists of three components: Component 1 is the 
solvent, usually water; component 2 is the colloidal electrolyte; and component 3 is a low 
molecular weight uni-univalent electrolyte M X .  We (arbitrarily) designate the colloidal elec- 
trolyte PX,, consisting of a positively charged macroion having a valence number + z ,  paired 
with t X -  ions. It could be the negative ion of the colloidal electrolyte that is the macroion (as 
in Vignette 111) and the low molecular weight solute could have a different stoichiometry, but 
the essential features would remain the same. 

In physical chemistry it is convenient to express concenlrations as molalities and to use 
molality units to express the activity of the components. This is the convention we follow in 
this section. Accordingly, the standard state for a component consists of a solution in which 
that component has an activity of 1 .O mole (kg solvent) -’. 

3.5a Donnan Equilibrium 

The specific situation we wish to consider is the osmotic equilibrium that develops in an 
apparatus that has a semipermeable membrane impermeable to the macroion only. That is, 
the membrane is assumed to be permeable not only to the solvent but also to both of the ions 
of the low molecular weight electrolyte, but not to the colloidal ion P”. At equilibrium the 
low molecular weight ions will be found on both sides of the membrane, but not in equal 
concentrations, because of the presence of the macroions on one side of the membrane. We 
have already come across an example of such a situation in the vignette at the beginning of 
this chapter on the role of Donnan equilibrium on the so-called resting states of nerve cells. 

For the purpose of our discussion, we designate the side of the membrane that contains 
the macroions as the CY phase and the solution from which the macroions are withheld as the (3 
phase. Equation (12) continues to describe the equilibrium condition; applying it to compo- 
nent 3 leads to the following: 

P3.u = P3,d 

Substituting Equation (13) for the /3 phase and Equation (19) for the Q phase, which is under 
an osmotic pressure T ,  yields 

p! + R T l n  = p: + RTlna,,,  + 1; V 3 d p  (83) 

At sufficiently low concentrations of the macroion, the osmotic pressure term will be negligible 
compared with R T  In so Equation (83) becomes 
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It may be recalled from physical chemistry that the activity of a 1 : 1 electrolyte is given by the 
product of the activities of the positive and negative ions of the compounds; therefore 

This expression describes what is known as the Donnan equilibrium. It does not say that the 
activity of M +  and/or X -  is the same on both sides of the membrane, but that the ion activity 
product is constant on both sides of the membrane. In the sense that an ion product is 
involved, the Donnan equilibrium clearly resembles all other ionic equilibria. 

Remembering that a+ = y+m+ and yf, = y+y-, where y+ is the mean ionic activity 
coefficient (appropriate to molality units), enables us to rewrite Equation ( 8 5 )  as 

Of course, in the limit of infinite dilution y +  -+ 1. For the present we restrict our attention to 
sufficiently dilute solutions so that activity coefficients may be neglected and molalities may 
be used instead of activities. It might also be noted that in dilute solutions, for which this 
simplification is apt to be valid, molality and molarity are almost equal. 

Another factor that we have not yet taken into account is the requirement that both sides 
of the membrane be electrically neutral. For the a phase, which contains the macroion,this 
condition is expressed by 

In the /? phase, which contains only low molecular weight ions, electroneutrality requires 

mM,(3 = mX,fl 

The significance of the Donnan equilibrium is probably best seen as follows. Combining 
Equations (86)  and (88) yields 

Next, we use Equation (87) to substitute for either mM,, or m , ,  in Equation (89), obtaining 
the following quadratic equations for mM,a and mx,,: 

(90) mk,, + zmpmM,, - m& = 0 

and 

mi, - zmpmx,u - mfco = O 

where we have dropped the subscript CY from mp,,, for convenience. These expressions permit 
us to evaluate the concentration of the low molecular weight ions in the compartment with the 
macroions, the (Y phase, in terms of z and the concentration of ions in the other compartment. 

The situation is most easily understood by considering a numerical example. Table 3.2 
lists values of mM,, and m , ,  calculated using Equations (90) and (91). These values have been 
determined for two different values of mM,4 = mx,B : 10-3 and 10-*. The parameter zmf has 
been selected at six evenly spaced intervals between 1OP3 and 10 - 2 .  A solution containing 1 g 
of colloidal electrolyte of molecular weight 105 per 100 g of water, for example, would have a 
value of mp = 10 -4; if the macroion carries a charge of + 10, the parameter zmp equals 10 -3. 

It is evident from Table 3.2 that the concentration of low molecular weight positive ions is 
larger in the p phase than in the CY phase (which contains the macroions), and that the situation 
is reversed for the negative ions. The requirement of electroneutrality brings this about. To  
show better the uneven distribution of low molecular weight ions on the two sides of the 
membrane, Table 3.2 also lists the ratio of the concentrations on both sides of the membrane 
for both the positive and the negative ions. 

Two conclusions may be drawn readily from an inspection of the results of Table 3.2. 
First, the uneven distribution of the simple ions becomes more pronounced as the quantity zmp 
increases. The low molecular weight ions are free, after all, to pass through the membrane; it 
is only electroneutrality that holds them back. The more macroions present or the higher 



TABLE 3.2 Values of m,w,, and m , ,  and the Ratios (m,/m&M and (m,/m0)* for Two Values of mi, and a Range of Values of zmp* 

io-)  6.18 x 10-' 1.62 x 1 0 - ~  0.62 1.62 9.51 x lOP3 1.05 x lO-* 0.95 1.05 
2 x 1 0 - ~  4.14 x 10-' 2.41 x 1 0 - ~  0.41 2.41 9.05 x 1 0 - ~  1.11 x 1 0 - ~  0.91 1.11 
4 x 1 0 - ~  2.36 x 10-' 4.24 x io-) 0.24 4.24 8.20 x 10-' 1.22 x 1OP2 0.82 1.22 
6 x 10-3 1.62 x 10-' 6.16 x 10-3 0.16 6.16 7.44 x 1 0 - ~  1.34 x I O - ~  0.74 1.34 
8 x lOP3 1.23 x 10-' 8.12 x 10-3 0.12 8.12 6.77 x lOP3 1.48 x 10-2 0.67 1.48 
10-2 9.9 x 1 0 - ~  1.01 x 1 0 - ~  0.10 10.09 6.18 x 10-3 1.62 x 1OP2 0.62 1.62 

*All concentrations are in moles per kilogram of solvent. The (Y phase contains positive macroions. 
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charge they carry, the more asymmetrically the simple electrolyte will be distributed. Table 3.2 
also shows that the uneven distribution of low molecular weight electrolyte becomes less 
pronounced as the concentration of this electrolyte is increased. We return to this point in the 
next section when we discuss the osmotic pressure of charged systems. 

The combined effects of electroneutrality and the Donnan equilibrium permits us to 
evaluate the distribution of simple ions across a semipermeable membrane. If electrodes 
reversible to either the M +  or the X -  ions were introduced to both sides of the membrane, 
there would be no potential difference between them; the system is at equilibrium and the ion 
activity is the same in both compartments. However, if calomel reference electrodes are also 
introduced into each compartment in addition to the reversible electrodes, then a potential 
difference will be observed between the two reference electrodes. This potential, called the 
membrane potential, reflects the fact that the membrane must be polarized because of the 
macroions on one side. It might be noted that polarized membranes abound in living systems, 
but the polarization there is thought to be primarily due to differences in ionic mobilities for 
different solutes rather than the sort of mechanism that we have been discussing. We return to 
a more detailed discussion of the electrochemistry of colloidal systems in Chapter 11. 

3.5b Osmotic Pressure of Charged Colloids 

Now let us turn our attention to the osmotic pressure generated by the macroion in this system. 
Since we have already restricted ourselves to dilute solutions, it is adequate for our purposes 
to use Equation (35), making allowance for the fact that we have been expressing concentra- 
tions as molality in this section. The volume of 1 kg of solvent equals 1000 Vlo /M, ,  so 
Equation (35) becomes 

= m R T  
1000 I.“: 

Ml 

T I T  

where m is the molality of the solute responsible for the osmotic pressure and V,’ is the molar 
volume of the solvent. Since there are solute molecules on both sides of the membrane, the 
osmotic pressure will be due to the excess solute on the side of the membrane that carries the 
macroion (the a! phase). Therefore we may replace m in Equation (92) by 

m = WP,, + M M , n  + m , ,  - mnt,B - MX.8 

m = m P . u  + M M , n  + ZmP,, + W M , n  - 2wbf.s 

(93 1 

(94) 

Substituting from the electroneutrality Equations (87) and (88) transforms Equation (93) into 

This is further modified by the Donnan relationship, Equation (86), also rewritten to include 
electroneutrality, to give 

(95) 

Combining Equations (92) and (95) yields the following for the osmotic pressure of the 
sys tem : 

= M P , ,  (1 + z )  + 2 mM,u - 2 [mrvl,, ( z  mp,, + m , , > l  ”, 

It should be noted that all concentrations have been expressed in terms of the molality of 
the solute in the compartment that contains the macroion, so the subscript a is no  longer 
necessary. 

Although Equation (96) is rather awkward as written, several highly informative varia- 
tions of it are obtained by considering different limiting situations. These are summarized in 
Table 3.3 for the cases in which mM = 0, mM + mP, and mM > mP. In the table, the expres- 
sions for T that follow from Equation (96) in each of these cases are written both in terms of 
the molality of the macroion mp and with the concentration of the macroion expressed in 
weight per unit volume c,, specifically grams of colloid per liter of solution. 
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TABLE 3.3 
the Presence of’ a Low Molecular Weight Salt 

Special Cases of Equation (96) for the Osmotic Pressure of a Charged Colloid in 

mp (mole kg-’) 

M I R T  r=- 
lOO0vf  ( l  + z)mp 

M,RT r=- 
1000 v, mp 

We do not present the algebraic manipulations that lead to the various forms presented in 
Table 3.3; however, two relationships involved in generating these forms might be noted. 
First, the quantity (1 + zmp/m,,,,)1’2 in Equation (96) may be approximated by the binomial 
series expansion (see Appendix A) to give 

When mM mp, only the first two terms are retained; when m, > mp, the first three are 
used. Second, the relationship between molality and grams per liter units is given by the 
following in dilute solutions: 

All the forms presented in Table 3 . 3  are readily obtained from Equation (96) by incorporating 
Equation (97) or (98) or both into Equation (96). Now, let us consider the physical signifi- 
cance of the resulting special cases. 

The two extreme values of mM, m,,,, = 0 and mM % mp, are especially interesting. The 
former corresponds to the case of no added salt (since the macroion is positive) and the latter 
to a large excess or “swamping” amount of added salt. Now suppose an osmotic pressure 
experiment were conducted on two solutions of the same colloid, assumed to have a fixed 
charge z,  with the objective of determining the molecular .weight of the colloid. Further 
suppose that the two determinations differ from one another in the sense that one corresponds 
to zero added salt and the second to swamping electrolyte conditions. Finally, suppose the 
results are simply interpreted in terms of Equation (35) to yield the molecular weight of the 
colloid. Comparing Equation (35) with the results listed in Table 3 . 3  reveals that the correct 
molecular weight would be obtained for the charged colloid under swamping electrolyte condi- 
tions, but an apparent molecular weight less than the true weig:ht by a factor z + 1 is obtained 
in the absence of salt. 

How are we to understand this odd result? The answer is easy when we remember that 
osmotic pressure counts solute particles. The macroion cannot pass through the semiperme- 
able membrane. In the absence of added salt, its counterions will not pass through the mem- 
brane either since the electroneutrality of the solution must be maintained. Therefore the 
equilibrium pressure is that associated with ( z  + 1) particles. :Failure to consider the presence 
of the counterions will lead to the interpretation of a low molecular weight for the colloid. As 
we already saw, the presence of increasing amounts of salt leads to a leveling off of the ion 
concentrations on the two sides of the membrane. The effect of the charge on the macroion is 
essentially “swamped out” with increasing electrolyte. 
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One interesting aspect of the limiting case of swamping electrolyte is the fact that the 
conclusion is totally independent of the specific nature of the ions. This is a partial justifica- 
tion for an assumption that was implicitly made at an earlier point. In writing Equations (87) 
and (88), we assume that the only ions present are M + ,  X - ,  and P z + .  In aqueous solutions, 
however, H +  and OH-  are always present also, but have clearly been assumed to be negligible 
in writing Equations (87) and (88). The swamping electrolyte concentration may always be 
chosen to justify neglecting these contributions. 

Table 3.3  also includes an approximation for the case in which the concentration of the 
salt exceeds that of the colloid, but not to the swamping extent, mM > mp. Comparison of 
that case with the result given in Equation (34 )  suggests that the contribution of charge to the 
second virial coefficient of the solution is given by 

1000 2 
4 M: PI M M X  

B =  (99) 

Strictly speaking, this contribution should be added to the excluded volume of the particles. 
The excluded volume of the particles becomes more important as the concentration of the salt 
increases, a conclusion that may be seen by considering two facts: 

Charged colloids behave as if they were uncharged under swamping electrolyte condi- 
tions. 
The electrostatic contribution to B, Equation (99), is inversely proportional to salt 
concentration. 

This effect may be qualitatively understood as follows. In a charged system the colloid 
consists of the macroion and its low molecular weight counterions, which are, of course, 
distributed through a portion of the solution in the neighborhood of the macroion. Thus we 
visualize the colloidal ion as being surrounded by an ion atmosphere, the same sort of model 
that is invoked in the Debye-Huckel theory of electrolyte nonideality. The “excluded volume” 
that is required, therefore, includes both the volume of the colloidal particle and the volume 
of that part of the solution that contains the counterions. The precise distribution of counter- 
ions around a charged particle is the subject matter of Chapter 11 and, to a lesser extent, 
Chapter 12. In those chapters, we see that the extent of the domain over which the ion 
atmosphere extends increases as the electrolyte concentration decreases. Therefore, it is rea- 
sonable to expect the volume of the ion atmosphere to be sufficiently larger than the macroion 
in dilute solutions so that the volume actually excluded by the colloidal particle can be ne- 
glected. 

We have already seen that the second virial coefficient may be determined experimentally 
from a plot of the reduced osmotic pressure versus concentration. Since all other quantities in 
Equation (99) are measurable, the charge of a macroion may be determined from the second 
virial coefficient of a solution with a known amount of salt. As an illustration of the use of 
Equation (99), we consider the data of Figure 3 . 6  in Example 3 .5 .  

1. 

2. 

* * *  

EXAMPLE 3.5 Evaluation of Charges of Macroions from Osmotic Pressures. In Example 3.3, 
we evaluated M and B for bovine serum albumin at pH = 5.37, at which the molecule is known 
to be uncharged. Use the data in Figure 3.6 to evaluate B and, from it, the charge of the 
molecule at pH = 7.00. The data in Figure 3.6 were measured in 0.15 M NaCI. 

Solution: The slope of the line at pH = 7.00 is 2.28 10 - 3  torr kg2 g p2; we convert to SI units 
as in Example 3.3: 

1 . 0 1 . 1 0 ~ ~ m - ~  . -  103g = 0.303Nm4kg-2 
( kg ) ‘(F) 2 . 2 8 ~ 1 0 ~ ~  torr kg2 gP2-  

760 torr 

Division by RT gives B: 

As noted above, it is the difference between this value and the B value for the uncharged 

0.303/(8.314)(298) = 12.23 - 10p5 m3 kgP2 mole 
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molecule (Example 3.3) that is interpreted by Equation (99). Also recall that M was determined 
to be 69,600 g mole -’ in the example cited. Therefore 

10002 

4MhmMX 
(12.23 - 7.35)10-5 = 

z2 = 4(4.88 - 10-5 m3 kg-2 mole) (69.6 kg mole-’)* - (1.0 g cm-3)(0.15 mole kg-’)(100 cm 

andz = *12. 

m- ’ )3  + 1OOOg kg- ’  = 142 

Since the pH is higher than that at which the molecule is uncharged, the albumin must be 
negatively charged. Hence we identify z as - 12 in this case. 

* * *  

3.6 SOME APPLICATIONS OF OSMOTIC PHENOMENA 

3.6a Dialysis 
Substances with particles in the colloidal size range are often obtained in a form that contains 
low molecular weight impurities. For example, enzymes are separated from homogenized 
tissue samples by extraction in a buffer solution. The enzyme preparation, therefore, is “con- 
taminated” by the components of the buffer. Likewise, synthetic high polymers generally 
contain unreacted monomer, initiator, and catalyst. There are many experiments in which 
traces of low rriolecular weight impurities would have no effect, as, for example, in sedimenta- 
tion. This chapter has shown clearly, however, that the presence of low molecular weight 
solutes may have large effects in an osmotic pressure experiment if these substances are 
retained by the membrane, either directly or through the electralneutrality condition. 

Experiments with semipermeable membranes not only point out the need for purification, 
but also suggest a means by which this may be accomplished. The procedure of dialysis is one 
technique for removing low molecular weight salts or nonelectrolytes from a colloid. The 
method consists merely of enclosing the colloid to be purified in a bag made of some semiper- 
meable material. The sealed bag is then placed in a quantity of the solvent. The membrane 
must be permeable to the solvent and to any low molecular weight impurities present, but 
impermeable to the colloid. As a result of the semipermeability of the bag, the impurities will 
distribute themselves through both compartments. The outer portion is replaced often or even 
continuously, so the low molecular weight impurities are gradually flushed away. 

Since the membrane is also permeable to the solvent, the solvent simultaneously diffuses 
into the bag, diluting the colloid. Ample air space must be present in the bag at the beginning, 
otherwise it will rupture owing to the pressure developed by the solvent imbibed. There is also 
a danger that the porosity of the membrane will increase if the bag is stretched as a result of 
internal pressure buildup. Cellophane tubing is most commonly used as the membrane mate- 
rial. It is sold in rolls for this purpose and may be cut to length and tied at the ends to make 
the required bags. 

Purification by dialysis is a slow process. Its rate is increased, however, by increasing the 
surface area of the membrane since that is where the exchange of solute between the two 
phases takes place. Stirring and frequent replacement of the solvent accelerate the process 
by maintaining the maximum gradient of concentration across the membrane. With ionic 
contaminants, the rate of dialysis may be enhanced by placing electrodes in the compartment 
surrounding the enclosed colloid and taking advantage of the migration of the ions in an 
electric field. This modification is known as electrodialysis. 

Finally, it might be noted that colloids may be concentrated by a slight modification of 
the dialysis procedure. The liquid against which the colloid of interest is being dialyzed may 
itself be a concentrated colloid. With aqueous dispersions, for example, polyethylene oxide 
solutions may be used as the second colloid. 

The secorid colloid is prepared at higher activity; therefore the solvent is drawn toward 
the more concentrated phase. This increases the concentration of the colloid of interest. 
Alternatively, the concentration increase may be accomplishked by allowing the solvent to 
evaporate from the outer surface of the bag. 
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Just as with osmotic pressure, the membranes in dialysis must be carefully selected to be 
compatible with the system under study. Specifically, this amounts to impermeability with 
respect to the colloid(s) involved and permeability with respect to low molecular weight 
components. 

3.6b Reverse Osmosis 

As we discussed in Section 3.2, samples of solution and solvent separated by a semipermeable 
membrane will be at equilibrium only when the solution is at a greater pressure than the 
solvent. This is the osmotic pressure. If the solution is under less pressure than the equilibrium 
osmotic pressure, solvent will flow from the pure phase into the solution. If, on the other 
hand, the solution is under a pressure greater than the equilibrium osmotic pressure, the pure 
solvent will flow in the reverse direction, from the solution to the solvent phase. In the last 
case, the semipermeable membrane functions like a filter that separates solvent from solute 
molecules. In fact, the process is referred to in the literature by the terms hyperfiltration and 
ultrafiltration, as well as reverse osmosis (Sourirajan 1970); however, the last term is enjoying 
common use these days. 

As we have discussed already, the property of membrane semipermeability applies to all 
sorts of systems. Likewise, reverse osmosis may be applied to a wide variety of systems. An 
application that has attracted a great deal of interest in recent years is the production of 
potable water from saline water. Since no phase transitions are involved as, for example, in 
distillation, the method offers some prospect of economic feasibility in coastal regions. 

Cellulose acetate seems to be the most thoroughly investigated of many possible mem- 
brane materials. Cellulose acetate membranes are capable of yielding 96-98% retention of 
NaC1, for example, and of delivering about 0.2 cm3 s - ’  atm - ’  m - 2 .  This amounts to about 50 
gal day - ’  ft - *  at 100 atm. Note that in this application of osmometry, it is not the solute but 
the membrane that makes up the colloidal system. In this case, the solid portion of the 
membrane would be the continuous phase and the pores, necessarily small if the membrane is 
to be effective, the “dispersed” phase. According to this point of view, numerous aspects of 
membrane technology become part of the interests of colloid and surface chemists. Practical 
desalination by reverse osmosis depends on a membrane that (a) has enough contact area to 
process large volumes of solution and (b) is thin enough to do so rapidly, yet (c) is sturdy 
enough to withstand these pressures. Since some of these points work in opposition to each 
other, the technical problem is one of optimization. 

It is the rate of separation rather than the efficiency of salt retention that is the primary 
practical issue in the development of reverse osmosis desalination. In addition to a variety of 
other factors, the rate of reverse osmotic flow depends on the excess pressure across the 
membrane. Therefore the problem of rapid flow is tied into the technology of developing 
membranes capable of withstanding high pressures. The osmotic pressure of sea water at 25 OC 
is about 25 atm. This means that no reverse osmosis will occur until the applied pressure 
exceeds this value. This corresponds to a water column about 840-ft high at this temperature. 

Note that a solution more concentrated than the original one also results from the reverse 
osmosis process. This means that the method of reverse osmosis may also be used as a method 
for concentrating solutions. Fruit juices and radioactive wastes, for example, have been con- 
centrated by this method. 

REVIEW QUESTIONS 

1. 

2. 

3 .  

4. 

Describe in simple terms what osmotic pressure is. Does a solute have to have charges for it to 
have an osmotic pressure? 
What is the relation between the chemical potential of a solute in a solution and its osmotic 
pressure? 
Is the presence of a semipermeable membrane separating solutions at two different concentra- 
tions needed for osmotic pressure to exist? 
Describe some examples of phenomena or processes that are influenced by the osmotic pres- 
sure. 
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5 .  

6. 
7. 

8. 
9. 

10. 
11. 
12. 
13. 
14. 

15. 

16. 
17. 

18. 
19. 

20. 

21. 

22. 
23. 

Describe an experiment that can be used to measure osmotic pressures of colloids or macromo- 
lecular solutions. Can the osmotic pressure of a colloid or a polymer solution exceed atmo- 
spheric pressures? If yes, under what conditions? If not, why? 
Write the equation of state for the osmotic pressure of a solution that behaves ideally. 
How does the validity of the van’t Hoff equation depend on the structure or the nature (e.g., 
solid particle, flexible coil, etc.) of the solute? Why or why not? 
How would you correct for deviations from ideality? 
What is reduced osmotic pressure? 
What is a virial expansion? 
What is the physical significance of the second virial coefficient? Of what is it a function? 
Is the second virial coefficient a function of density? Explain. 
Sketch the variation of the second virial coefficient with temperature. 
Is the second virial coefficient positive or negative, or can i t  be either? What is the physical 
significance of its sign? 
How does one use osmotic pressure measurements to determine the molecular weight of a 
solute? How does polydispersity in molecular weight affect such a measurment? 
What is the meaning of the term excluded-volume interactionr? 
Outline the logic used in deriving expressions for the osmotic pressure and second virial 
coefficient due to excluded-volume interactions? 
Outline how the Flory-Huggins theory accounts for enthalpy of mixing. 
What is the physical significance of the x parameter in the Flory-Huggins theory? How is it 
related to solute/solute and solute-solvent interactions? 
What is theta temperature (or, the Flory temperature)? What are the relative magnitudes of 
the excluded-volume interactions and the energetic interactions in a dilute polymer solution at 
its theta temperature? 
What is Donnan equilibrium? Give at least three examples of applications for which the 
Donnan equilibrium is important. 
How does added salt affect the osmotic pressure of a charged colloid? 
Give a few examples of the use of semipermeable membranes in practice. 
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PROBLEMS 

HIEMENZ AND RAJAGOPALAN 

1. 

2. 

3. 

4. 

5 .  

6. 

Criticize or  defend the following proposition: As proof that no  low molecular weight fractions 
of polymer have passed through the membrane in an osmotic pressure experiment, the follow- 
ing test may be performed. A quantity of “poor” solvent is added to  an aliquot taken from the 
solvent side of the membrane. The absence of precipitate proves that no low molecular weight 
polymer passed through the membrane. 

The osmotic pressure of solutions of a fractionated, atactic poly(isopropylacry1ate) solution 
was measured at 25OC with the following results:* 

n (g cm-2) 1.39 2.46 4.20 6.52 
c x 10, (gcm-~)  0.47 0.69 1.05 I .36 

Prepare a plot of n/c  versus c for these results and evaluate (TIC),. Calculate A4 and B for this 
system. Define what is meant by an “atactic” polymer and compare with syndiotactic and 
isotactic polymers. List reference(s) consulted for these definitions. 

An important assumption made in truncating Equation (34) is that the third virial coefficient 
is small. It is known? that the third virial coefficient depends strongly on the second so that it 
approaches zero in poor solvents even faster than B does. In fact, if r2 is defined as the 
product BM,, it is known that r3 is approximately 0.25r: in a good solvent; that is, Equation 
(34) may be written with one additional term as 

n l  
RTc M 
- = - (1 + r , ~  + o.25r:c2) 

Describe how this result may be used to facilitate the evaluation of A4 and B in the event that 
a plot of reduced osmotic pressure versus c still contains too much curvature to permit a 
meaningful straight line to be drawn. 

Osmotic pressures for aqueous solutions of n-dodecylhexaoxyethylene monoether, C,,H,, 
(OC2H,),0C,H,, were measured at 25OC. At concentrations below 0.038 g liter-’ no osmotic 
pressure develops, indicating complete membrane permeability. Above this concentration a 
pressure develops, indicating the presence of impermeable species. In the following data these 
pressures are reported for various c - c, values, where co = 0.038 g liter-’, the threshold for 
an osmotic effect:$ 

n (cm) 4.90 6.53 7.62 10.58 
c - c, (g liter-’) 29.72 38.12 43.90 58.46 

Plot n/(c - c,) versus c - c, to evaluate the molecular weight and B for the species responsi- 
ble for the osmotic pressure. 

The data of the preceding problem may be interpreted by assuming the following model. 
Above 0.038 g liter - I ,  solute molecules associate into aggregates. By comparing the A4 value 
obtained in Problem 4 with the molecular weight of the original ether, calculate the number 
of molecules in the aggregate according to this model. Assuming the colloidal particles are 
spherical, use the second virial coefficient evaluated in Problem 4 to estimate the molar 
volume and radius of the aggregates. Do the quantities calculated in this problem seem 
reasonably self-consistent? 

The cohesive energy density of a low molecular weight liquid is given by the heat of vaporiza- 
tion of that liquid, expressed per unit volume. Verify the value given for the CED of acetone 
in Table 3.1 from the facts that AH, = 30.2 kJ mole-’ and p = 0.792 g ~ m - ~ .  Would it be 
better to use the change in internal energy on vaporization AU,, rather than AH, as a measure 
of intermolecular attraction? Does it make much difference quantitatively whether AU, or 
AH,, is used? 

*Mark, J .  E., Wessling, R. A . ,  and Hughes, R. E., J .  Phys. Chem., 70, 1895 (1966). 
TFlory, P. J.,  Principles ofPolyrner Chemistry, Cornell University Press, Ithaca, NY, 1973. 
SAttwood, D., Elworthy, P. H. ,  and Kayne, S. B., J.  Phys. Chem., 74, 3529 (1970). 
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7. 

8. 

9. 

10. 

11. 

The osmotic pressure of polystyrene (PS) solutions in toluene and methylethyl ketone (MEK) 
was measured* at 25OC, and the results were analyzed to  give B values of 4.59 x 10-4 and 
1.39 x 10 - 4  cm3 g -' mole, respectively, for the two s o 1 u t i o n : a e  these results to  criticize or 
defend the following pro osition: According to Table 3.1, k E D  = 8.5-9.1 for polystyrene. 
For toluene and MEK, &k6 equals 8.9 and 9.04, respectively. Since the MEK solution has a 
smaller B value than the toluene solution, it appears that the best value to use for the J G  
for polystyrene is at the upper end of the ran e of values givein and close to the value of MEK. 
In this way the quantity [(JE),,,, - (&k)ps]2 will be smaller than the same quantity for 
polystyrene in toluene. This is consistent with the order of the B values. 

The solvent activity in a solution of polybutadiene in benzene was determined by measuring 
the vapor pressure p I  of benzene over solutions containing various concentrations of poly- 
mer.? A plot of ln(pl/p3 - In - (1 - I/n)@., versus +:- in which p: is the vapor pressure 
of the pure benzene-yields a straight line having an intercept of zero and a slope equal to 
0.33. Evaluate the interaction parameter x from this result. Is the 8 temperature above or 
below the experimental temperature? Explain. 

Krigbaum and Geymer (1959)$ measured the osmotic pressure of polystyrene in cyclohexane 
at  several different temperatures. The following is a sample of their results for a single fraction 
of polymer: 

T = 24OC T = 34OC T = 44OC 

(T/RTc)  x 106 (T/RTc) x 106 (x /RTc)  x 106 
c (g ~ r n - ~ )  (mole g- ' )  c (g ~ m - ~ )  (mole g- ')  c (g cm-3) (mole g- ' )  

0.0976 8.0 0.0081 13.3 0.0959 18.6 
0.182 6.0 0.0201 14.2 0.1780 28.1 
0.259 8.7 0.0964 14.2 0.2550 40.0 

0.1800 18.7 
0.2570 26.2 

Plot all of these points on the same graph as n/RTc versus c. Although considerable nonideal- 
ity exists, estimate the limiting slope at each temperature. Interpretation is assisted by realizing 
that each set of data approaches the same intercept as c -+ 0. What is the approximate 
molecular weight of the polymer? How do the values of B estimated from the limiting slopes 
compare with the values given for the same system over an overlapping range of temperatures 
in Example 3.4? 

Solutions of bovine serum albumin in 0.15 M NaCl were studied at other pH levels in addition 
to those shown in Figure 3.6. The following data are examples of additional measurements:§ 

PH mp (g protein kg-') T (mm Hg) 

6.19 57.71 21.48 
6.64 56.17 21.40 

Since the limiting value of T/m,  shown in Figure 3.6 applies to these data also, it is possible to 
evaluate I he second virial coefficient at  these p H  levels. Evaluate B and z ,  the effective protein 
charge, at the pH values shown. (Note that a slight variation in NaCl concentrations at  these 
different pH levels should be taken into account for a more accurate determination of z.) 
The osmotic pressure of salt-free (electrodialyzed) bovine serum albumin solutions was mea- 
sured at pH = 5.37 (&?).§ At this pH the net charge of the protein molecules is zero. The 
following data were obtained in different runs: 

*Bawn, C., Freeman, R., and Kamaliddin, A., Trans. Faraday Soc., 46, 862 (1950). 
YJessup, R. S., J .  Res. Nat. Bur. Stand., 60, 47 (1958). 
SKrigbaum, U'. R., and Geymer, D. O., J .  Am. Chem. Soc., 81, 1859 (1959). 
$Scatchard, G., Batchelder, A. C., and Brown, A., J.  Am. Chem. Soc., 68, 2320 (1946). 
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P (mm Hg) 4.26 7.44 8.14 12.97 11.31 19.62 
mp (g protein kg-') 19.56 19.71 40.88 46.05 60.81 63.25 

12. 

Discuss the reasons why it is so difficult to obtain meaningful osmotic pressure data in 
salt-free solutions. Consider specifically the reconciliation of the electrolyte-free aspect of the 
experiment with the accurate control of pH. 

In reverse osmosis both solvent and solute diffuse because of gradients in their chemical 
potentials. For the solvent there is no gradient of chemical potential at an osmotic pressure of 
P; at applied pressures p greater than P, there is such a gradient that is proportional to the 
difference p - T .  To a first approximation, the gradient of the solute chemical potential is 
independent of p and depends on the difference between concentrations on opposite sides of 
the membrane. This leads to the result that the fraction of solute retained varies as [ l  + 
const./(p - P)]-'. Verify that the following data* for a reverse osmosis experiment with 0.1 
M NaCl and a cellulose acetate membrane follow this relationship: 

Applied p (atm) 10 13 20 38 51 75 
Percent salt retained 63 79 88 94 95 97 

(P is about 2.6 atm for 0.1 M NaCl.) 

*Data of J .  E. Breton, Jr., cited by H. K. Lonsdale, in Desalination by Reverse Osmosis (U. 
Merton, Ed.), MIT Press, Cambridge, MA, 1966. 
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The Rheology of Dispersions 

Imagine that your Tradesman drags behind his regular and respectable vertex, a 
parallelogram of twelve or thirteen inches in diagonal: What are you to do with such a 
monster sticking fast in your house door? 

From Abbott’s Flatland 

4.1 INTRODUCTION 

4.la What Is Rheology? 

The way liquids flow is one of their most obvious properties. We use a variety of terms in 
everyday language to describe this aspect of fluidlike substances. Thus we speak of the “thick- 
ness” of cream, the “weight” of oil, and the “leveling” of paint to describe the flow behavior 
and properties of such materials. The science student will probably recognize that all these 
terms allude in one way or another to a property known as the viscosity of the liquid. 

However, substituting a technical term does little to make this somewhat elusive subject 
more intelligible. Moreover, viscosity is just one indicator of the flow characteristics of materi- 
als. In order to understand fully the flow behavior of materials, it is important that we 
understand some of the basic physical laws or rules that materials follow when subjected to 
external forces so that we can formulate theories to predict the deformation and flow of 
matter under a given condition. The study of the flow and deformation of materials is known 
as rheology. Kheology, a term coined by Professor E. C. Bingham of Lafayette College in 
Indiana in 1929 in consultation with a colleague from the Depa.rtment of Classics, comes from 
the Greek root rheos meaning stream (Barnes et al. 1989) and is the subject of our focus in 
this chapter. 

4.1 b Why Is Rheology Important? 

Materials in a colloidal state are frequently preferred in industrial processing operations be- 
cause their large surface areas per unit volume enhance chemical reactivity, adsorptive capac- 
ity, heat transfer rates, and so on. Therefore, one cannot overllook the importance of the flow 
behavior and properties of colloids since they exert a significant influence on the performance, 
efficiency, and economy of the process. Note that some examples of this (e.g., ceramic 
processing, electrophoretic display devices, and food colloids) were mentioned in the vignettes 
presented in Chapter 1. In addition, one often uses the flow properties and behavior of the 
products as measures of the microstructure (or, “morphology”) of the products* and as a 
means of quality control (e.g., printing inks, toners, paints, skin creams, blood substitutes, 

*Although it is often said that “Morphology from rheology is theology!” 
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gels used as drug-delivery systems, etc.) and even to ensure consumer appeal and marketability 
of the products. Vignette IV provides an example of rheology that most people are likely to  
appreciate. 

From a technical standpoint, it is also important to note that colloids display a wide range 
of rheological behavior. Charged dispersions (even at very low volume fractions) and sterically 
stabilized colloids show elastic behavior like solids. When the interparticle interactions are not 
important, they behave like ordinary liquids (i.e., they flow easily when subjected to even 
small shear forces); this is known as viscous behavior. Very often, the behavior falls some- 
where between these two extremes; the dispersion is then said to be viscoelastic. Therefore, it 
becomes important to understand how the interaction forces and fluid mechanics of the 
dispersions affect the flow behavior of dispersions. 

VIGNETTE IV RHEOLOGY IN MANUFACTURING AND QUALITY 
CONTROL: Rheology of Chocolate 

Rheology is of major importance in processing operations in industry. The rheological behav- 
ior of process streams and dispersions determines the pumping and transportation costs, the 
ease of mixing operations in reactors, and the “quality” of the final product in many cases. 
What we do not often realize is that it is also one of the factors that determine the esthetic 
and sensual appeal of certain products, especially in the case of food products and cosmetics! 
Differences in the “feel” of a face lotion or a skin cream or the “consistency” of a ketchup 
can make or break the market for the product! 

Take chocolate, for example. The way chocolate feels in the mouth (in addition to its 
taste, of course) makes a difference in its appeal to chocolate enthusiasts, and much of it has 
to do with the rheological changes due to the melting of the fat in the mouth. From a 
processing standpoint, the intricacies of the molds and coating patterns require that the 
chocolate be free-flowing at high shear stresses but have negligible flow at low stresses 
(Dickinson 1992, Chapter 3); that is, i t  should be shear-thinning-a concept we discuss in 
this chapter. 

Why are colloids and the rheology of colloids relevant to chocolate? Melted chocolate is 
a complex, multiphase fluid consisting of solid nonfat particles (about 70% by volume, 
mostly sugar granules and the rest from crushed cocoa bean) and cocoa butter. (Milk choco- 
late includes, in addition, some milk solids and milk fat. ln both cases, the particle size range 
is broad, and the shapes are irregular.) Melted chocolate is a non-Newtonian fluid that is 
shear-thinning and has a yield stress (see Chapter 4, Section 4 . 1 ~ ) .  The viscosity could be 
adjusted by adding more cocoa butter, but that is an expensive proposition. A much less 
expensive and quite effective way is to add lecithin or a suitable emulsifier made of small 
molecules. The rheology of melted chocolate is very sensitive to lecithin, which first reduces 
the viscosity and yield stress but increases them at larger concentrations. The optimum 
amount needed is less than one-tenth of the amount of cocoa butter that would be needed for 
similar results. The current theory is that lecithin adsorbs onto the sugar particles and pre- 
vents them from forming agglomerates, thereby influencing the rheological behavior. This is 
the domain of the colloid scientist, who is more likely to excel in the needed task if also a 
chocolate enthusiast! (The monograph of Dickinson cited in the last paragraph is a very good 
source of colloidal issues of importance in food science.) 

Of course, the processing engineer or the colloid chemist seldom worries about the 
fundamental aspects of the microstructure of the product and its relation to rheology, but 
many of the topics we discuss in this chapter are useful for gaining the conceptual basis 
necessary to deal with the practical aspects of dispersion rheology. 

4.1 c Focus of This Chapter 
Our objective in this chapter is to discuss the flow behavior of fluids and dispersions and 
introduce some of the basic ideas and theories that are essential for understanding the structure 
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and flow properties of colloids. We particularly focus on the property “viscosity” in terms of 
several different models and assumptions for noninteracting as well as interacting dispersions 
at low and high volume fractions. 

We begin with a brief discussion of Newton’s law of viscosity and follow this with a 
discussion of Newtonian flow (i.e., the flow of liquids that follow Newton’s law) in a few 
standard configurations (e.g., cone-and-plate geometry, concentric cylinders, and capillaries) 
under certain specific boundary conditions. These configurations are commonly used in vis- 
cometers designed to measure viscosity of fluids. 

Next, we take a closer look at the equation of motion for fluids, known as the 
Navier-Stokes equation. Our intention here is to discuss the general concepts that go into 
setting up  the equation of motion rather than to present a comprehensive treatment of the 
Navier-S to kes equation. 

The next topic is Einstein’s theory of viscosity of dispersions of rigid, spherical parti- 
cles. This theory is the starting point for most of the current approaches to flow properties of 
colloids and plays a practical, pedagogical, as well as historical role. 

We examine some major conditions under which Einstein’s theory breaks down. For 
our purpose, the two important reasons are (a) the effect of the concentration of the dispersion 
and (b) the effects of interparticle forces, particularly the electrostatic repulsive forces or 
polymer additives. This leads us next to the non-Newtonian behavior of dispersions. 

Whether a substance behaves like a liquid or a solid is often a matter of the time 
during which the behavior is observed and the magnitudes of the applied forces. Even moun- 
tains and continents deform and move in geological time scales. Metals and rocks are rigid 
below a critical stress (force per unit area) known as the yidd stress, but show significant 
deformation when stresses exceed this limit. What is interesting about colloids (and what 
makes them complicated) is that they can behave like solids or liquids in time spans and at 
stress levels common in daily life. It is therefore important to1 define some useful time scales 
and energy scales that relate the physicochemical properties of colloids (e.g., charges, surface 
potentials, thickness of adsorbed polymer layers, sizes of the particles, etc.) to the flow 
properties. The section on non-Newtonian behavior reviews, in addition to the basic types of 
non-Newtonian behavior, the time scales and dimensionless groups of importance in this 
context. Some sample results for viscosity of charged dispersions and coagulated dispersions 
are also presented to illustrate the departure of non-Newtonian systems from the simpler 
systems discussed. It is, however, important t o  remember that the contents of this chapter 
barely touch on the vast area of dispersion rheology, which is an area of active research 
currently. 

6 .  We fhen conclude the chapter with a brief discussion of the viscosity of polymer 
solutions. 

From the outset, it is helpful to be aware of the differences among the models we consider 
here. As an example, fluids are treated as continuous matter in discussing experimental vis- 
cometry; in contrast, we use a statistical, particulate model in discussing polymer solutions. 
Another example is the development of different models for lyophobic and lyophilic systems. 
The Einstein theory of viscosity is based on a model of rigid s’pherical particles. As such, it is 
most appropriate for two-phase systems or dispersions containing particles with rigid struc- 
tures (although, as we also point out, they describe the viscosity of dispersions of not-so-rigid 
particles under certain circumstances). The Kirkwood-Riseman theory (discussed in Chapter 
4, Section 4.9b), in contrast, applies to flexible chains and is suitable for synthetic polymers in 
solution. A final example is the assumption - made through the bulk of the chapter - that flow 
has no  effect on the size, shape, or structure of the dispersed units. In Chapter 4, Section 4.8, 
we relax this constraint and consider the viscous behavior of Coagulated or flocculated systems 
in which the flow may disrupt the flocs. 

Both the fluid mechanics and the statistical mechanics on which some of the key theoretical 
results of the chapter are based are sufficiently complicated that we only sketch the highlights of 
these topics. We attempt to impart some physical plausibility to these theories, however, by using 
both force and energy perspectives in discussing the viscous resistance to flow. 

1. 

2. 

3. 

4. 

5 .  
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4.2 NEWTON'S LAW OF VISCOSITY 

The coefficient of viscosity was introduced in Chapter 2, Section 2.3a, but this parameter is 
elusive enough to warrant further comment. In this section we examine the definition of the 
coefficient of viscosity- the viscosity, for short - of a fluid. This definition leads directly to a 
discussion of some experimental techniques for measuring viscosity; these are discussed in the 
following sections. 

Imagine two parallel plates of area A between which is sandwiched a liquid of viscosity 7 .  
If a force F parallel to the x direction is applied to one of these plates, it will move in the x 
direction as shown in Figure 4.1. Our concern is the description of the velocity of the fluid 
enclosed between the two plates. In order to do this, it is convenient t o  visualize the fluid as 
consisting of a set of layers stacked parallel to the boundary plates. At the boundaries, those 
layers in contact with the plates are assumed to possess the same velocities as the plates 
themselves; that is, v = 0 at the lower plate and equals the velocity of the moving plate at  that 
surface. This is the nonslip condition that we described in Chapter 2, Section 2.3. Intervening 
layers have intermediate velocities. This condition is known as larninar f low and is limited 
to  low velocities. At higher velocities, turbulence sets in, but we do not worry about this 
complication. 

We can imagine within the fluid two layers separated by dy, over which distance the 
velocity changes by an amount dv. Therefore dv/dy  defines a velocity gradient; Newton's law 
of viscosity states that the shear stress, 7 = F / A ,  is proportional to dv/dy.  The viscosity 7 of 
the sandwiched fluid is the factor of proportionality: 

Since the velocity v may be written as dx /d t  and dx/dy  defines the shear strain (i.e., flow 
deformation per unit length) acting on the sample, the velocity gradient may be written as 
d(shear)/dt and is called the rate ofshear, often denoted by i / .  Note that (dv /dy ) ,  or y ' ,  has 
as units time-'.  Thus a dimensional statement of Equation (1)  gives (mass length time-' 
length p 2 )  = 7 time-',  which shows that 7 has dimensions (mass length-' time-') or (kg m- '  
s - I )  in SI units. This is called a pascal-second (abbreviated as Pa.s). We observed in Section 
2.3a that the cgs unit of viscosity, the poise (abbreviated as P) ,  is widely used and that 10 P = 
1 kg m- l  s - '  (i.e., 10 P = 1 Pa.s). 

Equation (1) merely hypothesizes that the shear stress is linearly proportional to the rate 
of strain. Fluids that obey the form predicted by Equation (1)  are said to be Newtonian. 
Figure 4.2 is a sketch of F / A  versus the velocity gradient for several different modes of 
behavior. For a Newtonian fluid, this representation gives a straight line of zero intercept and 

FIG. 4.1 The relationship between applied force per unit area and fluid velocity. 
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FIG. 4.2 Comparison of Newtonian liquids with several forms of non-Newtonian behavior. 

slope equal to 7. Non-Newtonian fluids generally show nonlinear plots; their “viscosity,” the 
slope of the tangent t o  the curve at  various points, is a function of the rate of shear. Most 
actual representations of experimental results display the data with the coordinates inter- 
changed from the way they are shown in Figure 4.2. In that case, it is the cotangent of the 
angle that describes the slope of the line at any point that determines the true (if Newtonian) 
or apparent (if non-Newtonian) viscosity of the system. For the present, Newtonian behavior 
is our concern. We discuss some examples of non-Newtonian behavior in Section 4.8. 

A second interpretation of 7 is as valid as Equation (1)  and perhaps more illuminating. 
To arrive at this alternative, we multiply both sides of Equation (1) by dv/dy: 

Now consider the following points to interpret (F /A) (dv /dy ) :  

1. 

2. 
3. 
4. 

5 .  

Writing the velocity v as dx/dt,  one can regroup the variables on the left-hand side of 
Equation (2) as d [Fdx/Ady] /dt .  
A force times an increment of distance Fdx equals an increment of energy dE. 
An area times an increment of distance Ady  equals an increment of volume dV. 
Since the force under consideration measures viscous resistance to flow, the quantity 
dE/dV measures the energy dissipated per unit volume. 
Dividing the change in dE/dV,  i.e., d(dE/dV),  by dt gives the rate of energy dissipa- 
tion per unit volume, which we denote by E,, for convenience. 

Based on these ideas, Equation (2) can be rewritten as 

dt 
(3) 

which shows that the volume rate of energy dissipation is proportional to the square of the 
velocity gradient, with the viscosity of the fluid as the factor of proportionality. 

Equations ( 1 )  and (3) are equivalent as definitions of the viscosity of a fluid. To convince 
ourselves that 7 as defined by these expressions does indeed measure resistance to flow, 
consider two liquids of widely different viscosity, say, water and molasses: 
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TABLE 4.1 
at Room Temperature 

Viscosities of Some Familiar Materials 

Liquid Approximate viscosity (Pa.s) 

Glass 
Molten glass (500°C) 
Bitumen 
Molten polymers 
Golden syrup 
Liquid honey 
Glycerol 
Olive oil 
Bicycle oil 
Water 
Air 

1 04' 
1Ol2 
1 ox 
1 o3 
1 o2 
l o l  
1 0" 
10-1 
10-2 
1 0 - ~  
1 0 - ~  

Source: Barnes et al., 1989. 

1. Imagine an  arrangement like that shown in Figure 4.1 and consider the force that 
must be applied to sustain a velocity gradient of, say, 1 s - I .  The higher the viscosity 
of the fluid is, the greater will be the force. Molasses would require more force than 
water. 
Imagine the rate at  which energy is dissipated in maintaining a unit velocity gradient. 
The higher the viscosity is, the faster will be the energy dissipation per unit volume. 
Molasses would dissipate energy more rapidly than water. 

Table 4.1 presents typical values of viscosities of some common materials. One can see 
from this table that viscosity varies over several orders of magnitude. One may also note that, 
although the table lists a viscosity for glasses, the magnitude of the viscosity clearly suggests 
that the deformation of glasses at room temperatures will be extremely small so glasses are 
best treated as solids under normal conditions. (Recall the discussion in Section 4.lc of time 
scales and their relation to whether a substance is defined as a liquid or a solid.) Typical rates 
of shear for some familiar processes are shown in Table 4.2. 

In the next section we consider an experimental approach to viscosity. We generate the 
apparatus of interest by wrapping-in our imagination-the fluid in Figure 4.1 into a closed 
ring around the z axis. The two rigid surfaces then describe concentric cylinders, and the 
instrument is called a concentric-cylinder viscorneter. 

2. 

4.3 CONCENTRIC-CYLINDER AND CONE-AND-PLATE VISCOMETERS 

4.3a Concentric-Cylinder Viscometers 

Imagine a viscous fluid enclosed in a gap between two concentric cylinders as shown in Figure 
4.3a. If one of the cylinders is caused to rotate, a viscous resistance to the rotation will be 
transmitted through the fluid to the nonrotating cylinder and produce a torque on the nonro- 
tating cylinder. An apparatus that is easily visualized - although not widely used -consists of 
a cup centered on a turntable with a bob concentrically suspended in it (Fig. 4.3a). In addition 
to  the characteristics of the apparatus, the torque on the suspending wire depends on  the 
viscosity of the fluid-it would be greater for molasses than for water, all other things being 
equal. Such a torque can be measured, and our objective is to see how the viscosity of the fluid 
can be evaluated from such data. 

We define r to be the distance variable in the radial direction and w to be the velocity of 
rotation, with w measured in radiandsecond. This means the velocity of a cylindrical layer of 
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TABLE 4.2 Typical Shear Rates for Some Familiar Processes 

Situation 

Typical range 
of shear rates 

(s - '1 Application 

Sedimentation of fine powders 
in a suspending liquid 

Leveling due to  surface ten- 
sion 

Draining under gravity 
Extruders 
Chewing and swallowing 
Dip coating 
Mixing and stirring 
Pipe flow 
Spraying and brushing 

Rubbing 

Milling pigments in fluid bases 
High-speed coating 
Lubrication 

10-6- 1 O P J  

10-2-10-1 

10- I -  10' 
loo-102 
lol-102 
10'-102 
10'- 1 o3 
10'- 10' 
103- 1 o4 

1 04- 1 o5 

1 03- 1 o5 
105- 1 o6 
1 03- 1 o7 

Medicines, paints 

Paints, printing inks 

Painting and coating, toilet bleaches 
Polymers 
Foods 
Paints, confectionery 
Manufacturing liquids 
Pumping, blood flow 
Spray drying, painting, fuel atomi- 

Application of creams and lotions to 

Paints, printing inks 
Paper 
Gasoline engines 

zation 

the skin 

Source: Barnes et al., 1989. 

FIG. 4.3 
bob; and (b) volume element within a liquid gap. 

Schematic representation of a concentric-cylinder viscometer: (a) geometry of a cup and 
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fluid a distance r from the axis of rotation is rw. There is a velocity gradient across the gap in 
this apparatus; this can be written r(dw/dr). Next we represent a layer of fluid as a cylindrical 
shell of length P and thickness dr as shown in Figure 4.3b and consider the viscous force acting 
on such a shell. By Equation ( l ) ,  this force is given by 

dv 
dr 

F = q A  - = q(27rrP) (4) 

where 27rrP is the area of the shell. Torque is given by the product of a force and the distance 
through which it operates, so this element of viscous force must be multiplied by r to give a 
torque T 

dw 
T = F r  = 27rqPr’ ~ 

dr 

When the apparatus begins to rotate, the fluid experiences an initial acceleration, but a 
stationary state is rapidly attained in which forces balance and acceleration is zero. Equation 
(5) gives a generalized expression for torque; under stationary-state conditions it must be 
independent of r. If this were not the case, forces would be different in different parts of the 
fluid, and acceleration would occur. Accordingly, we set the torque on this volume element 
equal to a constant: 

Now suppose the outer cylinder has a radius R,. and rotates with an experimental velocity 
U,. Furthermore, assume the inner cylinder has a radius fR,.-where f is a fraction close to 
unity for small gaps-and is stationary. We can integrate Equation (6) between these limits to 
obtain a value for the constant torque that characterizes the experiment: 

21r q P {: dw = constant r-3 dr = - 

or 

constant = 47r q P Rf w, ~ f 2  = FfR,  
1 - f ’  

(7) 

where F is the force transmitted to the bob under stationary-state conditions. Since everything 
in this expression except q is experimentally measurable, Equation (8) can be used to evaluate 
viscosity. Since w is the observed angular velocity, the subscript is no  longer necessary. As 
noted above, an apparatus that is based on this geometrical arrangement is called a concentric- 
cylinder viscometer. Just as the geometry of the concentric-cylinder viscometer is based on  
Figure 4.1, which serves to define q, Equation (8) reduces to Newton’s law of viscosity in the 
appropriate limit. This is examined in Example 4.1. 

EXAMPLE 4.1 Stress-Strain Relationship for a Concentric-Cylinder Viscometer with Small 
Gaps. Examine Equation (8) in the limit f -, 1 to show that the relationship reduces to Equa- 
tion (1) under these conditions. 

Solution: The limit f -+ 1 corresponds to a small gap between the two cylindrical walls. We are 
therefore justified in saying that the area of contact between the liquid and wall is ~TR,!; if we 
divide both sides of Equation ( 8 )  by this area A ,  we obtain 

Since 1 - f‘ = (1 + f)(l - f )  = 2(1 - f ) ,  this becomes 

(FIA) = 27w[f2/(1 - f ‘ ) ]  

FIA = qwf2/(1 - f )  

Multiplying the numerator and denominator of this expression by R, and letting v,,, = R,u 
gives 
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(FIA)  = ~w,,,f2/[Rc(1 - f ) ]  = 7(vmax - O)f2/[Rc(1 - f ) ]  = 7f2AV/AR, 

since the velocity at the stationary inner wall is zero. In the limit we obtain 

lim ( H A )  = 7 dvldr 
f -1 

which is equivalent to Equation ( l ) ,  the defining equation for v .  When the separation between 
the cylinders is negligible compared to their radius of curvature, the concentric cylindrical 
surfaces approximate the infinite parallel plates of the model used to define the coefficient of 
viscosity. 

* * *  

One of the appealing features of the concentric-cylinder visco,meter is the fact that the rate of 
shear can be varied by adjusting either the width of the gap or the angular velocity. This is a 
valuable capability in light of the kinds of non-Newtonian beh#avior that colloidal systems may 
display (as shown in Fig. 4.2). Equation ( 6 ) ,  however, reminds us that this capability must be 
viewed with caution. That relationship shows that it is r3(dw/dr) that is constant across the 
gap, not dv/dr  itself. Thus, even though we may change either the speed or  the dimensions of 
the viscometer and thereby achieve different average rates o f  shear, the latter remains an 
average. The local velocity gradient varies from place to place within the fluid, although this 
variation is srnall for narrow gaps. 

A variety of commercial viscometers is available that embodies the essential features of 
the device we have analyzed here. In most commercial instruments, it is the inner cylinder that 
rotates, even though there is a theoretical advantage to having the outer cylinder rotate rather 
than the inner one. The reason is that laminar flow is stable when the outer cylinder rotates, 
whereas centrifugal forces tend to induce turbulent flow in the reverse case. By rotating the 
inner member, however, interchangeable spindles can be used and the sturdiness and versatility 
of such a design offsets the theoretical advantage of the rotating cup arrangement. In actual 
practice, instruments may deviate from the concentric-cylinder arrangement, and their use to  
evaluate 11 depends on calibration with known standards rather than mathematical analysis of 
the instrument geometry. 

4.3b Cone-and-Plate Viscometers 

We conclude this section with a few remarks about the cone-and-plate type of viscometer, 
sketched schematically in Figure 4.4. In this viscometer, the fluid is placed between a station- 
ary plate and a cone that touches the plate at its apex. This apparatus also possesses cylindrical 
symmetry, but this time in order to indicate a location within the fluid we must specify not 
only r, the distance from the axis of rotation, but also the location within the gap between the 
cone and the plate, as measured by 8, the angle from the vertical (see Fig. 4.4). Mathematical 
analysis of this apparatus leads to the result 

cos 8 dv 
dr cos 8, 
- =  U-- (9) 

where 8, is the angle between the vertical and the wetted surface of the cone. This approxima- 
tion holds for the case in which both 8 and 8, are close to 90°. This condition is always met in 
actual practice, for which the angle (90 - 8,) is generally less than 5 O .  Some commercial 
concentric-cylinder viscometers have interchangeable parts; this means that a conical rotor 
may be substituted for a cylindrical one. Equation (9) shows t'hat the primary velocity gradient 
within the fluid is independent of radial position to a very good approximation. This feature 
distinguishes the cone-and-plate viscometer from the concentric-cylinder viscometer and is a 
significant advantage in any study that requires accurate knowledge of the rate of shear to 
which a sample is subjected. 

To  determine the viscosity of the fluid, the torque T necessary to turn the cone at an 
angular velocity w is measured. This torque depends on the viscosity of the fluid according to 
the equation 
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FIG. 4.4 Schematic representation of a cone-and-plate viscometer (the angle is greatly exaggerated). 

where R,,,,, is the radius of the cone measured along the wetted surface. Like the concentric- 
cylinder viscometer, this apparatus can be operated, in principle, at a variety of different 
angular velocities, and thus q can be studied at different rates of shear. Furthermore, this last 
quantity is reasonably constant throughout the fluid in the apparatus. 

As noted above, dilute colloidal systems display Newtonian behavior; that is, their appar- 
ent viscosity is independent of the rate of shear. Accordingly, the capability to measure 
q under conditions of variable shear is relatively superfluous in these systems. However, 
non-Newtonian behavior is commonplace in charged colloids and coagulated colloids (see 
Section 4.8). 

Both the concentric-cylinder and the cone-and-plate viscometers are widely used, espe- 
cially in cases of non-Newtonian behavior. Liquids of low molecular weight and dilute solu- 
tions in such solvents generally display Newtonian behavior. In the last case there is no 
advantage in being able to vary the shear rate, nor is it a disadvantage that this varies locally 
within the apparatus. Accordingly, a simpler viscometer is often used for such liquids. A 
capillary viscometer takes advantage of the fact that a velocity gradient exists whenever a fluid 
flows past a stationary wall. In the next section we examine the capillary viscometer and 
Poiseuille's law, by which it is analyzed. 

4.4 THE POISEUILLE EQUATION AND CAPILLARY VISCOMETERS 

4.4a Flow Through Cylinders: The Poiseuille Flow 

Figure 4.5 shows a portion of a cylindrical capillary of radius R,. and length P. Our interest is 
in the flow of a viscous liquid through such a capillary. This arrangement has the same 
cylindrical symmetry as the viscometers we discussed in the last section and, once again, it is 
convenient to focus attention on a cylindrical shell of fluid of radius r and thickness dr, as 
shown in Figure 4.5. Because of the nonslip condition at the wall of the capillary, the liquid 
shell adjacent to that wall has a velocity equal to zero. The velocity increases for shells of 
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FIG. 4.5 
parabolic flow profile. 

Flow in a cylindrical capillary: (a) a volume element in the flowing liquid; and (b) the 

decreasing r so that a velocity gradient exists. Let us attempt 1.0 write an expression for v as a 
function of r,  the radius of the cylindrical shell. Since stationary-state conditions hold within 
the volume element, then any nonviscous forces must exactly balance the viscous force. 

The increment in viscous force acting on this element is the difference between the viscous 
forces on the outer and inner surfaces of the element, with each of these given by Equation 
( l ) ,  withA == 27rrf: 

Next, we must relate (dV/dr)r+dr to (dv/dr), .  The following expression accomplishes this, 
provided dr is small: 

I f  this result is substituted into Equation ( 1  l ) ,  expanded, and only terms linear in dr retained, 
the expression becomes 

This force is counterbalanced by the increments in gravitational and pressure forces: 

A(Fg + FpreSs) = 27rPpgrdr + 2rAprdr (14) 

where the first term equals the weight of the shell and the second is the force on the shell if a 
pressure difference of Ap exists across the ends of the tube. Note that Ap as defined here is the 
difference between the pressure at  the “exit” of the capillary and the one at  the entrance; 
therefore, Ap is negative since the pressure at the entrance has to be higher for the flow to 
occur toward the exit. We have assumed (as evident from the figure) that the acceleration due 
to gravity g acts in the z direction. Setting Equations ( 1 3 )  and (14) equal to each other gives 
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q g ( r @ )  dr dr = ( p g  + y ) r  

Integration of Equation ( 15) yields 
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(15) 

where the condition that r(dv/dr) equals zero at r = 0 is used to evaluate the integration 
constant. 

Equation (16) may be integrated again to get 

Using the boundary condition that v = 0 at r = R, to evaluate the constant of integration 
yields 

This equation describes the velocity of a fluid element as a parabolic function of its radial 
distance from the center of the tube (see Fig. 4.5b). 

The rate of volume flow through the tube V / t  equals the summation of the flow rate 
through each shell, that is, the cross-sectional area of each shell multiplied by the velocity of 
that shell, where the latter is given by Equation (18): 

V 
t 
- =  

or 

V 
t 

Equation 

- =  

lORc (”:  :e ( r 2  - R : ) 2 ~ r  dr 

(20), known as the Poiseuille equation, provides the basis for the most common 
technique for measuring the viscosity of a liquid or a dilute colloidal system, namely, the 
capillary viscometer. 

4.4b Capillary Viscometers 

The capillary viscometers take advantage of the Poiseuille equation for determining viscosity 
of fluids. Most capillary viscometers are designed with a relatively large bulb at both ends of 
the capillary, as shown in Figure 4.6. A constant volume in the upper bulb is designated by 
two lines etched at either end of the bulb. The viscometer is used by measuring the time 
required for the liquid level to drop from one line to the other as the fluid drains through the 
capillary. In such an apparatus, the difference in height of the two liquid columns is relatively 
constant during the time required for flow. Generally, the only pressure difference across the 
liquid is due to the weight of the liquid. Under these conditions, Equation (20) can be written 

17 = Apt (21) 

in which the constant A incorporates all the parameters that characterize the apparatus. 
Comparison of the flow times of two substances, one known (subscript 1) and one unknown 
(subscript 2), through the same apparatus provides an easy way to evaluate 17 for the unknown. 
In this case Equation (21) becomes 
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FIG. 4.6 Schematic representation of a capillary viscometer. 

For greater accuracy, an additional term may be added to Equation (21) that corrects 7 for the 
fact that the Poiseuille equation does not apply exactly at the two ends of the capillary. With 
this correction for end effects, Equation (21) becomes 

where B = V A T .  With this correction included, both A and B can be regarded as instrument 
constants and evaluated by calibrating the viscometer with two liquids of known density and 
viscosity. Commercial capillary viscometers are generally designed to make this end correction 
small, often negligible. 

* * *  

EXAMPLE 4.2 Comparison Between Capillary Viscometers and Concentric-Cylinder Viscome- 
ters. Criticize or defend the following proposition: A set of capillary viscometers with different 
radii can be used in much the same way as a concentric-cylinder viscometer with variable speed 
or gap width to conduct studies in which the rate of shear is an independent variable. 

Solution: Equation (1 6 )  shows that the velocity gradient is not uniform in a capillary viscometer 
any more than it is in a concentric-cylinder instrument. The rate of shear dvldr is directly 
proportional to the radial distance from the axis of the cylinder. At the wall it has its maximum 
value, which is proportional to R,; at the center of the tube it equals zero. Some intermediate 
value, say, the average, might be used to characterize the gradient in a given instrument. This 
quantity will be different for capillaries of different radii. All of this is similar to the situation in 
concentric-cylinder viscometers. 

The two types of viscometers differ in the following way, however. A much wider range of 
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shear rates is attainable in concentric-cylinder instruments with adjustable features than in 
capillaries. Because an average velocity gradient is used in describing these experiments, it is 
essential that a wide range of averages be spanned; otherwise, there is too much uncertainty in 
the individual values for meaningful results to be obtained. Since a wider range is possible with 
the concentric instrument, it is preferable when variable shear rates are to be investigated. As 
we saw in the last section, cone-and-plate viscometers are better yet. 

* * *  

4.5 THE EQUATION OF MOTION: THE NAVIER-STOKES EQUATION 

It is impossible to read much of the literature on viscosity without coming across some 
reference to the equation of motion. In the area of fluid mechanics, this equation occupies a 
place like that of the Schrodinger equation in quantum mechanics. Like its counterpart, the 
equation of motion is a complicated partial differential equation, the analysis of which is a 
matter for fluid dynamicists. Our purpose in this section is not to solve the equation of motion 
for any problem, but merely to introduce the physics of the relationship. Actually, both the 
concentric-cylinder and the capillary viscometers that we have already discussed are analyzed 
by the equation of motion, so we have already worked with this result without explicitly 
recognizing it. The equation of motion does in a general way what we did in a concrete way in 
the discussions above, namely, describe the velocity of a fluid element within a flowing fluid 
as a function of location in the fluid. The equation of motion allows this to be considered as a 
function of both location and time and is thus useful in nonstationary-state problems as well. 

As is the case with all differential equations, the boundary conditions of the problem are 
an important consideration since they determine the “fit” of the solution. Many problems are 
set up to have a high level of symmetry and thereby simplify their boundary descriptions. This 
is the situation in the viscometers that we discussed above and that could be described by 
cylindrical symmetry. Note that the cone-and-plate viscometer - in which the angle from the 
axis of rotation had to be considered-is a case for which we skipped the analysis and went 
straight for the final result, a complicated result at that. Because it is often solved for problems 
with symmetrical geometry, the equation of motion is frequently encountered in cylindrical 
and spherical coordinates, which complicates its appearance but simplifies its solution. We 
base the following discussion on rectangular coordinates, which may not be particularly conve- 
nient for problems of interest but are easily visualized. 

4.5a The Navier-Stokes Equation: General Considerations 

Figure 4.7 shows a small rectangular volume element Ax Ay Az located within a flowing fluid. 
The fluid passing through this element has a velocity v,  which may be resolved into x, y ,  and z 
components - represented by v,, v-,, and vz, respectively - since, in general, v bears no special 
relationship to the coordinates. Note that v was in the axial direction in the cylindrical prob- 
lems we discussed above (i.e., v = iv,, where i is the unit vector in the x direction, and v, = 
v, = 0); no such restriction operates here. Now let us examine the rate at which momentum 
accumulates in this volume element. To  begin, we recognize that the rate of change of momen- 
tum equals a force F: 

where a is the acceleration of the fluid element. Furthermore, the net rate of change of 
momentum per unit volume is given by d(pv)/dt .  Therefore the net rate of change in momen- 
tum per unit volume equals the sum of all forces acting per unit volume. This last quantity is 
made up of three contributions, which include external forces (such as gravity) and pressure 
forces in addition to viscous forces; therefore we write 
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FIG. 4.7 A volume element in a liquid flowing with velocity v.  

Treating density as a constant, the case for an incompressible fluid, enables us to write 

where we have used the chain rule for differentiation to expand dv/dt into the form shown. 
The external, pressure, and viscous forces acting on the volume element can be developed 

more fully also. We do  not go through the details of this 
final result followed by some explanatory remarks: 

development, but instead cite the 

where the bold g now indicates the vectorial acceleration due to gravity and i ,  j ,  and k are unit 
vectors in the x, y ,  and z directions, respectively. Equation (27) is the equation of motion for 
an incompressible fluid and is a vectorial equation (that is, quantities on both the left-hand 
side and the right-hand side are vectors and have directions as well as magnitudes). Remember, 
the solution to this differential equation for a set of specified boundary conditions gives a 
general expression for v as a function of x, y ,  z ,  and t .  

Now let us briefly consider the various terms in Equation (27) with the idea of establishing 
their plausibility. Rewriting Equation (27) in vector notation condenses it by combining terms 
with similar significance; in this notation Equation (27) becomes 

aV 

at 
p ( v * V v )  + p - = p g  - v p  + 7V2v  
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where V = ia/ax + ja/ay + ka/az, V2 = a2/ax2 + a2/ay2 + a2/az2 and the term in paren- 
theses is a dot product. Equation (28a) is the well-known Navier-Stokes equation that is the 
centerpiece of fluid dynamics. The above vectorial equation can be written individually for 
each direction and is more convenient for explaining in an elementary fashion the physical 
significance of the viscous terms: 

a2 a2vy ay2 a2vy)  a2 
+ q - + - + -  (a2vy 

8% v, + - v, + - 
az at 

Notice that if the gravity acts in the z direction only, g, = g,, = 0. 

4.5b Significance of the Terms and Some Simplifications 

Starting on the right-hand sides of these equations, we note the following: 
The first term on the right in each case describes the force of gravity acting on the 

volume element. In this development, gravity is the only external force we consider. The 
gravitational force per unit volume is given by pg.  (Notice that when the acceleration due to 
gravity acts in the z direction, g = i0 + j0 + kg, = kg, where g,  = g is the magnitude of the 
vector 8.) 

2. The second term on the right in each case describes the force on the volume element 
due to pressure. The net force in the x direction due to pressure is given by - p,)AyAz. 
Dividing through by AxAyAz gives the x component of force per unit volume as [(p,+ax - p,) /  
Ax] or ap/ax in the limit Ax -+ 0. Similar expressions apply to the y and z components of 
Fpress. (Note that herep, stands for the pressure p at x, i.e., the subscript x denotes the position 
at which the pressurep is evaluated. The pressure is a scalar quantity. In contrast, v and g are 
vectors, and the subscripts in those cases denote the components in the appropriate directions.) 

The third term on the right describes viscous forces. The viscous force acting on, say, 
the face of area &Ay of the volume element in the y direction is given by qAxAy(av,v/az),+az 
on one side of the volume element and by qAxAy(av,,/az), on the other side. Dividing the 
difference between these two terms by the volume of the element AxAyAz and taking the limit 
Az --+ 0 gives the contribution t o  FVis from the velocity gradient of v, in the z direction, namely, 
q(a2vy/az2), in Equation (28c). Similar considerations apply to the other viscous terms in 
Equations (28b)-(28d). 

1. 

3. 

Next, we turn our attention to the terms on the left-hand side of Equation (28a): 
1. The first term on the left is called the inertial term, and the second arises from the 

temporal variation in the velocity at any given position. For low velocities, the former may be 
neglected. 

2. Under conditions for which the inertial term can be neglected compared to the other 
terms in the equation, Equation (28a) becomes 

- aV = p g  - vp 4- VV2V.  

at 
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This is called the Stokes approximation to the equation of motion. At steady-state conditions, 
this may be written as 

This equation, with or without the body-force term pg,  is called the Stokes equation.” 

(28a) becomes 
3. Under stationary-state conditions, the velocity is independent of time, and Equation 

pg - v p  + qv2v = p(v.Vv) (30) 

This is called the steady-state Navier-Stokes equation. 
We remarked at the beginning of this section that the equation of motion is the corner- 

stone of any discussion of fluid dynamics. When one considers the various coordinate systems 
in which it may be expressed, the vector identities that may transform it, or the approximations 
that may be used to simplify it, Equation (28a) takes on many forms, some of which are 
scarcely recognizable as the same relationship. The purpose of this section is to illustrate 
that - despite its complexity and variations - the equation of motion is really nothing more 
than a statement of Newton’s second law of motion! 

Until now, we have been primarily concerned with the definition and measurement of 
viscosity without regard to the nature of the system under consideration. Next we turn our 
attention to systems containing dispersed particles with dimensions in the colloidal size range. 
Viscosity measurements can be used to characterize both lyophobic and lyophilic systems; we 
discuss both in the order cited. 

4.6 EINSTEIN’S THEORY OF VISCOSITY OF DISPERSIONS 

In 1906 Albert Einstein (Nobel Prize, 1921) published his first derivation of an expression for 
the viscosity of a dilute dispersion of solid spheres. The initial theory contained errors that 
were corrected in a subsequent paper that appeared in 191 1. It would be no mistake to infer 
from the historical existence of this error that the theory is complex. Therefore we restrict our 
discussion to an abbreviated description of the assumptions of the theory and some highlights 
of the derivation. Before examining the Einstein theory, let us qualitatively consider what 
effect the presence of dispersed particles is expected to have on the viscosity of a fluid. 

4.6a The Effect of Particles on the Viscosity of Dispersions 

The presence of a colloidal size particle in the liquid increases the viscosity because of the 
effect it has on the flow pattern. Two effects that readily come to mind are illustrated in 
Figure 4.8. In Figure 4.8a, the velocity profile near a wall i!j shown for a pure liquid. The 
variation of velocity among layers is indicated by the arrows of different lengths. In Figure 
4.8b, a nonrotating particle is pictured cutting across several layers in the flowing liquid. Since 
the particle does not rotate (by hypothesis), it must slow down the fluid so that the layers on 
opposite sides of the particle have the same velocity, that of the particle itself. The overall 
velocity gradient is thus reduced. Since the applied force is presumably the same in both 
Figures 4.8a and 4.8b, the reduced velocity gradient must be offset by an increase in 77. 

Alternatively, we might consider a particle that is induced to rotate by its position in the 
velocity gradient. Such a situation is shown in Figure 4 . 8 ~ .  In this case some of the energy that 
would otherwise keep the liquid flowing is deposited in the particle, causing it to rotate. In 
both cases the presence of the particle increases the viscosity of the fluid. 

The increase in viscosity due to dispersed particles is expected to increase with the concen- 

*This is different from “Stokes’s law’’ we discussed in Equation (2.7), which results from the 
solution of Equation (29b) for flow over spheres (Bird et al. 1960). Equation (2.7) is for the 
frictional force on a sphere and is also known as the Stokes equation. 
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FIG. 4.8 Schematic illustration of the flow pattern near a stationary wall for a pure liquid and for 
a dispersion: (a) a pure liquid near a stationary wall; (b)  a dispersion containing nonrotating 
particles; and (c) a dispersion containing rotating particles. 

tration of the particles, a dependence we may tentatively describe in terms of a power series in 
concentration c: 

(31) 

In this equation A ,  B,  C,  . . . are constants with values to be determined. This much is 
evident: As the concentration of a dispersion goes to zero, its viscosity must go to that of the 
continuous phase. Therefore, A = q0, the viscosity of the medium. Furthermore, the con- 
stants B, C,  . . . might reasonably be expected to depend on the size, shape, orientation, and 
so on of the dispersed units. 

Einstein’s derivation is based on the hydrodynamic equations of the preceding section. As 
such, it is limited to those cases in which p and r ]  for the fluid are constant and in which the 
flow velocity is low. Furthermore, the theory postulates an extremely dilute dispersion of rigid 
spheres with no slippage of the liquid at the surface of the spheres. Finally, the spheres are 
assumed to be large enough compared to the solvent molecules to  permit us to regard the 
solvent as a continuum, but small enough compared to the dimensions of the viscometer to 
permit us to ignore wall effects. These size restrictions make this result applicable to particles 
in the colloidal size range. 

Einstein considered a fluid in laminar flow through a dilute, random array of spherical 
particles. An obvious difficulty in applying these equations to the case in question is the 
enormous number of surfaces at which boundary conditions must be specified. This leads to 
the first reason why an infinitely dilute dispersion must be considered. If the particles are 
sufficiently far apart, each will modify the flow pattern in its environment as if it alone were 
present. This introduces two boundary conditions: no slippage at the surface and unperturbed 
flow at larger distances from the surface. Note the resemblance between this model and that 
of the Stokes law, Equation (2.7), for the drag force on a spherical particle. As in that 
derivation, two different expressions for the rate of energy dissipation in the dispersion are 
equated to give the final result. It is important to remember Equation (3)  in this context since 
it establishes the coefficient of viscosity as the pertinent parameter in any discussion of the 
rate of energy dissipation per unit volume dE,/dt. 

r]  = A  + B c +  C c 2 +  . . .  
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Einstein was able to solve the equation of motion, first for the case of a single sphere 
present, to give dE,/dt for a spherical volume (“cell”) of dispersion of radius r centered at  the 
spherical particle of radius R,. The distance r is so much larger than the radius of the spherical 
particle that the disturbance of flow due to the particle has vanished at the surface of the 
hypothetical enclosing sphere. Einstein has shown the result of this integration to be 

where qo is the viscosity of the solvent and K is a constant with a significance that does not 
concern us since it cancels out. The subscripts Soh. and Sph. refer to the solvent in the cell 
and the sphere of radius R,, respectively. Since (4/3)7rr3 represents the volume Vof  the system 
and (4/3)nR, represents the volume occupied by the spherical particle, we can rewrite this result as 

= KVoU2 + 4 )  (33) 
e)So/v, + Sph. 

where 4 is the volume fraction occupied by the sphere. Examining the limit of Equation (32) 
as R, -+ 0 permits us to evaluate the rate of dissipation of energy in the same volume element 
in the absence of the sphere; that is, if solvent alone is present, 

r2) = 2KqOV 
Solv. 

(34) 

Next, we can use Equations (33) and (34) to consider the increment per sphere in the rate of 
energy dissipation. Subtracting Equation (34) from Equation (33) and rearranging gives 

If  the dispersion contains N spheres sufficiently far part for the effects of each to be indepen- 
dent of the others, we may write for the whole dispersion (subscript Disp.) 

Here, the subscript Total Soh. stands for all the solvent (of volume = N V ,  i.e., N times 
the solvent “cells” of volume V each). Of course, the volume fraction 4 remains unchanged in 
Equation (36) since both the volume of spheres and the volume of solvent cells are multiplied 
by the amount N .  Thus, one has from Equation (36) 

Einstein was able to derive another equation describing the rate of energy dissipation per unit 
volume for a dispersion of spheres: 
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in which 7 (without a subscript) is the measured viscosity of the dispersion and K has the same 
significance as in Equation (37).  Again in the derivation of this result, the particles are 
assumed to be far apart. Therefore, Equations (37) and (38) ,  two expressions for the same 
quantity derived with comparable assumptions, may be equated: 

Rearranging this equation yields 

where only the leading terms in q5 have been retained since q5 must be small to satisfy the 
requirement of large distances between spheres. If  no term higher than first order in $ is 
retained, Equation (40) becomes 

v/vo = 1 + 2.56 + . . . (41) 

a result known as Einstein’s equation of viscosity of dispersions. This derivation was not only 
an  important accomplishment in its own right, but also served as a model for many subsequent 
derivations. Before considering these, however, let us examine Einstein’s law from an experi- 
mental point of view. 

4.6b Einstein’s Theory: Experimental Tests 

The Einstein equation is one of those pleasant surprises that occasionally emerges from com- 
plex theories: a remarkably simple relationship between variables, in this case the viscosity of 
a dispersion and the volume fraction of the dispersed spheres. A great many restrictive as- 
sumptions are made in the course of the derivation of this result, but the major ones are (a) 
that the particles are solid spheres and (b) that their concentration is small. 

These conditions are relatively easy to meet experimentally, so Equation (41) has been 
tested in numerous studies. Figure 4.9 is an example of the sort of verification that has been 
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FIG. 4.9 Experimental verification of Einstein’s law of viscosity for spherical particles of several 
different sizes (Squares are yeast particles, R ,  = 2.5 pm; circles are fungus spores, R,  = 4.0 pm; 
triangles are glass spheres, R ,  = 80 pm). Open symbols represent measurements in concentric- 
cylinder viscometers, and closed symbols represent measurements in capillary viscometers. (Data 
from F. Eirich, M. Bunzl, and H. Margaretha, Kolloid Z., 74, 276 (1936).) 
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obtained. In the work summarized in this figure, a variety of model systems were investigated 
using both capillary and concentric-cylinder viscometers. The solid line in the figure is the 
Einstein prediction; the agreement between theory and experiment is seen to be very good. 

Note that the applicability of the Einstein equation seems equally good regardless of the 
size of the spheres used. Although the range of particle radii in Figure 4.9 is relatively narrow, 
this conclusioii has been verified for particles as small as individual molecules and as large as 
grains of sand. It might also be noted that experiments of this sort are carried out in mixed 
solvents or electrolyte solutions with densities equal to that of the dispersed particles (i.e., in 
density-matched liquids) so that the spheres do not settle under the influence of gravity. 

The simplicity of the Einstein equation makes it relatively easy to test, but also limits its 
usefulness rather sharply. With so few variables involved, the quantities we may evaluate by 
Equation (41) are few. Viscosity is a measurable quantity from which we try to extract 
information about the dispersion. All that Equation (41) offers directly in this area is the 
evaluation of 4 from viscosity measurements, again provided 4 is small and the particles are 
spheres. 

The data in Figure 4.9 are limited to concentrations below 4 = 0.10. We might ask, What 
are the consequences of increasing the concentration to higher volume fractions of spherical 
particles? Equation (40) may appear to suggest that the range of applicability of Einstein’s 
equation might be extended by retaining terms higher than first order in the power series; 
that is, 

might give a better fit to the data from dispersions with concentrations more than infinitely 
dilute. There are several points about this result that should be noted: 

1. Equations (31) and (42) are identical in form. Equation (42) shows that the volume 
fraction is the theoretically preferred unit of concentration as far as viscosity is 
concerned. 
The theoretical evaluation of k ,  and the higher order coefficients in Equation (42) 
requires more than merely retaining additional terms in Equation (40). Einstein’s 
derivation of Equations (32) and (38) is based on the restriction that the dispersion is 
very dilute, and therefore simply retaining higher order coefficients in Equation (40) 
will not eliminate the above restriction. 
A number of theoretical attempts have been made to evaluate k ,  by going back 
through the Einstein derivation and superimposing the effects of neighboring particles 
rather than treating them as independent. A few of the theoretical values that have 
been obtained for k ,  from different models are 14.1, 112.6, and 7.35. 

2. 

3. 

Rather than attempting to choose among these theoretical approaches, let us examine an 
empirical approach to the problem of deviations from the Einstein equation at high concentra- 
tions. Toward this end, it is convenient to rearrange Equation (42) as follows: 

This has the effect of reducing the order of each term on the right-hand side of the equation. 
The term on the left-hand side of the equation is defined as the reduced viscosity (see Table 
4.3). Now if we plot the reduced viscosity against 4, the result should be a straight line of 
slope k,  and intercept 2.5, at least at low concentrations before still higher order terms become 
important. 

Figure 4.10 shows the viscosity of dispersions of glass spheres of radius 65 pm plotted in 
the manner suggested by Equation (43). Several conclusions a.re evident from the data replot- 
ted in this way: 
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TABLE 4.3 Symbol, Common and International Union for Pure and Applied Chemistry 
(IUPAC) Names, and Limiting Values for a Variety of Forms Commonly Used to Present 
Viscosity Data 

lim 
Functional form Symbol Common name IUPAC name C + O  

To 

0 

c- ' In(r/rlo> qrnh Inherent viscosity Logarithmic viscosity number [q] 

Viscosity - 

Specific viscosity - 

11 - 

d T 0  171. Relative viscosity Viscosity ratio 1 

d T o  - 1 %J 
(The - 1)/c 7 red Reduced viscosity Viscosity number [TI 

lim Tred Or lim qrnh h 1  Intrinsic viscosity Limiting viscosity number - 

c-0 c-0 

1. 

2. 

3. 

The intercept of the curve is clearly the Einstein coefficient, 2.5, as suggested by 
Equation (43). 
The initial slope of Figure 4.10 suggests k ,  is about 10.0 for these data, a reasonable 
value in the light of theoretical predictions. 
At still higher volume fractions, 7 increases even more steeply than predicted by the 
two-term version of Equation (43). 

The results of experiments in viscometry are routinely reported in a variety of forms; the 
ones we have used in Figures 4.9 and 4.10 are only two of the possibilities. Table 4.3 lists some 
of the functional forms in which data are often presented. Also listed are the symbols, com- 
mon and IUPAC names, and the limiting values for these quantities as the concentration of 
the colloid goes to  zero. In Table 4.3 the symbol c is used to represent the concentration of the 
dispersed phase. For the present, we continue to let 4 be the unit of concentration. 
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FIG. 4.10 
0.40. (R ,  = 6.5 - 1 O V 3  cm. (Data from V. Vand, J.  Phys. CoNoid Chern., 52, 300 (1948).) 

Reduced viscosity versus volume fraction for a dispersion of glass spheres up to C#I = 
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The definition of the reduced viscosity (see Table 4.3) is somewhat analogous to the 
reduced osmotic pressure given in Equation (3.34), and the intrinsic viscosity [q] is the limiting 
value of this quantity. Note that the reduced viscosity gives the relative increase in the viscosity 
of the solution over the solvent per unit of concentration. Since [q] equals the limiting value 
of the reduced viscosity, [q] has the significance of measuring the first increment of viscosity 
due to the dispersed particles. The intrinsic viscosity, therefore, is a characteristic of the 
dispersed particles. The Einstein equation predicts that it should have a value of 2.5 for 
spherical particles. Note that [q] may also be evaluated by extrapolating inherent viscosities to 
4 = 0. Example 4.3 demonstrates the equivalence of these two procedures for evaluating [q]. 

* * *  

EXAMPLE 4.3 The Limiting Behavior of the Inherent Velocity at Low Volume Fractions. Show 
that the inherent viscosity (I/+) ln(q/qo) reduces to [q]-defined as the limiting reduced viscos- 
ity-as + -+ 0. 

Solution: By using volume fraction for c in Equation (31), one has 7 = A + B+ + C+2 + 
. . . . Since A = rl0, one can rewrite this as q/q0 = 1 + B‘tp + C ’ C $ ~  + . . . , where B’ = 
(B/qo), C’ = (C/q0), etc. The intrinsic viscosity is the coefficient of the first-order concentration 
term; therefore this may be written as q/v0 = 1 + [q]+ + C’+* + . . . . Replacing the argument 
of the logarithm in the definition of inherent viscosity by this expansion gives 

qnh = (1/+)1n(l + [7]+ + C’+2 + . . . ) = (1/4)([q]+ + C ’ q 2  + . . . ) 
where the second form is obtained by using the series expansion (see Appendix A) for the 
logarithm. Further simplification leads to 

rlmh = [rl l  + C’d, + * . - 
In the limit of 4 -+ 0, this reduces to [q], the limiting reduced viscosity. 

* * *  

The Einstein theory shows that volume fraction is the theoretically favored concentration unit 
in the expansion for viscosity, even though it is not a practical unit for unknown solutes. As 
was the case in the Flory-Huggins theory in Chapter 3, Section 3.4b, it is convenient to convert 
volume fractions into “mass/volume” concentration units for the colloidal solute. According 
to Equation (3.78),  4 = C ( ~ / ~ / M , ) ,  where c has units “mass/volume” and v2 and M2 are the 
partial molar volume and molecular weight, respectively, of the solute. In viscosity work, 
volumes are often expressed in deciliters-a testimonial to the convenience of the 100-ml 
volumetric flask! In this case, v2 must be expressed in these units also. The reader is advised 
to be particularly attentive to the units of concentration in an aictual problem since the units of 
intrinsic viscosity are concentration when the reduced viscosity is written as an expansion of 
powers of concentration c. (The intrinsic viscosity is dimensionless when the reduced viscosity 
is written as an expansion of powers of volume fraction 4.) With the substitution of Equation 
(3.78),  Equation (42) becomes 

or 

Equation (45) shows that as long as balances, volumetric flasks, and viscometers are available, 
[q] can be determined. All that is required is to measure viscosity at a series of concentrations, 
work up the data as ( l/c)[(q/qo) - 11, and extrapolate to c = 0. If the experimental value of 
[q] turns out to be 2.5 ( T 2 / M 2 ) ,  then the particles are shown to be unsolvated spheres. If [q] 
differs from this value, the dispersed units deviate from the requirements of the Einstein 
model. In the next section we examine how such deviations can be interpreted for lyophobic 
colloids. 
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4.7 DEVIATIONS FROM THE EINSTEIN MODEL 

The Einstein theory is based on a model of dilute, unsolvated spheres. In this section we 
examine the consequences on intrinsic viscosity of deviations from the Einstein model in each 
of the following areas: 

1. 
2. 
3 .  

In addition, we introduce one other major source of deviation discussed in more detail in 
Section 4.8, namely, effects of interparticle interactions due to charges on the particles and 
polymer additives. 

We consider each of these items as potential causes of deviation in the following subsec- 
tions. 

Concentrations that are not very low 
Particle swelling due to solvation 
Nonspherical particles approximated as ellipsoids of revolution 

4.7a Effect of High Volume Fractions 

We have already indicated that the coefficient k ,  in Equation (42) has been calculated for 
spheres by various theoretical models. While this coefficient is a measure of concentration 
effects, we do not pursue its derivation. Instead, we qualitatively examine the effect of particle 
crowding as the origin of the positive deviations from the Einstein theory that inevitably set in 
at higher concentrations, as seen in Figures 4.10 and 4.11. 

To  do this, we consider a dispersion of volume fraction C#I and examine the increment in 
viscosity dq as a small amount of particles is added to the dispersion. If we take + to be small 
enough that the Einstein equation, Equation (41), holds, the increment dq that accompanies 
the addition of particles is then given by 

dq = 2.5qdC#I* (46) 
where q is the viscosity of the dispersion prior t o  the addition of the new particles. The change 
in volume fraction denoted by d+* represents the volume of added particles divided by the 
volume of space available for those particles. It can be written in terms of the total volume 
fraction C#I of all spheres in the system as dC#I/( 1 - 4). Therefore, Equation (46) becomes 
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FIG. 4.11 The effect of particle crowding on viscosity. The solid line is drawn according to 
Equation (48); the points are experimental results. (Data from R. Roscoe, Br. J .  Appl. Phys., 3, 
267 (1952).) 
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(47) 

One can now integrate this result, recalling that q = qo at + = 0, to give 

q/qo = (1  - + ) - 2 . 5  (48) 

This result reduces to the Einstein equation as + + 0. The solid line in Figure 4.11 was drawn 
according to Equation (48). This result shows that the upward curvature displayed in Figures 
4.10 and 4.11 can be explained on the basis of particle crowding; unfortunately, this approach 
produces no new parameters to quantify the effect. It might be noted that the original deriva- 
tion of this result was undertaken to explore the effects of polydispersity. Specifically, the 
different categories of spheres were assumed to be of different sizes. Since the Einstein result 
is independent of particle size, it is really irrelevant to the effect shown in Figure 4.11. 

4 . 7 ~ .  I The Krieger-Dougherty Equation 
Equation (48) has been derived under the assumption that the volume fraction can reach unity 
as more and more particles are added to the dispersion. This is clearly physically impossible, 
and in practice one has an upper limit for 6, which we denote by +mux. This limit is approxi- 
mately 0.64 for random close packing and roughly 0.71 for the closest possible arrangement 
of spheres (face-centered cubic packing or hexagonal close packing). In this case, d+* in 
Equation (46) is replaced by d+/[ 1 - ( + / + m u x ) ] .  Equation (47)l then becomes, when written in 
terms of the intrinsic viscosity [q], 

which, on integration, leads to 

As noted above, we have replaced the Einstein coefficient of 2:.5 by the more general intrinsic 
viscosity [q] in the above equations. Equation (50) is known as the Krieger-Dougherty equa- 
tion and has been found to be highly useful for relating viscosity data for both low shear rates 
(;/ + 0) and high shear rates (;/ -+ 03). For instance, the experimental results of Krieger 
(1972) and de Kruif et al. (1985) lead to 

+,,, = 0.632; [q] = 3.13 for ;/ --+ 0 (51) 

and 

+max = 0.708; [q] = 2.71 for;/ -+ 03 (52) 

Equations (5 I ) and (52) imply an interesting feature. The respective values of +,,, suggest that 
at low shear the particles pack themselves randomly as the volume fraction increases (i.e., +max 

= 0.64), whereas they approach ordered packing at high shear rates. 
It turns out that the Krieger-Dougherty equation can also be used for intermediate shear 

rates with suitable modifications. Experimental data also sug:pest that [q] and i. are indepen- 
dent of particle size, although they are stress dependent. Therefore viscosities of monodis- 
persed colloids of different particle sizes can be represented by a single equation by suitably 
defining the variables. A discussion of these and other extensions may be found in Barnes et 
al. (1989). 

4.7b Effects of Solvation and Shapes 

Figure 2.4 in Chapter 2 suggested how either solvation or ellipticity could increase the effective 
size of a particle as far as its friction factor is concerned. A moment’s reflection will convince 
us that this same conclusion is qualitatively true with respect to intrinsic viscosity also. 
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The solvation of a sphere swells its volume above the “dry” volume, which is presumably 
what is used to evaluate 6. Therefore whatever factor describes the increase in particle volume 
due to solvation is absorbed into [q]. This is easily seen as follows. Suppose the mass of 
colloidal solute in a solution is converted to the volume of unsolvated material using the “dry” 
density. In this way, mass/volume units are converted to “volume/volume” units, which we 
label $dry since the unsolvated density was used in evaluating this quantity. If the solvation is 
uniform throughout the particle-as would be the case for, say, aqueous proteins-then the 
solvated particle exceeds the unsolvated particle in volume by the factor [ 1 + (ml,h/mz)(p2/ 
p , ) ]  as shown by Equation (2.38). Recall that in this expression, m,,h is the mass of bound 
solvent, rn, is the mass of the solute particle, and pi is the density of solvent or solute, as 
appropriate. Still assuming @dr-v has been used to evaluate [ T ] ,  we see 

(2 - 1) = 2.5(1 + %k])($i + - * * 

c To 
(54) 

in practical units. Example 4.4 considers how intrinsic viscosity measurements can be used to 
reach conclusions about the state of solvation of colloidal particles. 

* * *  

EXAMPLE 4.4 Extent of Hydration of a Protein Molecule from Intrinsic Viscosity Measurements. 
Suppose an aqueous solution of a spherical protein molecule shows an intrinsic viscosity of 
3.36 cm3 g -‘. Taking p, = 1.34 g cm - 3  for the dry protein, estimate the extent of hydration of 
the protein. 

Solution: It is apparent from the units of [ q ]  that solute concentration has been expressed in 
g/cm3. Dividing this concentration by the density of the unsolvated protein converts the concen- 
tration to “dry” volume fraction units. Since the concentration appears as a reciprocal in the 
definition of [q], we must multiply [q] byp, to obtain (l/&,ry)[(q/qo) - 11. For this protein the latter 
is given by (3.36)(1.34) = 4.50. If the particles were unsolvated, this quantity would equal 2.5 
since the molecules are stated to be spherical. Hence the ratio 4.50/2.50 = 1.80 gives the 
volume expansion factor, which equals [ 1 + (rn,,dm,)(p,/p,)]. Therefore (m,,Jm2) = 0.80 (1 .OO/ 
1.34) = 0.60. The intrinsic viscosity reveals the solvation of these particles to be 0.60 g H,O per 
gram of protein. rn 

* * *  

We noted above that either solvation or ellipticity could cause the intrinsic viscosity to exceed 
the Einstein value. Simha and others have derived extensions of the Einstein equation for the 
case of ellipsoids of revolution. As we saw in Section 1.5a, such particles are characterized by 
their axial ratio. If the particles are too large, they will adopt a preferred orientation in the 
flowing liquid. However, if they are small enough to be swept through all orientations by 
Brownian motion, then they will increase [ q ]  more than a spherical particle of the same mass 
would. Again, this is very reminiscent of the situation shown in Figure 2.4. 

Figure 4.12a shows plots of the intrinsic viscosity - in volume fraction units - as a func- 
tion of axial ratio according to the Simha equation. Figure 4.12b shows some experimental 
results obtained for tobacco mosaic virus particles. These particles - an electron micrograph 
of which is shown in Figure 1.12a- can be approximated as prolate ellipsoids. Intrinsic viscosi- 
ties are given by the slopes of Figure 4.12b, and the parameters on the curves are axial ratios 
determined by the Simha equation. Thus we see that particle asymmetry can also be quantified 
from intrinsic viscosity measurements for unsolvated particles. 

Finally, we note that both solvation and ellipticity can occur together. The contours 
shown in Figure 4.13a illustrate how various combinations of solvation and ellipticity are 
compatible with an experimental intrinsic viscosity. The particle considered in Example 4.4 
has an intrinsic viscosity of 4.50 and was calculated to be hydrated to the extent of 0.60 g H,O 
per gram of protein. The same value of [ r 7 ]  is also compatible with nonsolvated ellipsoids of 
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FIG. 4.12 Viscosity of dispersions of some nonspherical particles: (a) intrinsic viscosity as a 
function of the axial ratio a / b  for oblate and prolate ellipsoids of revolution according to the Simha 
theory (redrawn with permission of Hiemenz 1984); (b)  experimental values of relative viscosity 
versus volume fraction for tobacco mosaic virus particles of different a / b  ratios (data from M. A. 
Lauffer, J .  Am. Chem. Soc., 66, 1188 (1944) ). 

axial ratios 4.0 and 0.22. Intermediate combinations of solvation and ellipticity can also be 
determined from Figure 4.13a. 

Contours like this are qualitatively the same sort of thing .we obtain from sedimentation- 
diffusion experiments as shown in Figure 2.9. Therefore let us consider the relationship be- 
tween the two types of data. In general, exactly the same falctors affect both the intrinsic 
viscosity and the friction factor ratio, but the functional dependencies are somewhat different. 
Figure 4.13b shows how a contour off/fo selected from a sedimentation-diffusion study and 
an intrinsic viscosity contour selected on the basis of viscosity experiments might overlap. In 
this case the solvation-ellipticity combination is characterized unambiguously: a / b  = 2.5 and 
(ml,b/mz) = 1 .O. Figure 4.13b shows the complementarity of viscosity and sedimentation- 
diffusion data. 

The attentive reader will realize that we have strayed rather far from the hard spheres of 
the Einstein theory to find applications for it. It should also be appreciated, however, that 
the molecules we are discussing are proteins that - through dlisulfide bridges and hydrogen 
bonding - have fairly rigid structures. Therefore the application of the theory - amended to 
allow for solvation and ellipticity-is justified. This would not be the case for synthetic 
polymers, which are best described as random coils and for which a different formalism is 
employed. This is the topic of Section 4.9. 

4 . 7 ~  Electroviscous Effects and Viscoelectric Effects 

In Chapter 3 we saw that electrical effects complicate the osmotic equilibrium for charged 
particles. Not surprisingly, particle charge complicates analysis of viscosity as well. Like 
osmotic phenomena, the viscosity of dispersions of charged particles is highly sensitive to the 
concentration of the electrolytes. Chapters 11-13 examine the behavior of simple ions near 
charged surfaces. For now, we review some of the concepts, variables, and definitions of those 
chapters as background for our discussion of charge effects on viscosity (and, more generally, 
rheology). 

For simplicity, consider a lyophobic colloidal particle with a surface that carries a charge. 
Electroneutrality requires that an equal amount of opposite charges (counterions) be present 
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FIG. 4.13 Intrinsic viscosity of a protein solution: (a) variation of the intrinsic viscosity of 
aqueous protein solutions with axial ratio a/b  and extent of hydration rn,,,/rn, (redrawn from L. 
Oncley, Ann. N Y  Acad. Sci., 41, 121 (1941)); (b) superposition of the [ q ]  = 8.0 contour from 
Fig. 4.13a and thef/fo = 1.45 contour from Figure 2.9. The crossover unambiguously characterizes 
particles with respect to hydration and axial ratio. 

not too far from the charged surface. The charged surface of the particle and the counterions 
are referred to as an electrical double layer. The counterions are distributed over a region that 
extends some distance from the surface of the particles because of the thermal (diffusive) 
motion of the counterions. This region is known as the diffuse part of the double layer; its 
range - represented by the reciprocal of the so-called Debye-Huckel parameter K - depends on 
the concentration and charge of the counterions and the electrical potential at the surface of 
the particles. 

It is convenient to think of the diffuse part of the double layer as an ionic atmosphere 
surrounding the particle. Any movement of the particle affects the particle’s ionic atmosphere, 
which can be thought of as being “dragged along” through bulk motion and diffusional 
motion of the ions. The resulting electrical contribution to the resistance to particle motion 
manifests itself as an additional viscous effect, known as the electroviscous effect. Further, 
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when the particle moves, the surface where slippage occurs lies within the diffuse part of the 
double layer at ionic dimensions from the surface. The potential at that location can be 
measured using electrophoresis experiments, among others (Chapter 12), and is called the zeta 
potential r. 

Two charged particles approaching each other sense the presence of each other through 
the overlap of their electrical double layers. This double-layer overlap results in a repulsive 
force between similarly charged particles. 

The dispersed particles also attract each other through van der Waals forces (Chapter lO), 
which decrease with increasing interparticle separation. A material property known as the Ha- 
maker constant, A,  can be used as a measure of the strength of the van der Waals attraction. 

The net outcome of the encounter between two particles -- that is, whether attraction or 
repulsion prevails - depends on magnitudes of attractive and repulsive forces as the particles 
approach each other. Table 4.4 summarizes some pertinent relationships from Chapters 10-12 
that will be useful in the following discussion of the effects of electrostatic and van der Waals 
forces on the rheology of dispersions. 

The electroviscous effects are usually classified in three categories depending on the origin 
of the underlying mechanism. 

1. If the fluid in capillary flows considered in Section 4.4a is an electrolyte solution, the 
flow will give rise to a streamingpotential, as discussed in Chapter 12. The streaming potential 
causes a backflow because of electroosmotic effects (also discussed in Chapter 12), thereby 
causing a reduction in the net flow in the forward direction. Since the flow rate for an identical 
pressure drop along the length of the capillary will be larger in the absence of the above 
double-layer effect, the presence of the electrical double layer rnakes the liquid appear t o  have 
an enhanced viscosity. In the case of dilute, charged dispersions, a similar effect occurs as a 
consequence of the additional energy dissipation caused by the distortion of the double layer 
under shear. ‘The net effect is an increase in the viscosity of the dispersions. This effect is 
called the primary electroviscous effect. 

The secondary electroviscous effect refers to the change in the rheological behavior 
of a charged dispersion arising from interparticle interactions, i.e., the interactions between 
the electrical double layers around the particles. 

The term tertiary electroviscous effect is applied to the changes in the conformation 
of polyelectrolytes that are caused by intramolecular double-layer interactions. It is customary 
to extend this definition to include all effects in which the geometry of the system is altered as 
a result of double-layer interactions. 

2. 

3. 

TABLE 4.4 
from Chapters 10-12 

Summary of Some Colloidal Interaction Energies and Parameters 

Quantity described Equation 

Debye-Huckel Parameter K (unit, l/length) K = [(loo0 e2N,/ckBT)Z z i2h5]”  

Equation (1 1.41) 
+A = -(A/127r)K2 

surfaces (unit, energy) Equation (10.63) 
(@K = 64 kRT n ,  K-‘?’: exp ( - d / K - ’ )  

two flat surfaces (unit, energy) Equation (1 1.86) 

From Equation (12.27) 

1 

Van der Waals attraction between two flat 

Electrical double-layer repulsion between 

Zeta potential [ (unit, volts) ( = 317 U/2E 

Note: e = electron charge; NA = Avogadro’s number; z, = charge of ion of type i; 
M, = molar concentration of ions in the bulk; E = dielectric constant of the me- 
dium; +A = energy of attraction; A = Hamaker constant; d = distance between 
the surfaces; +K = energy of repulsion; n ,  = ionic concentration (in number/vol- 
ume); To = 1 ; 17 = viscosity of the liquid; U = electrophoretic mobility 
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In studying and interpreting the effects of electrical double layers on the viscosities of 
dispersions, one usually assumes that the viscosity of the suspending medium itself remains 
unchanged. However, situations do exist in which the electrical fields at a fluid/particle 
interface exert a significant influence on the structure of the fluid itself in the vicinity of the 
interface. This can modify the viscosity of the fluid. This class of electrically induced effects is 
known as viscoelectric effects. We consider this briefly in Chapter 12 in the context of its 
influence on the migration of charged particles in an electric field. In this chapter, however, 
we are concerned only with electroviscous effects and not viscoelectric effects. A good intro- 
duction to the viscoelectric effects (and a broader treatment of electroviscous effects) may be 
found in Hunter (198 1). 

Our objective in this chapter is modest, namely, to provide a general discussion of the 
electroviscous effects and to present a few equations that serve as guidelines for understanding 
the effects of colloidal forces on the viscosity of dispersions. The underlying theories are 
rather complicated and fall outside our scope. 

The electroviscous effects and the other effects discussed in Sections 4.7a-c lead to what 
is called non-Newtonian behavior in the flow of dispersions. In the next section, we begin with 
a brief review of the basic concepts concerning deviations from Newtonian flow behavior and 
then move on to consider how high particle concentrations and electroviscous effects affect 
the flow and viscosity. 

4.8 NON-NEWTONIAN BEHAVIOR 

We have already devoted a considerable amount of space to our discussion of viscosity without 
ever venturing beyond Newtonian systems. At least as much - probably more - could be said 
about non-Newtonian systems. 

Colloids (even those consisting of only spherical particles) do not necessarily behave like 
Newtonian fluids. Deviations from Newtonian behavior occur for a number of reasons, but 
we are concerned mainly with two effects: (a) those due to interparticle hydrodynamic interac- 
tions and (b) those due to colloidal forces such as electrostatic effects, effects due to polymer 
layers adsorbed on the particles, etc. The hydrodynamic effects exist even for neutral particles 
although they become important only for moderate to large concentrations of the particles. 
The colloidal forces can exert a significant influence even at low volume fractions if the ranges 
of colloidal attractions and repulsions are significant. The formal theoretical developments 
that account for the effects of colloidal and hydrodynamic forces are rather complex and are 
not sufficiently well established. We shall not go into any of the details of these since they 
require a more advanced background in fluid mechanics than introduced in the previous 
sections of this chapter; some introduction to the relevant ideas are available in advanced 
books or reviews such as Russel(1980), Tadros (1984, Chapter 6), Hunter (1990, Chapter l8), 
and Russel et al. (1989, Chapter 14). However, a discussion of the rheology of dispersions 
without at least some indication of what happens in the case of interacting particles is not only 
incomplete, but is also misleading. Therefore, our goal in this section is to provide a general 
idea of what happens to the flow behavior of dispersions when the above forces become 
important, and what physicochemical factors or features of the phenomena one should pay 
attention to in attempting to understand the rheology of dispersions. 

4.8a Examples of Non-Newtonian Features 

Non-Newtonian fluids are generally those for which the viscosity is not constant even at 
constant temperature and pressure. The viscosity depends on the shear rate or, more accu- 
rately, on the previous kinematic history of the fluid. The linear relationship between the shear 
stress and the shear rate, noted in Equation ( I ) ,  is no longer sufficient. Strictly speaking, the 
coefficient of viscosity is meaningful only for Newtonian fluids, in which case it is the slope of 
a plot of stress versus rate of shear, as shown in Figure 4.2. For non-Newtonian fluids, such a 
plot is generally nonlinear, so the slope varies from point to point. In actual practice, the data 
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are traditionally represented with the rate of shear (dv/dy)  as the ordinate and the stress 
( F / A )  as the abscissa, as shown in Figure 4.14. In this case, the apparent viscosity at  some 
particular point is given by the cotangent of the angle that defines the slope at that particular 
point. 

The non-Newtonian fluids in shear flows may be classified broadly into three types: 
1. Fluids with shear stresses that at any point depend on the shear rates only and are 

independent of time. These include (a) what are known as Birzgham plastics, materials that 
require a minimum amount of stress known as yield stress before deformation, (b) pseudoplas- 
tic (or shear-thinning) fluids, namely, those in which the shear stress decreases with the shear 
rate (these are usually described by “power-law” expressions for the shear stress; i.e., the rate 
of strain on the right-hand-side of Equation (1)  is raised to a suitable power), and (c) dilatant 
(or shear-thickening) fluids, in which the stress increases with the shear rate (see Fig. 4.2). 

Fluids in which the shear stress/shear rate behavior depends on time, i.e., the kine- 
matic history of the fluid. These fall in one of two categories: (a) thixotropic or (b) rheopectic. 
Many polymer gels display time-dependent stresdshear rate behavior. In thixotropic fluids, 
the microstructure of the fluid progressively breaks down and the viscosity decreases. In 
rheopectic fluids, the applied shear promotes gradual formation of local structure and the 
apparent viscosity increases. As we discuss below, thixotropic behavior is associated with 
flocs of asymmetrical particles. In certain instances, quicksand apparently operates through a 
thixotropic mechanism. The struggles of the victim merely decrease the viscosity of the trap 
and worsen the victim’s plight. By contrast, wet beach sand is an  example of a dilatant system 
in which the apparent viscosity increases with shear. Anyone who has wiggled their toes in the 
wet sand knows that under these conditions (low shear) the wet sand is very fluid. However, 
the same sand is hard to a firm footstep (high shear). In contrast to thixotropy, dilatancy is 
favored by symmetrical, nonflocculated particles. It is almost always observed at concentra- 
tions in the neighborhood of 40% dispersed particles. At this concentration and in the absence 

2. 

FIG. 4.14 Rate of shear versus shearing stress: (a) for 7% aqueous carbon black dispersions (data 
from A. I. Medalia and E. Hagopian, Ind. Eng. Chem. Prod. Res. Dev., 3, 120 (1964) ); and (b) 
for an 11 Vo aqueous bentonite dispersion (pH = 8.7) for which the time of the cycle is 70 sec 
(based on data of W. F. Gabrysh, H. Eyring, P. Lin-Sen, and A. F. Gabrysh, J.  Am. Ceram. Soc., 
46, 523 (1963) ). 
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of disruptable flocs, the only way such a system can flow is by the gradual rolling of particles 
past one another. If  the rate of shear is too great, this deformation is impossible. 

3 .  Viscoelastic materials, as mentioned in Section 4.1, display behavior somewhere be- 
tween a solid and a liquid. 

Colloidal dispersions, polymer solutions, and both colloidal and polymer gels can in 
principle behave like any of the above-mentioned materials. 

4.8b Time Scales and Dimensionless Parameters of Importance 

While in the case of noninteracting dispersions one needed to consider only the effect of the 
particle concentration, in interacting dispersions one needs to consider the time over which the 
flow behavior is observed and its magnitude relative to the time scales over which either shear 
or colloidal forces alter the local structure of the dispersions. What the flow behavior is, which 
interaction effects dominate the behavior, and how they do  depend on the competing influ- 
ences of the applied shear and interaction effects. In this section, we outline some of the 
important parameters one can formulate to judge the relative effects of various colloidal 
interactions and the physical significance of those parameters. 

4.8b.l The Deborah Number 
We mentioned in Section 4.1 that whether a material deforms under applied stress is a matter 
of the magnitudes of the shear force exerted and the time of observation. It is common to use 
silicone putty (known as Si//y Putty) to illustrate the above statement. If  you have enough 
patience, you will notice that silly putty is a highly viscous material (although you may not 
think of it that way) that will find its own level when placed in a container. In this sense, it 
behaves like a “liquid.” On the other hand, as its name is meant to suggest, a ball of Silly Putty 
will also bounce when dropped to  the floor. That is, under severe and sudden deformation, it 
behaves like a solid. The behavior of the Silly Putty thus brings to our attention the importance 
of time scales and deformation rates in classifying the “flow behavior” of materials. 

The dimensionless number in rheology that compares relative importance of the time scale 
of the deformation process tD over the observation time to is called the Deborah number (De): 

De = t,/to ( 5 5 )  

The time tD is typically very small for liquids and is very large for solids. Large Deborah 
numbers signify solidlike behavior, and small values typify liquidlike behavior. Correspond- 
ingly, a colloid or a gel may behave like a solid because either its characteristic time is very 
large (we discuss this below) or the deformation process is very fast (this is the reason we 
compare the time for deformation t ,  with the time for observation to). The name Deborah 
comes from the fifth chapter of the book of Judges in the Old Testament, in which Deborah is 
reported to  have said that “the mountains flowed before the Lord.” The idea is that everything 
flows if one has a (very) long life to observe the motion! 

4.8b.2 The Peclet Number 
While the Deborah number is often used to compare the time for deformation with the time 
of observation in experiments, it also inspires us to identify and formulate other dimensionless 
groups that compare the various characteristic times and forces relevant in colloidal phenom- 
ena. We discuss some of the important ones. 

The Peclet number compares the effect of imposed shear (known as the convective effect) 
with the effect of diffusion of the particles. The imposed shear has the effect of altering the 
local distribution of the particles, whereas the diffusion (or Brownian motion) of the particles 
tries to restore the equilibrium structure. In a quiescent colloidal dispersion the particles move 
continuously in a random manner due to Brownian motion. The thermal motion establishes 
an equilibrium statistical distribution that depends on the volume fraction and interparticle 
potentials. Using the Einstein-Smoluchowski relation for the time scale of the motion, with 
the Stokes-Einstein equation for the diffusion coefficient, one can write the time taken for a 
particle t o  diffuse a distance equal t o  its radius R ,  as 



THE RHEOLOGY OF DISPERSIONS 177 

where we have used the Stokes-Einstein equation for the diffusion coefficient D (see Equations 
(2.32) and (2.8)), 

This characterizes the time taken for the restoration of the equilibrium microstructure after a 
disturbance caused, for example, by convective motion, i.e., this is the relaxation time of the 
microstructure. The time scale of shear flow is given by the reciprocal of the shear rate, i / .  The 
dimensionless group formed by the ratio ( tDVf/tShear) is the Peclet number 

which specifies the relative importance of convection over diffusion. For example, if Pe 4 1, 
the distribution of particles is only slightly altered by the flow, and the behavior is dominated 
by diffusional relaxation of the particles. When Pe 1, convective (hydrodynamic) effects 
dominate the behavior, and experiments suggest that a dispersion of spherical particles be- 
haves like a shear-thinning fluid. 

Before leaving this discussion, it is important to note that other forms of Peclet numbers 
are also possible and may be more appropriate depending on the type of convective influence 
studied. For example, in the case of oscillatory flows (as in oscillatory viscometers), it is more 
useful to define the Peclet number as ( R f d D ) ,  where w is the frequency of oscillation. 
Regardless of the particular definition, the general significance of the Peclet number remains 
the same, i.e., it compares the effect of convection relative to diffusion. 

4.8b.3 Relative Energies or Lengths 
In addition to the Peclet number, one can also define other dimensionless groups that compare 
either relevant time scales or energies of interaction. Using some of the concepts previewed in 
Section 4 . 7 ~  and Table 4.4, one can define an electrostatic groulp (in terms of the zeta potential 
< and relative permittivity E, of the liquid) as 

NE, = &,E,,r2R,/kBT (59) 

which is a measure of the electrostatic energy relative to the thermal energy, represented by 
kBT. Similarly, the range of electrostatic repulsion K - '  (the Debye length) relative to the 
particle radius R, is represented by 

NDL = KK, 
(60) 

The strength of the van der Waals attraction relative to thermal energy is represented by 

NvdW = A / k B T  (61) 

where A is the effective Hamaker constant between the particles through the intervening fluid. 
Other diniensionless groups that compare the thickness of the adsorbed polymer layer to 

the radius of the particle or the radius of gyration of the polymer to the particle radius in 
polymer/colloid mixtures can also be easily defined. We are mostly concerned with the volume 
fraction 4 and the Peclet number Pe in our discussions in this chapter. However, the other 
dimensionless groups may appear in the equations for intrinsic viscosity of dispersions when 
the dominant effects are electroviscous or sterically induced. 

4 . 8 ~  Charged Particles 

In Section 4 . 7 ~  we outlined the types of effects one can expect in the response of charged 
dispersions to deformation. In this section, we present some results for the viscosity of charged 
colloids for which electroviscous effects could be important. As mentioned above, we shall 
not go into the theoretical details behind the equations since they require a fairly advanced 
knowledge of fluid dynamics and, in some cases, statistical mechanics. Moreover, some of 
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the concepts, such as electrical double layers, double-layer thickness (i.e., the Debye or the 
Debye-Huckel length) K - ~  and zeta potential <, used in the following discussion require 
material from Chapters 11 and 12, and it will help to return to this section after reviewing 
those chapters. 

4 . 8 ~ .  I 
The first analysis of the primary electroviscous effect dates to 1916 when Smoluchowski 
presented the following equation for the intrinsic viscosity: 

The Primary Electroviscous Effect 

where E, is the relative permittivity, eo is the permittivity of free space, k is the specific 
conductivity of the continuous phase, and < is the zeta potential, which is used in place of the 
potential at the surface of the particle (a sphere of radius R J .  The physical significance and 
measurement of the zeta potential are discussed in Chapter 12. Smoluchowski’s result is 
supposed to apply for thin electrical double layers (i.e., large KR,) ,  a range for which the 
primary electroviscous effects are smallest. A subsequent analysis by Krasny-Ergen in 1936 for 
the same conditions led to a correction for the second term in the brackets: 

These equations (and others that follow) are based on the solutions of equations of motion 
for the particles, as well as the electrolyte, that we use in Chapter 12 in the context of 
electrophoresis. It turns out that the analysis of Krasny-Ergen fails to satisfy one of the 
boundary conditions and does not take into account energy dissipations caused by the electric 
currents arising from the motion of the electrolyte. I t  is more appropriate for KR,, -+ 00 .  

A corrected and more general analysis of the primary electroviscous effect for weak flows, 
i.e., for low Pe numbers (for small distortions of the diffuse double layer), and for small zeta 
potentials, i.e., < 25 mV, was carried out by Booth in 1950. The result of the analysis leads 
to the following result for the intrinsic viscosity [q] for charged particles in a 1 : 1 electrolyte: 

The function Z(KR,) is a power series with the two limiting forms, for extended diffuse layers: 

1. Thick double layers, i.e., small KR,: 

Z(KR,) = (2007r~R,) - ’  4- ( 1  l~RJ3200n)  ( 6 5 4  

Z(KR,)  = (3/2n)(~R,) - 4  (65b) 

2. Thin double layers, i.e., large KR,:  

The substitution of Equation (65b) in Equation (64) leads to the Krasny-Ergen equa- 
tion for KR, -+ CO, as one would expect. 

Although Booth’s result already indicates the influence of the charges on the particles and 
the electrolyte in the dispersion on the viscosity of the dispersion, one sees more complex 
behavior only when the effect of larger distortions of the double layer is included in the 
analysis. An extension for larger distortions (represented by the Peclet number Pe) of the 
double layer is available (Russel 1978a) and can be written as 

for small zeta potentials (less than about 25 mV) and for Pe 4 KR, and KR, >> 1. Russel’s 
result indicates that the primary electroviscous effect leads to a shear-thinning (pseudoplastic) 
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behavior even for moderate Pe and thin double layers with low potentials. Moreover, varia- 
tions in normal stresses also occur, although they cannot be deduced from the above equation 
alone. 

The results presented here provide a glimpse of the complications in the flow behavior 
that may arise as a result of the distortions of the electrical double layer even at low volume 
fractions of the dispersions. Extensions of Booth’s result an’d others are available in the 
literature (see Hunter 1981), but we shall not go into those here. 

The variations in the intrinsic viscosity predicted by the primary electroviscous effect are 
often small, and it is difficult to attribute variations in the experimentally observed [ q ]  from 
the Einstein value of 2.5 to the above effect since such variatiom can be caused easily by small 
amounts of aggregation. Nevertheless, Booth’s equation has been found to be adequate in 
most cases. Further discussions of this and related issues are available in advanced books 
(Hunter 198 1). 

4.8c.2 The Secondary Electroviscous Effect 
The secondary electroviscous effect is often interpreted in terms of an increase in the effective 
“collision diameter” of the particles due to electrostatic repulsive forces (i.e., the particles 
begin to “feel” the presence of other particles even at larger interparticle separations because 
of electrical double layer). A consequence of this is that the excluded volume is greater than 
that for uncharged particles, and the electrostatic particle-particle interactions in a flowing 
dispersion give an additional source of energy dissipation. 

Let us consider situations for which the double-layer thickness is large enough (i.e., KR, is 
small) and interparticle distances are large (Russel 1978b). Then, at typical interparticle dis- 
tances in a quiescent dispersion, the van der Waals attraction (see Chapter 10) is insignificant. 
We can then use the electrostatic energy expression presented in Chapter 11 to get a dimension- 
less parameter a that represents the ratio of electrostatic energy to thermal energy (i.e., k,T): 

where NE, and N D L  are defined in Equations (59) and (60), respectively. The parameter a is 
another way of expressing the strength of electrostatic energy relative to the thermal energy. 
For values of a + 1 (i.e., the electrostatic energy is dominant), the effective collision diameter 
L for the particles in the absence of convective forces can be shown to be 

L = K - ’  In [aAn (aAn a ) ]  (68) 

Under shear flow, the minimum center-to-center separation, r, ’between the particles will be in 
the interval {2R,  I r I L } ;  i.e., at the high-shear limit r = 2R, and at quiescent conditions 
r = L.  An analysis of the flow behavior in this case leads to th,e following expression for the 
zero shear rate (i.e., Pe 4 1) limit of the relative viscosity: 

The intrinsic viscosity [7] in the above expression includes the primary electroviscous effect, 
The experimental data of Stone-Masui and Watillon (1968) for polymer latices seem to be 
consistent with the above equation (Hunter 1981). Corrections for a for large values of KR,  
are possible, and the above equation can be extended to larger Peclet numbers. However, 
because of the sensitivity of the coefficients to KR, and the complications introduced by 
multiparticle and cooperative effects, the theoretical formulations are difficult and the experi- 
mental measurements are uncertain. For our purpose here, the above outline is sufficient to 
illustrate how secondary electroviscous effects affect the viscosity of charged dispersions. 

4.8c.3 The Tertiary Electroviscous Effecl 
As mentioned in Section 4.7c, the tertiary electroviscous effect is at least partly due to the 
expansion and contraction of particles arising from the conformational changes of the poly- 
electrolytes (adsorbed or chemically bound to the surface of the particles) with changes in 
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the electrolyte concentration or pH of the medium. For particles stabilized by a layer of 
polyelectrolyte, one can calculate an effective volume fraction ( b f  (if the thickness 6 of the 
polyelectrolyte layer is known) using 

6 f  = +[I + ( ~ / R , ) I ~  (70) 

where (b is the actual volume fraction of the particles (of radius Rs). One can then use an 
equation such as Equation (50),  the Krieger-Dougherty equation, to estimate the viscosity. 
The analysis of the tertiary electroviscous effect is complicated by the fact that factors such as 
the effect of the particle surface on the conformation of the polyelectrolyte chains, the struc- 
ture of the chains in the layer, and the extent of the penetration of the liquid into the layer 
make it difficult to  estimate the thickness and the hydrodynamic effects of the stabilizer layer. 
This area is still in its infancy. Some additional information may be obtained from Hunter 
(1981). 

4.8d Dispersions of Aggregates 

So far we have focused our attention on dispersions in which interparticle repulsions domi- 
nate. Attractive forces (see Chapter 10) have been assumed to  be negligible, and as a conse- 
quence the dispersions are stable. When the van der Waals attraction begins to play a signifi- 
cant role (i.e., the net effect of repulsion and attraction is such that we have coagulation of 
the dispersion), more complicated flow behavior occurs. Such dispersions are more common 
in practice and deserve our attention. 

Aggregated colloids are common examples of systems in which the apparent viscosity 
depends on the rate of shear. The existence of velocity gradients means that differences in flow 
velocity may extend over the dimensions of colloidal particles. If the dispersed “particle” is an 
aggregate of primary particles, a floc, then the shearing forces associated with viscosity that 
operate across the floc may disrupt or rearrange the aggregate. This corresponds to a dissipa- 
tion of translational energy and hence contributes to the viscosity. It is clear that the extent to 
which this occurs may vary with the velocity gradient; this is one way in which the apparent 
viscosity may depend on the rate of shear. 

Let us see how thixotropic behavior relates to  the phenomena of coagulation. The data 
shown in Figure 4.14a were obtained for a 7% slurry of carbon black in water. Curve 1 shows 
the results obtained immediately after the dispersion was prepared in a high-speed blender. 
After additional mild agitation, the results shown in curve 2 are obtained; these are indepen- 
dent of further agitation. With shorter periods of mild agitation, a family of curves lying 
between 1 and 2 would be obtained. 

The data presented in Figure 4.14a are consistent with the following mechanism. The 
dispersion that emerges from the blender is fundamentally unstable with respect to  coagulation 
and coagulates rapidly to form a volume-filling network throughout the continuous phase. 
Except for the size and structure of the “chains,” the situation is comparable to a cross-linked 
polymer swollen by solvent. In both, the liquid is essentially immobilized by the network of 
chains, and the system behaves as an elastic solid under low stress. The term gel is used to  
describe such systems whether the dispersed particles are lyophilic or lyophobic. 

As the force applied to the surface of the gel is increased, however, a point is ultimately 
reached-the yield value-at which the network begins to break apart and the system begins 
to  flow (curve 1 in Fig. 4.4a). Increasing the rate of shear may result in further deflocculation, 
in which case the apparent viscosity would decrease further with increased shear. Highly 
asymmetrical particles can form volume-filling networks at low concentrations and are thus 
especially well suited to display these phenomena. 

As the system is subjected to ongoing, low-level mechanical agitation, the network struc- 
ture is rearranged to a dispersion of more compact flocs that display both a lower yield value 
and a lower apparent viscosity than the initial dispersion (curve 2). A certain amount of time 
is required for the dispersed units to  acquire a size and structure compatible with the prevailing 
low level of agitation. This is why intermediate cases (not shown in Fig. 4.14a) are observed 
before the actual stationary-state condition is obtained. 
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If the time for measurement of a strcss/shear curve is short compared to the time required 
for rearrangement of the structure of the dispersed particles, then different results are obtained 
depending on whether the rate of shear is increasing or decreasing. Figure 4.14b is a n  example 
of such hysteresis for II’!7o dispersions o f  bentonite (a montmorillonite clay with plate-shaped 
primary particles) in which the entire cycle is measured i n  70 sec. These data  show the sensitiv- 
i t y  of such experiments to the level of shear and to the time of observation. I f  the direction of 
the cycle is re\.ersed along the descending branch of the curve, different results arc obtained 
depending o n  whether the reversal is done at a rate of  shear above (region ( 1 )  in Fig. 4.14b) or 
below (region (2)  ) about 200 s ’. This shows that the structure within the colloid builds up 
rapidly (cornpared to the cycle time of 70 sec) at rates of  shear below 200 s I, with negligible 
buildup at greater rates of shear. 

Thcse coniplicated observations are  difficult to interpret in terms of fundamental interac- 
tions between particles; nevertheless, they havc tremendous practical significance. For exam- 
ple, carbon black strengthens rubber against deformation, and for this reason 3-4 kg of  
carbon black is introduced into every tire made. This accounts for an annual worldwide 
consumption of carbon black of over 4 billion kg for automobile tires alone. Likewise, dispcr- 
sions of clay in oils are used as lubricating greases. Obviously, the viscosity of these substances 
under various conditions of shear is an important consideration. Printing inks, drilling rnuds 
(circulated around the shalt in well-drilling operations to cool the bit and flush away cuttings), 
paper coatings, paints, and  innumerable industrial slurries may all be considered examples of 
areas for which these considerations are  vitally important. 

In a paint, for example, a controlled level of aggregation is important in both the actual 
application 0 1  the paint and its storage in the container during application. In the former, 
thixotropy ( the word means “changing with touch”) permits the paint to “thin” under the 
shearing influence of the paintbrush or spraygun. Once applied, i t  thickens, preventing the 
drip or sag of the paint on the surface. In addition. the time required for this yield value to 
develop should be sufficient t o  allow for the levcling of brush marks. Thixotropy is an 
important property o f  paint in the bucket as  well as  on the wall. The buildup o f  a yield value 
interferes with the sedimentation of the pigment and  eliminatez the need to stir the paint 
continuously to assure uniformity. The fact that these requirements are  well niet by cornnicr- 
cial paints indicates the success of paint chemists in regulating thixotropy. 

One of the major di!ficulties in developing theories of the rheology of coagulated or 
flocculatcd dispersions is that the microstructures of the aggregates are nonequilibrium struc- 
tures under shear. Understandably, the rheology of such dispersions is history dependent, as  
we havc seen above, and requires computer simulations and  nonequilibrium statistical me- 
chanics for proper study. 

4.9 VISCOSITY OF POLYMER SOLUTIONS 

The viscosity of a polymer solution is one of its most distinctive properties. The spatial 
extension of the molecules is great enough so that the solute particles cut across velocity 
gradients and  increase the viscosity i n  the manner suggested by Figure 3.8.  I n  this regard they 
are  n o  different from the rigid spheres of the Einstein model. What is different for thcsc 
molcculcs is [he  internal structure of the dispersed units, which arc flexible and  swollen 
with solvent. ‘The viscosity of a polymer solution depends, therefore, on the polymor-solvent 
interactions, as well as o n  the properties of  the polymer itself. 

4.9a The Staudinger-Mark-Houwink Equation 

An importanl empirical generali7ation about the intrinsic visco\ity of polymer solution3 i \  
given by 

( q ]  = X-M” (71) 

i n  which k and a are  experimentally determined constant$. b ’ e  \hall call Equarion (71) the 
Sfau~/nRcr-,l.lurk-Houw.rnk e y u u f ~ o n .  Staudinger (Nobel Prire. 1953). one of the founders of 
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modern polymer chemistry, originally proposed this relationship with a = 1. It was subse- 
quently recognized that more commonly 0.5 < a < 0.8. The constants k and a are called the 
Mark-Houwink coefficients; they depend on  the temperature as well as the polymer-solvent 
system. Values of k and a are determined for a particular system by measuring the intrinsic 
viscosity of polymer fractions of known molecular weight. Example 4.5 illustrates how this is 
done. 

EXAMPLE 4.5 Empirical Determination of the Mark-Houwink Coefficients for a Polymer Solu- 
tion. The molecular weights of various polycaprolactam preparations were determined by 
end-group analysis (see Example 3.2); intrinsic viscosities of the various fractions in m-cresol 
were measured at 25OC. The following values are representative of the results obtained (Reim- 
schussel and Dege 1971): 
M * 10-3 3.50 4.46 7.69 13.0 17.6 21.6 30.8 
[ r I(dl/g) 0.36 0.43 0.61 0.87 1.10 1.25 1.59 

Determine the values of k and a that fit these data. 

Solution: By taking the logarithms of Equation (71), a linear form is obtained: 

In [r] = Ink  + a In M. 

This could be plotted with a and In k evaluated from the slope and intercept, respectively. 
Alternatively, a least squares analysis of the data can be performed. When this is carried out 
using the logarithms of the above results, it is found that a = 0.683 and In k = -6.593, or k = 
1.37 10 -3. The units of k are consistent with the concentration units “dl/g.” This result can be 

H inverted to give 1\11 directly: M = 1.51 - 104(3]1.46. 
* * *  

The practical significance of the result of this example lies in the great ease with which viscosity 
measurements can be made. Once the k and a values for an experimental system have been 
established by an appropriate calibration, molecular weights may readily be determined for 
unknowns measured under the same conditions. Extensive tabulations of Mark-Houwink 
coefficients are available, so the calibration is often unnecessary for well-characterized poly- 
mers (see Table 4.5). 

If intrinsic viscosity is used to evaluate the molecular weight of a polydisperse sample, the 
molecular weight so obtained is an average value. Equation (1.20) defined the viscosity aver- 
age, which is the kind of average obtained. We are now in a better position to  see how this 
comes about. 

TABLE 4.5 
Indicated Temperatures 

Mark-Houwink Coefficients for Some Typical Polymer-Solvent Systems at the 

Polymer 
Temperature k x 103 

Solvent (“C) (cm3g-’) U 

Polypropylene 
Poly(viny1 alcohol) 
Poly(oxyethy1ene) 
Poly(methy1 methacrylate) 
Polystyrene 
Natural rubber 
Poly(acrylonitri1e) 
Poly(viny1 chloride) 
Poly(ethy1ene terephthalate) 

Cy clohexanone 
Water 
cc1, 
Acetone 
Toluene 
Benzene 
Dimethyl formamide 
Tetrahydro furan 
m-Cresol 

92 = e 
80 
25 
30 
34 
30 
20 
20 
25 

172 
94 
62 
7.7 
9.7 

18.5 
17.7 
3.63 
0.77 

0.50 
0.56 
0.64 
0.70 
0.73 
0.74 
0.78 
0.92 
0.95 

Source: M. Kurata, M. Iwama, and K. Kamada, in Polymer Handbook, 2d ed. (J. Srandrup and 
E. H. Immergut, Eds.), Wiley, New York, 1975. 
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It is apparent that the experimental (subscript ex)  intrinsic viscosity depends on an average 
molecular weight a; it is the nature of this average that we want to establish. According to 
Equation (71) ,  we write 

[qleX = k;i?" 

The intrinsic viscosity contains a contribution of concentration that we note by writing [q],, 
= (qsp)e,/c,X for which it is understood that this is a limiting value. If the sample is polydis- 
perse, both (qs,Jex and c,, are made up of contributions from molecules in different molecular 
weight classes, which we designate by the subscript i; that is, we can write 

and 

where the rightmost expression for c,, recognizes that practical units are used in these experi- 
ments. 

Each of the molecular weight fractions is expected to obey Equation (71)  independently; 
therefore 

Substituting Equations (73)-(75) into Equation (72) yields 

which shows that 

Since mj = nf,Wf, Equation (77)  may be written as 

which is the form given in Chapter 1 in Equation (1.20) and Table 1.8. 
In this section we have looked at the Staudinger-Mark-liouwink equation as a purely 

empirical relationship useful for determining the molecular weight of unknown polymeric 
solutes. A considerable amount of work has been directed toward understanding the theoreti- 
cal basis for this result. Although a detailed discussion would take us too far afield, we 
examine certain special cases of Mark-Houwink a values in the next section. 

4.9b Polymer Chain Extension and Viscosity 

Two special cases of the Staudinger-Mark-Houwink equation can be justified without much 
difficulty: a == 1.0 and a = 0.5. In our discussion we ignore all numerical coefficients and 
concentrate 011 the variables, particularly with respect to molecular weight dependence. This is 
sufficient to arrive at an understanding of the significance of the Mark-Houwink exponent. 
We examine two models for polymer chains in solution. These models picture the polymer 
chain as being either unwound so that each segment experiences the flow streamlines or tightly 
coiled so that the flow leaves interior segments unaffected. The two models we discuss are 
known, respectively, as the free-draining and nondraining models. We see presently that these 
models - which clearly represent extremes of behavior -correspond to exponents of 1 .O and 
0.5, respectively, in the Staudinger-Mark-Houwink equation. It is apparent that many poly- 



184 HIEMENZ AND RAJAGOPALAN 

mer-solvent-temperature situations will result in chain coils of intermediate conformation; for 
these a is expected to take on values between the extremes we consider. 

4.9b. I Free-Draining Model 
We begin by examining the free-draining model. Figure 4.15a shows a portion of a polymer 
chain situated in a velocity gradient. This will cause the molecule to rotate, thus converting 
some translational kinetic energy to rotational kinetic energy. This amounts to a dissipation of 
energy and thus connects with viscosity. Although not self-evident, it can be shown that the 
angular velocity induced in the molecule in this situation is directly proportional to the velocity 
gradient. Furthermore, a chain segment at  a distance r = r, from the center of mass of the 
molecule, say, segment i, acquires a velocity vi = r i w  from the rotation. Figure 4.15b defines 
the location of the ith segment relative to the center of mass. 

Next, we consider the force of viscous resistance experienced by this segment as a result 
of moving through its surroundings with a velocity v. Equation (2.2) relates the force of 
viscous resistance to the velocity through the expression F, = f v ,  wherefis the friction factor. 
The friction factor of a chain segment plays the same role but is given the symbol 4 to 
emphasize that it applies to a segment rather than the entire molecule. Therefore, for the ith 
segment, we write 

Both F,,, and v, can be resolved into x and y components. Using the geometry defined by 
Figure 4.15b, we obtain 

Ft,, = Er,w sin 8 

FC,, = Er,w cos 6 

(80) 

(81) 

Since force times distance equals energy, the rate at which energy is dissipated by viscous 
forces on segment i is given by FE[v, + F:,v,,, which we identify as (dE/dt),. Substituting 
Equations (80) and (8 1) gives 

and 

For the entire polymer chain (subscript p ) ,  this result must be totaled for the n segments of the 
chain to  produce (dE/dt),: 

a 
.... .......... 

/b/ 

Yi 

FIG. 4.15 Flow of polymer solutions: (a) velocity gradient through the center of mass of a 
polymer chain; (b) definition of coordinates for ith segment of rotating chain. The distance r = ri 
is the distance of the ith segment from the center of mass. (Redrawn with permission from Hiemenz 
1984.) 
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SiEce ri is the distance from the center of mass, we use Equation ( 2 . 7 5 )  to replace &rj2 with 
nRi, where R, is the radius of gyration of the molecule. Thus, Equation (83) becomes 

To scale up this last result from a single molecule to all of the molecules in a volume of 
solution V,  we multiply Equation (84) by the particle concentration, given by c/M: 

Notice that the left-hand side is now energy dissipation per unit volume. Comparing this result 
with Equation ( 3 )  shows that the increment in viscosity caused by the free-draining chain is 
given by the coefficient of (dv/dy)2 and may be written 

where the second form recognizes that M is proportional to the number of segments in the 
chain. Finally, Equation (86) can be cast in the form of the intrinsic viscosity to yield 

- 

which shows that the intrinsic viscosity of a solution of freely draining chains is proportional 
to the square of the radius of gyration of those chains. The segmental friction factor has 
dimensions “mass/time,” and v0 has dimensions “mad(1engt.h time)”; therefore, the right- 
hand side of Equation (87) has dimensions of (length 3/mass), which are the reciprocal concen- 
tration units appropriate for intrinsic viscosity. 

Independent studies of the segmental friction factor reveal it to be essentially independent 
of the molecular weight of the polymer. Therefore forthis model the molecular weight dexen- 
dence of the intrinsic viscosity is the same as that of Ri. According to Equation (2 .77 ) ,  R: oc 
n a M ;  therefore the only molecular weight dependence that survives out of all of this is a 
first-power dependence. We are thus led to conclude that the Mark-Houwink coefficient a 
equals unity for the case of free-draining chains. Since polymer chains are generally jumbled 
into coils, for which this may not be a good model, it is not surprising that experimental a 
values are usually less than this. 

We discussed solvent goodness in Chapter 3,  Section 3.413.4. There are several aspects of 
that discussion that are pertinent here: 

1. Solvent is squeezed out of the coil domain more and more as the solvent becomes 
poorer. 

2 .  A change in solvent goodness can come about either from addition of a poorer solvent 
or from decreases in temperature. 

3. Theta conditions correspond to a solvent so poor that precipitation would occur for a 
polymer of infinite molecular weight. 

4. Theta conditions are identified experimentally as the situation in which the second 
virial coefficient of the osmotic pressure is zero. 

In view of these considerations, it is not surprising that experimental a values vary system- 
atically with decreasing solvent goodness. As the solvent goodness decreases, the chain be- 
comes more tightly coiled so that flow streamlines penetrate t he coil to a lesser extent. In an 
extreme situation we can imagine the coil so impermeable to the solvent flow that it behaves as 
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a rigid sphere. Such a coil is said to be nondraining since any solvent imbibed by the coil is 
essentially immobilized. There are two very important things to realize about this state of 
affairs. First, a coil in which polymer-polymer contacts are this highly favored sounds like an 
alternate description of theta conditions. Second, if the coil approaches a rigid sphere in 
behavior , Einstein’s equation for viscosity becomes appropriate again. 

4.9b. I The Kirkwood-Riseman Theory 
Kirkwood and Riseman have developed a theory that allows for variable degrees of solvent 
drainage through the coil domain. We shall not go into this theory in any detail, except to note 
that it should reduce to Equation (87) in the free-draining limit and to the Einstein equation in 
the nondraining limit. The Kirkwood-Riseman theory can be written in the form 

where the subscript 0 indicates 8 conditions and X = [n,$/qo(Rz)”2].  The functionf(X) in 
Equation (88) is our concern. For ourpurposes, it is enough to note that f ( X )  approaches a 
value that is proportional to [n,$/V, (Ri%o)”2] in the free-draining limit (we continue to ignore 
numerical constants) and approaches a constant value in the nondraining limit. If we substi- 
tute the free-draining limit into Equation (88),  we obtain 

- 

The radius of gyration is expected to be different under theta and nontheta conditions since 
the extent of coil swelling due to imbibed solvent changes with solvent goodness. We define a 
coil expansion factor a* as follows: 

a = -  R, 
R,>O 

Although a is ordinarily greater than unity, fractional values 
fractional values is more limited, however, since the polymer 
squeeze out much more solvent under conditions poorer than 
a into Equation (89) gives 

- 

are also possible. The range of 
tends to precipitate rather than 
theta conditions. Incorporating 

which is equivalent to Equation (87) as required. 
Using the nondraining limit of the Kirkwood-Riseman theory gives 

- 

Since Equation (2.77) shows that a n,  Equation (92) becomes [ q ]  a n1l2  a M1’2. This 
important result shows that a = 0.5 is expected under 8 conditions. This expectation has been 
repeatedly verified by viscosity experiments under independently determined conditions. The 
subscript 8 has been attached to [ q ]  in Equation (92) in recognition of this. 

For high molecular weight polymers in good solvents, [ q ]  exceeds [qle because of coil 
expansion under nondraining conditions; that is, as more solvent enters the coil domain than 
would be present under 8 conditions, Equation (92) continues to apply, with R: replacing 
R&. Using Equation (90) to quantify this expansion effect, we obtain 

a3 ( Ri,o ) 3’2 

n [TI OC (93) 

*Note that this a is different from the one defined in Eq. (67). 
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Taking the ratio of Equation (93) to Equation (92) gives 

which shows how the effect of solvent uptake on the spatial extension of polymer coils can 
be quantitatively determined from intrinsic viscosity experiments under theta and nontheta 
conditions. 

We remarked above that the Einstein equation might be pertinent in the case of a non- 
draining coil; Equation (93) does not seem to bear this out. The Einstein theory in the form of 
Equation (41) predicts that ( q / q o  - 1) is proportional to the volume fraction of the dispersed 
particles. For the nondraining coils, the volume fraction is proportional to the volume of each 
coil domain times the number concentration of the particles. The first of these factors is 
proportional to Rg3 and the second to c / M .  This leads to the prediction 

which is equivalent to Equation (92). 
We have omitted a great deal of detail in this discussion of polymer viscosity. The inter- 

ested reader will find some of the missing information supplied in Flory (1953). In particular, 
we have omitted all numerical coefficients, which limits us to ratios as far as computational 
capability is concerned. Numerical coefficients are available for Equation (92), for example, 
and this allows coil dimensions to be evaluated from viscosity measurements. A general 
conclusion that unifies all of this section is that any factor that causes a polymer chain to be 
more extended in space - whether by coil unfolding or swelling by solvent -tends to increase 
[ v ] .  This is exactly what we expect in terms of the purely qualitative picture provided by Figure 
4.8. Example 4.6 illustrates this for some actual polymers. 

* * *  

EXAMPLE 4.6 Variation of Viscosity with Polymer Configuration. For cellulose triacetate in 
acetone at 25OC, k = 8.97 . 10 - 5  dl/g and a = 0.9. For polyisobutene in benzene at 24OC, k 
= 1.07 . 10 - 3  dl/g and a = 0.5. Calculate [ q ]  for these systems if each of the respective 
polymers has M = 105. Comment on the correlation of the a values with the nature of the 
system in each case. 

Solution: Intrinsic viscosities are calculated by direct substitution into the Staudinger-Mark- 
Houwink equation. For cellulose triacetate, 

[ q ]  = 8.97 - 10-5(105)09 = 2.8 4 dl/g 

For polyisobutene, 

[ q ]  = 1.07 - 10-3(105)05 = 0.34dl/g 

Even though the two polymers have the same molecular weight, the cellulose triacetate has an 
intrinsic viscosity more than eight times greater than the polyisobutene. Note that the Mark- 
Houwink coefficient a is primarily responsible for this; the intrinsic viscosities would be ranked 
oppositely if k were responsible. 

These results are fully consistent with the nature of the systems involved. Cellulose triace- 
tate repeat units are six-member rings that carry three bulky acetate groups each. Internally, 
the rings are inflexible with respect to rotation and, because (of the bulk of the acetate groups, 
are expected to be severely hindered in their rotation with respect to each other. As a conse- 
quence, such a molecule exists in solution in a highly extended form that approaches the 
predictions of the free-draining model in intrinsic viscosity. Polyisobutene, by contrast, is an 
aliphatic hydrocarbon for which low molecular weight aliphatic molecules are expected to be 
better solvents. Although benzene dissolves this polymer, it i s  a poorer solvent because of the 
polarizable pi electrons. It is therefore plausible that this system corresponds to theta conditions 
with an a value of 0.5. rn 

* * *  
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REVIEW QUESTIONS 

1 .  
2. 

3. 

4. 
5 .  

6. 
7. 

8. 

9. 

10. 

1 1 .  

12. 
13.  
14. 

15.  

16. 

17. 

What is meant by rheology? What role does viscosity of a fluid play in rheology? 
Describe the physical significance of Newton’s law of viscosity. Is Newton’s law always appli- 
cable? 
What is meant by a fluid, and how does it differ from (a) a solid and (b) a gel in terms of the 
flow behavior? 
Why is rheology important in colloid science? Give as many examples as you can. 
Explain what a non-Newtonian fluid is, and list the different types of non-Newtonian flow 
behavior . 
Why is the shear history often important in the case of dispersions and polymer solutions? 
Why are time scales and ratios of forces or energies important in studying flow behavior of 
dispersions? 
What is the Deborah number? What is its physical significance? What is the Peclet number? 
Describe at least two ways of defining the Peclet number for flow of dispersions. 
What is the Navier-Stokes equation? What is the physical significance of each of the terms 
appearing in the Navier-Stokes equation? How does the Navier-Stokes equation differ from 
the Stokes equation? Can you use the Navier-Stokes equation for a non-Newtonian fluid? 
Why does the viscosity of a dispersion change, and how does it change, with the addition of 
colloidal particles? 
List some of the conditions under which the Einstein equation for viscosity of dispersions fails 
and how one can correct the situation. 
What is inherent viscosity, and what are its units? 
What is reduced viscosity? 
How do charges on particles change the viscosity of a dispersion? What are electroviscous 
effects? How do they differ from the viscoelectric effect? 
How does the viscosity of a polymer solution differ from the viscosity of dispersions? What 
factors are important in the case of the former? 
What is meant by “free-draining model” and “nondraining model” in the case of viscosities of 
polymer solutions? 
Describe a way to determine the molecular weight of a polymer through viscosity measurements. 
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PROBLEMS 

Gillespie and Wiley* used a cone-and-plate viscometer to measure F/A  versus dv/dx for 
dispersions of silica and cross-linked polystyrene in dioctyl phthalate. At a volume fraction of 
0.35 for both solids, the following results were obtained: 

Silica F / A  x 10-3 (dynecm-*) 2.2 11 .4 1.0 0.50 0.25 
dv/dx(s - ' )  500 325 235 125 60 

Polystyrene F/A  x 10-3 (dyne cm-2) 1.6 0.80 0.55 0.25 
dv/dx(s - ' )  500 ;!35 160 100 

Use these data to determine either q or the yield value for these dispersions depending on 
whether or not the system is Newtonian. Are these results consistent with the fact that the 
axial ratio was nearer unity and the particle size distribution narrower for the polystyrene than 
the silica? Explain. 

An aqueous polybutyl methacrylate latex (average radius == 200 A) has a viscosity of 50,500 
CP at 4 = 0.25 and a viscosity of 36.7 CP at the same rate of shear when 1.71 x 10-5 g NaCl 
is added per gram of polymer.? Assuming that these charged particles must be surrounded by 
a layer of dissolved ions in solution, what conclusions can you draw about the dependence of 
the thickness of this layer of ions on the electrolyte content of the continuous phase? 

A copolymer of vinylpyridine and methacrylic acid (62 anti 38 mole%, respectively, in poly- 
mer) was studied in 90% methanol-10% water solution. The specific viscosity was measured$ 
as a function of added NaOH or HCl, and the following results were obtained: 

VSP 0.1 0.25 0.28 0.24 0.21 0.21 0.20 

mEq added 0 2 4 6 2 4 6 
per gram * -  

H C1 NaOH 

*Gillespie, T. ,  and Wiley, R., J. Phys. Chem., 66, 1077 (1962). 
TBrodnyan, J .  G., and Kelley, E. L., J. Colloid Sci., 19, 488 (1964). 
$Alfrey, T., .Jr., and Morawitz, H., J.  Am. Chem. Soc., 74, 436 (1952). 
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Discuss these results in terms of the apparent effect of acid and base on the configuration of 
the polymer chain. Be sure your explanation is consistent with the chemical nature of the 
copolymer. 

A dispersion of polydisperse spheres shows a relative viscosity of about 2.6 at a volume 
fraction of about 0.3 1 .* Compare this result with the predictions of Equation (48). 

The viscosity of cross-linked polymethyl methacrylate spheres in benzene was measured? and 
found to be 

4 0.050 0.035 0.028 0.019 0.014 0.010 
~ 

d v o  2.15 1.61 1.41 1.19 1.18 1.12 

Calculate [y] for these spheres. Is there evidence in these results that the polymer particles may 
be swollen by the solvent? Explain. 

The viscosity of uniform, cross-linked polystyrene spheres of two different diameters was 
measured in benzyl alcohol at 30°C:$ 

d = 0.382pm 4 0.013 0.030 0.059 0.075 
ysp 0.036 0.086 0.178 0.233 

ysp 0.056 0.116 0.25 1 
d = 0.433 pm 4 0.02 0.04 0.08 

Evaluate the intrinsic viscosity for each size of spherical particle and comment on the results 
in terms of the Einstein prediction that [v] should be independent of particle size. Is the fact 
that benzyl alcohol is only a moderately good solvent for linear polystyrene consistent with 
the observed deviation between the experimental and theoretical values for [y]? Explain. 

Criticize or defend the following proposition using the data of Problem 6 and the fact that the 
intrinsic viscosities of cross-linked polystyrene spheres in solvents such as benzene and CCl, 
(good solvents for linear polystyrene) lie in the range 5.8 to 7.5: Cross-linked polystyrene 
spheres swell by imbibing solvent, the effect being more extensive the better the solvent 
properties of the continuous phase for the non-cross-linked polymer. 

Use the following data to evaluate the Mark-Houwink a and k constants for cellulose acetate 
in acetone at 25 OC:$ 

c(g dl-') 

130,000 

86,000 

76,000 

61,000 

48,000 

0.094 
0.273 
0.546 
0.114 
0.35 1 
0.703 
0.1 18 
0.353 
0.775 
0.138 
0.275 
0.428 
0.152 
0.303 
0.684 

0.289 
0.990 
2.770 
0.286 
1.100 
3.120 
0.247 
0.890 
2.700 
0.239 
0.520 
0.880 
0.209 
0.450 
I .230 

"Eilers, H., Kolloid Z. ,  97, 313 (1941). 
"yose, A.,  and Hachisu, S. ,  J. Colloid Interface Sci., 46, 460 (1974). 
SPapir, Y. S., and Krieger, I. M., J.  Colloid Interface Sci., 34, 126 (1970). 
SSookne, A. M., and Harris, M.,  Ind. Eng. Chern., 37,475 (1945). 
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9. 

10. 

11. 

12. 

13. 

Various molecular weight fractions of cellulose nitrate were dissolved in acetone, and the 
intrinsic viscosity was measured at 25 OC:* 

M x 10-3(gmole-') 77 89 273 360 400 640 846 1550 2510 2640 

[vl(dl g- 9 1.23 1.45 3.54 5.50 6.50 10..6 14.9 30.3 31.0 36.3 

Use these data to evaluate the constants k and a in the Staludinger-Mark-Houwink equation 
for this system. 

The relative viscosity of solutions of cellulose nitrate in acetone was measured and extrapo- 
lated to zero rate of shear:* 

v/vo 1.45 1.53 1.67 1.89 2.31 3.41 

c(g dl-I) 0.0151 0.0176 0.0212 0.0264 0.0352 0.0528 

Use these data to evaluate the intrinsic viscosity for the polymer and use the a and k values 
from Problem 9 to calculate the molecular weight from the value of [v]. 
The following intrinsic viscosity values of some high molecular weight polystyrene fractions 
have been reported?: 

a x 
(g mole I )  [vl dl g-I) 

43.8 5.5 
27.4 4.4 Cyclohexane at 35.4OC 
43.5 67.7 
26.8 36.5 Benzene at 4OoC 

Use these data to evaluate the constants in the Staudinger-Mark-Houwink equation. Are the 
values obtained consistent with the known facts that 35.4OC is the Flory (0) temperature for 
polystyrene in cyclohexane while benzene is a good solvent for polystyrene at 4OOC. 

Solutions of nylon-6,6 were studied in 90% formic acid solutions at 25OC, and the following 
data were obtained for two different molecular weight fractions: $ 

c(g dl-I) 0.744 0.527 0.368 0.164 

vs& (dl g - I )  0.485 0.477 0.478 0.450 

and 

c (g dl-I) 0.742 0.640 0.537 0.436 0.332 0.225 0.132 0.058 

v& (dl g-') 0.897 0.892 0.886 0.876 0.864 0.847 0.805 0.778 

Calculate the intrinsic viscosity for these two polymers. The Mark-Houwink constants for this 
system are known to be a = 0.72 and k = 11 x lOP4 dl g-'; calculate the molecular weights 
of the two nylon fractions. 

The radius of gyration of polymer coils can be determined independently from light scattering. 
Fox and Floryg measured both R, and [q]  for various molecular weight fractions of polysty- 
rene in various solvents at several temperatures. The following results were obtained: 

*Holtzer, A. M., Benoit, H., and Doty, P., J. Phys. Chem., 58, 624 (1954). 
TMcIntyre, I)., Fetlers, L. J.,  and Slagowski, E., Science, 176, 1041 (1972). 
STaylor, G. B., J. Am. Chem. Soc., 69, 635 (1947). 
§Fox, T. G., Jr., and Flory, P. J., J.  Am. Chem. Soc., 73, 1915 (1951). 
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M x 1 0 - ~  
Solvent T(OC) (g mole-') [v] (dl g-I) R,(A) 

Methylethyl ketone 22 
22 
67 
22 
25 
22 
22 
25 
22 

Dichloroethane 22 
22 
67 
22 
22 

Toluene 22 
67 

1760 
1620 
1620 
1320 
980 
940 
520 
318 
230 

1780 
1620 
1620 

5 62 
520 

1620 
1620 

1.65 437 
1.61 414 
1.50 400 
1.40 3 67 
1.21 343 
1.17 306 
0.77 222 
0.60 194 
0.53 163 
2.60 576 
2.78 545 
2.83 529 
1.42 3 10 
1.38 278 
3.45 527 
3.42 523 

Use these data to evaluate the factor of proportionality in Equation (93). Does this factor 
seem reasonably constant? 

The intrinsic viscosity of a polystyrene solution in cyclohexane was measured* under theta 
conditions and found to be 0.078 dl g-'  for a polymer of M = 8370 g mole-'. Use the average 
value of the factor of proportionality from Problem 13 to evaluate the radius of gyration of 
the polystyrene molecules in this solution. Calculate what this quantity is expected to be in 
terms of Equation (2.77), using twice the degree of polymerization as the number of steps in 
the random walk (since there are two C-C bonds per segment) and taking 0.154(2)"2 = 0.218 
nm as the value of PO (the C-C bond length corrected for tetrahedral bond angles). Briefly 
explain why the experimental value for R, is larger than that calculated by Equation (2.77). 

14. 

"Krigbaum, W. R., Mandelkern, L., and Flory, P. J.,  J.  PoIym. Sci., 9, 381 (1952). 



5 
Static and Dynamic Light Scattering 

and Other Radiation Scattering 

An interesting and oft-investigated question, “What is the origin of light?” and the 
solution of it, has been repeatedly attempted, with no other result than to crowd our 
lunatic asylums with the would-be solvers. Hence, after fruitless attempts to suppress 
such investigations by making them liable to a heavy tax, the Legislature . . . absolutely 
prohibited them. 

From Abbott’s Flatland 

5.1 INTRODUCTION 

5.la What Is Radiation Scattering? 

In Chapter 1 we described dark-field microscopy in which particles too small for direct micro- 
scopic observation could be detected against a dark field by horizontal illumination. Airborne 
dust or smoke particles show in a beam of light in an otherwise dark room in the same way. In 
both cases, the particles interact with the light that strikes them and deflect some of that light 
from its original direction. We speak of this light as being “scattered.” A whole assortment of 
optical phenomena related to this are generally known as light scattering effects. 

It turns out that the intensity of scattered light at any angle depends on the wavelength of 
the incident light, the size and shape of the scattering particles, and the optical properties of 
the scatterers, as well as the angle of observation. Furthermore, the functional relationship 
among these variables is known, at least for spherical particles and other geometries, under 
certain circumstances. By applying these relationships to light scattering experiments, informa- 
tion about the particles responsible for the scattering can be deduced. A similar statement can 
be made about experiments based on other forms of radiation (e.g., x-ray or neutron scatter- 
ing), although the mechanism of scattering depends on the particular type of radiation. 

5.1 b What Are Static and Dynamic Scattering 
and Why Are They Important? 

Let us focus on light scattering. Light scattering can be classified as static or dynamic depending 
on how the intensity is measured. In static light scattering the time-averaged total intensity is 
measured as a function of scattering angle. We see in this chapter how the weight and a character- 
istic linear dimension of the particle may be determined for some systems from static light 
scattering. Moreover, information on the internal structure and shapes of the particles as well as 
interparticle structure can be deduced by measuring the angle dependence of the intensity. 

In contrast, in dynamic light scattering (DLS) the temporal variation of the intensity is 
measured and is represented usually through what is known as the intensity autocorrelation 
function. The diffusion coefficients of the particles, particle size, and size distribution can be 
deduced from such measurements. There are many variations of dynamic light scattering, and 
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different names (e.g., intensity fluctuation spectroscopy, quasi-elastic light scattering, etc.) 
are used in the literature depending on what is measured and how it is measured (the diffusing 
wave spectroscopy [DWS] mentioned below is an example of such a variation). However, we 
focus on the most essential (and standard) in this chapter and leave the rest to advanced books 
cited below in this chapter. 

The techniques discussed in this chapter generally assume that multiple scattering is negli- 
gible (i.e., each photon is scattered only once as it passes through the sample). Multiple 
scattering is a problem in this sense. However, one recent advance in light scattering turns this 
problem into an opportunity and models the random path of a multiply scattered photon as a 
random walk (see Chapter 2). This technique, known as diffusing wave spectroscopy, is 
highlighted in Vignette V as an example of recent advances that take the basic idea of light 
scattering one step (or many steps!) further from what we discuss in this chapter. 

Multiple scattering is also avoided to a large extent when x-rays or neutrons are used in 
place of light. In fact, many of the concepts we discuss in this chapter on the use of light 
scattering carry over to the scattering of x-rays and neutrons. Moreover, x-rays and neutrons 
can probe shorter length scales because of their smaller wavelengths. As a result, x-ray and 
neutron scattering have become valuable adjuncts to light scattering in colloid science. Al- 
though a full discussion of x-ray and neutron scattering is beyond our scope, where appro- 
priate we have pointed out their similarities and complementary nature. 

The theory of light scattering has changed rapidly in recent years. A general relationship 
for the intensity of light scattered by a spherical particle was derived by Lorenz in the latter 
part of the 19th century and applied to colloids by Mie in 1908, Some quotations from two of 
the references at the end of this chapter give an indication of the historical development of 
light scattering since Mie’s complicated theory was presented. In a book published in 1956, 
Stacey remarks that scattering patterns “have been tabulated in only a few cases because the 
computation is so laborious” (p. 56). In his 1969 book, Kerker writes of the same patterns that 
so many have been published “that these can hardly be coped with in the usual tabular form, 
much less published in the normal way” (p. 77).  

During the period of slightly more than a decade between these books, the computer arrived 
on the scene. Things have not been the same since! A corresponding level of rapid advances has 
occurred in instrumental capabilities and design with the advent of lasers, fiber-optic probes, and 
digital electronics (see Zare et al.’s 1995 work for an introduction to the use of lasers in applica- 
tions of interest here). The availability of lasers makes measurement of very small frequency shifts 
possible, and fiber-optic probes provide ways to limit sample volumes and to minimize multiple 
scattering in concentrated systems so that the theories discussed in this chapter can be used 
without modification. Similarly, advances in digital electronics and software have led to fast and 
powerful correlators for dynamic analysis (see Sections 5.4 and 5.8). 

Our concern in this chapter is not primarily with complicated systems that require elabo- 
rate calculations, although we briefly discuss several specific examples of such systems. In- 
stead, we focus attention on systems for which simplifying approximations to the general 
theory can be applied. 

~ ~~~~ 

VIGNETTE V STRUCTURE AND STRUCTURAL TRANSITIONS IN DENSE 
SYSTEMS: Single and Multiple Scattering- 
The Art and Science of Seeing the Invisible 

Standard static and dynamic light scattering methods assume that there is very little multiple 
scattering by the particles, that is, the dispersion has to be sufficiently dilute so that the 
photons are scattered only once as they pass through the sample. Is there a way to “look” 
inside a dispersion that is cloudy or milky, such as a foam, and to extract information on the 
local structure and its kinetics and relaxation? Or, is it possible to “tailor” a dispersion so that 
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some particles may be selectively made “visible,” while others are invisible (and therefore do 
not scatter light)? 

New innovations in theoretical analysis and surface chemistry provide affirmative an- 
swers to the above questions and have opened new ways to study interactions in colloidal 
systems. 

For example, an important variant of the techniques discussed in this chapter, known as 
diffusing wave spectroscopy (DWS), takes a conceptually diff,erent view of multiple scatter- 
ing in concentrated systems such as foams and turns it into an asset. The traditional methods 
we discuss in this chapter require single scattering so that shifts in frequency and phase in the 
scattered light can be related to information about the particles. In contrast, in DWS the 
tortuous path of a multiply scattered photon (see Figure 5.1) is approximated by a random 
walk, very much the same way we have modeled the random walk of a diffusing particle in 
Chapter 2! For instance, in the case of foams, the static transmission of light, modeled 
through the solution of the diffusion equation (with the diffusion coefficient written in terms 
of the mean free path using classical results), can be used to obtain the average bubble size 
and its variation as the foam coarsens (Weitz and Pine 1993). The fluctuations in the intensity 
of the diffusing wave provides, with a corresponding diffusion-based analysis, information 
on the dynamics. 

In contrast to traditional dynamic light scattering (which, as we discuss in Section 5.8, 
probes the continuous random motion of the particles), DWS lhere probes spatially localized, 
temporally intermittent events that are characterized by relatively larger length scales. Despite 
this, the basic quantity measured ( g l ( t d )  in the notation of Section 5.8; there is no angular 
dependence in DWS because of multiple scattering) is essentially the same, only the method 
of analysis is different. 

Even the traditional methods discussed in this chapter can be used for concentrated 
dispersions through contrast matching. For example, silica particles coated with silane cou- 
pling agents in a refractive index-matched mixture of ethanol and toluene can be used in 
combination with visible “probe” particles to study the dynamics of particles in dense systems. 
In the case of microemulsions (Chapter 8), selective deuteration of a component (oil, water, 
or surfactant) can be used in neutron scattering experiments even to measure the curvature of 
the oil-water interface. 

Scattering techniques have thus become a powerful and indispensable tool for providing 
both routine information such as molecular weight and size and detailed structural informa- 
tion previously considered inaccessible. This chapter introduces the basic concepts (although 
restricted largely to light scattering) necessary for understanding the standard, as well as the 
emerging, uses of scattering in colloid science. 

5.1 c Focus of This Chapter 

The primary focus of this chapter is on classical, static light scattering since a good under- 
standing of this is essential for many of routine uses, such as determination of molecular 
weight and second virial coefficient. Static light scattering also sets the stage for the introduc- 
tion of dynamic light scattering, as well as other forms of radiation scattering. 

First we focus on static scattering. We begin with a review of some basic concepts 
from the theory of electromagnetic radiation (Section 5.2) since a background in this area and 
in the interaction of radiation with matter forms the first step in understanding scattering 
techniques. This review, however, is restricted to interaction o f  light with matter, although the 
chapter does discuss, briefly, the use of x-ray and neutron scattering in colloid science. 

Next, we introduce the theory of Rayleigh scattering (Section 5.3), the first of many 
models covered in the chapter. The Rayleigh theory for dilute systems and solutions is devel- 
oped here, with illustrative examples of the determination of molecular weight and the second 
virial coefficient. This is followed by a brief description of some of the basic experimental 
considerations and an introduction to absorbance and turbidity (Section 5.4). 

Section 5 . 5  moves on to an extension of the Rayleigh theory essential for colloid 
science, namely, the Debye theory for particles of the order of the wavelength of the radiation 
source. The important concept of interference effects, the f’orm factor, the Zimm plot, and 

1. 

2 .  

3.  
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FIG. 5.1 
copy (DWS). 

Multiple scattering is viewed as a random walk of the photon in diffusing wave spectros- 

the dissymmetry ratio are introduced. Examples of the use of the form factor (often known as 
the intraparticle structure factor) and its limiting behavior and the extension of the interfer- 
ence concept to the interparticle structure factor and its uses are introduced in Section 5.6. 
Since a combination of light scattering and x-ray or neutron scattering is needed for the 
latter, Section 5.6 also serves as a natural place to compare these complementary scattering 
techniques. 

4. A brief treatment of scattering by large, absorbing particles and the concept of 
absorption and scattering cross sections are presented in Section 5.7 along with two examples 
of applications of the Mie theory (to absorbing, but small, particles) and a discussion of 
Tyndall spectra. 

The final section (Section 5.8) introduces dynamic light scattering with a particular 
focus on determination of diffusion coefficients (self-diffusion as well as mutual diffusion), 
particle size (using the Stokes-Einstein equation for the diffusion coefficient), and size distri- 
bution. 

This chapter is designed to provide the basic know-how for using light scattering and to 
set up the foundation needed for learning more advanced concepts and recent developments. 
For more advanced material, a number of advanced monographs (some containing state-of- 
the-art reviews), textbooks, and research publications containing details and new applications 
that are beyond the undergraduate level have been cited throughout the chapter. 

5 .  

5.2 INTERACTION OF RADIATION WITH MATTER 

The phenomena with which we are concerned in this chapter are displayed by the entire 
spectrum of electromagnetic radiation. For those applications done in the visible part of the 
spectrum, the common designation light scattering is used. Visible light shares a variety of 
parameters and descriptive relationships with other regions of the electromagnetic spectrum. 
The purpose of this section is to examine briefly some of the characteristics of electromagnetic 
radiation, particularly those that are needed for an understanding of light scattering. 

5.2a Elements of the Theory of Electromagnetic Radiation 

Electromagnetic radiation consists of oscillating electrical (E) and magnetic (H)  fields that are 
perpendicular to each other and perpendicular to the direction of propagation of the wave, as 
shown in Figure 5.2. Under vacuum, the velocity of propagation of an electromagnetic wave c 
is about 3 - 10' m s and is independent of the wavelength of the radiation. The frequency V ,  

wavelength Xo, and velocity of the radiation are related through the familiar equation 
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FIG. 5.2 
tion of electromagnetic radiation. 

The relationship between the electric and magnetic fields and the direction of propaga- 

c = hou (1) 

If the radiation is passing through a medium other than a vacuum, its velocity and wavelength 
are both diminished by a factor n ,  the refractive index of the medium. Then Equation (1) 
becomes 

or 

U = x v  (3) 

We use the symbols c and >\o to refer, respectively, to the velocity and wavelength under 
vacuum only. In this chapter the symbol h,  without a subscript, always refers to the wave- 
length of the radiation in the medium. 

5.2a. I Coulomb’s Law 
Our discussion of light scattering centers on the oscillations of the electric field. Before turning 
to the oscillating aspect of the field, let us first review a few points about electric fields per se. 
We begin by retreating to Coulomb’s law, which states that the force F between two charges ql 
and q2 that are separated by a distance r is proportional to q1q2/r2. In SI units, the q’s are 
measured in coulombs, r in meters, and F in newtons; the proportionality factor in Coulomb’s 
law must be dimensionally consistent. For charges under vacuum, it is traditional to write the 
proportionality factor as 1/(47re0), where eo is called the permittivity of vacuum. Thus Cou- 
lomb’s law for F along the r-direction (i, = unit vector) is written as 

where the permittivity of vacuum eo is equal to 8.854 - 10-l2 C 2  N-I mP2 .  (The SI units C 2  
N- l  m - 2  a re equivalent to C 2  J - ’  m- l  or k g - ’  m - 3  s’.) The proportionality constant 
1/(47reo) is equal to 8.988 109 N m 2  C P 2 .  The older literature uses cgs units, for which the 
proportionality constant between F and q ,4 / r2  equals 1 .OO dyne cm2 (esu) - 2 ,  where the esu is 
the electrostatic unit of charge defined to make this proportionality factor equal t o  unity. 

If  the charges are embedded in a medium, the electrical properties of the intervening 
molecules decrease the force from the value calculated by Equation (4). The relative dielectric 
constant of the medium E ,  measures this effect quantitatively. In surroundings other than a 
vacuum, the force between two charges is given by 
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Note that the force is a vector. Its direction is along the line connecting the two charges, but 
Equation ( 5 )  specifies only the magnitude of the force. It is important to remember several 
aspects of Equation (5): 

1. 

2. 
3. 

5.2a.2 

The relative dielectric constant E, is dimensionless. This quantity is also known as the 
relative permittivity. 
The product E,E, is sometimes written c (without subscripts), and E has the units of co. 
The relative permittivity c, appears in the denominator of Coulomb's law even when 
cgs units are used. 

Electric Field 

Next, let us apply these ideas to the electric field. By definition, an electric field E describes 
the force experienced by a unit test charge q, = 1. Thus, if we let one of the charges in 
Equation ( 5 )  equal qf the following expression is obtained for the field associated with the 
remaining charge q: 

The electric field, being a vector, has a direction as well as a magnitude; the direction of the 
field is perpendicular to the direction of propagation of the field. 

The dominant characteristic of the electrical and magnetic fields that comprise electro- 
magnetic radiation is their periodically oscillating nature, a fact that enables us to describe 
them by the mathematics of waves. For light scattering, it is the electric field that is of interest. 
The oscillating nature of an  electric field propagating in the positive x direction is described by 
the equation 

E = E, COS [27r(vl - ;)I (7) 

in which E, is a vector with a magnitude equal to the maximum amplitude of the field. Since 
we have postulated the x direction as the direction of propagation, the electric field lies in the 
yz  plane and may, in general, be resolved into y and z components since E is a vector. Both 
the y and z components of the field are described by Equation (7) when the equation is 
modified by the inclusion of phase angles. This is because the two components need not be in 
phase with each other. Accordingly, we write 

Eu = E,, COS 2~ vt - I (  
and 

E, = E,, COS 2~ vt - I. ( 

'i x + 6,i 

5) x + 6;: (9) 

in which the 6 terms are the phase angles of the two components. 

5.2a.3 Polarization of Light 

In the most general case, the above two equations mean that the electric field vector traces an 
ellipse in the yz  plane. There are two special cases of note in this general situation. If the phase 
difference between the two components of the field (6, -6, ) is zero or some integral multiple 
of T ,  the ellipse flattens to a line. If the phase difference is 7r/2 or any odd integral multiple of 
7r/2 and the amplitudes of the two components are equal, the ellipse is rounded to a circle. In 
the former case we speak of the radiation as being plane polarized, and in the latter case as 
being circu lady polarized. 



RADIATION SCATTERING 199 

Ordinary light is said to be unpolarized. This last term is somewhat unfortunate because 
all light displays some form of polarization. In ordinary light, however, all forms of polariza- 
tion are present, so the individual effects cancel out. The use of various filters makes it 
possible to conduct experiments with radiation that show a unique state of polarization. 
Polaroid filters, for example, transmit plane-polarized light only. In discussing light scatter- 
ing, we are concerned primarily with unpolarized light and occasionally with plane-polarized 
light. 

An interesting example of polarization arises in the study of light reflected from a surface. 
Suppose we consider a beam of light incident on the planar surface of some material having a 
higher refractive index than the medium from which the beam approaches. At the surface 
some of the light will be refracted, and some will be reflected. Figure 5.3 illustrates this for the 
case in which the reflected and the refracted beams are separated by an angle of 90°. 

In this situation, two very different results are obtained, depending on whether the inci- 
dent light is linearly polarized in the plane of the figure or perpendicular to it. If the light is 
polarized in the plane of the figure, no light will be reflected at  all. On the other hand, if it is 
initially polarized perpendicular to the plane of the figure, it will be reflected with the same 
polarization. If ordinary light - a  mixture of the two types of light just mentioned -is used for 
the incident radiation, only one of the components contributes to the reflection. Furthermore, 
the reflected light is polarized perpendicular to the plane of the figure. Polaroid filters are 
used in photography and in sunglasses to reduce the glare of reflected light since this light is 
polarized. 

This behavior is not observed uniquely when the angle between the two beams is 90°; 
rather, the intensity of the reflected beam varies continuously with the angle. At 90°, however, 
the polarization effect is most pronounced. We shall see that some scattering phenomena 
also show an angular dependence, as well as the fact that scattered light displays maximum 
polarization at 90 O . 

5.2b Interaction Between an Electric Field and a Charge 

In this section we discuss the interaction between an electric field and a charge that is free to 
move with the field. Such a charge experiences a force that accelerates it with the field. If the 
field is oscillating, the acceleration of the charge will also oscillate. One of the basic results of 
classical electromagnetics is that the acceleration of a charge leads to the emission of radiation. 

It was the apparent violation of this requirement that led to the postulate of quantization 
in the Bohr theory of the hydrogen atom. However, we are concerned here with the classical 
result in which the charge does radiate. Our objective is to describe the emitted radiation some 
distance r from the emitter. 

FIG. 5.3 
plane surface. 

The relationship between the incident, reflected, and refracted beams of radiation at a 
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5.2b. I 
The radiation emitted by an oscillating charge may be described by its electric field vector, 
which is given by 

Emission of Radiation by a Charge 

q ap sin 4z 
4m, c2 r 

E =  

according to electromagnetic theory. In this equation, q equals the magnitude of the charge, 
ap is its periodic acceleration, and c is the velocity of light. The coordinate system defined by 
Figure 5.4a will help describe this field. The origin of the coordinates is located at the emitting 
charge. The angles between the line of sight - along which r is measured - and the x, y ,  and z 
axes are designated c$~, $2k, and 4:, respectively. 

The oscillating charge behaves like an antenna, and Equation (10) describes the field of 
such an  antenna as long as r is large compared to the wavelength of the radiation that induces 
the oscillation. It should also be noted that the antenna to which Equation (10) applies is 
aligned vertically ( z  axis) and is therefore “driven” by vertically polarized radiation. 

We are using Equation ( l O ) ,  presented without proof, as the point of departure for our 
discussion of light scattering. Therefore, it is important that we find its predictions reasonable. 

1. First, let us consider the plausibility of the sin 4: factor. This factor ranges between 0 
and 1 as qbz varies from 0 to 7r/2. This means that the maximum field will be observed at right 
angles to  the oscillating charge, and no field will be observed along the axis of the oscillation. 
It is the projection of the acceleration in the plane perpendicular to the line of sight that 
induces the field. The strength of the field is proportional to this projection at  any location, as 
shown in Figure 5.4b. This factor describes the entire angular dependence of the induced field 
produced by a vertical driving field. Since it depends on the angle 4z alone, the induced field is 
seen to be symmetrical with respect t o  the z axis. 

Next we note that the induced field varies inversely with r .  It makes sense that the 
field should decrease as we get farther from the antenna, but the inverse first-power depen- 
dence may be unexpected since we are more familiar with inverse-square laws. However, it is 
the energy or intensity of the light that varies according to an inverse-square law. In the next 
section we convert this expression for E to an expression for energy; the more familiar r - 2  
functionality appears then. 

Finally, it is sufficient for our purposes to think of the remaining factors in Equation 
( l O ) ,  (4m,c2) - l ,  as providing dimensional consistency to the expression. Taking a look at  the 
SI units of the right-hand side of Equation ( l O ) ,  we obtain 

2. 

3 .  

FIG. 5.4 Coordinates and acceleration relevant to the interaction of an electric field with a charge: 
(a) the coordinates of an electric field E relative to an oscillating charge located at the origin; (b) 
projection of the acceleration in the plane perpendicular to the line of sight. 
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Newtons coulomb - I  are units of force per charge as required. Note that multiplication of both 
the numerator and denominator of this dimensional expression converts N C - ’  to V m - ’  since 
Nm = J and J/C = V. This last set of units for E is particularly useful for describing the 
field between electrodes and, as such, will be encountered in Chapter 12, in which we discuss 
electrokinetic phenomena. 

Equation (10) describes the field emitted by an antenna that, in turn, is driven by another 
field. The oscillation of one field promotes the oscillation of a charge in the antenna, and this 
induces another electric field. The frequency is the same for all three. 

5.2b.2 Induced Dipole Due to the Field 
This description of antennas may seem more appropriate to a discussion of radio or television 
waves. We must realize, however, that at the molecular level dipoles behave exactly like 
antennas. Since molecules are made up of charged parts, a dipole moment p is induced by the 
electric field of the radiation in any material through which radiation passes. In this discus- 
sion, the dipole moment equals the product of the effective charge displaced by the field and 
its distance of separation from the opposite charge. In SI, p has units C m. We consider 
isotropic materials characterized by a polarizability a. As the name implies, this property 
measures the ease with which charge separation - polarity - is induced in a molecule by an 
electric field. For isotropic substances, the dipole moment and the field are related by the 
expression 

p = QE, ( 1  1) 

Using Equation ( 1  1 )  as the basis of a dimensional analysis of Q shows a has S1 units given by 

C m  - C 2 m  ~- - 
NC-’  N 

The quantity tr/47re,-which is the polarizability value used in cgs units-is informative. It is 
examined in Example 5.1. 

EXAMPLE 5.1 Polarizability of Particles. Criticize or defend the following proposition on the 
basis of the units of a/47r&o: The larger the volume of a particle is, the easier it is to induce 
polarity in that particle. 

Solution: The ratio (r/47r&o has the units (C’ m N -’)/(C2 m -* N -’) = m3, which are units of 
volume. In fact, polarizabilities of actual molecules are on the order of 10 -’’ m3 molecule -’ = 
0.01 nm3 molecule-’, which is the magnitude of molecular volumes. For individual atoms, we 
expect the polarizability to increase with atomic volume since the outermost electrons are less 
tightly restrained by the nucleus in such cases. Extension of this principle to covalently bonded 
species must be done cautiously, however, since the bonding affects the overall picture. The 
accuracy of the proposition, then, depends on the nature of the “particle” under consideration. 
Even when the principle stated in the proposition is not literally true, it offers a convenient 

H mnemonic for the definition of polarizability. 
* * *  

5.2b.3 Electric Field Emitted by a Charge 
If we imagine the molecule to lie at the origin of a coordinate system so that x = 0, we may 
substitute Equation (7)  into ( 1  1 )  to obtain 

(12) 

A dipole moment may be regarded as the product of the distance [ between two charges and 
the magnitude of the charge q. A useful way of looking at €quation (12) is to identify the 
charge as 

p = aEo COS (27rvt) 

q = aE, 

where E. is the magnitude of the vector E,, and the separation of the charges as 
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(14) 

Then the magnitude of the periodic acceleration of the charge is given by 

Equations (13) and ( 15) may now be used in Equation ( 10) to give 

For maximum generality, we must remember that the field is periodic in space as well as in 
time; hence the cosine factor in Equation (16) is corrected by analogy with Equation (7): 

(17) 
E, ci r 

Equation (17) describes the induced field a distance r from the dipole. 

5.3 SCATTERING BY SMALL PARTICLES: 
THEORY OF RAYLEIGH SCATTERING 

In this section we discuss the first of several light scattering theories to be considered in this 
chapter, Rayleigh scattering. We shall see presently that Rayleigh scattering applies only when 
the scattering centers are small in dimension (i.e., when the “characteristic dimension” of the 
scatterers is small) compared to the wavelength of the radiation, the “yardstick” used in the 
measurements. As such, it is severely limited in its applicability to colloidal particles, at least 
when visible light is the radiation involved. Rayleigh scattering is the easiest of the scattering 
theories to understand, however, so it is a logical place to begin. Furthermore, we shall extend 
its applicability to larger particles in other sections by introducing suitable correction factors. 

5.3a Scattering by Single Molecules and Gases 

When a beam of radiation is incident on a molecule, a certain fraction of that radiation will 
undergo the process described in the preceding section and be emitted by the dipole. Any light 
that does not interact this way will continue past the molecule along the original path. This 
undeviated or transmitted light will be attenuated compared to the incident light since some of 
the original beam of light is scattered from its initial path. Note that this attenuation has 
nothing to do with absorption; the effect we are considering is a classical result and does not 
involve transitions between quantum states. 

Since Rayleigh scattering does not apply to particles in the colloidal size range, we do not 
present the derivation in detail; instead, Table 5.1 summarizes some key steps in the develop- 
ment of the Rayleigh equation: 

in which is is the intensity, as measured at r and & (see Figure 5.4), of the light scattered per 
unit volume by a gas of molecular weight, density, and refractive index given by M ,  p ,  and n ,  
respectively. The incident light is unpolarized (subscript “U”) and has an intensity Equa- 
tion ( 18) was derived by Lord Rayleigh in 187 l .  

An interesting application of the Rayleigh equation is the explanation it offers for why 
the sky appears blue. This arises from the inverse fourth-power dependence on X, for is. 
Suppose, for example, that two radiations are compared that have wavelengths that differ by 
a factor of 2. Then the scattered intensity of the shorter wavelength will be 16 times as great as 
that of the longer wavelength. Although red and blue light do  not differ by quite this much in 
wavelength, the blue component of white light, say, sunlight, is scattered very much more 



lLE 5.1 Steps Involved in the Derivation of the Rayleigh Equation 

Cumulative effect Justification 

Evaluate the intensity of light scattered at 4z 

Evaluate the intensity of incident light 

Evaluate the intensity ratio for light polar- 
ized in vertical plane 

Evaluate the intensity ratio for light polar- 
ized in horizontal plane 

Evaluate the intensity ratio for unpolarized 
light 

Scale up for independent scatterers: Multiply 
by number of sites per unit volume (subscript 
“s” on i )  

Use the Clausius-Mosotti equation from 
physical chemistry (Atkins 1994, Chapter 22) 
to introduce refractive index n 

Intensity of light is proportional to the square of the elec- 
trical field 

No scattering factors needed in previous result 

Ratio of preceding factors 

Replace sin +z by sin 4y in the previous equation 

Equal contributions from vertical and horizontal compo- 
nents 

,r cos $, is the projection of ,r GA the i axis; therefore, 
J (cos’ +x + cos’ 4, + cos’ 4:) is equal to J 

For ideal gases, this factor equals (NA p/A4)  

For n close to unity (gases), the Clausius-Mosotti equa- 

2M‘(n - 1) tion becomes (Y = ~ - = - 
3 ~ q , n ’ -  I 
N A P  n‘ + 2 P N A  

I ,  a IEoI’cos2 T vt - - iz i ;I 
i, - 7r’v4a2 sin’ +z - -  

10,” 4 c4J 

- ih - 7r’  sin'+^ - 
IO,h 4 c4 J 

1 
i 2  -(i, + ih) 
- 
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than the red. Accordingly, the sky overhead appears blue. At sunset, we see mostly transmitted 
light. Since the blue has been most extensively removed from this by scattering, the sky 
appears red at sunset. One of the early uses of the Rayleigh equation was in the determination 
of the value of the Avogadro’s number, as illustrated through Problem 2 at the end of this 
chapter. 

The Rayleigh theory does not apply when the scattering molecules are absorbing or when 
the atmosphere contains dust particles, water drops, or other particles with dimensions that 
are larger than ordinary gas molecules. 

5.3b Rayleigh Scattering Applied to Solutions: Fluctuations 

A crucial aspect of the transition from Step 6 to Step 7 in Table 5.1 is the requirement that the 
individual molecules are far enough apart to be treated as independent sources. This assump- 
tion is justified for gases, but in liquids the molecules are close enough together so that 
interference occurs between the waves emitted from different centers. As a matter of fact, 
there would be complete destructive interference of all scattered light in liquids if the molecules 
were randomly arranged and stationary. Nevertheless, pure liquids do scatter light. It is not 
the individual molecules that are the scattering centers in this case, but rather the small 
domains of compression or rarefaction that arise from fluctuations. 

We saw in Chapter 2 that molecular motion results in small fluctuations in density at the 
molecular level. Although the average density of a liquid is a constant equaling the experimen- 
tal density, there will be small transient domains within it that have densities larger or smaller 
than the mean value. 

Liquid solutions also scatter light by a similar mechanism. In the case of a solution, the 
scattering may be traced to two sources: fluctuations in solvent density and fluctuations in 
solute concentration. The former are most easily handled empirically by subtracting a solvent 
“blank” correction from measurements of the intensity of light scattered from solutions. What 
we are concerned with in this section, then, is the remaining scattering, which is due to 
fluctuations in the solute concentration in the solution. 

A fluctuation in the concentration of a small volume element 6V of solution will result in 
a change in the properties of that volume element. We begin the analysis of this situation by 
defining 6c and 6a as the fluctuations in solution concentration and polarizability, respec- 
tively, in this element. The first thing that we recognize about these quantities is that their 
average values are zero since both positive and negative fluctuations occur. 

Although their averages may be zero, the averages of their squares are not zero. Remem- 
ber that similar situations were encountered in Chapter 2 ,  Sections 2.6 and 2 .7 ,  in which we 
discussed particle displacements due to diffusion and segment displacements in a random coil. 
In both of these cases it was by considering the average values of the square of the displace- 
ments that meaningful quantities could be obtained. Similarly, the average values of 6c and 6a 
are zero, but their mean square values will be different from zero. 

The equation in Step 6 in Table 5.1 shows that the intensity of scattered light depends on 
the square of polarizability. We conclude, therefore, that the way to adapt this equation to the 
scattering by solutions is to replace a’ in the above equation by (6a)’ 

Note that the wavelength X of light in the medium rather than the value under vacuum is used 
in this expression since this is the light that reaches the scattering center. 

Next we must consider how to extend this result to a unit volume of solution and how to 
relate 6a to 6c. The steps involved in these extensions are not difficult, but they are lengthy. 
Accordingly, we shall not develop the entire argument in detail. Instead, some of the key steps 
in the development along with a brief justification for each are summarized in Table 5.2. In 
this table, each major substitution is presented along with variations of Equation (19) that 
reflect the cumulative effects of all the substitutions. The first entry in the table, for example, 



TABLE 5.2 Some Key Substitutions and Their Justification for the Transformation of Equation (19) to Equation (20) 

Substitution Justification Cumulative effect on Equation (19) 

- - 
1 6a2 - - ~- 6a2 

volume 6 V fluctyation 

Subscript 0: evaluated at equilibrium 

a2G - 6V 
ac2 V,C  0 

1. 

2. 

3 .  

1 .  

2. 

3 .  

4. 

5 .  

1. 

is - a26a2 - - ( I  + cos2 &) 
1 
- domains of volume 6V can fit into 1 cm3 of solution 
6V In J 2 d x 4 6 v  

‘%if is - 2n25 !/In(dn/dc)f26c2 (1 + cos‘ c#lx) 

?A4 
6 V replaces - in Clausius-Mosotti equation (Table 5.1) - - 

PN* 10 

Forn 2: 1,a = q6V(n2  - 1) 
dn 

6a = q 6 V 2 n d n a n d d n  = -6c 
dc 

Taylor series (see Appendix A) expansion of G around 
equilibrium value: 

’ 2n26 v[n ( dn/dc)12k,T I ,  - ( 1  + cos2&) - - 

(2) = 0 at equilibrium 
0 

1 
2 

G - Go = - k,T, since fluctuation is due to  ther- 

mal energy ( -k,Tper degree of freedom 

dG = p,dn, + p2dn, 
1 1 

2 

- 
- V 

Since V,dn ,  = - V,dn,, dG = (p ,  - =&, ) dn, 
\ v 1  1 - 

dG 
Since M d n ,  = dc 6V,  - dc = (a2 - -!&,I 
By the Gibbs-Duhem equation, 

a 2  
n M  - 

c = -A- + n , ~ ,  

By Equation (3 .21)  
0 5  

is 2n2[n (dn/dc)]’k,Tc 
_ -  - ( 1  + cos2&) 
I0 J ~ 4 ( a ~ o s , n / w 0  
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converts Equation (19) to an expression for the relative light scattered by a unit of volume 
iJI0 by multiplying Equation ( 19) by the number of volume elements in 1 cm 3: 1 /6 V. Although 
the justifications in Table 5.2 are sketchy, they provide hints that will show the interested 
reader how to proceed in order to develop the required relationship in detail. Only the third 
entry in the table, the connection between 6c2 and a2G/ac2 requires a more elaborate proof 
than the qualitative justification supplied. 

The cumulative result of these substitutions is to replace ( ~ c x ) ~  in Equation (19) by a 
number of other factors, all of which are experimentally measurable: 

The refractive index gradient (dn/dc).  This is simply the local slope of a plot of the 
refractive index of a solution versus its concentration. 
The concentration c of the solution. This is expressed in units as grams per volume. 
The quantity (arosrn/dc),,, is evaluated for an equilibrium solution. This is the signifi- 
cance of the subscript 0. The subscript T denotes that the derivative is taken at 
isothermal conditions. 

1. 

2. 
3. 

In view of these substitutions, Equation (19) becomes 

In Chapter 3 we developed expressions for the equilibrium osmotic pressure of a solution 
as a function of its concentration. Equation (3.34) may be written 

Since Equation (21) applies at equilibrium, we may evaluate ( ~ ~ , , , / ~ c ) , , ,  from Equation (21): 

Combining Equations (20) and (22) yields 

2 r2 [n ( dn/dc)I2 c 
NA r2h4 ( l / M  + 2 B e )  

( 1  + cos2&) - - - 

1, 

Before looking at the experimental aspects of light scattering, it is convenient to define 
several more quantities. First, a quantity known as the Rayleigh ratio R, is defined as 

(24) 

where 8 is the value of & measured in the horizontal plane. According to Equation (23), the 
Rayleigh ratio should be independent of both 8 and r.  An experimental verification of this is 
one way of testing the applicability of the Rayleigh theory to the experimental data. Next it is 
convenient to identify the numerical and optical constants in Equation (23) as follows: 

is r 2  R, = 
I, ( 1  + ~ 0 ~ ~ 8 )  

2 r2 n2 ( dn/dc)2 
K =  

NA h4 

With these changes in notation, Equation (23) becomes 

Kc 
1/M + 2 B c  

R, = 

or 



R AD1 AT1 ON SCATTER1 NG 207 

This suggests that a plot of (Kc/R,) versus c should be a straight line for which the intercept 
and slope have the following significance: 

Intercept = 1/M 

Slope = 2B 

Comparing Equations (28) and (29) with Equations (3.35) and (3.36) reveals that plots of 
(.rr,,/RTc) versus c and (Kc/R,) versus c have identical intercepts, at least for monodisperse 
colloids (see Section 5.4d for a discussion of the average obtained for polydisperse systems), 
and that the slopes differ by a factor of 2, with the light-scattering results having the larger 
slope. 

The Rayleigh ratio as defined by Equation (24) has a precise meaning, yet it is a quantity 
somewhat difficult to visualize physically. After we have discussed the experimental aspects of 
light scattering, we shall see that R, is directly proportional to the turbidity of the solution 
when turbidity is the same as the absorbance determined spectrophotometrically. 

5.4 EXPERIMENTAL ASPECTS OF LIGHT SCATTERING 

With the advances in highly monochromatic laser light sources and powerful desktop comput- 
ers, light scattering instruments have attained a corresponding level of sophistication (see Zare 
et al. 1995). In general terms, all light scattering instruments contain the same components: a 
light source (usually a laser), a spectrometer (containing the optical components for defining 
the scattering angle volume), a detector (usually a photomultiplier), a signal analyzer such as 
a spectrum analyzer or a correlator (for dynamic measurements; see Section 5.8), and a 
computer with software for analysis are standard for dynamic measurements. A schematic 
representation of a typical arrangement is shown in Figure 5.5. 

Commercial instruments vary in features and capabilities; some, for example, are re- 
stricted to a single angle (very low 8 or 0 = 45' or 90°), and some have capabilities for 
simultaneous measurements at a fixed number of different angles. Fiber-optic cables for 
source and detection paths can also be used for minimizing alignment problems and multiple 
scattering effects in concentrated dispersions, but these are usually found in specially built 
research instruments rather than commercial ones. Excellent introductions to most of the 
hardware and software features are available in specialized books (Chu 1991; Pecora 1985), 
and we focus only on some general background here. Zare et al. (1995), cited above, is an 
excellent source of relatively simple experiments meant for the beginner. 

FIG. 5.5 
nents and the definition of 8. 

Schematic top view of a typical light scattering instrument showing the different compo- 
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5.4a Some Preliminary Considerations 

In order to determine A4 and B by means of Equation (27), it is clear that all the other 
quantities in the equation must be measured. It is convenient to group these factors into two 
categories, concentration and optical terms, for the purposes of our discussion. 

5.4a. I Concentration Terms 
To begin, concentration enters the light scattering expressions primarily through the equations 
for osmotic pressure. Hence the same conditions apply in this application as in osmometry 
(see Chapter 3 ) .  Specifically, light scattering should be measured under isothermal conditions. 
Although concentration units other than weight per unit volume (the units of c)  may be used, 
few of the alternatives are as useful as these. In consulting the literature, however, one should 
be attentive to the possibility that various workers may use slightly different units for c. 

5.4a.2 Optical Terms 
All the remaining variables in Equation (27) are optical in origin. The factors to be provided 
with numerical values are the refractive index of the solution and the refractive index gradient, 
dn/dc in K from Equation (25), and the Rayleigh ratio from Equation (24). All these optical 
parameters are wavelength dependent; therefore, each should be measured at the same wave- 
length. It is the value of this working wavelength that is used as the numerical substitution for 
h in K. 

The actual measurement of the refractive index of the solution poses no difficulty, but the 
evaluation of the refractive index gradient is more troublesome. The assumptions of the 
derivation of Equation (23) restrict its applicability to dilute solutions. The refractive index of 
a dilute solution changes very gradually with concentration; hence a plot of n versus c, the 
slope of which equals dn/dc, will be nearly horizontal. Since the intensity ratio depends on the 
square of dn/dc, it is clear that successful interpretation of Equation (23) depends on the 
accuracy with which this small quantity is evaluated. Measuring the absolute refractive indices 
of various solutions and determining dn/dc by difference or graphically would introduce an 
unacceptable error. A more precise method must be used to measure this quantity. 

A differential refractometer is a device that specifically measures differences in refractive 
indices. By means of a differential refractometer, the difference between the refractive index 
of a solution and that of a solvent may be measured directly with the necessary precision. A 
variety of instrument designs is available for doing this. Most involve directing a light beam 
toward a two-compartment chamber, one portion of which contains the solvent, while the 
other contains the solution. The light is deviated differently by each, and position-sensitive 
photodetectors measure the small differences in deflection and translate them into a refractive 
index difference. Differences as small as 10 - 7  refractive index units can be measured in this 
way. The search for detection methods suitable for liquid chromatography has contributed to 
the development of accurate techniques for measuring small changes in refractive index. 
Note that we have also cited refractive index measurements in connection with size-exclusion 
chromatography in Chapter 1, Section 1.6b, and with sedimentation/diffusion studies in 
Chapter 2. A differential refractometer is an indispensable part of any laboratory in which 
light-scattering experiments are conducted. 

5.4b Intensity Measurements 

Now let us consider the actual measurement of light intensity. A light scattering photometer 
differs from an ordinary spectrophotometer primarily in the fact that the photoelectric cell 
that measures the scattered light is mounted on an arm that permits it t o  be located at various 
angular positions relative to the sample. In commercial light scattering devices, the detector 
rests on a turntable, the center of which coincides with the center of the sample. Thus the 
angle & is measured in the horizontal plane. From here, we use the symbol 8 to signify the 
angle of observation in the horizontal plane. The angle 8 is measured from the direction of the 
transmitted beam where 8 = Oo.  The incident beam therefore strikes the sample at 8 = 180°. 

The cells in which the scattering solutions are measured should have flat windows at the 
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angle at which the scattering is measured. Cells with octagonal cross sections (actually, only 
half an octagon is used) are especially convenient since they present flat faces at 0, 45, 90, 135, 
and 180O. Cylindrical cells have been used, but they must be corrected for reflections from the 
walls. Regardless of the cell geometry, it is imperative that the cells be clean; otherwise the 
scattering from a fingerprint may exceed that from the solute! The solvent must also be 
purified of all extraneous matter. Filtration through sintered glass or centrifugation is usually 
employed to remove any dust particles, which would also invalidate the measurement. 

The easiest way to calibrate a light scattering photometer is to use a suitable standard as a 
reference. Although polymer solutions and dispersions of colloidal silica have been used for 
this purpose, commercial photometers are equipped with opal glass reference standards. 

5 . 4 ~  Relating lntensities to Absorbance and Turbidity 

Except for the movable photomultiplier tube, a light scattering photometer is very nearly 
identical to an ordinary spectrophotometer, which measures the ratio of the intensity of 
transmitted light to the intensity of incident light I,/Io. The absorbance per unit optical path 
Eabs is defined in terms of this quantity as 

Eabs = -In ( I [ /&)  (30) 

(Note that E here does not stand for permittivity.) Now let us examine the relationship between 
absorbance and the intensity of scattered light. In a light scattering experiment with nonab- 
sorbing materials, the intensity of the transmitted light equals the initial intensity minus the 
intensity of the light scattered in all directions I,: 

(3 1) I, = I, - I,  

Combining Equations (30) and (31) leads to the result 

where the approximation arises from retaining the first term of the series expansion of the 
logarithm (see Appendix A). The entire development of Section 5.3 is limited to dilute solu- 
tions and small n values. Therefore the approximation in Equation (32) is applicable to the 
systems we have been discussing. When the light attenuation is due to scattering, the ratio 
(IJI,) is called the turbidity, 7, instead of the absorbance. 

The quantity I, in Equation (32) is not the same as the light scattered to a particular point 
(r,+J, but equals the summation of these contributions, totaled over all angles: 

angles 

This summation may be replaced by an integral as follows. An element of area dA on the 
surface of a sphere of radius r and making an angle +x with the horizontal is 

dA = 27rrsi11+~(rd+J (34) 

as shown by Figure 5.6. Therefore, the total scattered intensity ratio is given by 

Substituting Equations (23)  and (25 )  into this expression yields 

K c ( 1 + cos2 4 , )2r4  sin +&x 

The factor rz  cancels out of Equation (36) and the value of the integral over +x is (8/3) .  
Therefore 
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FIG. 5.6 
intensity of scattered light. 

Definition of an element of area required for the summation over all angles of the 

The 

and 

parameter H i s  defined to equal the cluster of constants: 

H = -  - 

in terms of this quantity, Equation (37) becomes 

16 T K - 32 r3 n2 (dn/dcI2  
3 3 NA X4 

H c  1 - _  - -  + 2 B c  
T A 4  

(39) 

The formal similarity between Equations ( 2 7 )  and (39) helps us understand somewhat 
better the physical significance of the Rayleigh ratio Re. It is directly proportional to the 
attenuation of the light per unit optical path, measured as absorbance, when the attenuation 
is due to scattering alone. In this case absorbance is more properly called turbidity. 

Now let us consider some actual results from light scattering experiments on systems that 
satisfy the assumptions of the theory. 

5.4d Results from Light Scattering Experiments: 
Weight-Average Molecular Weights 

In the preceding section we saw how turbidity measurements are made and how they may be 
analyzed to yield numerical values for some of the parameters of interest in colloid chemistry. 
Figure 5.7 shows a plot of Hc/r versus c for three different fractions of polystyrene in 
methylethyl ketone. The measurements shown in the figure were made at  25OC and at  a 
wavelength of 436 nm. The molecular weights for the three fractions may be determined from 
the intercepts of the lines as illustrated in Example 5.2. 

* * *  

EXAMPLE 5.2 Determination of Molecular Weights Using Rayleigh Ratios: Assuming that the 
same system of units is used throughout, what are the units for R, and T and also for K and H? 
Verify that these lead to reciprocal molecular weight units for the combinations HC/T and KcIR,. 
To what molecular weights do the three intercepts in Figure 5.7 correspond? Do the three 
fractions behave as expected with respect to their second virial coefficients? 

Solution: Since refractive index is dimensionless, dnldc has reciprocal concentration units. In 
Equation (20) the factors ( [ n ( d n l d ~ ) ] ~ c l ( d ~ / d c ) )  have the units pressure -’ since the units of 
c’s cancel. The product r2X4 in Equation (20) has the units length6 or volume2; therefore, the 
denominator of Equation (20) has the units pressure volume2. The product k,T in the numerator 
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FIG. 5.7 Plots of Hc/7 versus c for three different fractions of polystyrene in methylethyl ketone. 
(Redrawn from B. A. Brice, M. Halwer, and R. Speiser, J. Opt. Soc. Am. ,  40, 768 (1950).) 

can also be expressed in pressure volume units. Therefore is//o has the units volume-' and 
describes the intensity ratio per unit volume as described. 

E uation (24) shows that the units of R, are those of r'(is//'o). The units of the first factor are 
length and those of the second length -3 .  Therefore R, has the units length -I. By Equations 
(35) and (37), the units of 7 are the same as Re. Each of thesle parameters measures the light 
attenuation per unit path length. 

By Equation (25), the units of K are concentration - 2  length - 4  = length' mass-2 length - 4  

= length2 mass -*. The fact that this quantity is divided by NA places (mole -I) in the units. 
Equation (38) shows that H has the same units. 

In terms of units, H c h  = Kc/R, = (length' mass-' mde)(mass length-3)/(length-') = 
mole mass - ', reciprocal molecular weight units if mass is expressed in grams, as is the case in 
practical concentration units. 

The three intercepts in Figure 5.7 are 3.70 . 1OP6,  5.56 lO-' mole g - I .  

The reciprocals of these numbers give the molecular weights directly: 11 6,000, 180,000, and 
270,000 g mole - I .  

The lines in Figure 5.7 appear to be parallel and hence characterized by a single B value. 

9 

lO-', and 8.62 

This would be expected for a single polymer-solvent-temperature system. 
* t *  

At first glance it appears that light scattering experiments as described so far provide no 
information that is not already available from osmometry. Indeed, for monodisperse colloids 
this is true, at least for the experiments we discussed above. The apparent redundancy between 
osmotic pressure and light scattering results should not be interpreted to mean that the two 
procedures duplicate one another entirely. For one thing, light scattering is free from the 
limitations imposed on osmometry by the availability of a suitable semipermeable membrane. 
Furthermore, turbidity measurements do not require time for equilibration, and hence they 
may be used for systems that change with time in a manner that is not possible with osmom- 
etry. 

In addition to these practical considerations, there are other ways in which light scattering 
and osmometry differ. Some of these will become apparent only in subsequent sections in 
which additional characteristics of light scattering are developed. Another important differ- 
ence, however, arises in the type of average that is measured for polydisperse systems. 

In Chapter 3 we saw that osmometry enables us to measure the number-average molecular 
weight for a polydisperse colloid. In view of the way the osmotic pressure enters the develop- 
ment of Equations (27) and (39), it appears that the same 'type of average is obtained from 
turbidity experiments also. This is not the case. The following argument shows that light 
scattering measures the weight-average molecular weight. 

For a polydisperse system, Equation (39) relates the experimental concentration, the 
experimental turbidity, and the average molecular weight: 
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It is sufficient to consider only the leading term of Equation (39) in writing Equation (40) 
since the molecular weight is evaluated from the intercept at infinite dilution. Likewise, we 
expect that Equation (39) will also apply to each molecular weight fraction in the polydisperse 
system 

It is the relationship between the value of 
determine. To accomplish this we note that 

and the distribution of Mi values that we wish to 

c, = c c; 
I 

and 

Texp = c 7; 
I 

Combining the last four equations gives 

Now, recalling that c; = n&fI/ V enables us to write 

(43) 

Equation (45) corresponds to the weight-average molecular weight M ,  as defined by Equation 
(1.16). 

It will be recalled from Chapter 1 that the number of particles in a molecular weight class 
provides the weighting factor used to compute the number-average molecular weight. The 
weight of particles in a class gives the weighting factor for the weight-average molecular 
weight. For this reason the weight average is especially influenced by the larger particles in a 
distribution. Therefore the weight-average molecular weight is always larger than the number 
average for a polydisperse system. As we saw in Chapter 1, the ratio of the two different 
molecular weights is a useful measure of the polydispersity of a sample. The authors of the 
research shown in Figure 5.7 also measuredg ,  for the same samples; the average value of 
M,/a ,  for the three samples was 1.16. From polymerization theory this ratio is expected to 
be closer to 2 for polystyrene as synthesized, suggesting that these samples had been fraction- 
ated prior to molecular weight determination. 

Thus we see that the redundancy between osmometry and light scattering is only an 
apparent effect for polydisperse systems. In fact, the combination of the two analyses provides 
additional information about the characteristics of the system. 

Equation (39) shows that the slope of a light scattering plot is twice the value of the slope 
of a comparable plot from osmometry. In addition to the factor of 2, there is a more subtle 
difference between the slopes arising from a difference in the two values of the second virial 
coefficient. Examination of Equation (3.36) reveals that the second virial coefficient is in- 
versely proportional to the square of the molecular weight of the solute. For polydisperse 
systems it is the average molecular weight that appears in this expression. Since the weight- 
average molecular weight is larger than the number average, the second virial coefficient B will 
be somewhat smaller as determined by light scattering than by osmometry after the factor of 2 
has been taken into account. 

Aside from the difference just noted, the interpretation of the second virial coefficient in 
light scattering is exactly the same as that developed in Section 3.4. It should be noted, 
however, that Equation (39) does not apply to charged systems. The reason for this lies in the 
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fact that the charge of macroions is also a fluctuating quantity, and this must also be consid- 
ered in developing a scattering theory for charged particles. The resulting analysis shows that 
it is a plot of Hc/r versus c ’ ’ ~  which is linear in this case, with the limiting slope proportional 
to z2 ,  the average value of the square of the charge. The slope is also predicted to be negative 
in this situation. 

In concluding this section, it should be emphasized that the turbidity values plotted to 
interpret light scattering experiments are the solution turbidities, corrected for scattering by 
the solvent. Also, the entire theoretical development leading to Equation (39) is based on the 
assumption that the scatterers are isotropic. In this case, unpolarized incident light will pro- 
duce a scattered beam that is totally polarized at 8 = 90°. When anisotropic particles are 
present, there is a depolarization of the light scattered at 90°. The ratio of the horizontally to 
vertically polarized scattered light may be determined by inserting a Polaroid filter between 
the sample and the photomultiplier. From the measured value of this depolarization ratio, a 
correction factor (called the Cabannes factor) may be introduced to allow for anisotropy. In 
the sample with M = 116,000 in Figure 5.7, for example, the ratio of the two different 
polarizations at 90° has a value of 0.013, for which the Cabannes factor equals 0.98. The 
turbidity should be multiplied by this factor to correct for the fact that the anisotropy enhances 
the amount of scattered light. 

5.5 EXTENSION TO LARGER PARTICLES AND TO 
INTRAPARTICLE INTERFERENCE EFFECTS 

In the remainder of this chapter we see that a good deal more information about scattering 
particles may be deduced, at least under some circumstances, from the study of the light 
scattered by a sample. In developing the Rayleigh theory and applying it to solutions, a 
definite model was postulated, and certain variables emerged as factors that affect the intensity 
of the scattered light. Before we extend light scattering theory to more complex systems, it is 
convenient to review the assumptions of the Rayleigh model: 

1. 
2. 
3. 

The scattering centers are isotropic, dielectric, and nonabsorbing. 
The scatterers have a refractive index that is not too large (see Step 8 in Table 5.1). 
The particles are small in dimension compared to the wavelength of the light. 

This last assumption is fundamental to the theory and originates as early as Equation (17), in 
which it is assumed that the field that drives the oscillating dipole is the same throughout the 
scatterer. It is generally held that particles must have no dimension larger than about X/20 for 
this assumption to apply. 

In general, in all radiation scattering techniques, the magnitude of the wavelength of the 
radiation relative to a suitable characteristic dimension, say, L,h, appropriate for the particles 
plays an important role (as do other relevant properties of the system such as the absorptivity, 
refractive index, etc.). The wavelength of the radiation X (or a combination of X, the refractive 
index n,  and the angle 8 at which the scattered radiation is measured) may be thought of as the 
“yardstick” (say, Lyd) used in the scattering measurements. What properties of the dispersions 
or of the particles one can access through the scattering measurements are determined by the 
ratio (Lch/Lyc,). 

The different theories (or “models”) we discuss in this chapter and the different types of 
properties (e.g., osmotic pressure, particle size and shape, fractal structure of aggregates, etc.) 
we seek to measure using scattering correspond to appropriately different definitions of L,h 
and L,, and different ranges of magnitudes of the ratio (L,JLyd).  It is good to keep this in 
mind as we develop more complicated theories of scattering. As an aid, Table 5.3 presents a 
preliminary overview of some of the different definitions of Lc,, and L,, we encounter in 
subsequent sections of this chapter and their relation to the types of information that can be 
obtained using scattering techniques. 

For example, Equation (39) suggests that light scattering is a technique ideally suited to 
the study of particles in the colloidal size range since the turbidity increases with the molecular 



21 4 HIEMENZ AND RAJAGOPALAN 

TABLE 5.3 Examples of the “Yardsticks” L y d  and the “Characteristic Lengths” L,h Used in 
Different Theories of Scattering and the Different Properties Accessed through the Theories 

Theory Lyd Lct7 Remarks 

Ray leigh h R,, particle “size” 

Debye h/[47r sin ( 0 / 2 ) ]  = s-’  Particle size or aggre- 
gate size; see Equa- 
tion (57) 

Mie R,, particle “size” 

Applicable for (RJh)  < 1/20; 
extension of the Rayleigh 
equation to solutions allows 
the measurement of osmotic 
pressure, molecular weight, 
and turbidity of colloidal or 
polymer solutions; see Sec- 
tion 5.3 

The information obtained de- 
pends on the magnitude of 
the ratio (L,h/Lyd)’ Depend- 
ing on the value of this ra- 
tio, details on particle shape 
or “fractal” dimension can 
be obtained; see Section 5.6 

Efficiencies of scattering and 
absorption are obtained as 
functions of 0 = 27r RJX; 
see Section 5.7 

Note: Consult the appropriate sections of the chapter for more comprehensive information on the 
assumptions, restrictions and uses of the theories. 

weight of the particle. However, the assumptions underlying the derivation of Equation (39) 
impose a limitation. The Rayleigh theory shows that turbidity increases with molecular weight, 
at least until the particle is large enough to have some dimension exceeding about X/20. In 
terms of the theory presented so far, we have no way of interpreting the light scattered by 
larger particles. The Debye theory, which we examine in the following section, will show us 
how to overcome this limitation. 

The Rayleigh approximation shows that the intensity of scattered light depends on the 
wavelength of the light, the refractive index of the system (subject to the limitation already 
cited), the angle of observation, and the concentration of the solution (which is also restricted 
to dilute solutions). In the Rayleigh theory, the size and shape of the scatterers ( M  and B )  
enter the picture through thermodynamic rather than optical considerations. 

A fully developed theory of light scattering that allows all the variables, including particle 
size and shape, to take on a full range of values is extremely complex. Because of this 
complexity, many treatments, such as the Rayleigh theory, are approximations that apply only 
to  a narrow range of values of the parameters. In the Debye approximation, most of the 
preceding restrictions will continue to apply, except that the limitation on particle size will be 
relaxed considerably. At the same time, however, the stipulation of low values of the refractive 
index becomes even more stringent. As we see below, the Debye approximation introduces 
some additional complexity to the theory of light scattering and trades off some range in 
refractive index for extra range in particle size. From this, a positive dividend emerges: We 
shall be able to determine a characteristic linear dimension of the scattering particles without 
any assumptions about the shape of the particles. In the cases to which it applies, this informa- 
tion is definitely worth the price of a little additional complexity. 

We omit most of the mathematical details in developing the additional theory; instead, we 
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emphasize the major concepts of the theory, its range of applicability, and its plausibility in 
limiting cases. 

5.5a The Debye Scattering Theory 

5.5a. I 
As emphasized above, the Rayleigh approximation is restricted to particles with dimensions 
that are small compared to the wavelength of light. Suppose we now relax this restriction in 
our model of a scattering particle, allowing the particles to take on dimensions comparable to 
A. Under these circumstances different regions of the same particle will behave as scattering 
centers. Because the distances between these various scattering centers are of the same magni- 
tude as the wavelength of light, there will be interference between the waves of light scattered 
from different parts of the same particle. 

Figure 5.8 shows how this comes about. The electric field of the incident light beam is out 
of phase when it strikes two different portions of the scatterer, designated i and j .  Although 
the figure shows i a n d j  as polymer segments, they could be a pair of volume elements in any 
material. In Fact, applications of the Debye theory to polymers are the most widely encoun- 
tered. The light scattered from i and j is characterized by the same field that induces the 
oscillation at these locations. Therefore the light scattered from the two sites will be out of 
phase and display interference when observed at a large distance compared to  Ax, say, along 
BB’ in Figure 5.8. As shown in the figure, this interferencle effect may be constructive or 
destructive, depending on the value of 8. We propose, therefore, that the Rayleigh ratio 
defined by Equation (24) must be multiplied by a correction factor P(O), known as the 
f o rm factor (or the intraparticle structure factor), to correct for the interference effects not 
considered previously. Several things may be anticipated about this factor: 

As the dimensions of the particle become negligible compared to the wavelength of 
light (Ax --+ 0), P(8) -+ 1 -under these conditions, no correction is necessary. 
The correction factor is a function of the angle of observation -as implied by the 
notation P(8) - since it is essentially an interference effect. 
Multiplying the denominator of both sides of Equiltion (27) by P(0) corrects is (a 
theoretical quantity calculated without interference) for interference: 

Intraparticle Interference and the Form Factor 

1. 

2 .  

3 .  

A 

FIG. 5.8 Interference of light rays scattered by segments i a n d j  in a polymer chain. (Redrawn 
with permission of P. C. Hiemenz, Polymer Chemistry: The Bmic Concepts, Marcel Dekker, New 
York, 1984.) 
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4. The actual intensity of scattered light measured at a point C, denoted by ic, equals the 
product is times P(0).  Therefore the experimental Rayleigh ratio obeys Equation (27)  
modified as follows: 

In view of these considerations, it is apparent that the way to extend the previous theories 
to larger particles is to evaluate P(0) .  To do this in a general way, two complications must be 
introduced into Figure 5.8: 

1. Two scattering centers in a large particle are not simply displaced from one another 
in the x direction by an amount Ax-rather, the coordinates of one relative to the 
other must be described by a radial distance and two angles, for example, 0 and 4. 
A large particle does not consist of merely two scattering centers, but may be subdi- 
vided into several centers, the number of which increases with the size of the particle. 

2. 

These two considerations must be incorporated into any general expression for P(0) .  

5.5a.2 Expressions for  the Form Factor 
We begin our summary of the derivation of P(O), however, by considering only the pair of 
scattering centers shown in Figure 5.8. To do this quantitatively, imagine that region i is at the 
origin of a coordinate system so the light that reachesj has to travel an additional distance Ax. 
The field at i a n d j  is now represented by the following formulations of Equation (7 ) :  

E; = E, COS (27rvt) (48) 

and 

Ej = E, COS [27r(vt - $)] (49) 

The light scattered from each of these sites will be characterized by the same field as the one 
that induces the oscillation. Therefore the light scattered from i and j will be out of phase by 
an amount 27r &/A. 

Let us now consider the net scattered light that reaches a point C-located somewhere 
along BB’-a (large) distance r from the scatterer. The field at C is the sum of the fields 
emerging from i and j :  

E, = E, + El = E, (50) 

If we use the appropriate trigonometric formula for the sum of two cosines, this may be 
written as 

This equation shows that the electric field of light scattered to C is not altered in frequency or 
wavelength, but that the amplitude is modified by the factor 2 cos (7rAx/A). The intensity of 
light depends on the square of the field amplitude; therefore, with interference, 

i, a [ 2cos (7r;zx,]:  - ,E012 

and without interference (Ax -+ 0), 
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(53) 

Combining Equations (52) and (53) leads to 

Since i, = ip(0), the factor cos2 (T&/X) must equal P(0) for this simple case. 
A fair amount of straightforward but tedious trigonometry is necessary to establish the 

relationship between AX and r, &, and 0 for the general case of any orientation between i and 
j .  The result of this analysis is the expression (given without proof) 

Ax = 2r cos cPx sin (0/2) ( 5 5 )  

where 4x is defined the same as in Figure 5.6 and 0 continues to be the scattering angle 
measured in the horizontal plane. 

It is not any specific value of +x in which we are interested, but in all possible values. This 
means that Equation (55) is to be integrated over all values of &, a procedure that leads to the 
result (given without proof) 

ic s in [ (4~r /h )  sin(0/2)] 
T = l +  
1.7 ( 4 m - A )  sin ( 8 / 2 )  

Equation ( 5 6 )  benefits considerably from some simplification in notation. Accordingly, we 
define 

471. 
h 

s = - sin(0/2) (57) 

This quantity has units of “l/length” and is the magnitude of a vector known as the scattering 
vector. For our purpose here, it is sufficient to note that s - ’  is the “yardstick” used for 
measuring the distance between the scattering centers when the intensity of the scattered 
radiation of wavelength h is recorded at an angle 0 from the direction of the incident radiation. 

Using the above notation permits us to rewrite Equation ( 5 6 )  as 

sin ( sr )  
* - I + -  lC 

1, sr 
_ -  

The right-hand side of Equation (58) correctly defines P(0) for interference between two 
regions of a large particle. 

The next question we must consider is how this result may be applied to a particle that 
consists of N ,  not just two, scattering centers. If the composition of the particle is such that 
the scattering from one part of the particle has no effect (other than interference) on the 
scattering from another part, then the particle may be subdivided into N scattering elements, 
and Equation (58) can be applied to all possible pairs. If we define rll as the distance between 
the ith and j th  members of the set of N scattering elements, then this argument leads to the 
result (given without proof) 

Expression (59) is written as a proportionality rather than an equation because the summation 
requires that a normalization factor be introduced. The ratio ic/is must equal unity when rlJ is 
small since i t  explicitly corrects for interference effects that vanish under these circumstances. 
For small values of sr,, sin (sr,l)/sr,J equals unity and C,Cl sin (sr,)/sr, equals N2.  Therefore 
normalization requires that we write 
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Note that the first term of Equation (58) is implicitly present in Equation (60) when ru equals 
zero. Equation (60) provides the general expression for P(8) that we have sought. It also shows 
that P(8) is more generally a function of s since one can vary s without changing % by using a 
radiation source of a different wavelength X. We return to this point in Section 5.6. 

It is possible that the reader will recognize Equation (60) from another context. It is 
exactly the same expression that describes the diffraction of x-rays by polyatomic molecules, 
the situation for which it was derived by Debye (Nobel Prize, 1936). An important insight 
emerges from this realization. All interference phenomena between electromagnetic radiation 
and matter follow the same mathematical laws. Interference becomes important when there is 
some characteristic distance L,, in the material under consideration that is of the same magni- 
tude as the wavelength of the available radiation. The interference phenomena will be identical 
for identical values of L,,,/h regardless of the separate values of Lc, and X. Thus x-ray diffrac- 
tion is an experimental technique that uses x-rays (for which X = 0.1 nm) to measure inter- 
atomic distances that are on the order of nanometers. Likewise, we may use visible light (for 
which X = 500 nm) to measure particles with dimensions in the colloidal size range. The 
scattering of microwaves by atmospheric rain and snow particles is an example of still another 
situation in which interference phenomena may be observed by scaling the wavelength of the 
radiation to suit the particle sizes under investigation. A brief comparison of x-ray, neutron, 
and light scattering is made in Section 5 . 6 ~ .  

Before turning to the applications of the Debye approximation, we should elaborate more 
fully on a point that was glossed over. This is the assumption-made at the outset, but 
explicated in going from Equation (58) to Equation (59) -that the scattering behavior of each 
scattering element is independent of what happens elsewhere in the particle. The approxima- 
tion that the phase difference between scattered waves depends only on their location in the 
particle and is independent of any material property of the particle is valid as long as 

It is the condition expressed by the inequality (61) that requires ( n  - 1) to become smaller 
and smaller as the theory is applied to progressively larger particles. For example, when 8 = 
loo,  the Debye approximation is good to within 10% for spheres with a radius R, that is about 
62, 37, and 25 times X at n = 1.1, 1.2, and 1.3, respectively. As we shall see presently, the 
approximation applies to a somewhat wider range of R, and n values at smaller angles of 
observation and to a narrower range at larger angles. 

5.5b Zimm Plots 

Although Equation (60) may correct Equation (47) for the turbidity of systems in which the 
scattering centers are not negligible in size compared to the wavelength of light, it is not a very 
promising looking result. A little more mathematical manipulation will correct this impres- 
sion. Specifically, suppose we examine Equation (57) for the case in which 8/2 is small. This 
will make s small regardless of the value of rfJ so that sin (sr,,) in Equation (60) may be 
expressed as a power series (see Appendix A): 

For small values of s (more accurately, for small values of sru; we come back to this later), the 
expansion may be limited to the first two terms: 

It is actually l/P(O) in which we are interested, so we may again take advantage of the fact 
that s is small to write Equation (63) as 
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when the second term on the right-hand side is much smaller than unity. In spite of various 
simplifying approximations, Equation (64) still does not appear particularly useful; the prob- 
lem is the double summation of rII terms. We have encountered summations like this before in 
discussing the radius of gyration in Chapter 2, Section 2.7. A little manipulation of the results 
of that section will show us how to replace the summations in Equation (64): 

Equation (2.76) gives an expression for (RRZ)J, the square of the radius of gyration of 
a swarm of masses around thejth,  assumed to be the center of mass. (Note, also, the 
difference in notations; in particular, we have used n instead of N in Equation (2.76) 
for the number of segments.) 
The two summations in Equation (2.76) can be consolidated into one-spanning all n 
of the mass elements - for the purposes of this discussion. Also, the product P(r)r2 in 
Equation (2.76) is equivalent to a specific value of rS,. 
In going from Equation (2.76) to Equation (2.77), .we added together (i.e., inte- 
grated) n terms like those in Equation (2.76) to allow for the fact that any of the n 
mass elements may play the role of the j th  term in the derivation. Doing this in the 
case of the double sum in Equation (64) counts all mass elements twice, so a factor of 
1 /2 must be inserted. 

1 .  

2. 

3.  

We summarize these observations by writing 

which may be substituted into Equation (64) to give 

Equation (66) is valid in the limit of small values of 8/2. Of course, if the scattering 
particle is not too large, the expansions of Equations (63) and (64) will be valid at larger 8, 
assisted by the fact that the values of riJ will be small. This explains why the range of parame- 
ters to which the Debye equation applies depends on the angle of observation, becoming 
narrower for larger angles and broader at small angles. 

Substitution of Equation (66) into Equation (47) yields 

K“ = (; + 2 4  [ I  + - 16 n2 R: sin2 ($1 
RB 3 x2 

Let us consider Equation (67) in three important limiting cases with the objective of develop- 
ing a graphical technique for using Equation (67): 

1 .  

2. 
3 .  

In the limit of 8 = 0, Equation (67) reduces to Equation (27); that is, there is no 
interference effect in the scattered light. 
In the limit of c --+ 0, Kc/R, is proportional to sin2 (81’2). 
If both c and 8 -+ 0, Kc/Ro equals 1/M. 

These limits suggest how experimental data might be collected, plotted, extrapolated, and 
interpreted. The resulting graph is known as the Zimm plot after its originator. 

Equation (67) shows clearly that i should be measured as a function of both concentration 
and angle of observation in order to take full advantage of the Debye theory. The light 
scattering photometer described in Section 5.4 is designed with this capability, so this require- 
ment introduces no new experimental difficulties. The data collected then consist of an array 
of i /I ,  values ( i  needs no subscript since it now applies to small and large particles) measured 
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over a range of c and 8 values. By means of Equation (24), the i/I, ratios are converted to R, 
values. The results are plotted with Kc/R, as the ordinate and sin (8/2) + c as the abscissa. 

Figure 5.9 shows this sort of plot for light scattering data collected from solutions of 
cellulose nitrate in acetone at 25OC.  The measurements were made using 436-nm light of 
mercury. In the figure, [sin2 (8/2) + kc] has been used for the abscissa. The numerical 
constant k -  equal to 2000 in this case- spreads out the points and results in a more intelligible 
display. As with any scale factor in graphing, it is found by trial and error. Each of the points 
in Figure 5.9 corresponds to a particular pair of c,8 values. When the points measured at the 
same values of c and those measured at the same values of 8 are connected, a grid of lines is 
obtained like that sketched in the figure. If all the experimental c and 8 values are small 
enough for the theories to hold exactly, then the grid consists of two sets of parallel straight 
lines with different slopes. In general, however, the range of experimental c and 8 values 
exceeds the range of validity of the theory, and the lines show some curvature. 

The next step in the treatment of the data is the extrapolation of the curves drawn at 
constant 8 to c = 0 and the extrapolation of those drawn at constant c to 8 = 0. This is 
done by placing a mark (the triangles in Figure 5.9) on the smooth lines drawn through the 
experimental points at the value of the abscissa that corresponds to the value of that coordi- 
nate at the desired limit. For example, when the limit for c = 0 of the 8 = 8, line is located, it 
will lie on the 8 ,  line, and the value of the abscissa will be sin2(8,/2). Likewise, when the limit 
for 8 = 0 of the c = c, line is located, it will lie on the c, line, and the value of the abscissa 
will be kc,. The triangles in Figure 5.9 were positioned on this basis. Note that the triangles 
describe two straight lines that have a common intercept. 

Let us now consider the interpretation of this graph. First, it should be remembered that 
interference effects vanish at 8 = 0. The line so labeled in Figure 5.9 corresponds to values of 
Kc/R, at different values of c, all expressed at  8 = 0, where Equation (27) is valid. According 
to that equation, the slope of this line equals 2B, and the intercept equals l/M. This is the 
same result we obtained previously for small particles. By extrapolating to 8 = 0, the proce- 
dure now applies to larger particles as well. In formulas, then, we write for the 8 = 0 line 

(Slope),,, = 2B (68) 

:j 40 

20 

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 

sin* + -+ 2000 c 

(c in g C M - ~ )  

FIG. 5.9 
M. Holtzer, and P. Doty, J.  Phys. Chern., 58, 635 (1954).) 

Experimental Zimm plot for cellulose nitrate in acetone. (Redrawn from H. Benoit, A. 
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and 

(Intercept),,, = 1 / M  (69) 

The new feature of the Zimm plot is the second extrapolated line, corresponding to c = 0. 
This line connects values of Kc/R, measured at different values of 0 and extrapolated to c = 
0. Accordingly, it is described by Equation (67) with c = &that is, theory predicts the c = 0 
line to have an intercept of l / M  and a slope equal to (167r2R;/3;\2A4). It is expected, then, that 
the two lines will extrapZJate to a common intercept 1/M, and that the slope of the c = 0 line 
will be proportional to R:. Summarizing in formulas, we write for the c = 0 line 

- 
16 7r2 R: 
3 X2M 

(Slope),,, = 

and 

(Intercept),.,, = 1 / M  (71) 

It follows, therefore, that the square of the radius of gyration equals 

3 X‘ Slope 
16 7r Intercept ,,, 

- 
R i = y (  ) 

The Zimm plot shown in Figure 5.9 is analyzed according to these relationships in Example 
5.3. 

* * *  

EXAMPLE 5.3 The Use of Zimm Plots: Determination of Molecular Weight, Second Virial Coeffi- 
cient, and Radius of Gyration of Cellulose Nitrate in Acetone. The following are the values of 
the intercept and slope from Figure 5.9: 

Intercept = 7.87 - 1OP7 mole g -’ 
Slope of the 0 = 0 line = 5.70 - 10 -7 mole g -’ 
Slope of the c = 0 line = 6.78 . 10 - 6  mole g -’ 
Evaluate M, 8, and R, for cellulose nitrate in acetone at 25OC from these data. Use 1.359 

for the refractive index of acetone at this wavelength. 

Solution: The molecular weight is the reciprocal of the common intercept and equals 1.27 - 
106g mole-’. 

The slope of the 13 = 0 line includes the factor k ,  which must have the units concentration -‘ 
for dimensional consistency. Hence the slope given must be multiplied by 2000 cm3 g -’ to give 
the true slope to which the analysis applies. Since the true slope equals 28 according to 
Equation (68), we obtain 

B = (1/2)(2000 cm3 g-’)(5.70 + 10-7 mole g -’) = 5.70 - 10-4 cm3 mole g -2 

The slope to intercept ratio for the c = 0 line equals (6.78 . 1OP6)/(7.87 . 10-7) = 8.61; 
this must be multiplied by 3X2/16r2 to obtain I?;. Remember to convert Xo = 436 nm to the 
wavekngth in acetone, which is the value used in this calculation: 436/1.359 = 321 nm. There- 
fore Rz = 3(321)2(8.61)/16~ = 1.69 - 104 nm2 and the root-mean-square value is R, = 130 
nm. 

* * *  

It is important to remember that the radius of gyration provides an unambiguous measure of 
a particle’s extension in space. This quantity is evaluated from experimental data- as illus- 
trated in Example 5.3-with no  assumptions as to particle geometry. If we happen to know 
the shape of a particle as well, R, can be translated into a geometrical dimension of the 
particle. We examine this further in the next section. 
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5 . 5 ~  The Dissymmetry Ratio 

If the intensity of light scattered by a colloidal dispersion is measured as a function of c and 8, 
the Zimm method enables us to convert this information into several parameters that charac- 
terize the colloid: M ,  B,  and R,. In some situations this is more information than is actually 
needed. If spatial extension is the only information sought, a simpler method for evaluating it 
employs the so-called dissymmetry ratio. 

In this technique, one measures i/Z, at 8 = 45O and 8 = 135O for dispersions at several 
different concentrations. It should be noted that the factor (1 + cos2 8) in Equation (24) has 
the same value for these two angles of observation. Therefore any deviation of the ratio of the 
intensities z from unity must measure the ratio of the P(f3) values at these two angles [See 
Equation (47)]: 

i450 P ( 4 5 O )  
i135a P(  135O) 

z = - -  - (73) 

For example, we may examine the approximate form for P(8) provided by Equation (66) to 
obtain 

1 + (16 7r2/3) (R , /h )2  sin 67.5' 
1 + (16 7r2/3) (R,/X)2 sin 22.5O 

z =  (74) 

With this result - or its equivalent made with less restrictive approximations - values of z can 
be evaluated as a function of RJX. From tables or plots of such calculated results, experimen- 
tal dissymmetry ratios-extrapolated to c = 0 to eliminate the effects of solution nonideal- 
ity-can be directly interpreted in terms of R,. 

We have noted previously that R, is related to the geometrical dimensions of a body 
through expressions that are specific for the particle shape. Table 5.4 lists some of these 
relationships for shapes pertinent to colloidal systems. For a selected shape, one of the tabu- 
lated relationships can be used to replace R, in Equation (74). What results is an expression 
that interprets z in terms of actual particle dimensions for the geometry chosen. 

Figure 5.10 shows a plot of curves such as this drawn for spheres, coils, and rods. The 
characteristic dimension L,, used in the abscissa of the figure is R, for a sphere, r,,, for a coil, 
and L for a rod; the pertinent wavelength is & / n .  It will be noted from the ordinate values in 
Figure 5.10 that the scattering is always larger in the forward direction for particles showing 
interference effects. This is one reason why the presence of dust particles raises such havoc in 
a scattering experiment on particles that lie in the Rayleigh region. 

TABLE 5.4 Relationships Between the Radius of Gyration and the Geometrical Dimensions 
of Some Bodies Having Shapes Pertinent to Colloid Chemistry 

Geometry 

Radius of gyration 
through the center 

of gravity Definition of parameters used as L,, 
- 

Random coil 

Sphere R,: radius of sphere 

r 2 :  mean square end-to-end distance (a n) 

Thin rod 

r2  
, 6  

- 
R2 = - 

L2 
12 

- 
R2 = - L :  length of rod (approximation for prolate ellip- 

soids for which a / b  $- 1) 

R,: radius of disk (approximation for oblate ellip- - Ri R2 = - Cylindrical disk 
soids for which a / b  4 1 )  , 2  

Source: P. C. Hiemenz, Polymer Chemistry: The Basic Concepts, Marcel Dekker, New York, 1984. 
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FIG. 5.10 Values of the dissymmetry ratio z versus the size parameter Lch/X for spheres, random 
coils, and rods. (Data from Stacey 1956.) 

The development leading to  Equation (66) in this section related the form factor P(0) to 
the radius of gyration R,, which is one measure of the “structure” of a particle. We can 
actually get much more information from the form factor. In the following section, we discuss 
this and illustrate the use of P(0) for measuring the fractal dimension (defined in Chapter 1,  
Section 1.5b. 1) of an aggregate. 

5.6 INTERFERENCE EFFECTS AND STRUCTURE OF PARTICLES 

The facts that we have explicitly included the intraparticle interference function P(0) in the 
analysis of scattering intensities and that it is accessible experimentally allow us to characterize 
colloidal dispersions structurally in more detail than we have been able to so far. In order to 
understand this, we need to understand clearly what we mean by “small” or “large” values of 0 
or s and how they affect the behavior of P(0) .  This will also help us to understand how (and 
why) it is possible to combine light scattering with x-ray or neutron scattering to study struc- 
tures of particles and their aggregates. 

5.6a The Form Factor and Particle Structure 

The function P(0) contains information on  the internal structural details of the scatterers; this 
is the reason for its name “form factor” or “intraparticle” structure factor, as defined in 
Section 5.5a.l. The length scales of the structural details contained in P(0) depends roughly 
on the range of s - ’  over which P(6) is measured since, as we emphasized above, s - ’  is the 
“yardstick” we use in the measurements. Notice that s - ’  has units of length. We have so far 
alluded to the range of experimental measurements in terms of the magnitude of 0 or s (i.e., as 
0 is “small” or “large” or as s is “small” or “large”). Before we discuss how P(0) is used to 
obtain information about the geometrical structure of particles and in order to appreciate the 
physical significance of what is meant by “small” or “large,” we need to make these notions 
more quantitative. For this, it is convenient to work with s rather than 0. The use of s is more 
general, as we see at the end of Section 5.6a. 1. 

5.6a.I 
Since s - ’  is a dimensional quantity, when we characterize it as “small” or “large” we implicitly 
d o  so relative to a suitable reference dimension L c h  (which is the characteristic dimension that 
represents the size of the scatterers). Otherwise, we can choose the units of s - I  to be angstrom 
or kilometer (or something even larger) and change the nurnerical value of s to something 
arbitrarily large or small! Let us define a new, dimensionless quantity Q by 

(75) 

Physical Significance of the Magnitude of the Scattering Vectors 

Q = L c h / S - ‘  = sLch 
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where Le, is a characteristic length suitable for the particles in the dispersion. For example, we 
may choose L c h  to be equal to the radius R,$ in the case of spherical particles or equal to the 
radius of gyration R, or the root mean square radius of gyration (Ri)”2 in the case of polymer 
coils. With this definition, “small” or “large” s implies, respectively, that the yardstick s is 
“large” or “small” compared to the characteristic dimension Le,,, i.e., SL,h 4 1 or SLch %- 1. 
(Equivalently, we can say that the characteristic dimension of the particles - or, the length 
scale of the structural details of the particles - is “small” or “large” compared to the yardstick 
s - I . )  In addition to “small” or “large” values of s, we can also consider “intermediate” values 
of s, which are represented by Q = sL,, - 1. 

Let us now examine the physical significance of these limits or restrictions. First, the 
magnitude of s - ’  is a measure of the distance of separation between the scattering centers that 
contribute to the intensity observed at that value of s. 

When s - I  is large compared to L C h ,  i.e., s - I  P L c h  or sL,.h = Q e 1, it implies that 
the scattering centers are separated by a distance larger than Lch and therefore lie on different 
particles. As a result, there is no intraparticle interference in the intensity at that value of s, 
i.e., P(O), or more accurately, P(Q),  tends to unity for Q 4 1. We already noted this in 
Section 5.5a. 1, in which we compared the wavelength of light h (which is proportional to s - I ;  

see Equation (57)  ) directly to particle dimension (“Lch”) and noted that P(0) -+ 1 for h % Lch. 

is “small” or, equivalently, Q is large (typically, Q - 
1 or larger), the measured P(Q) consists of interference between closely lying scattering centers 
within the same particle (since the “yardstick” is small) and, therefore, contains information 
on the shape and intraparticle structure. We have more to say about this in Section 5.6b. 

In general, the information contained in P(Q) reflects the existence (or the lack) of 
interference effects in the range of Q considered. When the intensity measurements are ob- 
tained over a range of s - l ,  we are, in effect, using a range of yardsticks to obtain the structural 
details of the particles over a number of length scales. However, comments (1)  and (2) above 
highlight the fact that it is Q, the ratio of the reference dimension to the yardstick s -’, that 
determines how we should interpret the information contained in P(Q) (or, equivalently, in 
the intensity measured). This is, in fact, the rationale for defining the ratio Leh/s -’ in Equation 
( 7 5 ) ,  which combines the two independent linear dimensions Lc+t and s - I  into one variable. 

The above discussion also draws our attention to another important way of looking at the 
measurements. Sometimes, we have more than one option for the characteristic dimension 
& , .  One such example is a dispersion of colloidal aggregates (of diameter, say, dog) of smaller, 
primary particles (of diameter dp). We can pick either dogg or dp as the characteristic dimension 
L c h .  Then, whether we call the P(Q) measurements interparticle structure or intraparticle 
structure depends on the choice of L c h ,  i.e., our definition of “particle.” For example, if we 
choose L,h to be the diameter of the aggregate dogg, then, for Q ( = dagg/s -’) of the order of 1 
or larger, P(Q) describes the structure of the aggregates; i.e., the intraparticle structure. We 
illustrate this in Example 5.4. If, on the other hand, we choose the diameter of the primary 
particle dp as L c h ,  the same range of s - I  corresponds to Q 6 1, and P(Q)  is more appropriately 
referred to as interparticle structure (since our definition of “particle” now is the primary 
particle). In both cases, the information we have is the same, but our reference or perspective 
has changed. We return to this point in Section 5.6b. 

As mentioned above, s (or s-I  or its dimensionless analog Q) is a more appropriate 
variable than 8 to use in discussing the intraparticle (and interparticle) interference effects 
since 8 is not the only variable that determines the range over which P(Q) is measured. One 
can change the range by varying h also (in fact, over a much larger range than possible by 
changing 8 alone). This is the reason why sometimes other forms of radiation such as x-ray or 
neutron are used. We come back to this point in Section 5 . 6 ~ .  

5.6a.2 Different Regions of Interference Effects 
Analytical expressions for P(Q) can be derived for simple geometries of interest in colloid 
science (see, for example, Schmitz 1990), but it is sufficient for us to consider only the 
qualitative behavior of P(Q) here. Such a picture of variation of P(Q) with Q for aggregates 
of (primary) spherical particles of radius R, is illustrated in Figure 5.1 1. One can identify four 

1. 

2 .  In the opposite limit, when s 
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FIG. 5.1 1 Schematic representation of P(Q)  versus Q for fractal objects. The different parts of 
the curve corresponding to (a) the center-of-mass region, (b) the Guinier region, (c )  the fractal 
region, and (d) the Porod region are indicated. The “probe length” is the “yardstick” corresponding 
to the measurement. (Adapted from Schmitz 1990.) 

regions in this figure depending on the magnitude of Q, i.e., depending on the relative magni- 
tudes of s - I  (suggested by the lengths of the arrows in the figure) and Lch, which is taken to be 
the dimension of the aggregate (sketched in the figure): 

As discussed above, in the limit of very small Q (Q -e l ) ,  P(Q) approaches unity (see 
also Equation (63) ), and there is no intraparticle interference since the “probe length” s is 
much larger than R ,  and the dimensions of the aggregate. This region is often called the 
“center-of-mass” region since the scattering centers act roughly as “centers of masses” that are 
uncorrelated with each other (i.e., P(Q) + 1). 

The next region, for Q’s larger than the above limit but still small, signifies the onset 
of intraparticle interference. As we have already seen from Equations (63) and (65), the 
function P(Q) here is of the form 

1. 

2. 

1 

3 P ( Q )  1 - -Q’ (76) 

This region is known as the Guinier region. 
Let us skip the next region temporarily and consider the range Q % 1.  As mentioned 

above, intraparticle interference within the primary particles determines the function P(Q) in 
this case, and the functional form of P(Q) is determined by the shape of the primary particle 
(assumed here to be spherical). For spheres, one can show that 

3. 

in this last region, which is known as the Porod region. 
The third region is particularly important for dispersions of aggregates. As illustrated 

in the figure, Q in this case corresponds to the probe length s - ’  larger than R,, the radius of 
the primary particle, but comparable to the dimensions of the aggregates. The functional form 
of P(Q) in this range depends on the detailed structure of the aggregates (i.e., distribution of 
the primary particles within the aggregates). If we think of the aggregate as the basic unit, 
P(Q) describes the intraaggregate structure. For fractal aggregates (see Chapter 1,  Section 
1.5b), P(Q)  varies as 

4. 
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p(Q) - Q-"J 
where df is known as the fractal dimension of the aggregate and is a measure of how compact 
the aggregate is, as discussed in Section 1.5b. 

The above regions of P(Q) stand out more clearly when P(Q) versus Q is plotted on a 
log-log scale instead of on a linear scale as shown in Figure 5.11. We illustrate this and the 
above concepts in Example 5.4 using an experimental study of silica aggregates. 

* * *  

EXAMPLE 5.4 Structure of Silica Aggregates Probed by Small-Angle Scattering. The form 
factor P(s) for a silica sol consisting of spherical primary particles of radius R, = 2.7 nm, 
obtained from light and x-ray scattering, is plotted in Figure 5.12 as a function of s (Schaefer et 
al. 1984). What can you infer from the data about the structure of the aggregates? 

Solution: Instead of choosing a characteristic dimension Lch to define Q, let us look at the data 
in terms of s directly. An examination of the data in light of the discussion above leads to the 
following conclusions: 

In the range of roughly 1 - 10-3 nm -' I s I 2 - 10-' nm-' ,  one observes from the 
figure that P(s) is of the form 

1. 

P(s) - s-2.' 

(remember the slope of a straight line in a log-log plot gives the exponent). This indicates that 
the dispersion consists of aggregates with a fractal dimension equal to 2.1 (a fairly loose 
aggregate). The lower limit of s in the fractal region is of the order of d;ig (where, again, dayg is 
the diameter of the aggregates), and the upper limit is related to the size of the primary particle, 
as we discuss below using the schematic representation of i (s) versus s presented in Figure 
5.13. 

2. For s - '  smaller than the radius of the silica particles (i.e., for sR, of the order of unity 
or larger), P(s) appears to decrease as s - ~  with increasing s, thereby confirming that the 
primary particles are spherical as given. 

3. The data shown provide an example of how two different forms of radiation can be 
used effectively to cover a broad range of s -'. 

Note that the term particle in the intraparticle structure discussed here really refers to the 
aggregates. It is the internal structure of the aggregates that we have examined through the 

n 
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FIG. 5.12 Light scattering and small-angle x-ray scattering (SAXS) data for a dispersion of 
aggregates. The primary particles in the aggregates are monosize, spherical silica particles. The 
upper limit of s in the fractal region is roughly 0.2 nm -'. Note log-log axes. (Data from Schaefer 
et al., 1984.) 
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FIG. 5.13 A schematic illustration of the physical significance of the end points of the fractal 
region (see the text for the details). (Adapted from J .  D. F. Ramsay and M. Scanlon, Colloids and 
Surfaces, 18, 207 (1986).) 

fractal region in the scattering curve. The “particles” with structures described by the Porod 
region are the primary particles, which are spherical silica particles in this case. 

* * *  

Comment (2) in the solution to Example 5.4 may appear to be superfluous since the example 
already states that the primary particles are spherical. However, that point is emphasized here 
in order to illustrate that scattering data can be used to follow the changes in the shapes of the 
primary particles if the physical situation may cause such changes. For example, if the primary 
particles are such that they coalesce and change their sizes or shapes, such changes may be 
followed using scattering experiments. 

Moreover, as already pointed out in item (1) of the solution to Example 5.4, additional 
information about the aggregates and the primary particles may be obtained from plots such 
as Figure 5.12. This is illustrated schematically in Figure 5.13. This figure notes that the lower 
limit of the range of s in the fractal region is related to size of the aggregate; i.e., this limit is 
roughly dui:. The upper limit, on the other hand, is of the order of d p - ’ ,  where d,, is the 
diameter of the primary particle. As we noted in Chapter 1 (see Section 1.5b. l ) ,  fractal objects 
are self-similar objects consisting of similar structural features over a range of length scales. 
In the sketch shown in Figure 5.13, the aggregates look “similar” when we view them on  length 
scales anywhere from roughly dp to dugg. 

The above observations lead to the conclusion that the size of the aggregates in the 
dispersion represented by the data in Figure 5.12 is about 1000 nm, as already pointed out in 
item ( 1 )  in the solution to Example 5.4. The upper limit of s in the fractal region in Figure 
5.12, i.e., s = dPp1  = 0.2 nm-’ ,  is consistent with the fact that the primary particles in the 
example are spheres of diameter 5.5  nm. 
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5.6b Interparticle Structure 

We have so far focused our attention on dilute systems so that we could avoid dealing with 
interference of scattering from different particles. The interference effects considered until 
now are restricted to interference due to scattering centers from within the same particle. 
When we have a fairly concentrated dispersion or even a dilute dispersion of charged particles 
that influence the position of each other through their interactions, the scattering data may 
have to be corrected for interparticle interference effects. Extending the previous discussion to 
interparticle interference is not difficult, but the subsequent analysis of the information ob- 
tained is not trivial. We shall not go into the details of these here, but just make some brief 
remarks to establish the connection between interparticle effects and what we have described 
so far for dilute systems. 

Following the line of arguments we used in arriving at Equation (20) and at its modifica- 
tion, Equation (60), to account for interference effects, we can in general write the total 
intensity i (Q) of the scattered light as 

The function S ( Q )  in the above equation is known as the (interparticle) structure factor or 
static structure factor (the label static is used to differentiate S ( Q )  from its time-dependent 
version, known as the dynamic structure factor) and contains information on how the particles 
are spatially distributed in the dispersion. When there are no interparticle effects, S ( Q )  be- 
comes unity and we recover Equation (60) from Equation (79). 

A detailed discussion of S ( Q )  requires statistical thermodynamics, which is beyond our 
scope here. We conclude this discussion by just noting three reasons for the importance of 
interparticle structure in colloid science: 

In cases such as micellar solutions (discussed in Chapter 8) and in certain types of 
biological dispersions, interparticle interactions cannot be avoided. Surfactants in solutions 
form self-assembled structures (see Vignette 1.3 on liposomes in Chapter 1 )  such as micelles, 
vesicles, and others at quite low surfactant concentrations. Vignette 1.6 on polymer composites 
discusses another example of self-assembled colloidal structures. One can use scattering meth- 
ods (particularly x-ray or neutron) to study the shape, size, and structure of such colloidal 
systems. In the case of micelles (especially those formed with ionic surfactants), the “particles” 
show significant interparticle interactions even at low concentrations. One cannot circumvent 
(as in the Zimm method) the interparticle interactions by diluting these dispersions for scatter- 
ing experiments since these particles are thermodynamic entities and will dissociate (i.e., 
disintegrate) when diluted. Therefore, one is forced to account for the contribution of the 
interparticle interference to the measured intensities. If S(Q)’s can be established indepen- 
dently using suitable statistical mechanical models, then the form factor can be extracted for 
further analysis of shape and structure of the individual units. More commonly, one assumes 
models for both P(Q) and S(Q)  and fits the observed intensities with the models in order to 
obtain structural information on the dispersion. 

Measurement of the static structure factor using scattering techniques also provides 
us with a nonintrusive method to probe the structure of dispersions and the nature of interac- 
tion forces in colloids. Structural changes in colloids are particularly of interest in colloid- 
based techniques for fabrication of structural and special-purpose ceramics. 

We have focused on only the static (i.e., the time-averaged) measurements of intensi- 
ties so far. However, one can also obtain the dynamic structure factor (i.e., as a function of 
time) from scattering experiments. The dynamic structure factor can then be used as a probe 
of the rheological behavior of the dispersions discussed in Chapter 4. 

In discussing the measurement and uses of form factors and static structure factors, we 
have, without stating explicitly, combined a discussion of light scattering with the use of other 
forms of radiation. In the following section we comment briefly on some of the similarities 
and differences between light scattering and x-ray and neutron scattering. 

1. 

2. 

3.  
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TABLE 5.5 Comparison of the Range Covered by Various Radiation Scattering Methods 
~ 

Method Typical wavelength (nm) Range of s (nm-') 

Laser light scattering 
Small-angle x-ray scattering 
Small-angle neutron scattering 
Wide-angle neutron scattering 

500 
0.15 
0.4 
0.4 

1 * 10-'-4. 10-2 
2 .  10-2-4. 10-' 
7 .  10-3-9* 10-' 

1 * 10'-5 * 10' 

5 . 6 ~  X-Ray and Neutron Scattering as Complements to Light Scattering 

This is a good place to draw attention to x-ray and neutron scattering since we have already 
introduced a combination of x-ray and light scattering to examine the fractal structure of silica 
aggregates in Example 5.4. 

Much of the general formalism treated above remains valid for scattering of x-rays and 
neutrons by particles, although the mechanisms by which x-rays, neutrons, and light are 
scattered differ from each other. We have already seen that light scattering is a consequence 
of the interaction of photons with the electronic structure of atoms. X-rays are scattered by 
electron clouds, whereas neutrons are scattered by the nuclei of the atoms and by the magnetic 
moments of the atoms. A comparison of the wavelengths and the magnitudes of Q's accessible 
through x-ray, neutron, and light scattering is given in Table .5.5.  From the point of view of 
colloid science, x-ray and neutron scattering techniques have two major advantages: 

The particles and the fluid are effectively transparent to x-rays and neutrons; i.e., 
their effective refractive indices are nearly the same. Therefore, the criterion we 
specified in Equation (61) is easily satisfied, and we can avoid the need for the more 
complicated Mie theory (see Section 5.7b) and use the Rayleigh-Debye theories. 
The very small values of the wavelengths of x-rays and neutrons allow one to reach 
large values of the parameter s. Since s is the yardstick for the range of details 
accessible through scattering techniques, x-rays and neutrons allow us to probe struc- 
ture at much shorter length scales than possible with light. Thus, x-ray scattering 
and neutron scattering complement light scattering measurements. Light scattering is 
indispensable for studying structure of particles and clusters in the micrometer size 
range. X-rays and neutrons help us to probe smaller particles. 

1. 

2. 

Finally, it is also important to note that the term small-angle scattering does not necessar- 
ily specify the same range of Q; small-angle light scattering probes a region of Q different 
from the one probed by, for example, small-angle x-ray scattering because of the differences 
in the wavelengths of light and x-rays (see Example 5.4 and Table 5.5) .  

5.7 SCATTERING BY LARGE, ABSORBING PARTICLES 

All the applications of light scattering that have been discussed so far have been restricted to 
very small particles and fairly small indices of refraction or to fairly small particles and very 
small indices o f  refraction. We have finally reached the point at which it seems appropriate to 
relax all these restrictions and consider the scattering by a particle of arbitrary size and index 
of refraction. 

5.7a Scattering and Absorption 

The general problem here is to solve Maxwell's electromagnetic equations both inside and 
outside a particle, for which the indices of refraction are different in the two regions. The 
problem has been solved for both spherical and cylindrical particles; we limit our considera- 
tions to the former. 
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5.7a. I Accounting for  Absorption Through Complex Refractive Index 
In the most general case some provision must be made for the possibility that the particle 
absorbs as well as scatters light. This contingency is introduced by defining thesfractive index 
of an absorbing material as a complex number ( n  - ik) for which i = - 1. For nonab- 
sorbing materials, k = 0. Both n and k are wavelength-dependent characteristics of the mate- 
rial; k obviously increases as the wavelength of an absorption peak is approached. 

The idea of representing the refractive index of an absorbing material by a complex 
number may seem strange, so the following analysis will be helpful. Suppose we consider the 
passage of a beam of light through a layer (in the yz plane) of unspecified material of thickness 
Ax. If the layer contains a vacuum ( n  = I), then the electric field transmitted through the 
layer will be given by Equation (7): 

(80) 

On the other hand, suppose the layer consists of a material of refractive index n. The light will 
now take an increment of time At longer to pass through the layer owing to the delaying effect 
of the medium. In this case the emerging field would be given by 

E,=, = E0 COS [27r(~t - x/h)]  

E, = E, COS [ 2 ~ ( ~ ( t  + At) - x/X)] (81) 

The delay may be related to the thickness of the layer and the refractive index as follows: 

A X  
= ( n  - 1)- 

where c is the speed of light in vacuum. This means Equation (81) may be written as 

A X A X  
At = t, - tn=l = - - - 

c/n c C 

vt + ( n  - 1 )  - - - x x  (83) 

which shows that, compared to Equation (80), the field experiences a phase shift in the 
medium. 

A very important relationship involving complex numbers is 

ei' = cose + i s i n e  (84) 

Cosine trigonometric functions, in other words, are given by the real part of the function e". 
This means that Equations (80) and (83) may be written 

(85) E,=l = E,exp [27ri(vt - x/h)] 

and 

vt + ( n  - 1)- - - x x  
It is only the real part of the complex number that is of interest to us. Equation (86) may be 
written as 

E, = EOexp[27ri(vt - x/h)] exp (87) 

As we have seen repeatedly in this chapter, the intensity of light is proportional to the 
field amplitude squared; therefore, we write 

Now let us consider the case in which the refractive index of the layer is a complex 
number. In that case, Equation (88) becomes 
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The first factor of Equation (89) is exactly what the ratio ( In / In=l )  would be if the material 
were nonabsorbing. It is modified, however, by a second term, exp ( - 47rkAx/X), which is real 
but contains the imaginary part of the index of refraction. 

5.7a.2 The Beer-Lambert Formalism 
The Beer-Lambert equation is another formalism that might describe the arrangement we have 
been discussing. In the Beer-Lambert equation, the intensity of the transmitted light I, relative 
to the intensity of the incident light I, is given by Equation (301, which may be written 

where cabs is the absorbance of the material. Because of its usefulness in analytical chemistry, 
chemistry students are more likely to be familiar with this formalism than with the one that 
leads to Equation (89). Comparison of Equations (89) and (90) reveals that both describe the 
attenuation of light due to absorption in terms of a negative exponential that is proportional 
to the path length through the absorbing material. Since the two approaches describe the same 
situation in the same functional form, the two proportionality factors must also be equal. 
Therefore the imaginary part of the complex refractive index and the absorbance must be 
related as follows: 

cabs = 4 ~ k / h  (91) 
We observed in Section 5 . 4 ~  that, for nonabsorbing systems, the turbidity is a concept analo- 
gous to the absorbance; that is, 

( I /10 )5ca  I= ~ X P  ( -7”) (92) 

where the subscript sca stands for scattering. Examination of Equations (90) and (92) shows 
how the two complement each other: The first describes absorption without scattering; the 
second describes scattering without absorption. For a system that displays these two optical 
effects simultaneously, the following composite relationship applies: 

The experimental extinction in a system that displays these two effects equals the sum of &,b5 

plus 7. 

5.7a.3 Absorption Cross Section and Efficiency 
The literature on scattering with absorption often factors absorbance and turbidity into a 
product of several terms. Both the nomenclature and notation used in this area vary from 
author to author, but the principal breakdown of both cabs and r is as follows: 

and 

7 = C N T R h s c a  (95) 

where cN is concentration of the particles (in terms of the number of dispersed particles per 
unit volume), Rs is their radius, and the x terms are known as the efficiency factors for 
absorption and scattering. The quantity TR,’ in these equations gives the geometrical cross 
section of the dispersed spheres. This area times the efficiency factor defines a quantity known 
as the cross section Cubs and C,,, for absorption and scattering, respectively: 

Cabs = 7rRfXabs (96) 

c,,, = ~RSX,, (97) 

Dimensionally, cabs and 7 describe the attenuation of light per unit optical path and have the 
units length-’. The area T R ~  has units of length’ per particle, and cN has units of particles 
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length - 3 .  The efficiency factors are dimensionless. The cross sections have units of area per 
particle. These should not be taken literally as cross-sectional areas but, rather, as the “block- 
ing power” of a particle as far as the transmission of incident light is concerned. 

As stated above, Maxwell’s equations have been solved for spherical particles of arbitrary 
size and arbitrary refractive index. Furthermore, the refractive index may be complex, so the 
general theory applies to both nonabsorbing and absorbing particles. The solutions to Max- 
well’s equations are generally given in terms of the efficiency factors x, the magnitudes of 
which depend on the wavelength of light, the size of the particles, the real and imaginary parts 
of the refractive index, and the angle of observation: 

For nonscattering particles, xsca is zero, and for nonabsorbing particles Xabs is zero. The results 
of such an analysis are generally reported by giving values of xsco and Xabs as a function of a 
size parameter 0, where is defined as 

RS p = 2T- x (99) 

The calculations involved in computing these results are formidable, and the results available 
prior to the widespread utilization of computers were very limited. As noted in the introduc- 
tion to this chapter, the advent of the computer has broadened the applicability of light 
scattering enormously. 

It is difficult to make any generalizations about the variation of the efficiencies with p 
since the functions are so complicated and vary greatly with the refractive index. About the 
best that can be done along these lines are the following: 

At any given angle of observation, x tends to be an oscillating function of p. 
For nonabsorbing particles ( n  real), the amount of oscillation in the xsca versus ,O 
curve is more pronounced the larger n is-if the particles absorb, the amount of 
oscillation in the curves decreases with increasing k .  
For any given value of 6 ,  x varies with the angle of observation 8. The number of 
oscillations in this curve is greater for larger values of ,O and n. 

These generalizations are consistent with the approximations discussed above in the chapter: 
Small particles with low values of n are the simplest to describe. 

In the following two sections we consider two specific systems that have been studied 
extensively, aqueous dispersions of colloidal gold (Section 5.7b) and aqueous dispersions of 
colloidal sulfur (Section 5 . 7 ~ ) .  These illustrate some of the statements made above, as well as 
show the sort of information that may be obtained from light scattering experiments in this 
very general case. No attempt has been made to be comprehensive in this presentation. Much 
more has been done with the systems to be discussed, and cross sections for many other 
systems have been calculated. The book by Kerker (1969) contains a good bibliography of 
scattering functions published up to 1969. 

1. 
2 .  

3. 

5.7b The Mie Theory: Gold Sols 

The preceding section indicated some of the complications that arise when the optical proper- 
ties of dispersions are calculated without placing narrow limitations on the size and refractive 
index of the particles. The difficulties are still large but somewhat more manageable if only 
the refractive index is given full range, the particle dimensions being somewhat restricted. This 
is the situation that was treated by Mie in 1908. 

Mie wrote the scattering and absorption cross sections as power series in the size parame- 
ter 0, restricting the series to the first few terms. This truncation of the series restricts the Mie 
theory to particles with dimensions less than the wavelength of light but, unlike the Rayleigh 
and Debye approximations, applies to absorbing and nonabsorbing particles. 

The following equations give some indication of the nature of these expansions: 
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and 

xsca = A,P4 + . . . (101) 

where the values of the coefficients A , ,  A,, A, ,  and A, are listed in Table 5.6. In this presenta- 
tion, we have intentionally limited the series to include no terms higher than fourth order in 0. 
Thus only the leading term in xsca is represented, even though the first three terms in Xabs are 
included. The neglect of higher order terms permits us to apply this discussion rigorously only 
to particles that are sufficiently small that terms in 0’ or higher would make a negligible 
contribution. Even with only these terms retained, it is possible to draw several informative 
conclusions about Xabs and xsca. 

The absorption and scattering efficiencies do not show the same dependence on the 
particle size parameter 0. 
Both numerical coefficients of the complex refractive index, n and k ,  appear in both 
Xabs and xsca (Table 5.6). 
The coefficients A, ,  A2,  and A ,  equal zero, and A,, reduces to Rayleigh’s law if 
k = 0. 
The efficiencies are functions of the dimensionless variable alone. 
For dispersions of uniform spheres, the entire wavelength dependence of the extinc- 
tion is given by Equations (100) and (101). 
The “wavelength dependence of the extinction” is simply the spectrum of the disper- 
sion, which is therefore predicted theoretically by the general equations. 

In the remainder of this section we see how the theoretical calculations of Mie account for 
the observed spectrum of colloidal gold. In the next section we consider the inverse problem 
for a simpler system: how to interpret the experimental spectrum of sulfur sols in terms of the 
size and concentration of the particles. Both of these example systems consist of relatively 
monodisperse particles. Polydispersity complicates the spectrum of a colloid since the same x 
value will occur at different X values for spheres of different radii according to  Equations 

Colloidal gold is of considerable historic importance in colloid chemistry since many of 
the scientists who led the early development of the field conducted experiments on this system. 

1. 

2. 

3. 

4. 
5 .  

6. 

(99)-( 10 1 ). 

TABLE 5.6 Values for the Constants A ,  to A, in Equations (100) and (101) 

Coefficient General case 
Special case of 

k = O  

A ,  24nk 

A2 4nk + 20nk 
( n 2  + k212 + 4 ( n 2  - k2)  + 4 

15 
- 

3 [ 4 ( n 2  + k2)2  + 12(n2 - k 2 )  + 91 

0 

0 
4.8nk[7(n2 + k 2 ) 2  + 4 ( n 2  - k2  - 5 ) ] : ’  

[ ( n 2  + R ) 2  + 4 ( n 2 )  - k 2 )  + 412 
+ 

A3 - 192n2k2 

[ ( n 2  + k2)2  + 4 ( n 2  - k 2 )  + 412 

8 
- [ ( n 2  + R)2  + n2 - k2 - 212 + 36n2k2 
3 

[ ( n 2  + k2)2  + 4 ( n 2  - k 2 )  + 412 

A4 

0 

8 
- ( n 2  - 1 1 2  
3 
( n 2  + 2 ) 2  

Source: From P. B. Penndorf, J. Opt. Soc. Am.,  52 ,  896 (1962). 
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Mie set out specifically to account for the brilliant colors displayed by sols of gold and other 
metals. 

Chloroauric acid, HAuCl,, is easily reduced t o  metallic gold by a wide variety of reducing 
agents. However, characteristics of the resulting gold are widely different for different reduc- 
ing agents. Thus, if phosphorus is used, a polydisperse system containing very small particles 
forms rapidly. If the resulting colloid is used to seed a reaction in which hydrogen peroxide is 
the reducing agent, the following reduction takes place slowly without additional nucleation: 

2AuC1,- + 3H202 -, 2Au + 8 C1- + 6H +- + 30, (4 
The gold particles grow to a larger size by this process, with considerable sharpening of the 
particle size distribution. The particle size may be regulated to some extent by varying the 
amount of reagents used. Thus approximately monodisperse colloids of several different 
particle sizes may be prepared and compared. They are found to display different colors, 
depending on the particle size: The smaller particles produce a red dispersion; somewhat larger 
particles impart a blue color to the dispersion. 

In calculating efficiency factors for absorption and scattering, the wavelength dependence 
of both the real and imaginary parts of the refractive index must be considered. 

Figure 5.14 shows the real and imaginary parts of the complex refractive index of gold 
plotted against the wavelength of light in air and in water. These values of the refractive index 
were used to calculate the values of Cabs and C,,, for three different size spherical gold particles. 
The results are shown in Figure 5.15 as a function of the wavelength in air. The figure also 
includes the sum of the two cross sections Cex,, which describes the total extinction. 

The magnitude and location of the maximum for each of the cross section curves are 
informative. It will be observed that the height and the location of the absorption curve in 
Figure 5.15 change relatively little with particle size (note the different scales for the ordi- 
nates), as we might expect. The cross section for scattering, on the other hand, is practically 
negligible for the smallest of the particles and increases to be roughly 50 and 100% larger than 
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FIG. 5.14 The real and imaginary parts of the complex refractive index of gold versus wavelength 
in air and in water. (Data from Van de Hulst 1957.) 
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FIG. 5.1 5 Scattering coefficients versus wavelength for spheres of colloidal gold having three 
different radii. Note the different scales for the ordinates in each figure. (Data from Van de Hulst 
1957.) 

absorption for the larger particles. Also noteworthy is the fact that the wavelength location of 
the scattering maximum shifts to longer wavelengths as the particle size increases. This is a 
consequence of the fact that the efficiency depends on p rather than the separate values of R, 
and A. The wavelengths at which maximum total extinction occurs lie in the green, yellow, and 
red portions of the spectrum, respectively, for the particles with R, = 0.02, 0.05, and 0.07 
pm. On the basis of color complementarity, these would appear red, violet, and blue, respec- 
tively. These are the hues displayed by actual dispersions. Thus the Mie theory not only 
accounts for the color of the dispersions but also shows how the color displayed may be used 
to characterize the particle size of the dispersed phase. 

Note that the index of refraction of the continuous phase and that of the dispersed 
particles enter the evaluation of the various efficiencies. The light that actually strikes the 
particles is used in the determination of x. This light differs from that under vacuum by the 
refractive index of the medium. This effect enters the calculation of the x values in that it is 
the ratio of the refractive index of the particle relative to that of the medium that determines 
the extinction. 

5 . 7 ~  Higher Order Tyndall Spectra: Monodisperse Sulfur Sols 

Another colloidal system with light scattering characteristics that have been widely studied is 
the so-called monodisperse sulfur sol. Although not actually monodisperse, the particle size 
distribution in this preparation is narrow enough to make it an ideal system for the study of 
optical phenomena. 

The colloid is prepared by rapidly mixing dilute solutions of sodium thiosulfate and 
hydrochloric acid so that the final concentration of each is about 0.002 M. The following 
reaction then occurs so slowly that the sulfur precipitates only on those particles that nucleate 
first: 
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H +  + S20,2-  -+ HS03-  + S (6) 

Slow growth on the original nuclei is how the narrow distribution of particle sizes is obtained, 
just as with the colloidal gold described in the preceding section. The formation of sulfur may 
be terminated at any time by adding I2 to react with the remaining thiosulfate. These monodis- 
perse sulfur sols have been studied extensively, notably by V. K. LaMer and coworkers. Since 
these particles are nonabsorbing in the visible spectrum, the range of particle sizes that may be 
conveniently dealt with is broader than for absorbing particles such as gold. Using the Mie 
theory, one can evaluate the scattering efficiency as a function of R, for particles having a 
refractive index relative to the medium of 1.50, which describes the sulfur-water system. 

These “monodisperse” sulfur sols are good examples of another light scattering phenome- 
non: the higher order Tyndall spectrum. We observed in Section 5.7a that the scattering cross 
section is an irregularly oscillating function of 8, at least above a certain threshold value of 0. 
Here it should be recalled that the complete theory reduces to the Rayleigh approximation for 
very small particles and to the Debye approximation for somewhat larger particles, provided 
the refractive index values are in the proper range. 

The full solution of the Mie theory provides quantitative information about the depen- 
dence of the efficiency factors on 8 and h. For uniform spheres over some range of refractive 
index and size, different colors of light will be scattered in different directions. The sulfur sols 
described here have the required properties t o  display this effect. Therefore, if a beam of white 
light is shown through a sample of the dispersion, various colors will be seen at different 8 
values. The resulting array of colors is known as the higher order Tyndall spectrum (HOTS). 
Red and green bands are most evident in the sulfur SOIS,  and the number of times these bands 
repeat increases with the size of the sulfur particles. Therefore the number and angular posi- 
tions of the colored bands provide a unique characterization of the particle size. In the 
monodisperse sulfur sols, for example, partides having a radius of 0.30 pm are expected to 
show red bands at about 60, 100, and 140O. Particles with a radius of 0.40 pm, on the other 
hand, show red bands at about 42, 66, 105, 132, and 160O. Particle size determinations based 
on observations of this sort agree well with those determined from electron microscopy. These 
sulfur sols are quite easy to prepare, and it is interesting to observe the development of higher 
orders in the Tyndall spectrum as the thiosulfate decomposition reaction progresses. 

It was once thought that the appearance of HOTS was evidence in itself for the presence 
of a monodisperse system. The argument was that one particle size would scatter, say, red 
light, at a particular angle, whereas another particle size would have the same R, value and 
therefore the same scattering behavior for light of a complementary color. The resultant would 
be the obliteration of any distinct color: The scattered light would appear white. Although 
there may indeed be fortuitous cancellations of this sort at certain angles, it is also possible for 
certain bands to reinforce each other. In general, then, it is best to say that polydisperse 
systems may show HOTS, but in this case the angular distribution of bands is a characteristic 
of the particle size distribution. The angular location and number of bands as determined 
theoretically for uniform particles may not be used to interpret the HOTS of a polydisperse 
system correctly. 

5.8 DYNAMIC LIGHT SCATTERING 

As mentioned in Section 5.1, so far we have focused on what are known as static scattering 
experiments; that is, the intensities used in the methods discussed until now are time-averaged 
intensities at any given angle 8. In general, however, the intensity accessible in a scattering 
experiment depends on time t as well, since the scattering centers are in constant random 
motion due to their kinetic energy. The variation of the intensity with time, therefore, contains 
information on the random motion of the particles and can be used to measure the diffusion 
coefficient of the particles. The measured diffusion coefficient can then be used to determine 
the size of the particle. The class of light scattering methods based on the time dependence of 
the scattered light intensity is known as dynamic light scattering (DLS), and a large body of 
work on various aspects of this technique has appeared in the literature in recent years (Brown 
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1993; Chu 1991; Schmitz 1990). For example, the dynamic version of the diffusing wave 
spectroscopy described in Vignette V is a form of DLS, although in diffusing wave spectros- 
copy the method of analysis is different in view of multiple scattering. Most of the advanced 
developments are beyond the scope of this book. However, DLS is currently a routine labora- 
tory technique for measuring diffusion coefficients, particle size, and particle size distributions 
in colloidal dispersions, and our objective in this section is to present the most essential 
ideas behind the method and show how they are used for particle size and size distribution 
measurements. 

5.8a Intensity Fluctuations and the Siegert Relation 

In a typical scattering experiment, a detector measures the intensity of the scattered radiation 
over a period of time, say, t,, in discrete steps of At (see Figure 5.16a). As shown in the figure, 
the intensity i(s,t) fluctuates around an average value because of the random motions of the 
scatterers. Until now, we have denoted the average by simply i(s) for convenience. To be 
precise, however, the average should be denoted by, say, i'(s), and this is an  average over time, 
t ,  defined as 

1 

n - m  n J = I  

i(s, t )  dt = lim - i ( s j A t )  

where the limit t, -+ 03 reminds us that the measurement should be made over a sufficiently 
large time for the average to be accurate. 

FIG. 5.1 6 Schematic illustration of intensity measurement and the corresponding autocorrelation 
function in dynamic light scattering: (a) variation of the intensity of the scattered light with time; 
(b)  the variation of the autocorrelation function C(s,t,) with the delay time td. 
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Equation (102) also shows how the above time average is measured experimentally. Typi- 
cally, the intensity is measured in a set of discrete time intervals, t = At, 2At, 3At, . . . , etc., 
as illustrated in Figure 5.16a, and the arithmetic average shown in Equation (102) is an 
approximation of the average intensity over time tn = nAt. 

In order to be able to use the fluctuation of the intensity around the average value, we 
need to find a way to represent the fluctuations in a convenient manner. In Section 5.3b in our 
discussion of Rayleigh scattering applied to solutions, we came across the concept of fluctua- 
tions of polarizabilities and concentration of scatterers and the role they play in light scattering 
experiments. In the present section, what we are interested in is the time dependence of such 
fluctuations. In general, it is not convenient to deal with detailed records of the fluctuations 
of a measured quantity as a function of time. Instead, one reduces the details of the fluctua- 
tions to what is known as the autocorrelation function C(s,t,), as defined below: 

1 ”  
= lim - i ( s ,kAt ) i ( s , (k  + j ) A t )  

n+Oo n k=O 

where td = jAt. The last part of the equation shows how the autocorrelation function is 
calculated experimentally when the intensity is measured in discrete time steps as illustrated in 
Figure 5.16a. The time td is known as the delay time since it represents the delay in time 
between the two signals i(s,kAt) and i(s,(k + j ) A t )  and is equal tojAt  (see Figure 5.16a). The 
function C(s,t,) is obtained for a series of values of td by takingj = 0, 1, 2, 3, . . . , etc. The 
autocorrelation function, as the name implies, is a measure of the correlation between the 
intensity i(s,tl) at any time t ,  and the intensity i(s,t, + td)  after a time delay of t,. The 
correlation function obtained from Equation (103) is shown schematically in Figure 5.16b. 
Modern dynamic light scattering instruments consist of hardware “correlators” that have a 
number of channels or registers that keep track of i(s,kAt) for a large number of k’s and 
automatically compute the products and the average in the summation term in Equation (103); 
see, for example, the schematic representation of a light scattering instrument shown in Fig- 
ure 5 . 5 .  

The autocorrelation function has its highest value [i(s,O)]’ at td = 0. For td --+ 0 0 ,  i(s,t) 
and i(s,t + td) become uncorrelated, and it can be shown that C(s,td) is again independent of 
td and that it is given by [;(s)12, where i(s) is the average value defined in Equation (102). For 
nonperiodic i(s,t), C(s,t,) decreases monotonically from [i(s,O)] ’ to [ [(s)] ’. Therefore, the 
ratio of the autocorrelation function to its asymptotic value [{(s)]’ can be written as 

an equation known as the Siegert relation, in which is an instrumental constant approxi- 
mately equal t o  unity. 

The Siegert relation is valid except in the case of scattering volumes with a very small 
number of scatterers or when the motion of the scatterers is limited. We ignore the exceptions, 
which are rare in common uses of DLS, and consider only autocorrelations of the type shown 
in Equation ( 104). As mentioned above, modern DLS instruments use computer-controlled 
correlators to calculate the intensity autocorrelation function automatically and to obtain the 
results in terms of the function g,(s,t,); therefore we only need to concern ourselves here with 
the interpretation of g,(s,t,). 

5.8b Dilute (Noninteracting) Dispersions 

5.86. I Monosize Spherical Particles: Measuring Diffusion Coefficient 
and Particle Size 

For dilute dispersions, i.e., those in which the interparticle spacing is so large that there are no 
particle-particle interactions, DLS simply measures the intensity fluctuations due to single- 
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particle motion. For monosize, spherical particles, one can show rigorously that gl(s , td)  decays 
exponentially as follows: 

Here, D, which is the quantity we seek from g,(s,td), is the diffusion coefficient of the particle 
(and s is the magnitude of the “scattering vector” defined in Equation ( 5 7 )  ). We can now use 
the Stokes-Einstein equation (see Equation (2.32) and the accompanying comment) to obtain 
the particle radius R H  from D: 

where 17 is the viscosity of the fluid, k ,  is the Boltzmann constant, and T is the absolute 
temperature of the dispersion. The radius RH measured in this manner is usually known as the 
hydrodynamic radius (hence the subscript H) since it relies on the Stokes coefficient, 674?,- 
a result from fluid (or, hydro) dynamics. 

The measurement of the diffusion coefficient (and the hydrodynamic radius from D) is 
one of the most common uses of DLS, but the method can also be used as a nonintrusive 
technique for measuring the viscosity of a fluid. In this case, one uses “probe” particles with a 
known radius so that the unknown quantity in the Stokes-Einstein equation is 7. More sophis- 
ticated uses of the DLS technique using essentially the above concept are discussed in special- 
ized monographs (Brown 1993; Pecora 1985; Schmitz 1990). The diffusing wave spectroscopy 
mentioned in Vignette V also measures g,(td), but g l ( t d )  in DWS is no longer a function of the 
angle 8 since multiple scattering smears out the angle dependence of the intensity. As a result, 
the theoretical formalism needed for the analysis of the correlation function differs from what 
we have presented above and in Section 5.8b.2. 

Example 5 . 5  illustrates one use of the DLS data. 
* * *  

EXAMPLE 5.5 Determination of the Effective Diameter of an Enzyme Using Dynamic Light 
Scattering. DLS analysis of a dilute solution of the enzyme phosphofructokinase in water at T 
= 293K leads to the following data for the correlation function g2(s,td): 

s2td x 10-lo (m- ‘s) 0.4 0.8 1.2 1.6 2.0 2.4 
g p d )  1.75 1.6 1.47 1.375 1.298 1.236 

g2(s I td) 1.188 1.148 1.119 1.093 1.052 1.003 

Assume that the enzyme is roughly spherical and that the instrument constant ( in the 
Siegert relation is unity aEd determine the hydrodynamic radius R, of the enzyme. Given that 
the partial molar volume V of the enzyme is 0.74 - 10-3 m3/kg and the molecular weight M is 
4.78 . 10’ kglmol, determine the “dry radius” R, for the enzyme and obtain the ratio (R,/R,). 
Can the difference between R, and R, be attributed to the bound water on the enzyme? The 
viscosity 7 of water at 293K may be taken as 0.001 kglm s. 

Solution: The given DLS data can be used to obtain the intensity autocorrelation function 
gl(s,fd) by rewriting the Siegert relation as follows: 

s td x 10- ’o(m-2s) 2.8 3.2 3.6 4.0 5.0 10.0 

This leads to 

s2td x 10-’o(m-2 s) 0.4 0.8 1.2 1.6 2.0 2.4 
In gl(s,td) -0.118 -0.23 -0.35 -0.464 -0.58 -0.696 

In gl(s,td) - 0.81 -0.93 -1.04 -1.16 -2.45 -2.9 
s2td x 10-’o(m-2 s) 2.8 3.2 3.6 4.0 5.0 10.0 

Equation (105) shows that the plot of in gl(s,td) versus s2td should give a straight line with a 
slope equal to the negative of the diffusion coefficient D of the enzyme. A plot based on the 
above data gives a straight line with a slope of -2.88 10-” m2/s and an intercept of -0.026. 
Therefore, the diffusion coefficient based on the data is 
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D = 2.88 - 10-”  m2/s 

From the Stokes-Einstein relation, Equation (106), we then get 
(The magnitude of the intercept implies that the instrumental constant [ is roughly 0.95.) 

RH = kBT/(67r7@) 
= [1.38.10-23 (J/K)-293K] +- [(6~)0.001 (kg/m s)2.88.10-”(m2/s)] 

= 74.4-10-’m 

The “dry radius” R, can be calculated from 

R, = [(~/~T)VM/N,]”~ 
= [3/4~)[0.74. 10-3(m3/g)4.78. 1 02(kg/mo1)/6.02. 1 023m~l-1]113 

= 52-10-’m 

The ratio (R,/R,) is therefore 1.43. 
The source of this 43% difference between the “dry radius” and the hydrodynamic radius 

is unlikely to be the increase in diameter due to bound water. It is more likely that the shape 
asymmetry of the enzyme (i.e., the approximation that the enzyme is effectively spherical) is 
the source of the above difference. 

* t *  

5.8b.2 Effect of Polydispersity: Measuring Size Distribution 
The DLS measurements can also be used in more complicated situations, for example, (a) 
when interparticle interactions are important, (b) for dispersions with particles of other 
shapes, (c) for monitoring coagulation, and (d) when the dispersion is polydisperse. In all 
these cases, a significant amount of modeling is often necessary to interpret the measured 
autocorrelation function, and we do not consider them here. Instead, we restrict our attention 
to a brief discussion of item (d) above, namely, polydisperse systems, since it is concerned 
with a problem of more routine interest. 

In the case of a polydisperse system, the overall decay of the function gl(s,fd) is determined 
collectively by the decay rate (i.e., s2D) corresponding to each particle (notice that s2D varies 
with the particle size as evident from the Stokes-Einstein relation). In principle, the decay func- 
tion in this case can be written formally in a simple manner as a weighted average of all 
possible decays: 

where wj(s2DI) is a weighting function determined by the amount of particles in size range j ;  
that is, the decay of gl(s,td) for a polydisperse system is an appropriately averaged function of 
the monodisperse case given in Equation (105). A number of methods are available for 
determining the size distribution from the experimentally determined gl(s, fd).  One of the 

on what is known as the cumulant expansion, i.e., a series expansion of In 

2 k,(s) 
n =  I n!  

in the limit T~ -+ 0 

4 6  --D s‘ td + 2 s  + higher order terms 

where k, is known as the nth curnulant. Equation (108) also shows that the first-order curnu- 
lant is related to the average diffusion coefficients of particles of all sizes (denoted here by 5) 
and the second-order cumulant to the standard deviation CT of the distribution of diffusion 
coefficients (see Chapter 1 and Appendix C for a discussion of standard deviation and some 
of the related statistical concepts). 

Equation (108) is accurate only for small delay times and, in fact, the higher order terms 
obtained experimentally are not usually very reliable because of the “noise” in the data. 
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However, it does illustrate how one can determine an average particle size and a measure of 
the breadth of the distribution function from experimental data. A plot of [In gl(s,td)/(sztd)] 
against (s2td) will lead to a straight line for small td’s, and D a n d  s2 can be obtained from the 
intercept and the slope of the straight line. 

The logic of the above form of gl(s,td) and additional details are available in advanced 
books on DLS, and the above description is meant only to illustrate the basic ideas and one 
data-analysis approach. The cumulant analysis is often used as a first step before more ad- 
vanced analytical procedures (each of which has its own advantages and disadvantages) are 
attempted. Most DLS instruments come with computer progra.ms for the analysis of the size 
distribution, but we should bear in mind that each analysis technique has specific, and often 
restrictive, assumptions and none is “exact .” As a consequence, the results of size distributions 
from DLS are best interpreted as semiquantitative indicators of polydispersity rather than a 
true representation of the distribution. 

* * *  

EXAMPLE 5.6 Cumulant Analysis of Dynamic Light Scattering Data. A polystyrene latex dis- 
persion supplied by a manufacturer is claimed to have a “very narrow” size distribution with an 
average particle diameter of 62 nm. An analysis of the dispersion using DLS leads to the 
following data for In gl(s,td). The DLS experiments are conducted at 2OoC using a dispersion in 
water at a particle volume fraction of 0.005. The wavelength of the laser used and the angle at 
which the experiments are conducted correspond to 6.5345 - 10 m for the magnitude of the 
scattering vector s. The viscosity of water at 20°C may be taken as 0.001 kglm s. 
td x io3  (s) 0.05 0.1 0.15 0.2 0.25 

td x 103 (s) 0.3 0.35 0.4 0.45 0.5 

Check if the specifications supplied by the manufacturer are correct. State any assumptions 
you make in your evaluation of the data. 

Solution: Assume that the interparticle forces are negligible. Further, since the volume fraction 
of the dispersion used in the DLS experiments is very low, we may assume that the dispersion 
is sufficiently dilute and that multiple scattering is negligible. 

Equation (1 08) shows that the cumulant expansion for In gl(s,td) may be rearranged to give 

In gl(s,td) - 0.01 5 -0.0305 - 0.0457 - 0.061 - 0.076 

In Sl(Sltd) -0.091 -0.107 -0.122 -0.137 -0.152 

A plot of y versus x can now be used to obtain D from the intercept and u2 of the diffusion 
coefficient from the slope. Using the given data and the given value of s, we prepare a table of 
y versus x: 
x x 10-I’ ( T - ~  s) 0.2135 0.427 0.6405 0.854 1.0675 
y x 10l2(m /s) -7.03 -7.14 -7.135 -7.14 -7.15 
x x 10-I’ (mW2 s) 1.281 1.4945 1.708 1.9125 2.135 
y x 1Ol2(m2s) -7.10 -7.16 -7.14 -7.13 -7.12 

It is clear from the table that the value of y is essentially constant over the entire range of given 
delay time. The slope, hence 0, is clearly negligible, and the intercept is approximately 

= 7.14 . 10-”m2/s 
The use of the Stokes-Einstein relation with the above value of the average diffusion 

coefficient leads to a hydrodynamic radius of roughly 30 nm, which is consistent with the 
specification of the manufacturer. 

* * *  

5 . 8 ~  Dispersions of Interacting Particles: 

Even in the case of monodisperse systems, the observed decay rate of gl(s,td) (and hence the 
diffusion coefficient) in general depends on the angle at which the decay is measured if 
interparticle interference effects exist. In the case of dilute dispe:rsions, in which interactions 

Mutual and Self-Diffusion Coefficients 
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of all sorts among the particles may be neglected, the interference is negligible, and the 
diffusion coefficient measured is independent of the angle and is given by the Stokes-Einstein 
equation (for spherical particles). This diffusion coefficient is often called the self-diffusion 
coefficient (or probe diffusion coefficient) since it represents the unhindered Brownian motion 
of a typical particle. 

Although the analysis becomes complex for more concentrated dispersions (or even for 
dilute dispersions of charged particles, which can interact over very large distances), some 
general observations on two limiting cases are useful: 

Measurements made at large enough values of Q ( = sR,) and for t, -+ 0: For td + 0, 
the particles have very little time to wander far from their positions, i.e., the encounters 
with neighboring particles are negligible. Moreover, for large values of Q (e.g., large s) the 
interparticle interference is negligible since the range of interference in the observed intensity, 
represented by the magnitude of s - ’ ,  is small. As a result, the measurements correspond again 
to the self-diffusion of the particles. 

Measurements at low Q’s: At low Q’s, because of the large magnitudes of s-’ ,  the 
measured intensity and its autocorrelation function are dominated by the cumulative diffusion 
of the particles. The measured decay rate thus represents the cumulative or mutual diffusion 
coefficient D, given by 

1. 

2. 

D, =-(-) 1 arrosm 

6 r q R s  acN T 

where ro,, is the osmotic pressure of the dispersion and cN is the concentration of the particles 
in “number of particles/volume of dispersion.” It is the cumulative diffusion coefficient that 
appears in the Fick’s laws discussed in Chapter 2, and the diffusion experiments described in 
Chapter 2 measure this diffusion coefficient. Thus we have identified another method for 
measuring mutual diffusion coefficients for (at least spherical) solutes. For dilute dispersions, 
D, in Equation (109) reduces to the self-diffusion coefficient. (Note that, for dilute systems, 

Moreover, the influence of the motions of the particles on each other (i.e., when the 
motion of a particle affects those of the others because of communication of stress through 
the suspending fluid) can also influence the measured diffusion coefficients. Such effects are 
called “hydrodynamic interactions” and must be accounted for in dispersions deviating from 
the dilute limit. Corrections need to be applied to the above expressions for D and D, when 
particles interact hydrodynamically. These are beyond the scope of this book, but are dis- 
cussed in Pecora (1989, Schmitz (1990), and Brown (1993). 

We have made a note of the hydrodynamic interactions and other interactions to draw 
attention to an important fact. That is, the analysis of the DLS data is often quite complex, 
and a simple use of the single-exponential decay function and the Stokes-Einstein relation is 
not always sufficient, although many instruments available on the market use such an analysis 
and report an “effective size” for the particles in the dispersion. 

Tos, = CNkBTand ( 8 T o s m / 8 c ~ ) ~  = k,T.) 

REVIEW QUESTIONS 

1. 

2. 

3. 
4. 

5 .  
6. 

7 .  

Describe briefly what is meant by light scattering and the mechanism by which molecules 
scatter light. 
Explain what is meant by each of the following terms: (a) electric field, (b) intensity of light, 
(c) polarization of light. 
What is Coulomb’s law and what are the units of the quantities that appear in Coulomb’s law? 
Why is light scattering an important tool in colloid science? What is the range of dimensions 
of colloidal particles that can be probed by light scattering? Why? 
What is the difference between static light scattering and dynamic light scattering? 
How does light scattering differ from x-ray scattering and neutron scattering in terms of 
mechanisms as well as the range of interactions and structure that can be probed by each? 
What is meant by Rayleigh scattering? What are the important assumptions and limitations of 
the Rayleigh theory? 
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8. 
9. 

10. 

11. 
12. 
13. 

14. 
15. 
16. 
17. 
18. 
19. 

20. 
21. 
22. 
23. 

24. 

25. 
26. 
27. 
28. 
29. 
30. 

31. 

32. 

33. 

34. 

What is the Rayleigh ratio? How is it related to the intensity of the scattered light? 
What is the relation between the Rayleigh ratio and the molecular weight and second virial 
coefficient of a dispersion of colloids or macromolecules? 
What type of molecular weight average is measured by light scattering in the case of polydis- 
perse solution? 
What is meant by turbidity of a dispersion? How is the turbidity related to the Rayleigh ratio? 
Explain what is meant by interference of scattered light. When is it important? 
Why do liquids scatter light? Why isn’t there a destructive influence of the lights scattered by 
all the molecules? 
At what angle is the intensity of scattered light largest for large particles? Why? 
How does the interference of scattered light affect the Rayleigh ratio? 
What is the Debye theory of light scattering? What are its assumptions and limitations? 
What is the definition of the form factor (or intraparticle structure factor)? 
What is the magnitude of the scattering vector? How is it useful? 
Discuss some of the limiting forms of the form factor. Explain what is meant by (a) the 
center-of-mass region, (b) the Guinier region, (c) the fractal region, and (d) the Porod region. 
Discuss what is meant by small-angle scattering. How small is small? 
What is the Zimm plot? Describe its use. 
What is the dissymmetry ratio, and how is it used? 
What is meant by static structure factor or interparticle structure factor? Describe its physical 
significance and use. 
How is the light scattering theory formulated for large, absorbing particles? What is meant by 
“absorbing” particles? 
What are absorbing and scattering cross sections? 
What is the Mie theory of light scattering? What are its assumptions and limitations? 
What is meant by Tyndall spectra? 
What is meant by dynamic light scattering (DLS)? What is measured in DLS? 
Why does the intensity of the light scattered by a dispersion fluctuate? 
What is an autocorrelation function? Sketch qualitatively the autocorrelation function of the 
intensity of scattered light from a dispersion for a number of angles. 
What is the Siegert relation? How is it related to the decay of intensity fluctuations measured 
in DLS experiments? 
What is the relation between the diffusion coefficient of a monodispersed suspension of 
spherical particles and the decay of the intensity correlation function? 
How is the particle size measured in DLS experiments? How is the size distribution measured 
in such experiments in the case of polydispersed colloids? Cotmment on the method(s) criti- 
cally. How do interparticle interactions affect the above measurements? 
What is the difference between the selfdiffusion coefficient and the mutual diffusion coeffi- 
cient? Which of these two is described by the Stokes-Einstein equation? 
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PROBLEMS 

1 .  

2. 

Use Figure 5.4a to show that sin2 $y + sin2 c$z = 1 + cos' qhx. Verify that the angle c$ is 
one-half the tetrahedral angle when c$x = +y = c $ ~  = 4. 

The intensity of the light scattered by air was measured in the atmosphere at Mt. Wilson, 
California, in 1913. The following is a selection of the results obtained:* 

A0 (nm) 350 360 37 1 3 84 397 

x, (nm) 413 43 1 452 475 
W O ,  U 0.459 0.423 0.377 0.338 0.285 

is/Io, U 0.245 0.213 0.174 0.147 

Show that these results are in agreement with the predictions of the Rayleigh theory, given 
that (n - I )  is constant at 2.97. 10-4 over this range of wavelengths. Instead of (N,p /M) ,  we 
could have multiplied the equation in Step 6 in Table 5.1  by No, the number of molecules per 
unit volume under appropriate conditions - taken to be STP in this example for simplicity - 
and use light scattering to measure this quantity. Under the conditions of this research, the 
numerical and geometrical factors work out to give is/Io,u = 0.1911GNo in SI units. Use a 
representative observation to evaluate No and, from this, Avogadro's number. 

The turbidity of solutions of sodium silicate containing SiO, and Na,O in a 3.75 ratio has been 
studied as a function of time.? When the total solute content is 0.02 g ~ r n - ~ ,  the following 
data are obtained: 

3 .  

Time (days) 0 1 3 15 45 88 166 199 351 455 
7 x 104(cm-') 0.81 2.32 3.80 5.47 6.70 8.06 9.53 10.47 13.00 14.43 

(During the same time, the pH of the solution changes from 10.85 to 11.02.) Suggest a 

"Fowle, F. E., Astrophys. J., 40, 435 (1914). 
TDebye, P., and Hauman, R. V., J. Phys. Chem., 65, 5 (1961). 
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4. 

5 .  

6. 

7. 

8. 

qualitative explanation for these observations in terms of the chemical behavior of silicates 
(be sure to include references to whatever sources you consult). Why is it important to the 
study of light scattering to realize that solutions such as these show a variation of turbidity 
with time? 

Equation (2.63) suggests that the quantity 6c2 in Table 5.2 is evaluated by solving 

- 
6c2 = low (6c)2P(6c)d(6c)  

Argue that the appropriate form for P(6c) is 

P(6c) = Aexp (-%I 
1 

Use the value of G - Go from Table 5.2 [G - Go = -(i?2G/J&6~)2] to verify the value for 
- 2 
6c2. 

The refractive indices of NaCl solutions have been measured at 2OoC as a function of concen- 
tration by means of a differential refractorneter* with the following results: 

c x 103(gNaClcm-3) 3.749 5.468 7.498 7.920 
(n  - no) x 104 6.73 9.83 13.18 14.06 

Use these data to evaluate the quantity dn/dc for NaCl solutions in this concentration range. 
On the basis of these data, what is the apparent uncertainty introduced in a light scattering 
experiment through this quantity? 

Above a certain concentration, the turbidity of sodium dodecyl sulfate (molecular weight = 
288) solutions increases with concentration as if particles in the colloidal size range were 
present. Use the following datat to evaluate the apparent molecular weight of the species 
responsible for the scattering. For this system H = 3.99 x 1OP6. 

c x 103 (g ~ m - ~ )  2.7 4.2 7.7 9.7 13.2 17.7 22.2 
x io4(cm-l) 1.10 1.29 1.71 1.98 2.02 2.14 2.33 

Assuming the scattering centers are aggregates of sodium dodecyl sulfate molecules, estimate 
the number of these units in the aggregate. 

The turbidity of Ludox (a colloidal silica manufactured by DuPont) has been studied as a 
function of concentration with the following results:$ 

c x 1 0 ~ ( g c m - ~ )  0.57 1.14 1.70 2.30 
7 x 102 (cm-’) 1.56 2.97 4.25 5.36 

Evaluate the molecular weight of the Ludox particles, using a value of H = 4.08 x lO-’ for 
the system. Calculate the characteristic diameter for these particles, assuming the particles to 
be uniform spheres of density 2.2 g ~ m - ~ .  

Criticize or defend the following proposition: The accompanying data for the turbidity of 
dodecylamine hydrochloride solutions4 suggest that at concentrations exceeding about 0.003 
g cm - 3  the solute associates into aggregates of colloidal dimensions. 

c x 103 (g ~ m - ~ )  0.77 1.73 3.10 3.31 6.15 8.31 
x io4(Cm-l) 0 0 0 0.95 1.91 2.55 

For this system H i s  approximately 7.7 x 10p6. 

*Debye, P., and Hauman, R. V., J. Phys. Chern., 65, 8 (1961). 
?Tartar, H. V., and Lelong, A. L. M., J.  Phys. Chern., 59, 1185 (1955). 
SDeielic, G., and Kratohvil, J .  P., J .  Phys. Chern., 66, 1377 (1962). 
gDebye, P., J. Phys. Chern., 53, 1 (1949). 
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9. Krasna* has measured the turbidity of calf thymus DNA in aqueous solutions. The accompa- 
nying table gives R8 x 105 (in cm-') for this system, measured at 546 nm: 

0 (deg) 20.6 41.4 62.0 82.5 

26 2.47 4.80 6.94 8.75 
30 2.06 4.02 5.83 7.67 
34 1.77 3.39 4.84 6.44 
38 1.75 2.98 4.28 5.61 
42 1.38 2.57 3.84 4.87 
50 1.01 1.90 2.91 3.71 
60 0.76 1.45 2.23 2.89 

Prepare a Zimm plot of these results (using K = 3.63 x lOP7) and evaluate M, B ,  and the 
radius of gyration of the DNA in this preparation. 

The following table gives R8/K x 10-3 for different values of c and 0 in the system polysty- 
rene-decalin at 3OoC, measured with the mercury 435.8-nm line:? 

10. 

c x 103 (gcme3) 

11. 

0 (deg) 0.50 0.99 1.49 

30 0.735 1.34 - 
45 0.685 1.27 2.04 
60 0.625 1.17 1.62 
75 0.562 1.05 1.49 
90 0.510 0.96 1.37 

105 0.467 0.88 1.25 

Prepare a Zimm plot of these date and evaluate M ,  B,  and the radius of gyration of the 
polymer under these conditions. 

The following table shows the angular location of the green bands in the HOTS of various size 
spheres of relative refractive index 1.46:$ 

Radius (pm) 
Number of 
green bands 0.2 0.3 0.4 0.5 0.6 0.8 

First 
Second 
Third 
Fourth 
Fifth 
Sixth 
Seventh 
Eighth 

25' 7.5' 
140' 77.5' 57.5' 42.5' 32.5' 17.5' 

140' 117.5' 85' 62.5' 
115' 1 10' 87.5' 
(blue) 130' 1 10' 

157.5' 127.5O 
142.5' 

150' 95O 72.5' 60' 40 ' 

Formulate a generalization correlating the observed number of green bands in the HOTS for 
this system with the approximate particle size. Briefly describe how this information could be 
used to "grow" a monodisperse sulfur sol with a dimension that corresponds aproximately to 
a predetermined size. 

*Krasna, A. I . ,  J. Colloid Interface Sci., 39, 632 (1972). 
tlechner, M. D., and Schulz, G. V., J .  Colloid Interface Sci., 39, 469 (1972). 
SKerker, M.,  The Scattering of Light and Other Electromagnetic Radiation, Academic Press, New 
York, 1969, p. 409. 
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12. 

13. 

14. 

15. 

General solutions of light scattering equations generate oscillating curves when x is plotted 
versus p for a particular value of the relative refractive index of the dispersed phase compared 
to the continuous phase. Such a curve can be described by the expression x = KO-", where 
-n  is the local value of the slope of the In x versus In 0 curve at specific values of 0. Suppose 
this parameter n is known as a function of /3 for an experimental system. Describe the kind of 
experimental data and the analysis required thereof to yield a size parameter for the dispersed 
particles. What are the limitations of this method? 

Suppose your employer intends to develop a new laboratory to characterize particles in the 
colloidal size range. Your assignment is to prepare a list of the equipment that should be 
purchased for such a facility. A brief justification for each major item should be included 
along with a priority ranking based on the versatility of the method. Assume that your 
laboratory is already well stocked with such nonspecialized items as laboratory glassware, 
balances, and the like. 

Show that the average intensity f ( s )  given in Equation (102) is simply (l/tn) times the area 
under the function i(s,t) in Figure 5.16a between t = 0 and t = t , .  

The DLS data for a dilute biological dispersion are given below. The experiment was con- 
ducted at 293K in water ( r ]  = 0.001 kg/m s). The scattering intensity was measured at a fixed 
angle of 30° using a laser with X = 480 nm. Determine the average diffusion coefficient and 
the diameter of the particles based on this diffusion coefficient. What can you say about the 
polydispersity of the sample studied? 

td x i o3w 0.05 0.1 0.15 0.2 0.25 

t, x io3(s) 0.3 0.35 0.4 0.45 0.5 
In kZ(S,fd) - 1Y2 -0.25 -0.499 -0.747 -0.995 -1.242 

In [gz(s,td) - 1 Y 2  - 1.489 - 1.735 - 1.98 -2.225 -2.469 



Surface Tension and Contact Angle 
Application to Pure Substances 

I don’t think I said anything about the Third Dimension; and I am sure I did not say one 
word about “Upward, not Northward,” for that would be nonsense, you know. How 
could a thing move Upward, and not Northward? Upward and not Northward! . . . How 
silly it is! 

From Abbott’s Flatland 

6.1 INTRODUCTION 

6.la What Are Surface Tension and Contact Angle? 

Why is it that insects like beetles can walk on water? Why do the bristles of a brush immersed 
in water cling together as the brush is pulled out? Phenomena such as these arise because of a 
special property of interfaces that separate two phases. Let us consider another example first. 
Everyone has had the experience of pouring more beverage into a cup or glass than that 
container could hold. In addition to the spills this causes, such an experience provides an 
opportunity to observe surface tension. Most liquids can be added to a vessel until the liquid 
surface bulges above the rim of the container. The liquid behaves as if it had a “skin” that 
prevents it - up to a point - from overflowing. Stated technically, a contractile force, which 
tends to shrink the surface, operates around the perimeter of the surface. This is what we 
mean when we talk about the surface tension of a liquid. All phase boundaries behave this 
way, not just liquid surfaces; however, the evidence for this is more apparent for deformable 
liquid surfaces. 

The liquid “skin” described above is anchored to the solid walls of the container around 
the edges of the surface. The angle the liquid surface makes with the solid support is called the 
contact angle. The tendency of most liquids to climb walls- think of a meniscus in a capil- 
lary- is a manifestation of the existence of these angles. 

Surface tension and contact angle are bulk properties, but they are both a consequence of 
intermolecular interactions that are short range in macroscopic terms. In the case of water, for 
example, the molecules like to be in the interior where they can form up to four hydrogen 
bonds; that is, the hydrogen atoms in a water molecule are weakly bonded to the oxygens of 
the neighboring molecules. At a water-air interface, however, the molecules have fewer neigh- 
bors, and water tries to minimize the number of “broken” bonds by minimizing the surface 
area. The bristles of the brush try to cling together as a consequence. The beetle does not sink 
because that would require the stretching of the surface. Unless an insect is heavy enough to 
counteract the force of surface tension, the insect will not sink and can walk on the surface. 
We have more to say about the molecular origin of both surface tension and contact angle in 
this chapter and in Chapter 10. 

Surface tension and contact angle, however, are two different things, although they are 
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closely related. Surface tension is a property of the interface between two phases, whereas the 
contact angle describes the edge of the two-phase boundary where it ends at  a third phase. 
Two phases must be specified to describe surface tension; three are needed to  describe contact 
angle. (In this chapter, we designate solid, liquid, and vapor phases by S, L, and V, respec- 
tively; if two liquids are involved, we call them L, and Lz or A and B.) 

6.1 b Why Are They Important? 

Surface tension and contact angle phenomena play a major role in many practical things in 
life. Whether a liquid will spread on a surface or will break up into small droplets depends on 
the above properties of interfaces and determines well-known operations such as detergency 
and coating processes and others that are, perhaps, not so well known, for example, prepara- 
tion of thin films for resist lithography in microelectronic applications. The challenge for the 
colloid scientist is to relate the macroscopic effects to the interfacial properties of the materials 
involved and to learn how to manipulate the latter to achieve the desired effects. Vignette VI 
provides an example. 

VIGNETTE VI SURFACE CHEMISTRY AND MATERIALS SCIENCE: 
Wettability of Surfaces and Fabrication of 
Microstructured Materials 

Why is understanding surface tension, contact angle, and their role in wettability of surfaces 
important? Waterproof fabrics, detergency, and coating processes (e.g., preparation of 
coated surfaces using spin coating) are standard examples that, perhaps, readily come to 
mind, but wettability of surfaces has a strong influence on many other phenomena of engi- 
neering significance as well. For example, the rate of evaporative heat transfer from surfaces 
(and, as a result, the effectiveness of heat-transfer equipment in which condensation and 
evaporation play a major role in the overall heat transfer) is influenced strongly by whether 
the liquid phase wets the surfaces or not. 

Instead of considering wettability from the above traditional perspective, let us look at it 
from the opposite side: What if we can control wettability of a surface at microscopic 
length scales, perhaps actively? New developments in surface chemistry and fabrication of 
self-assembled monolayers (SAMs; see Chapter 7)  have opened up precisely such a possibil- 
ity. How can we take advantage of such opportunities? 

As we see in this chapter, chemical affinities between a surface and a liquid at the 
molecular level (i.e., preferential molecular interactions) determine the wettability of a sur- 
face and the resulting shapes of the liquid drops. The chemical affinities can be controlled 
by allowing the formation of monolayers of surfactant molecules with desired properties 
(lyophilicity or lyophobicity) on a surface. Such a procedure, in combination with microma- 
chining (for example, using a scanning tunneling microscope; see Vignette 1.8 in Chapter 1) 
can be used to prepare surfaces with prechosen geometric patterns of wettability. 

Figure 6.1 illustrates such an example (Abbott et al. 1992). Here, a gold surface is first 
coated with a hydrophilic SAM of alkanethiolate. The desired geometric pattern is then 
formed on the surface through micromachining (in this case, using a surgical scalpel), and 
the resulting features are covered with a hydrophobic SAM (of dialkyl disulfide) (see Fig. 
6. la). This procedure can be used to construct micrometer-scale hydrophobic lines on the 
surface so that the resulting shapes and distribution of liquid drops can be controlled (see 
Fig. 6.lb). 

Similar techniques can also be used to control the wettability of a surface actively 
(in time scales of the order of seconds), for example, by electrochemically controlling the 
interconversion of less polar (less wettable) groups in the SAMs to more polar (more wetta- 
ble) groups (Abbott and Whitesides 1994). 

What benefits do we derive from such control? Control of wettability on small length 
scales using simple “wet chemistry” provides interesting opportunities, e.g., a simpler and 
more easily accessible alternative to optical lithography and new methods for the fabrication 



FIG. 6.1 Control of wettability of surfaces through chemistry: (a) schematic illustration of forma- 
tion of hydrophobic lines on a hydrophilic surface with self-assembled monolayers (SAMs) and 
micromachining; (b) top view of the shapes and confinement of water drops on an engineered 
surface. (Reproduced with permission of Abbott et al. 1992.) 

FIG. 6.1 Control of wettability of surfaces through chemistry: (a) schematic illustration of forma- 
tion of hydrophobic lines on a hydrophilic surface with self-assembled monolayers (SAMs) and 
micromachining; (b) top view of the shapes and confinement of water drops on an engineered 
surface. (Reproduced with permission of Abbott et al. 1992.) 
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of optical switches, electrochemical valves, and pumps for the preparation and operation of 
diagnostic assays. The technique described above can also be used to generate droplets of 
controlled shapes so that analyses of such shapes can be used to measure surface excess free 
energies (Abbott et al. 1994). 

Active control of wettability is a subject of current research activity and is beyond our 
scope here. However, the first step in this process is a study of interfacial tension and contact 
angle, their basis in thermodynamics, and methods to measure these properties. This is the 
objective of this chapter. 

6.1 b Focus of This Chapter 

Both this chapter and Chapter 7 are primarily concerned with the equilibrium behavior of 
surfaces. In this chapter the emphasis is on the surfaces between “pure” phases, whereas in 
Chapter 7 we consider the effects of solutes on the behavior of surfaces. Most of the phenom- 
ena we describe in this chapter will continue to apply to solutions and carry over into the next 
chapter. 

Our major objectives in this chapter are to define surface tension and contact angle and 
describe how they are measured and what effects they have on the equilibrium behavior of 
materials. 

1. We begin with the definitions and a preliminary look at some measurement techniques 
in Section 6.2 and show that surface tension can also be thought of as the energy needed to 
create an  interface (Section 6.3). 

The presence of surface tension has an  important implication for the pressures across 
a curved interface and, as a consequence, for phase equilibria involving curved interphase 
boundaries. The equation that relates the pressure difference i3cross an interface to the radii of 
curvature, known as the Lapface equation, is derived in Section 6.4, and the implications for 
phase equilibria are considered for some specific cases in Section 6.5. 

As mentioned in Section 6.la, surface tension and contact angle determine wetting 
phenomena; we examine this in Section 6.6. We take a closer look at the definition of contact 
angle and some complications associated with it in Section 6.7. 

Now we are better equipped to consider measurements of surface tension in detail. 
Section 6.8 describes the use of shapes of menisci, drops, and bubbles for such measurements, 
and Section 6.9 considers the practically important case of contact of liquids with porous 
solids and powders. 

Finally, we close the chapter with a discussion of the relation between molecular 
interactions and surface tension and contact angle. 

2. 

3. 

4. 

5 .  

6.2 SURFACE TENSION AND CONTACT ANGLE: A FIRST LOOK 

6.2a Surface Tension as a Force 

As the name implies, surface tension (denoted by y) is a force that operates on a surface and 
acts perpendicular and inward from the boundaries of the surface, tending to decrease the 
area of the interface. In order to illustrate this, we use a simple apparatus based on this notion 
that might be used to measure surface tension (see Fig. 6.2a). In fact, other methods are used, 
but the arrangement of Figure 6.2a has the advantage of simplicity and serves to illustrate how 
the tension in the liquid surface is indeed measured by y. The figure represents a loop of wire 
with one movable side on which a film could be formed by dipping the frame into a liquid. 
The surface tension of a stretched film in the loop will cause the slide wire to move in the 
direction of decreasing film area unless an opposing force F is applied. In an actual apparatus, 
the friction of the slide wire might be sufficient for this. In an idealized, frictionless apparatus 
like that in Figure 6.2a, the force opposing y could be measured. The force evidently operates 
along the entire edge of the film and will vary with the length P of the slide wire. Therefore it 
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FIG. 6.2 Illustrations of liquid film formation, contact angle, and measurement of contact angle: 
(a) a wire loop with a slide wire on which a liquid film might be formed and stretched by an applied 
force F. (b) profile of a three-phase (solid, liquid, gas) boundary that defines the contact angle 0.  
(c) the tilted plate method for measuring contact angles. 

is the force per unit length of edge that is the intrinsic property of the liquid surface. Since the 
film in Figure 6.2a has two sides, the surface tension as measured by this apparatus equals 

y = F/2? 

Several points should be noted before proceeding any further: 

1. Equation (1) defines the units of surface tension to be those of force per length or 
Nm - '  in SI or dynes cm in the cgs system. We see presently that these are not the 
only units used for y. 

The apparatus shown in Figure 6.2a resembles a two-dimensional cylinder/piston 
arrangement. With this similarity in mind, the suggestion that surface tension is 
analogous to a two-dimensional pressure seems plausible. With certain refinements, 
this notion will prove very useful in Chapter 7. 
A gas in the frictionless, three-dimensional equivalent to the apparatus of the figure 
would tend to  expand spontaneously. For a film, however, the direction of spontane- 
ous change is contraction. 

2 .  

3. 

6.2b Contact Angle 

A quantity that is closely related to surface tension is the contact angle. The contact angle 0 is 
defined as the angle (measured in the liquid) that is formed at the junction of three phases, for 
example, at the solid-liquid-gas junction as shown in Figure 6.2b. Although the surface tension 
is a property of the two phases that form the interface, 6' requires that three phases be specified 
for its characterization, as mentioned above. The above definition of contact angle is, how- 
ever, highly simplified, and we take a more in-depth look at the concept later in this chapter. 
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6 . 2 ~  Measuring Surface Tension and Contact Angle: Round One 

In this section we take an initial look at the experimental determination of y and 8. The 
methods we discuss show the complementarity between these two parameters while introduc- 
ing some important phenomena. As we proceed through the chapter, some additional compli- 
cations are encountered. We return to the topic of measuring y and 8 in Section 6.8, in which 
some refinements can be discussed with more meaning. 

Contact angle seems like a more straightforward quantity to measure than surface tension. 
Junctions such as that illustrated in Figure 6.2b are easy to observe and even photograph. This 
being the case, it seems easy enough to construct a tangent to the liquid surface at  the point 
where it contacts the support and measure the enclosed angle. Actually, this is considerably 
easier to describe than to carry out. Although the foregoing is impractical as an experimental 
strategy, it does make the contact angle very accessible conceptually. 

Figure 6 . 2 ~  shows a variation of Figure 6.2b that has been used extensively to measure 
contact angles. This technique, known as the tiltedplate method, varies the angle of inclina- 
tion between a smooth solid penetrating the liquid surface until a position is found at which 
the liquid makes a horizontal contact with the solid. The horizontal is easier to judge than the 
tangent to a curve, so this method is preferable to that based on direct measurement of a 
junction like the one shown Figure 6.2b. 

The situation shown in Figure 6.2b is one in which surface tension and contact angle 
considerations pull a liquid upward in opposition to gravity. A mass of liquid is drawn up as 
if it were suspended by the surface from the supporting walls. At equilibrium the upward pull 
of the surface and the downward pull of gravity on the elevated mass must balance. This 
elementary statement of force balance applies t o  two techniques by which y can be measured 
if 8 is known: the Wilhelmyplate and capillary rise. 

6 . 2 ~ .  I 
Figure 6.3a represents a thin vertical plate suspended at a liquid surface from the arm of a 
tared balance. For simplicity, the plate is positioned so that the lower edge is in the same plane 
as the horizontal surface of the liquid away from the plate as shown in the figure. The 
manifestation of surface tension and contact angle in this situation is the entrainment of a 

The Wilhelmy Plate Technique 

FIG. 6.3 
schematic illustration of capillary rise in a cylindrical tube of radius R,. 

Surface tension and capillary rise: (a) the Wilhelmy plate method for measuring y; (b) 
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meniscus around the perimeter of the suspended plate. Assuming the apparatus is balanced 
before the liquid surface is raised to the contact position, the imbalance that occurs on contact 
is due to the weight of the entrained meniscus. Since the meniscus is held up by the tension 
on the liquid surface, the weight measured by the apparatus can be analyzed to yield a value 
for y. 

The observed weight w of the meniscus must equal the upward force provided by the 
surface. This, in turn, equals the vertical component of y--y cos 8, where 8 is the contact 
angle-times the perimeter of the plate P since surface tension is a force per unit length of 
surface edge. Therefore, at equilibrium, 

w = P y c o s 8  (2) 

For a plate of rectangular cross section having length t and thickness t ,  P = 2(t + t ) ;  
these dimensions can be accurately measured. By suspending the plate from a sensitive bal- 
ance, we can also measure w with considerable accuracy. The apparatus is called a Wilhelmy 
balance, and the technique the Wilhelmyplate method. Thus, if the contact angle is known 
from an independent determination by, say, the tilted-plate method, then y can be evaluated 
by Equation (2). 

Strictly speaking, Equation (2) allows the vertical component of surface tension to be 
measured. Since this equals y cos 8, we are actually making a single measurement that involves 
two parameters. If y were independently known, the Wilhelmy plate method could also be 
used to determine 8. Whether we seek to evaluate y, 8, or both, two experiments are needed, 
and these may not both involve the factor cos 8. In Section 6.8a we discuss a second type of 
measurement that can be made with the Wilhelmy apparatus that supplies a complementary 
observation so both y and 8 can be determined on a single instrument. 

6.2c.2 The Capillary Rise Technique 

Capillary rise is also a measure of the vertical component of surface tension, so it is an 
alternative to the Wilhelmy balance and not its complement. Figure 6.3b shows how a capillary 
rise experiment is carried out. Conventionally, the height of a liquid column in a capillary 
above the reference level in a large dish is measured. It is important that the dish be large 
enough in diameter so that the reference level has a well-defined horizontal surface. In the 
capillary the liquid will have a curved meniscus, and, as usual, it is the height of the bottom of 
the meniscus above the horizontal that is measured. It should be noted that capillary depres- 
sion is also observed, as with mercury, for example. In this case the capillary “rise” is a 
negative quantity. Our objective is to relate the equilibrium liquid column height h to the 
surface tension of the liquid. 

A simple - but incorrect - relationship between the height of capillary rise, capillary ra- 
dius, contact angle, and surface tension is easily derived. At equilibrium the vertical compo- 
nent of the surface tension (27~rrR,y cos 8) equals the weight of the liquid column, approximated 
as the weight of a cylinder of height h and radius R,. This leads to the approximation 

Here Ap is the difference in the density of the liquid and its surroundings and is used in the 
above formulation since the surrounding fluid could be a second liquid that has a buoyant 
effect on the liquid column. Rearranging Equation (3 ) ,  we obtain 

R,h 2Y z- 
cos0 Apg (4) 

where the cluster of constants on the right-hand side of the equation is called the capillary 
constant and is given the symbol a2: 
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Since a2 oc R,h, a has units of length. Note that the height to which a liquid climbs in a 
capillary (assuming 8 < 90°) increases as R, decreases. As would be expected, h is larger for 
large y and small Ap.  By measuring h for a capillary of known radius, Equation ( 5 )  permits an 
approximate value of y to be determined if 8 is known. 

The approximation that limits this analysis of capillary rise originates from neglecting the 
weight of the liquid in the “crown” of the curved meniscus. We see in Section 6.8b that the 
height of capillary rise can be related to surface tension without making this approximation, 
although the connection is somewhat unwieldy. A more detailed description of the experimen- 
tal aspects of the capillary rise method can be obtained from advanced textbooks (e.g., 
Adamson 1990). 

There are numerous other methods for measuring surface tension that we do  not discuss 
here. These include (a) the measurement of the maximum pressure beyond which an inert gas 
bubble formed at the tip of a capillary immersed in a liquid breaks away from the tip (the 
so-called maximum bubble-pressure method); (b) the so-called drop- weight method, in which 
drops of a liquid (in a gas or in another liquid) formed at the tip of a capillary are collected 
and weighed; and (c) the ring method, in which the force required to detach a ring or a loop 
of wire is measured. In all these cases, the measured quantities can be related to the surface 
tension of the liquid through simple equations. The basic concepts involved in these methods 
do not differ significantly from what we cover in this chapter. The experimental details may 
be obtained from Adamson (1990). 

It is impossible to complete a discussion of the measurement of surface tension without 
saying something about the need for extreme cleanliness in any determination of y. Any 
precision chemical measurement requires attention to this consideration, but surfaces are 
exceptionally sensitive to impurities. It is often noted that touching the surface of 100 cm2 of 
water with a fingertip deposits enough contamination on the: water to introduce a 10% error 
in the value of y. Not only must all pieces of equipment be clean, but also the experiments 
must be performed within enclosures or in very clean environments to prevent outside contam- 
ination. In addition, both surface tension and contact angle should be measured under con- 
stant temperature conditions. 

Both the Wilhelmy and capillary rise methods for determining y have been based on the 
concept of surface tension as a force. While this point of view is useful for describing the 
experimental methods we have discussed, it is only one way of interpreting y. An energetic 
interpretation is also possible that makes surface tension amenable to the powerful methods 
of thermodynamics. 

6.3 THERMODYNAMICS OF SURFACES: SURFACE TENSION AS 
SURFACE FREE ENERGY 

Application of a force infinitesimally larger than the equilibrium force to the slide wire in 
Figure 6.2a will displace the wire through a distance dx. The product of force and distance 
equals energy, in this case the energy spent in increasing the area of the film by the amount 
d A  = 2 P dx. Therefore the work done on the system is given by 

(6) 

This supplies a second definition of surface tension: It equals the work per unit area required 
to produce a new surface. In terms of this definition, the units of y are energy per area- J 
m - 2  in SI or erg cm -’ in the cgs system. 

We see, therefore, that there are two equivalent interpretations of y: force per unit length 
of boundary of the surface and energy per unit area of the surface. The dimensional equiva- 
lency of the two is evident if the numerator and denominator of force length - I  are multiplied 
by length. 

Equation (6) relates y to the work required to increase the area of a surface. From 
thermodynamics, it will be recalled that work is a path-dependent process: How much work is 
done depends on how it is done. Based on this realization, then, it seems desirable to examine 

Work = Fdx = y2Pdx = ydA 
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Equation (6) a little more fully. As already noted, there is a tendency for mobile surfaces to 
decrease spontaneously in area. Therefore it is convenient to shift our emphasis from work 
done on the system to work done by the system in such a reduction of area. If the quantity 
6w’ is defined as the work done by the system when its area is changed, then Equation (6) 
becomes 

6 ~ ‘  = - ydA  (7)  

According to Equation ( 7 ) ,  a decrease in area (negative d A )  corresponds to work done by the 
system, whereas an increase in area requires work to be done on the system (positive d A  and 
negative 6w’) .  This sign convention is consistent with the idea expressed in Chapter 1 that 
energy is stored in surfaces. 

We are now in a position to relate the quantity 6w’ to other thermodynamic variables. To  
do this a brief review of some basic thermodynamics is useful. 

According to the first law of thermodynamics, the change in the energy E of a system 
equals 

(8) 

in which 6w is the work done by the system and 6 q  is the heat absorbed by the system. The 
quantity 6 w is conveniently divided into a pressure-volume term and a non-pressure-volume 
term: 

dE = 6q - 6~ 

6w = 6wPv + ~ W , , ~ , , - ~ V  = pdV -I- 6 ~ , , ~ , , - ~ v  (9) 

It will be recalled from physical chemistry that chemical work is the usual substitution for 
6 ~ ~ ~ ~ . ~ ~ .  However, the work defined by Equation (7) may also be classified as non-pressure- 
volume work. 

The second law of thermodynamics tells us that for reversible processes 

6q,, = TdS (10) 

Substituting Equations (9) and (10) into Equation (8) ,  with the stipulation of reversibility as 
required by Equation (lO), enables us to write 

dEre, = TdS - pdV - ~ W , , ~ , , - ~ V  (1 1) 

G = H - T S = E + p V - T S  (12) 

dG = dE -I- pdV + Vdp - TdS - SdT (13) 

dG,, = TdS - pdV - ~ W , , ~ , , - ~ V  -I- pdV -I- Vdp - TdS - SdT (14) 

This is a fundamental equation of physical chemistry because it enables us to assign a 
physical significance to G as defined by Equation (12). Equation (14) shows that for a 
constant temperature, constant pressure, and reversible process 

Next we recall the definition of the Gibbs free energy G: 

which may be differentiated to give 

Substituting Equation ( 1 1) into ( 13) gives 

dG = - ~ W , , ~ , , - ~ V  (15) 

that is, dG equals the maximum non-pressure-volume work derivable from such a process 
since maximum work is associated with reversible processes. 

We have already seen by Equation (7) that changes in surface area entail non-pressure- 
volume work. Therefore we identify 6w’ from Equation (7) with 6 ~ ~ ~ ~ . ~ ~  in Equation (15) and 
write 

dG = ydA  (16) 

Even better, in view of the stipulations made going from Equation (14) to Equation (15), we 
write 
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TABLE 6.1 
Near Room Temperature 

Several Representative Values of y, S”, and H” for a Variety of Liquids 

Substance 
y a t  2OoC d y / d T  = -Ss H’ = y - T(dy/dT)  
(mJ m-2) (mJ m-2 K-’ )  (mJ m-2) 

n-Hexane 
Ethyl ether 
n-Octane 
Carbon tetrachloride 
rn -Xy lene 
Toluene 
Benzene 
Chloroform 
1,2-Dichloroethane 
Carbon disulfide 
Water 
Mercury 

18.4 
17.0 
21.8 
26.9 
28.9 
28.5 
29.0 
28.5 
32.2 
32.3 
72.8 

484 

- 0.105 
-0.116 
- 0.096 
- 0.092 
- 0.077 
-0.081 
- 0.099 
-0.135 
-0.139 
-0.138 
-0.152 
- 0.220 

49.2 
51.0 
49.9 
53.9 
51.4 
52.2 
58.0 
68.3 
72.9 
72.7 

117.3 
548 

Source: D. H. Kaelbe, Physical Chemistry of Adhesion, Wiley, New York, 1971. 

Several things should be noted about Equation (17). This relationship identifies the surface 
tension as the increment in Gibbs free energy per unit increment in area. Thepath-dependent 
variable 6w’ is replaced by  a state variable as a result of this analysis. Another notation that is 
often encountered that emphasizes the fact that y is identical to the excess Gibbs free energy 
per unit area arising from the surface is to write it as G”. The energy interpretation of y, then, 
has been carried to the point at which it has been identified with a specific thermodynamic 
function. Many of the general relationships that apply to G apply equally to y. For example, 

(18) G” = y = H” - TS” 

and 

rg)p = (g)p = -9 

Equations ( 18) and ( 19) may be combined to give 

y = H“ + T ( g ) p  

For water at 2OoC, y = 7.28 * 1 O P 2  J m-2; it is convenient to write this in millijoules 
since 72.8 mJ m - 2  is numerically equal to the cgs value. For water d y / d T  = -0.152 mJ m -’ 
deg -’; therefore H” = 117 mJ m -‘ by Equation (20). Additional values of G”, S”, and H s  for 
various substances are listed in Table 6.1. 

6.4 SURFACE TENSION: IMPLICATIONS FOR CURVED INTERFACES 
AND CAPILLARITY 

6.4a Pressure Difference across a Curved Interface: The Laplace Equation 

In Section 6.2 we discussed the Wilhelmy and capillary rise experiments as if the supported 
liquid were hanging from a surface skin. While this is a convenient device for generating 
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formulas, it is not an adequate description of the physical situation. Now that we have 
established the connection between surfaces and thermodynamics, we can remedy this situa- 
tion. The insight that is central to this development is the realization that a pressure difference 
operates across a curved interface. The pressure difference is such that the greater pressure is 
on the concave side. Our objective in this section is to relate this pressure difference to the 
curvature of the surface. 

Figure 6.4 shows a portion ABCD of a curved surface. The surface has been cut by two 
planes perpendicular to one another. Each of the planes therefore contains a portion of arc 
where it intersects the curved surface. In the figure the radii of curvature are designated R ,  
and RZ, and the lengths are designated x and y ,  respectively, for these two intercepted arcs. 
Now suppose the curved surface is moved outward by a small amount dz t o  a new position 
A ’ B ’ C ’ D ’ .  Since the corners of the surface continue to  lie along extensions of the diverging 
radial lines, this move increases the arc lengths to x + dx and y + dy. Obviously the area of 
surface must also increase. The work required to accomplish this must be supplied by a 
pressure difference Ap across the element of surface area. 

The increase in area when the surface is displaced is given by 

dA = ( X  + dx)(y + d r )  - XY = xdy + ydx + dxdy z Xdy + ydx (21) 

where the approximation arises from neglecting second-order differential quantities. The in- 
crease in free energy associated with this increase in area is given by ydA: 

dG = y(xdy + ydx) 
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FIG. 6.4 
ABCD to A ’ B ’ C ’ D ’ .  

Definition of coordinates describing the displacement of an element of curved surface 
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If ordinary pressure-volume work is responsible for the expansion of this surface, then 
the work equals ApdV, where dV is the volume swept by the moving surface. In terms of 
Figure 6.4, this equals 

dw = Apxydz (23) 

y(xdy + ydx) = Apxydz 

Setting Equations (22) and (23) equal to one another gives 

(24) 

Notice that the arc lengths x and ( x  + Ax.) in Figure 6.4 are related to the angle a by x = R , a  
and ( x  + Ax) = ( R I  + dz )a .  Therefore, we may set up  the following proportions: 

Similarly, 

Y + d Y  - Y  ~- - 
R2 + dz R2 

Equations (25) and (26) simplify to 

dx 1 

xdz K ,  
- - __ - 

and 

Substituting Equations (27) and (28) into Equation (24) enables us to write the relationship of 
Ap to R I ,  R,, and y :  

This expression is known as the Laplace equation and was derived in 1805. 
Until now we have not been specific as to the location of the curved surface under 

consideration. Since this is the case, Equation (29) is general and applies equally well to 
geometrical bodies with radii of curvature that are constant over the entire surface or to more 
intricate shapes for which the R,’s change from place to place on the surface. For the former 
cateJ;ory, there are several special cases of Equation (29) that are worthy of note: 

1 .  For a spherical surface, R I  = R ,  = R,; therefore 

Ap = 2y /R ,  

2. For a cylindrical surface, R ,  -+ 03; therefore 

Ap = y / R 2  

3 .  For a planar surface, R I  = R ,  00; therefore 

Ap = 0 (32) 

It  is also possible for a portion of a surface to be locally saddle shaped; in such a case the two 
radii of curvature lie on opposite sides of the surface and have different signs. It is possible 
for p to be zero in this situation also. 

The Laplace equation applied specifically to  spherical surfaces can be derived in a variety 
of ways. Example 6.1 considers an alternative derivation that points out the thermodynamic 
character of the result quite clearly. 
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EXAMPLE 6.1 Laplace Equation for Spherical Surfaces: A Thermodynamic Derivation. The 
Maxwell relations play an important role in thermodynamics. By including the term dA in the 
usual differential form for dG, show that (dV/dA),,T = (dY/dP)A,T. Evaluate (dV/dA),T aSSUming a 
spherical surface and, from this, derive the Laplace equation for this geometry. 

Solution: The derivation of the Maxwell relations treats dG as an exact differential and expands 
it as 

dG = (aG/dp)@p + (aG/aT),dJT 

The coefficients are then matched with their counterparts in an alternative expression for dG: 
dG = Vdp - SdT. When surface effects are included, these two expressions become 

dG = (dGlap),Adp + (dG/dT),AdT + (dG/dA),@A 

and 

dG = Vdp - SdT + ydA 

or, at constant temperature, 

dG = (aG/dp)Adp + (dG/dA),dA 

Since the order of differentiation is immaterial for exact differentials, it follows that 

and dG = Vdp + ydA 

d/aA[ (dG/dp)~ ] ,  = d/ap[ (dG/dA)p]~ 

or 

(a V/aA), = ( d y / a p ) ~  

Since dV/dA can be yritten (dV/dR,)(dR,/dA), which is easily evaluated for a sphere of 
radius R, as (4d?,2)(8~R,) - = R,/2. Therefore (ay/ap)A,T = R,/2 or dy = (112) R,dp. This result 
may be integrated to give y = (1/2) R,Ap where the constant of integration has been set equal 
to zero since there would be no pressure difference if y = 0. This is the Laplace equation for 
spherical particles. 

* * *  

6.4b Laplace Equation and Capillary Rise 

As noted above, it is possible that a different pair of radii of curvature applies at different 
locations on a surface. In this case the Laplace equation shows that A p  also varies with 
location. This is the reason for the variation of the pressure with z in the meniscus shown in 
the capillary in Figure 6.3b. As is often true of pressures, it is convenient to define pressure 
variations relative to some reference plane. 

With this idea in mind, the horizontal surface in Figure 6.3b can be taken as a reference 
level at which Ap = 0. Just under the meniscus in the capillary the pressure is less than it 
would be on the other side of the surface owing to the curvature of the surface. The fact that 
the pressure is less in the liquid in the capillary just under the curved surface than it is at the 
reference plane causes the liquid to rise in the capillary until the liquid column generates a 
compensating hydrostatic pressure. The capillary possesses an axis of symmetry; therefore at 
the bottom of the meniscus the radius of curvature is the same in the two perpendicular planes 
that include the axis. If we identify this radius of curvature by 6 ,  then the Laplace equation 
applied to the meniscus is A p  = 2 y / b .  Equating this to the hydrostatic pressure gives 

2 y / b  = Apgh (33) 

or 

bh  = 2y /Apg  = a2 ( 3 4.) 
Comparison of this result with Equation (4) shows the two relations to be of similar form, 

with the approximate form becoming exact under specific conditions. The condition under 
which the approximate result is exact is when the meniscus is a perfectly hemispherical depres- 
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sion at the liquid surface. When this is the case, 8 = 0 and R,, = R,,,,, = b. Since the 
meniscus usually only approximates a hemisphere, the use of the capillary radius in Equation 
( 4 )  remains an approximate relationship. Although Equation ( 3 4 )  is exact, it is not particularly 
useful since h is not readily measurable. Note that if b were available, Equation (34 )  would 
permit the evaluation of y without requiring that 8 be known. 

6 . 4 ~  Arbitrary Variations in Radii of Curvature: 
Generalization of the Laplace Equation 

A variety of drop, bubble, and meniscus shapes have axial symmetry. As is the case in the 
capillary in Figure 6.3b,  p varies with z and, in general, the two radii of curvature may vary 
from position to position on the surface also. With these ideas in mind, the Laplace equation 
becomes 

(35) 

In Equation ( 3 5 )  we have added the notion that 4p, R;', and ./?;I may be functions of location 
in space for any given surface. 

The following expressions from analytical geometry are general functions for RT' and R;' 
for surfaces with an axis of symmetry: 

AP(Z) = r [ R T k Y , z )  + RT'(x,y,z)l 

d ' z /dx2  
[ l  + ( d ~ / d x ) ~ ] ~ ' ~  

RI-' = - 

and 

d d d x  
x[l + ( d ~ / d x ) ~ ] ' ' '  

RY1 = - (37) 

Substitution of Equations (36)  and (37)  into Equation (35 )  generates a complicated differen- 
tial equation with a solution that relates the shape of an axially symmetrical interface to y. In 
principle, then, Equation (35)  permits us to understand the shapes assumed by mobile inter- 
faces and suggests that y might be measurable through a study of these shapes. We do not 
pursue this any further at this point, but return to the question of the shape of deformable 
surfaces in Section 6.8b. In the next section we examine another consequence of the fact that 
curved surfaces experience an extra pressure because of the tension in the surface. We know 
from experience that many thermodynamic phenomena are pressure sensitive. Next we exam- 
ine the effect of the increment in pressure small particles experience due to surface curvature 
on their thermodynamic properties. 

6.5 EFFECTS OF CURVED INTERFACES ON PHASE EQUlLlBRlA 
AND NUCLEATION: THE KELVIN EQUATION 

In addition to capillarity, another important consequence of the pressure associated with 
surface curvature is the effect it has on the thermodynamic activity of substances. As a 
consequence, phase equilibria (including dissolution of chemical species in the different 
phases) are affected by the presence of interfaces. In this section we consider a few such cases. 

6.5a Effect on Vapor-Liquid Equilibria 

The influence of curvature on phase equilibria is most readily understood for liquids, for 
which the activity is measured by the vapor pressure of the liquid. Accordingly, suppose we 
consider the process of transferring molecules of a liquid from a bulk phase with a vast 
horizontal surface to a small spherical drop of radius R,. 

According to Equation (32) ,  no pressure difference exists across a plane surface; the 
pressure is simply po, the normal vapor pressure. However, a pressure difference given by 
Equation (30)  exists across a spherical surface. Therefore for liquid-vapor equilibrium at a 
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spherical surface, both the liquid and the vapor must be brought to the same pressure po + 
Ap. If we assume the liquid to be incompressible and the vapor to be ideal, AG for the process 
of increasing the pressure from po to po + Ap is given by the following: 

1 .  For the liquid, 

where v, is the molar volume of the liquid. 
2. For the vapor, since = RT/p (in view of the ideal gas assumption), 

AG = RTln(,) PO + AP = RTln(E)  

When liquid and vapor are at equilibrium, these two values of AG are equal: 

(39) 

since the volume per mole equals M/p, where M and p are the molecular weight and density of 
the liquid, respectively. In either of these forms, this expression is known as the Kelvin 
equation. The Kelvin equation enables us to evaluate the actual pressure above a spherical 
surface and not just the pressure difference across the interface, as is the case with the Laplace 
equation. 

In our derivation of the Kelvin equation, the radius is measured in the liquid. For a gas 
bubble in a liquid, the same equilibrium is involved, but the bubble radius is measured on the 
opposite side of the surface. As a consequence, a minus sign enters Equation (40) when it is 
applied to bubbles. Since y is on the order of millijoules while R T i s  on the order of joules, 
Equation (40) predicts that In (p/po)  is very small. It is important to realize, however, that 
y/R is also divided by the radius of the spherical particle and therefore becomes more impor- 
tant as R, decreases. For water at 2OoC, the Kelvin equation predicts values of p / p o  equal to 
1.0011, 1.0184, 1.1139, and 2.94 for drops of radius 1 O P 6 ,  l O - ’ ,  10-’, and 10-9 m, respec- 
tively. For bubbles of the same sizes in liquid water, p / p o  equals 0.9989, 0.9893, 0.8976, and 
0.339. These calculations show that the effect of surface curvature, while relatively unimport- 
ant even for particles in the micrometer range, becomes appreciable for very small particles. 

The Kelvin effect is not limited to spheres. For example, the “neck” of liquid between two 
supports is described by a paraboloid of revolution. In this case the radius of curvature of the 
concave surface is outside the liquid and therefore introduces a minus sign into Equation (40). 
In addition, the factor of 2 is not required to describe the Kelvin effect for this geometry. 
Example 6.2 illustrates a test of the Kelvin equation based on this kind of liquid neck. 

EXAMPLE 6.2 Use of the Kelvin Equation for Determining Surface Tension. Figure 6.5 shows 
a plot of experimental data that demonstrates the validity of the Kelvin effect. Necks of liquid 
cyclohexane were formed between mica surfaces at 2OoC, and the radius of curvature was 
measured by interferometry. Vapor pressures were measured for surfaces with different curva- 
ture. Use these data to evaluate y for cyclohexane. Comment on the significance of the fact that 
the linearity of Figure 6.5 extends all the way to a p/po value of 0.77. 

Solution: For the paraboloid of revolution, the Kelvin equation becomes In (p/po) = - (My/  
pRTR,). Therefore a plot of In (p/po) versus - l/Rs is expected to be a straight line of slope My/ 
pRT. The slope of the line in Figure 6.5 is 1.1 3 . 10 -’ m. Equating this with MylpRT and solving 
for y, we obtain y = (1.13 10 -’)(779)(8.314)(293)/0.084 = 0.0255 J m - 2  = 25.5 mJ m -2, 

which agrees with the value determined by conventional methods. 
In addition to proving the Kelvin effect, the data in Figure 6.5 show that the surface tension 

of cyclohexane may be regarded as constant down to a radius of curvature given by the 
reciprocal of the abscissa corresponding to p/po = 0.77, which is 4 nm. It is remarkable that the 
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FIG. 6.5 Verification of the Kelvin equation for cyclohexane "necks" of different curvature be- 
tween mica surfaces (discussed in Example 6.2). (Redrawn from. L. R. Fisher and J .  N. Israelach- 
vili, Nature, 277, 548 (1979).) 

same value of y as determined on macroscopic surfaces continues to apply to within an order 
of magnitude of molecular dimensions. 

* * *  

6.5b Effect on the Solubility of Solids in Liquids 

The Kelvin equation may also be applied to the equilibrium solubility of a solid in a liquid. In 
this case the ratio p / p o  in Equation (40) is replaced by the ratio a/a,, where a, is the activity of 
dissolved solute in equilibrium with a flat surface, and a is the analogous quantity for a 
spherical surface. For an ionic compound having the general formula M,X,, the activity of a 
dilute solution is related to the molar solubility S as follows: 

a = (mS)"(nS)" (41) 

Therefore for a solid sphere 

= (m + n)RTln  
P R s  

where S and So are the solubilities of the spherical and flat particles, respectively. In principle, 
Equation (42) provides a thermodynamically valid way to determine y for an interface involv- 
ing a solid. The thermodynamic approach makes it clear that curvature has an effect on 
activity for any curved surface. The surface free energy interpretation of y is more plausible 
for solids than the surface tension interpretation, which is so useful for liquid surfaces. Either 
interpretation is valid in both cases, and there are situations in which both are useful. From 
solubility studies on a particle of known size, ys can be determined by the method of Example 
6.2. 

Although the increase in solubility of small particles is unquestionably a real effect, using 
it quantitatively as a means of evaluating ysr is fraught with difficulties: 

1. The difference in solubility between a small particle and a larger one will probably be 
less than 10%. Since a phase boundary exists at all, the solubility is probably low to 
begin, so there may be some difficulty in determining the experimental solubilities 
accurately. 
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2. Solid particles are not likely to be uniform spheres, even if the sample is carefully 
fractionated; rather, they will be irregularly shaped and polydisperse, although the 
particle size distribution may be narrow. The smallest particles will have the largest 
effect on the solubility, but they may be the hardest to measure. 
The radius of curvature of sharp points or protuberances on the particles has a larger 
effect on the solubility of irregular particles than the equivalent radius of the particles 
themselves. 

3 .  

6 . 5 ~  Effect on Nucleation 

The Kelvin equation helps explain an assortment of supersaturation phenomena. All of 
these - supercooled vapors, supersaturated solutions, supercooled melts -involve the onset of 
phase separation. In each case the difficulty is the nucleation of the new phase: Chemists are 
familiar with the use of seed crystals and the effectiveness of foreign nuclei to initiate the 
formation of the second phase. 

The Kelvin equation shows that the ratio S / S ,  or p/po increases rapidly as R, decreases 
toward zero. Applying Equation (40) rigorously (and incorrectly) down to R, = 0 would 
imply infinite supersaturation and make the appearance of a new phase impossible. Equation 
(40) is derived on the basis of two phases already in existence. To  arrive at an understanding 
of the emergence of a new phase, we must consider what is going on at the molecular level at 
the threshold of phase separation. A highly purified vapor, for example, may remain entirely 
as a gas even though its pressure exceeds the normal vapor pressure of the liquid for the 
temperature in question. At such a point the vapor state is thermodynamically unstable with 
respect to the formation of a liquid phase with flat surfaces. Whatever stability the vapor has 
is kinetic stability, arising from the high activation energy required to start the formation of 
the second phase. A crude kinetic picture of the processes occurring at the molecular level may 
be informative. 

Although a supersaturated vapor is still a gas, it is a very nonideal gas indeed! Clusters of 
molecules are continually forming and disintegrating; these are the embryonic nuclei of the 
new phase. Some of these clusters will be dimers, some trimers, and in general n-mers. Each 
will have its own characteristic radius Rs,n. An abbreviated derivation of the rate of formation 
of n-mers proceeds as follows. The rate law will contain both a frequency factor and a 
Boltzmann factor. The energy term in the latter may be estimated by Equation (38)  with 
volume of the cluster taken to be (4/3)7rR,:. The frequency factor will involve the probability 
of additional molecules adding by collision; that is, it will depend on the surface area of the 
cluster (47rR,d) and the frequency of collisions with a wall as given by kinetic molecular 
theory. Therefore the rate law may be approximated as 

where 2 is the collision frequency. Since the collision frequency certainly increases with p ,  the 
pressure has been factored out of the second expression in Equation (43), where c, and c2 are 
constants. 

Two aspects of Equation (43) are especially informative. First, we observe that the pre- 
exponential term increases with increasing R,, ,  whereas the exponential term decreases. This 
means that there exists some critical radius for which the rate law shows a maximum. Clusters 
with this critical radius may be compared with reaction intermediates or transition states in 
ordinary chemical reactions. Those clusters that manage to overcome the energy barrier associ- 
ated with this critical size are capable of further growth, leading to the appearance of the new 
phase, and smaller clusters disintegrate. In addition, Equation (43) also shows that the rate of 
cluster growth increases as the pressure increases. All clusters, including those of the critical 
size, form more rapidly at higher pressures. 

The preceding considerations suggest that a point is ultimately reached in the course of 
increasing supersaturation at which the liquefaction process becomes kinetically as well as 



SURFACE TENSION AND CONTACT ANGLE 265 

thermodynamically favorable. It must be remembered here that the initial state of the system 
is one of instability, or, more correctly, metastability. Once liquefaction begins, the pressure 
drops until the radius-pressure combination that satisfies Equation (40) is reached. 

A great deal of work has been done on the kinetics of phase formation; the arguments 
presented here are intended merely to suggest the direction taken in more detailed treatments. 
Many aspects of nucleation are of extreme interest in colloid and surface chemistry. The 
monodisperse colloids are formed by carefully controlling the formation of the solid phase. In 
the case of the monodisperse sulfur sols, for example, the decomposition of S,O,’- (Chapter 
5,  Section 5 . 7 ~ )  proceeds slowly to quite a high level of supersaturation (the solution must be 
free of foreign nuclei). Ultimately, clusters of sulfur atoms exceeding the critical size form, 
nucleate precipitation, and grow until the supersaturation is relaxed. Any additional sulfur 
that is formed beyond this point will deposit on these particles without forming a new “crop” 
of nuclei. Relatively monodisperse colloids formed by such condensation processes depend on 
the fact that supersaturation, and therefore nucleation, occur only once during the formation 
of the colloid. If the rate of crystallization were too slow, then a second stage of supersatura- 
tion and nucleation might be reached, and a polydisperse colloid would result. 

Of course, nucleation may also be accomplished by seeding or adding externally formed 
nuclei. The monodisperse gold sols described in Chapter 5 ,  Section 5.7b, are prepared by this 
method. The use of AgI crystals and other materials as nuclei in cloud seeding has also been 
studied extensively. This is especially interesting in view of possible applications to weather 
modification. 

6.6 SURFACE TENSION AND CONTACT ANGLE: 
THEIR RELATION TO WETTING AND SPREADING PHENOMENA 

In the sections above, a variety of important related concepts have been introduced. Among 
these are the equivalence of surface tension and surface free energy, the applicability of these 
concepts to solids as well as liquids, and the notion of the contact angle. All these concepts are 
brought together in discussing the physical situation sketched in Figure 6.6, which is important 
for understanding wetting, spreading, and related phenomena. 

6.6a Relationship Between Surface Tension and Contact Angle: 
The Young Equation 

Suppose a drop of liquid is placed on a perfectly smooth solid surface, and these phases are 
allowed to come to equilibrium with the surrounding vapor phase. Viewing the surface ten- 
sions as forces acting along the perimeter of the drop enables us to write immediately an 
equation that describes the equilibrium force balance in the horizontal direction: 

(44) Y L V  cos 6 = Y s v  - Y S L  

FIG. 6.6 Components of interfacial tension needed to derive Young’s equation. 
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This result was qualitatively proposed by Thomas Young in 1805 and is generally known as 
Young’s equation. It is also known as the Young-Dupre equation or the Dupre‘ equation 
(MacRitchie 1990). 

Young’s equation is a plausible, widely used result, but its apparent simplicity is highly 
deceptive. The two terms that involve the interface between the solid and other phases cannot 
be measured independently, so experimental verification is difficult, although a variety of 
experiments have been directed along these lines. There are also a number of objections to 
Young’s equation. These objections may be classified into two categories: 

Those based on the noncompliance of the experimental system to the assumptions in 
the derivation 
Those critical of the assumption of thermodynamic equilibrium in the solid 

1. 

2. 

We discuss these two classes of objections separately. 

6.6a. I 
Real solid surfaces may be quite different from the idealized one in the above derivation. 
Actual solid surfaces are apt to be rough and even chemically heterogeneous. This statement 
is true on a fine scale, even for carefully prepared surfaces. We discuss these complications in 
more detail in Section 6.7. In Chapter 9 we examine metal surfaces specifically to see the 
extreme conditions that must exist for these surfaces to be uniform down to an atomic scale. 

The model surface of the derivation is thus the exception rather than the rule for solid 
surfaces. In principle, both roughness and heterogeneity can be incorporated into Young’s 
equation in the form of empirical corrections. For example, if a surface is rough, a correction 
factor 0 is traditionally introduced as a weighting factor for cos 8, for which 0 > 1. The logic 
underlying this correction goes as follows. The factor cos 8 enters Equation (44) because of 
the projection of yLv onto the solid surface in the force balance. If the solid surface is rough, 
the corresponding surface area will be larger, but much of it will be “overshadowed” (i.e., the 
surface area will be underestimated) by the projection since Equation (44) assumes that the 
surface is smooth. The roughness factor 0 corrects for this effect (that is why 0 > 1). With 
the empirical correction factor for roughness included, Young’s equation becomes 

Effects of Surface Heterogeneities 

A surface may also be chemically heterogeneous. Assuming, for simplicity, that the sur- 
face is divided into fractionsf, and f2 of chemical types 1 and 2, we may write 

where f, + f2 = 1. 
Both roughness and heterogeneity may be present in real surfaces. In such a case, the 

correction factors defined by Equations (45) and (46) are both present. Although such modifi- 
cations adapt Young’s equation to nonideal surfaces, they introduce additional terms that are 
difficult to evaluate independently. Therefore the validity of Equation (44) continues to be 
questioned. 

6.6a.2 Effect of the State of Equilibrium at the Solid Surface 
More fundamental objections to Young’s equation center on the issue of whether the surface 
is in a true state of thermodynamic equilibrium. In short, it may be argued that the liquid 
surface exerts a force perpendicular to the solid surface, y rv  sin 8. On deformable solids a 
ridge is produced at the perimeter of a drop; on harder solids the stress is not sufficient to 
cause deformation of the surface. This is the heart of the objection. Is it correct to assume 
that a surface under this stress is thermodynamically the same as the idealized surface that is 
free from stress? Clearly, the troublesome stress component is absent only when 8 = 0, in 
which case the liquid spreads freely over the surface, and Figure 6.6 becomes meaningless. 

In answer to this, the following argument has been suggested based on the fact that it is 
the difference (ysv - ysL) that appears in Young’s equation. Since the same solid is common 
to both terms, it is really only the local difference at the surface between an adjacent phase 
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that is liquid and one that is vapor that is being measured. According to this point of view, the 
nonequilibrium state of the solid is immaterial: The same solid is involved at both interfaces. 

Another approach to resolving this theoretical objection to Young’s equation is to elimi- 
nate the difference (ysv - y s L )  from the equation entirely, replacing it by some equivalent 
quantity, thereby shifting attention away from the notion of solid surface tension. An example 
of this is the use of the heat of immersion to test Young’s equation. We return to this in 
Section 6 . 6 ~ .  

In summary, then, Young’s equation is still controversial despite the fact that it has been 
in existence since the beginning of the 19th century. The reader will appreciate that any 
relationship that has been around so long and has eluded definitive empirical verification has 
been the center of much research. Accordingly, the relationship is very widely encountered in 
the literature of surface chemistry. 

6.6b Young’s Equation and Equilibrium Film Pressure 

To explore Young’s equation still further, suppose we distinguish between ysv and yso, where 
the former describes the surface of a solid in equilibrium with the vapor of a liquid and the 
latter a solid in equilibrium with its own vapor. Since Young’s equation describes the three- 
phase equilibrium, it is proper to use ysv in Equation (44). The question arises, however, what 
difference, if any, exists between these two 7’s. In order to account for the difference between 
the two, we must introduce the notion of adsorption. In the present context adsorption 
describes the attachment of molecules from the vapor phase onto the solid surface. All of 
Chapter 9 is devoted to this topic, so it is unnecessary to go into much detail at this point. The 
extent of this attachment depends on the nature of the molecules in the vapor phase, the 
nature of the solid, and the temperature and the pressure. 

For now we may anticipate a result from Chapter 7 to note that adsorption always leads 
to a decrease in y. In the present context, therefore, we write 

We shall use the symbol xr to signify the difference 

Yso - Ysv = r e  (48) 

and call this quantity the equilibrium film pressure. The word equilibrium in this designation 
refers explicitly to the fact that the adsorbed molecules are in equilibrium with a drop of bulk 
liquid. The molecules adsorbed at an interface may be regarded as repelling one another or as 
rebounding off one another, thereby relieving some of the tension in the surface. This interpre- 
tation makes it sensible to call the reduction of y due to adsorption xr a “pressure.” Note that 
xe is a two-dimensional pressure, measuring the force exerted per unit length of perimeter 
(Newtons per meter) by the adsorbed molecules. We shall have a good deal more to say about 
this quantity in the following chapter. With these ideas in mind, Equations (44) and (48) may 
be combined to give 

YLV COS 8 = 7s. - T r  - YSL (49) 

Figure 6.6 shows the relationship among yso, ysv, and re. It is apparent that the value of 8 
might be quite different between equilibrium and nonequilibrium situations, depending on the 
value of re. There are several concepts that will assist us in anticipating the range of xe values: 

1. 
2. 

3. 

4. 

Spontaneously occurring processes are characterized by negative values of AG. 
Surface tension is the surface excess free energy; therefore the lowering of y with 
adsorption is consistent with the fact that adsorption occurs spontaneously. 
Surfaces that initially possess the higher free energies have the most to gain in terms 
of decreasing the free energy of their surface by adsorption. 
High-energy surfaces bind enough adsorbed molecules to make xe significant. On the 
other hand, x, is negligible for a solid that possesses a low-energy surface. 
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5 .  

6. 

A surface energy in the neighborhood of 100 mJ m-* is generally considered the 
cutoff value between high- and low-energy surfaces. 
Silica, glass, metals, metal oxides, metal sulfides, and inorganic salts are examples 
of high-energy surfaces. Most solid organic compounds, including polymers, have 
low-energy surfaces. 
Hard and soft solids are generally classified as having high- and low-energy surfaces, 
respectively. These criteria must be used cautiously since the mechanical properties of 
a solid depend on the concentration of defects and dislocations in the bulk. 

Because of the simplification that results from T, = 0 for low-energy surfaces, they are 
often chosen as model systems in fundamental research. Even when neglecting T, is of ques- 
tionable validity, ysv and yso are often used interchangeably for lack of suitable data. We see 
in Chapter 9-Equation (9.7), for example- how T, may be determined from experimental 
adsorption data. Otherwise, we generally assume re = 0. 

7. 

6 . 6 ~  Young’s Equation and Heat of Immersion 

6 . 6 ~ .  I Enthalpy of Wetting 
Small quantities of heat are generally evolved when a dry solid is immersed in a liquid. This 
can be measured calorimetrically and is called the heat of immersion. The physical process 
with which this heat is associated may be represented by the following equation: 

liquid 

Dry solid --+ wet solid (A) 

Following the usual thermochemical convention, the heat of immersion AH,, may be written 
H,,, - Hdry, with these enthalpies expressed per unit area. Since heat is released by this 
process, AH;, is negative. The “wet” surface clearly describes the SL interface. For the “dry” 
surface, we ignore T, and describe the surface by the So notation. Therefore the heat of 
immersion may also be written 

AH;, = HiL - H;O 

Next we recall Equation (20), which gives us an expression for H”: 

Applying Equation (51) to the right-hand side of Equation (44)- with ysv = yso-gives 

AH;, = (ysL - T h )  aT - (ys0 - T%) aT 

Using y L v  cos I9 as a replacement for yso - ysL we obtain 

Carrying out the indicated differentiation yields 

dTL v d cos I9 
-AH,, = yLVcosI9 - TcosI9- - T y L v p  

dT dT (54) 

which shows how Young’s equation may be tested by comparing experimental heats of immer- 
sion with calculated values. Example 6.3 gives an idea of the magnitude of some of these 
quantities. 

EXAMPLE 6.3 Determination of Heat of Immersion from Surface Tension and Contact Angle. 
Estimate the heat of immersion for the system for which and 19 are 22 mJ m P 2  and 30°, 

* * *  
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respectively, at 2OOC. The temperature variations of 7 and cos 8 are -0.10 mJ m -2 K - ’  and 
0.0010 K-’, respectively. These values are close to those observed for liquid alkanes on Teflon. 
Comment on the implications of this estimate for the ease or difficulty in measuring AHim. 

Solution: We can estimate AH, by substitution into Equation (54): 

AH,, = - y L v ~ ~ ~  e + TCOS o (dyL,,/dq + ~7~~ (d COS OMT) 
= - (22) COS 30 + 293 COS 30 ( - 0.10) + 293 (22) (0.001 0) 
= -38rnJmp2 

To get an idea of the problems associated with this kind of experiment, we estimate the temper- 
ature change in the liquid as a result of absorbing this heat. Using 2.4 J g -’ K -’ for the heat 
capacity (the value for n-octane) and taking T = 1.6 K as an arbitrary but convenient tempera- 
ture change, we calculate 

That is, for each gram of liquid, about 100 m2 of surface must be wet. This overestimates the 
temperature change since it ignores the fact that the solid will absorb some heat. If the heat 
capacity of the solid is the same as the liquid, 100 m 2  of surface must be wet for each gram of 
solid-liquid mixture. Using a smaller temperature change would decrease the required area 
proportionately, but the fact remains that large areas are required to obtain measurable effects. 

2 .4JK- ’ /g .  1.6K.(m2/0.038J) = 100m2g- ’  

Practically, this means work with powdered solids of small particle size. 

* * *  

6.6c.2 Comments on the Measurement of Heats of Immersion 
Although heats of immersion are small, this quantity is measurable. For systems in which both 
the heat of immersion and the necessary information about y and 8 have been measurable, the 
prediction of Equation (54) has been verified. Figure 6.7 shows some experimental results for 
n-alkanes wetting Teflon (polytetrafluoroethylene) surfaces. The open circles were determined 
calorimetrically; the closed ones were calculated from Equation (54). Even though the two 
sets of values diverge for alkanes larger than n-decane, the overall picture is quite acceptable. 
Incidentally, the value calculated in the example is close to the actual values, even though the 
numbers used in Example 6.3 were rounded off. 

Several aspects of Figure 6.7 and Example 6.3 deserve further comment: 

1. Calorimetry requires large areas of interface, which virtually demands powdered 
solids. We have not considered (yet) the problem of measuring 8 and dO/dT for 
powders. Solids that are available as large specimens with smooth surfaces (suitable, 
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FIG. 6.7 Heats of immersion determined by calorimetry and calculated by Equation (54) for 
Teflon in various alkanes. (Redrawn from A. W.  Neumann, Adv. Colloid Interface Sci., 4, 105 
(1974).) 
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say, for the tilted plate determination of 8) can be pulverized to increase their surface. 
The reverse process is often not possible for powders, so a method for measuring 
powders is important. 
Results like those shown in Figure 6.7 may be considered an experimental verification 
of Young’s equation. In light of the first item, however, there may still be objections 
that the surfaces used for calorimetric studies and those used to study y and 8 are not 
identical even though they are nominally the same. 
Accepting Equation (54) and Young’s equation, on which it is based, suggests calo- 
rimetry as a method for measuring contact angles. At this time this is not practical, 
but the implication that contact angle is a thermodynamic property is a very impor- 
tant realization. 

Although we established the thermodynamic significance of y early in the chapter, 8 has 
been allowed to drift. Its role is clear when we think of surface tension as a force: We use 8 to 
project y in a specified direction. In thermodynamic terms, contact angle has been an outsider 
in our presentation. Young’s equation is the remedy to this. Rewriting Equation (44), we 
observe 

2 .  

3. 

and cos 8 is fully described by various free energy terms. In view of this new-found (for us) 
significance, we return shortly to some additional experimental methods for the determination 
of 8. First, however, we consider the notions of adhesion, cohesion, and spreading, which will 
enhance our ideas of y and 8 as thermodynamic quantities. 

6.6d Surface Tension and Cohesion, Adhesion, and Spreading 

In this section we consider some hypothetical processes that provide us with additional ways 
of thinking about y and 8. They are related to process (A) stated in Section 6 . 6 ~ .  1 but are not 
studied calorimetrically as is the case with immersion. In defining adhesion, cohesion, and 
spreading, we designate the phases A and B without specifying their physical state. Their 
surface with each other is designated AB; their individual surfaces with their own vapor or air 
(we make no distinction here) are designated by either A or B. With this notation in mind, we 
consider the following processes as they affect a unit area: 

1. Cohesion: 

No surface -+ 2A (or B )  surfaces (6) 

(C) 

(D) 

2. Adhesion: 

IABsurface + 1A + 1Bsurface 

3. Spreading ( B  on A ) :  

1A surface -+ 1AB + 1Bsurface 

Schematic illustrations of these processes are shown in Figure 6.8. Two things must be 
remembered about these sketches: One unit of surface is affected by the processes, and the 
shape of the affected area is immaterial. It is understood that these are elements of volume 
and area that are portions of macroscopic samples. Our interest is in the free energy change 
accompanying each process. 

6.6d. I Work of Cohesion 
In Figure 6.8a-which applies to a pure liquid-the process consists of producing two new 
interfaces, each of unit cross section. Therefore, for the separation process, 

(56) 
The quantity W,, is known as the work of cohesion since it equals the work required to pull 
apart a column of liquid A apart. It measures the attraction between the molecules of the two 

AG = 27, = W,, 
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FIG. 6.8 Work of cohesion, adhesion, and spreading. Schematic illustrations of the processes for 
which AG equals (a) the work of cohesion; (b)  the work of adhesion; and (c) the work of spreading. 

portions. Recall the concept of cohesive energy density in terms of which we discussed in 
Section 3.4b interactions between pairs of identical molecules. Interpreting y as half the 
work of cohesion shows that surface tension measures the free energy change involved when 
molecules f rom the bulk of a sample are moved to the surface. 

6.6d.2 Work of Adhesion 
Now let us consider the value of AG for the separation of A and B as represented in process 
(C) and Figure 6.8b. Taking the difference between the final and the initial free energies for 
this process yields 

This quantity is known as the work of adhesion and measures the attraction between the two 
different phases. 

The work of adhesion between a solid and a liquid phase may be defined by analogy with 
Equation (57 ) :  

By means of Equation (48), yso may be eliminated from this expression to give 

Kf. = Ysr, + r e  + Y L V  - YSL. 

Finally, Young's equation may be used to eliminate the difference (ysv - y s L ) :  

ws, 1 y.Yr(1 + COS 8) + r e  

(59) 

Neglecting re as we did in the last section, Equation (59) shows how y and 8 combined measure 
the work of adhesion between a solid and a liquid. 
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It is informative to apply Equation (60) to low-energy surfaces for two extreme values of 
8, O o  and 180°, for which cos 8 is 1 and - 1 ,  respectively. For 8 = Oo,  W,, = 2yLV = W A A ;  

the work of solid-liquid adhesion is identical to the work of cohesion for the liquid. In this 
case interactions between solid and solid, liquid and liquid, and solid and liquid molecules are 
all equivalent. At the other extreme, with 8 = 180°, W,, = 0. In this case the liquid is tangent 
to the solid; there is no interaction between the phases. 

6.6d.3 

Last, if we take the difference between the final and initial states for the process of spreading 
B over A (symbolized B / A )  we obtain 

Spreading Revisited: The Spreading Coefficient 

As usual with free energies, a negative value for AGB/,4 means that the process represented by 
process (D) and shown in Figure 6 . 8 ~  occurs spontaneously. The negative of AGB,A is called 
the spreading coefficient SBIA; because of the sign change, a positive spreading coefficient 
means B spreads freely over A and wets it. The concept of wetting is very important in 
numerous applications: With lubricants and adhesives it is desirable, and in waterproofing it 
is undesirable. Since additives are frequently mixed into liquids to affect this property, it is 
appropriate to postpone any discussion of applications of the spreading coefficient until the 
next chapter. 

By combining Equations (56), ( 5 7 ) ,  and (61), we note that the spreading coefficient can 
also be written 

If WA, > We,, the A-B interaction is sufficiently strong to promote the wetting of A by B. 
This is the significance of a positive spreading coefficient. Conversely, no wetting occurs if 
W,, > W,, since the work required to overcome the attraction between two B molecules is 
not compensated by the attraction between A and B. Thus a negative spreading coefficient 
means that B will not spread over A .  

6.7 CONTACT ANGLES: SOME COMPLICATIONS 

6.7a Advancing and Receding Contact Angles 

In Section 6.2 we saw how the tilted plate method could be used to measure 8; we also noted 
that it could be determined by the Wilhelmy method if y were measured independently. For 
that matter, the three-phase junction might be examined and 8 determined by direct observa- 
tion. These and many other methods-some of which we discuss later-have been used to 
measure 8. Even if the most careful experimental techniques are employed on carefully pre- 
pared surfaces, contact angle data are frequently confusing. The situation is best introduced 
by referring to Figure 6.9, which shows a drop on a tilted plane. “Teardrop” shapes such as 
this are familiar to everyone-just look at a raindrop on a window pane. The problem, of 
course, is that the contact angle is different at different points of contact with the support. It 
is conventional to call the larger value the advancing angle O,, and the smaller one the receding 
angle 8,. The two may be quite different. The presence of contamination is definitely a 
contributing factor, but it is by no means the only one. Therefore, even with carefully purified 
materials, both advancing and receding contact angles should be measured. 

All the techniques described here are easily conducted, so that both 8, and 8, may be 
observed. When the tilted plate method is used to evaluate the contact angle, 8, values are 
obtained if the plate has been pulled out (emersion) from the liquid; 8, results if the plate is 
pushed into the liquid (immersion). Likewise, both values of 8 may be obtained from the 
Wilhelmy method, depending on whether the liquid is making an initial contact (8,) with the 
plate or is draining from it (8,). 
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FIG. 6.9 
from Johnson and Dettree 1969.) 

A drop on a tilted plane, showing advancing and receding contact angles. (Adapted 

6.7b Contact Angle Hysteresis 

A rather interesting example of the difference between advancing and receding contact angles 
is obtained from the Wilhelmy plate method when the contact angle has a nonzero value. 
Suppose the Wilhelmy plate is allowed to dip beneath the horizontal liquid surface, as shown 
in Figure 6.10a. In this case the weight of the meniscus as given by Equation (2) will be 
decreased by a term w ’, the buoyant force on the submerged plate. This buoyant force will 
clearly be proportional to the depth of immersion d. Therefore we write 

w ~ P C O S ~  - W‘ = ~ P C O S ~  - kd (63) 

where k is a suitable proportionality constant. This equation shows that the apparent weight w 
of the meniscus should give a straight line when plotted against the depth of immersion, and 
that the intercept should be proportional to cos 8. If a single value of 8 applies to both the 
immersion and emersion steps, then the line shown in Figure 6.10b would result. Because of 
the difference between 8, and O r ,  a curve like that shown in Figure 6 . 1 0 ~  is obtained instead. 
When the immersion-emersion cycle is repeated, a hysteresis loop is obtained that may be as 
reproducible as the analogous loops observed in magnetization-demagnetization cycles. The 
difference (8, - 6,) is called the hysteresis of a contact angle. 

The general requirement for hysteresis is the existence of a large number of metastable 
states that differ slightly in energy and are separated from each other by small energy barriers. 
The situation is shown schematically in Figure 6.11. The equilibrium contact angle corre- 
sponds to the free energy minimum. However, systems may be “frozen” in metastable states 
of somewhat higher energy by lacking sufficient energy to overcome the energy barrier separat- 
ing them from equilibrium. An interesting experimental observation is that advancing and 
receding values of 8 converge to a common value when the surface is vibrated. Presumably, 
the mechanical energy imparted to the liquid by the vibration assists it in passing over the 
energy barrier and reaching equilibrium. In this sense maximum vibration rather than vibra- 
tion-free conditions may appear to be the ideal conditions for measuring 8, but “vibration” is 
a difficult parameter to control reproducibly, so this concept is of little practical help. 

Now let us briefly consider the origin of these metastable states. If we exclude the effect 
of impurities, the metastable states are generally attributed to the roughness of the solid 
surface, its chemical heterogeneity, or both. Of course, a well-prepared laboratory sample will 
be fabricated and cleaned as effectively as possible to eliminate gross roughness and chemical 
heterogeneity. What we are talking about are microscopic irregularities that cannot be elimi- 
nated. In size and distribution, these will follow a random pattern on actual surfaces. 

An informative model for contact angle hysteresis is obtained by postulating the surface 
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FIG. 6.10 Contact angle hysteresis: (a)  weighing a meniscus in a Wilhelmy plate experiment 
versus the depth of immersion of the plate; (b) both the advancing and receding contact angles are 
equal; (c) O0 > 8,. 

FIG. 6.1 1 
angles. 

Schematic energy diagram for metastable states corresponding to different contact 
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to contain a set of concentric grooves on which a drop rests. Figure 6.12 represents the profile 
of two different drops on such a surface. In both of the profiles shown, the angles of contact 
between the liquid-vapor interface and the solid are identical, 8,. With respect to the horizon- 
tal, however, two very different apparent contact angles are observed. The two extremes are 
identified as 8, and 8, in this model. 

The two drop configurations in Figure 6.12 differ in surface area and in the elevation of 
their centers of gravity, thus they possess different energies. The change from one configura- 
tion to the other involves the distortion of the shape of the drop, which accounts for the 
energy barrier between the two configurations. Thus the model qualitatively accounts for the 
kind of metastable states shown in Figure 6.11 that are required for hysteresis. According to 
this model, contact angle hysteresis arises when a three-phase boundary becomes trapped in 
transit, lacking sufficient energy to surmount the energy barrier to a lower energy state. The 
teardrop profile of Figure 6.9 corresponds to the situation in which one edge of the drop has 
one configuration while the other edge has the second configuration. 

This model can also be applied to hysteresis that arises from chemical heterogeneity; 
however, this time the surface is assumed to be smooth and to contain concentric rings of 
different chemical composition and hence different 13's. Actual heterogeneity may arise from 
impurities concentrated at the surface, from crystal imperfections, or from differences in the 
properties of different crystal faces. The distribution of such heterogeneities on an actual 
surface will obviously be more complex than the model considers, but the qualitative features 
of hysteresis are explained by the model nevertheless. Johnson and Dettree (1969) present 
additional details of model experiments of this sort. 

If a surface consists of a patchwork array of high- and low-energy sites, it is generally 
assumed that the larger, advancing contact angle measures the contact angle that would be 
obtained for a smooth, homogeneous sample of the low-energy component: 

Conversely, the receding angle is taken as a measure of I3 appropriate to the high-energy 
component: 

Both of these conclusions are consistent with Young's equation. All other things being equal 
in Equation ( 5 5 ) ,  the larger ysc =. yso is, the larger cos 8 will be. Since the cosine increases as 
I3 decreases, large values of yso result in smaller contact angles, and vice versa. We noted 

FIG. 6.12 Cross section of a drop resting on a surface containing a set of concentric grooves. For 
both profiles the contact angles are microscopically identical although macroscopically different. 
(Adapted from Johnson and Dettree 1969.) 
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previously that high-energy surfaces have more to gain by adsorption than low-energy sur- 
faces. This helps explain why receding contact angles are less reproducible than advancing 
angles; adsorption by impurities affects this measurement the most. Correlations with surface 
roughness reveal that receding angles are also more sensitive to roughness than advancing 
angles. For these reasons 8, is more reliable than 8, as a characteristic of the solid. Obviously, 
the lower the hysteresis is, the more we can be sure that this quantity truly represents the solid. 

In addition to roughness and heterogeneity, time-dependent effects also influence contact 
angle hysteresis. Dynamic studies have been conducted with liquid fronts moving across a 
solid substrate at variable speeds. Even the extrapolation to zero rate is unsatisfactory since 
the limiting dynamic values differ from equilibrium values. This suggests that insufficient 
mobility at the molecular level may also contribute to hysteresis. Viscous effects operating in 
the interface may contribute other forces besides those shown in Figure 6.6 that influence the 
value of the contact angle. This type of effect is harder to analyze than roughness and 
heterogeneity, but future research may help clarify this third cause of hysteresis. 

With this background, let us now return to experiments that yield values for y and 8. 

6.8 MEASURING SURFACE TENSION AND 
CONTACT ANGLE: ROUND TWO 

We have now established that both y and 8 have thermodynamic significance and have seen 
that their values as well as their temperature coefficients are of interest. In addition, we have 
seen that the measurement of contact angles presents some complications of its own. All this 
adds up to a need for more reliable and more accurate methods for the measurement of these 
parameters than those presented in Section 6.2. One of the most powerful strategies for this 
involves a second measurement made with the Wilhelmy plate. 

6.8a Height of a Meniscus at a Wall 

We saw in Section 6.2 that the Wilhelmy plate offers an accurate method for measuring y cos 
8. We thus have one experiment with two unknowns. The Wilhelmy balance measures the 
weight of the meniscus; in this section we examine the height to which the meniscus climbs on  
the same surface. We shall see that this distance-which may be accurately measured with a 
traveling microscope or cathetometer - also depends on  y and 8. The functional relationship 
between these parameters and the experimental variables is different from the case of the 
meniscus weight. Therefore we have two experiments with two unknowns that can be solved 
for y and 8. 

Since both of these measurements can be made with the same interface, difficulties arising 
from the pairing of mismatched data are eliminated. Of course, the complications associated 
with surface roughness and chemical heterogeneity persist, and the method applies only to 
solids that can be prepared as plates. Despite these limitations, this technique is the best 
general method available for determining y and 8. In the next section we describe some 
additional ways of obtaining y values, and in Section 6.9 we discuss a method for measuring 8 
on powdered solids. 

In Section 6.4 we discussed the pressure difference that exists across a curved surface. The 
Laplace equation, in the form provided by Equation (35), gives a general description of this 
pressure difference Ap. Our objective is to apply this relationship to the meniscus formed by a 
liquid surface at a flat solid wall. The first thing to  notice about this is that one of the R's in 
Equation (35) becomes infinite since the support is planar; hence this R - '  term disappears 
from the Laplace equation. 

Figure 6.13a shows a cross-sectional view of this meniscus and defines some pertinent 
quantities for the experiment. The meniscus is formed by liquid A displacing B. The weight of 
the displaced B exerts a buoyant force on the meniscus; therefore the density difference must 
be used. The pressure difference is zero at the flat surface well removed from the wall. We 
define this to be the z = 0 plane. The meniscus makes contact with the wall at z = h. Our 
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FIG. 6.13 
liquid B in terms of (a) x and z and (b) 4. 

Definitions of variables used to describe a meniscus formed by liquid A displacing 

interest is in some general point on the surface having the coordinates (x,z). Just beneath the 
surface at this point the pressure is less by Ap(x,z) than in the reference plane. The liquid is 
elevated at this point by an amount sufficient to produce a compensating hydrostatic pressure. 
This pressure is given by [ ( p 4  - p B ) g z ] ,  which may be equated to the pertinent form of 
Equation (35): 

Apgz = y/R, (66) 

where R ,  is the radius of curvature in the plane of Figure 6.13a. Substitution of Equation (36) 
for 1/R, generates a second-order differential equation with a solution that gives z =f(x). The 
mathematics are simplified considerably by using some trigonometric relations based on the 
tangent and the normal to  the curve constructed at  the point under consideration. Figure 6.13b 
shows the local radius of curvature of a general curve. The angle + is the angle made by the 
extension of the normal with the z axis; + also gives the angle between the tangent and the x 
axis. Inspection of Figure 6.13b reveals that the local slope of the tangent dz /dx  = -tan 4 = 
-sin +/cos 4. Substituting this ratio into Equation (36) gives 

When the indicated differentiations are carried out and the result is simplified, Equation 
(67) becomes 

d4 
- = -cos 4 - 
RI dx  

1 

which is the same as 

d sin + - - 1 
- -___ 
RI dx  

Since x a sin C$ and z a cos 4, Equation (69) is equivalent to 

d cos 4 - - 
1 
- -~ 

RI dz 

Substituting this result into Equation (66) gives a relationship that is easily integrated: 
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Carrying out the indicated integration and evaluating the constant from the fact that 4 = 
0 at z = 0 (i.e., the tangent is horizontal), we obtain 

At the wall where z = h ,  4 is the complementary angle to 8, the contact angle. Therefore at 
the surface of the solid support 

c o s 4  = sin8 

and 

(73) 

where a’ is given by Equation ( 5 ) .  This result 
height to which the meniscus climbs against 

shows that 8 may be evaluated by measuring the 
a wall, provided that y is known. Example 6.4 

gives us an indication of the magnitude of the effect to be determined. 
* * *  

EXAMPLE 6.4 Surface Tension and the Height of a Meniscus at a Wall. Calculate the height 
to which an n-octane surface will climb on a Teflon wall (this is the same system used in 
Example 6.3) if -,J is 22 mJ mP2, 8 = 30°, and p = 0.70 g cmP3. Comment on the ease or 
difficulty of making this measurement. 

Solution: The density of air is insignificant compared to the liquid; hence p can be used for Ap. 
Because the density is given in cgs units, it is convenient to use this system of units throughout; 
remember, millijoule meter P 2  and erg cm - 2  are numerically identical. Substituting numerical 
values into Equation (74) gives 

sin 30 = 1 - [(0.70)(980) h2/2(22)] 

from which h2 = 0.032 cm2 and h = 0.18 cm. 
Although h is not a large number, it is readily measurable using a cathetometer or low- 

magnification traveling microscope to measure the vertical distance between the level surface 
of the liquid and the top of the meniscus. The sighting is done along the liquid surface through 
a window in the container holding the liquid. Therefore the junction of interest must be viewed 
through the meniscus at the window. Special care must be taken to establish the right reference 
plane. If the contact angle is very small, the top of the meniscus might be difficult to see, but 
good illumination should remedy this. 

* * *  

6.8a. I 
Equation (74) provides a second relationship in addition to Equation (2), which expresses the 
connection between y and 8 and experimental quantities. The two simultaneous equations can 
be solved for y and 8 by the following steps: 

Simultaneous Measurement of Surface Tension and Contact Angle 

1. Square Equation (74): 

sin2 8 = [ 1 - (Apgh2/2y)]  

2. Square Equation (2): 

cos2e  = ( W / P ~ ) ’  

3. Recognize that sin2 8 + cos2 8 equals unity: 

1 = ( w / P ~ ) ~  + (1  - Apgh2/2y)’ 
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By multiplying out this last result and simplifying, we obtain 

Substituting Equation (75) into Equation (2) gives 

4 Ap g h2 P w 
( A p ) ’ g 2  h4 P2 + 4 w2 

cos8 = 

Equations (75) and (76) allow y and 8 to be evaluated in a perfectly straightforward way from 
experimental quantities measured on a single system with one apparatus. For systems that can 
be fabricated into the necessary plates, this is an excellent way to measure these important 
parameters. 

In the next section we examine the shapes of liquid surfaces possessing an axis of symmetry. 

6.8b Surface Tension and Shapes of Drops, Bubbles, and Menisci 

In the last section we saw that the Laplace equation describes the meniscus formed by a liquid 
surface at  a flat wall. The situation is not essentially different -only more complicated -if the 
supporting wall is wrapped into a cylinder to generate a capillary meniscus with an axis of 
symmetry. As a matter of fact, any liquid interface with axial symmetry is described by the 
same mathematical formalism. For simplicity, we consider a liquid drop resting on a smooth 
horizontal surface as shown in Figure 6.14. Such a drop, incidentally, is called a sessile 
(sitting) drop. In the absence of gravity, a drop like this would be spherical since this geometry 
encloses the maximum volume within a minimum surface area. Any departure from a spherical 
shape increases the area and the surface free energy associated with it. A drop of liquid A in 
air-or, for that matter, any less dense medium B-is ordinarily acted on by gravitational as 
well as surface forces. Gravity forces the drop to lower its center of mass and thus flatten. 
Flattening increases the surface area; the equilibrium shape depends on the balance of the two 
forces. The same situation holds for the shapes of bubbles and menisci. 

6.86. I 
With this physical picture in mind, let us consider how the Laplace equation can be written to 
describe the profile of a sessile drop. Figure 6.14 represents the profile of a sessile drop; the 

Shape of a Sessile Drop: The Bash forth-Adams Equation 

FIG. 6.14 Definition of coordinates for describing surfaces with an axis of symmetry (OP). 
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actual surface is generated by rotating the profile around the axis of symmetry, the z axis in 
this representation. 

In Figure 6.14 the origin of the coordinate system 0 is situated at the apex of the surface. 
The two radii of curvature at point S are defined as follows. The one designated RI lies in the 
plane of the figure and describes the curvature of the profile shown. The radius of rotation of 
point S around the z axis equals x .  The radius R ,  is the radius of curvature of the surface in 
the plane parallel to the z plane (normal to the plane of the figure) at S.  The relationship 
between x and R, is given by 

(77) 

since R ,  is defined as a vector originating at the z axis at P and making an angle cj with the axis 
of symmetry as shown in the figure. 

Because of the symmetry of the surface, both RI  and R ,  must be equal at the apex of the 
drop. The value of the radius of curvature at this location is symbolized b. Therefore at the 
apex (subscript 0) 

x = R,  sin cj 

(AP)" = 2 Y / b  (78) 

according to Equation (30). 
Next let us calculate the pressure at point S .  At S the value of Ap equals the difference 

between the pressure at S in each of the phases. These may be expressed relative to the pressure 
at the reference plane through the apex (subscript 0) as follows: 

1.  In phase A, 

2. In phase B, 

PB = (PB>O + PBgz (80) 

Therefore A p  at S equals 

( & ) S  = PA - PB = ( P A h  - (PB>O + ( P A  - PB)gz = (AP)O + 'PgZ (81) 

where Ap = pA - p B .  Now Equation (78) may be substituted for A p  at the apex to give 

The general form of the Laplace equation may be expressed in terms of the coordinates of 
Figure 6.14 by combining Equations (35) ,  (77), and ( 8 2 ) :  

In Equation (83) R;' is given by Equation (36). Expression (83) is known as the Bashforth- 
Adams equation. It is conventional to express this equation in dimensionless form by express- 
ing all distances relative to the radius at the apex b: 

The cluster of constants in Equation (84) is defined by the symbol p: 

p = -  AP g b2 
Y 

The Bashforth-Adams equation - the composite of Equations (36) and (84) -is a differ- 
ential equation that may be solved numerically with 0 and cj as parameters. Bashforth and 
Adams solved this equation for a large number of 0 values between 0.125 and 100 by compiling 
values of x / b  and z / b  for 0' < c j  < 180'. Their tabular results, calculated by hand before 
the days of computers, were published in 1883. Other workers subsequently extended these 
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tables. A very useful compilation of these results is found in Padday (1969). Table 6.2 shows 
a typical result from these tables for 6 = 25. The surface profiles sketched in Figure 6.15 were 
drawn from these tabulated results for (a) 6 = + 10.0 and (b) 6 = -0.45. 

It is apparent from inspection of Figure 6.15 that different values of 6 characterize 
different drop shapes. This is to be expected since 0 varies with Ap compared to y. According 
to the convention established in Figure 6.14, g and z are measured in the same direction. 
Therefore, when the Bashforth-Adams tables are applied to sessile drops, the sign of Ap 
determines the sign of 0. If pA > pB, 0 will be positive and the drop will be oblate in shape 
since the weight of the fluid tends to flatten the surface. If pA < pB a prolate drop is formed 
since the larger buoyant force leads to a surface with much greater vertical elongation. In this 
case 6 is negative. A 6 value of zero corresponds to a spherical drop and, in a gravitational 
field, is expected only when Ap = 0. Positive values of 0 correspond to sessile drops of liquid 
in a gaseous environment. Negative 6 values correspond to sessile bubbles extending into a 
liquid. These statements imply that the drop is resting on a supporting surface. If, instead, the 
drop is suspended from a support (called pendant drops or bubbles), g and z are measured in 
opposite directions and have different signs; that is, for a pendant drop, z is measured upward 
from the apex, while g continues to define the downward direction. Because of this sign 
reversal, the liquid drop will be a prolate (6 < 0) shape, and the gas bubble will be oblate 
( P  > 0). 

6.8b.2 Surface Tension f rom the Shapes of Sessile Drops 
The Bashforth-Adams tables provide an alternate way of evaluating y by observing the profile 
of a sessile drop of the liquid under investigation. If, after all, the drop profiles of Figure 6.15 
can be drawn using 0 as a parameter, then it should also be possible to match an experimental 
drop profile with the 6 value that characterizes it. Equation (85) then relates y to ,6 and other 
measurable quantities. This method is claimed to have an error of only 0.1 To, but it is slow 
and tedious and hence not often the method of choice in practice. 

In order to obtain the profile of one of these drops experimentally, it is best to photograph 

TABLE 6.2 x / b  and z/b for p = 25 and Oo < q5 5 180° 

~ 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55  
60 
65 
70 
75 
80 
85 
90 

0.08521 
0.16035 
0.22230 
0.27250 
0.31333 
0.34684 
0.37455 
0.39755 
0.41666 
0.43249 
0.44551 
0.45609 
0.4645 1 
0.47 10 1 
0.47579 
0.47905 
0.48089 
0.48 148 

0.00368 
0.01348 
0.02712 
0.04288 
0.05974 
0.07713 
0.09475 
0.11236 
0.12985 
0.14711 
0.16405 
0.18063 
0.19678 
0.21246 
0.2276 1 
0.24221 
0.25626 
0.26966 

95 
100 
105 
110 
115 
I20 
125 
130 
135 
140 
145 
150 
155 
160 
165 
170 
175 
180 

0.48092 
0.47934 
0.47682 
0.47 345 
0.4693 1 
0.46452 
0.4591 1 
0.453 19 
0.44682 
0.44008 
0.43302 
0.42 5 7 1 
0.41 823 
0.41062 
0.40296 
0 . 3  95 28 
0.3 8766 
0.38014 

0.28243 
0.2943 5 
0.30594 
0.31665 
0.32662 
0.33585 
0.34433 
0.35204 
0.35901 
0.365 19 
0.3706 1 
0.37526 
0.37915 
0.38231 
0.38472 
0.38643 
0.38744 
0.38776 

~ 

Source: F. Bashforth, and J .  C. Adams, A n  Attempt to Test the Theory of Capillary 
Action, Cambridge University Press, London, 1883. 
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FIG. 6.15 
10.0; and (b) p = -0.45. (Data from Padday 1969.) 

Sessile drop profiles drawn from results of Bashforth and Adams’s tables: (a) p = 

the silhouette of the surface. Then experimental and theoretical profiles are compared in an 
effort to identify the p value that characterizes the experimental surface. With care, it is 
possible to interpolate between theoretical profiles and arrive at the p value that describes the 
surface under consideration. Equation (85) shows that knowledge of p alone is not sufficient 
to permit the evaluation of y; b and Ap must also be known. Evaluating the density difference 
poses no special difficulty. Let us next consider how b is measured. 

Once ,f3 is known for a particular profile, the Bashforth-Adarns tables may be used further 
to evaluate b: 

1. 

2. 

3. 

For the appropriate 0, the value of x /b  at 4 = 90° is read from the tables. This gives 
the maximum radius of the drop in units of b. 
From the photographic image of the drop, this radius may be measured since the 
magnification of the photograph is known. 
Comparing the actual maximum radius with the value of (x/b),,., permits the evalua- 
tion of b. 

Figure 6.15a may be used as a numerical example to illustrate this procedure. Suppose an 
actual experimental drop profile is matched with theoretical profiles and is shown to corre- 
spond to a p value of 10.0. Then b is evaluated as follows: 

1. 

2. 
3. 

The value of (x/b)900 for 0 = 10 is found to be 0.60808 from the tables. 
Assume the radius of the actual drop is 5.00 mm at its widest point. 
The first two items describe the same point; therefore b = 5.00/0.608 = 8.22 mm. 
This would be the radius at the apex of the drop shown in Figure 6.15a if the 
maximum radius were 5.00 mm. 
This numerical example may be completed by using the definition of 0 to evaluate y 4. 
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for the liquid of Figure 6.15a. Assuming A p  to be + 1 .OO g cm -3 and taking g = 9.8 
m s -' gives 

y = Apgb2/P = ( 103) (9.8) (8.22. 10-3)2/10.0 

= 0.0662 J m P 2  = 66.2 mJ m P 2  

Several additional points might be noted about the use of the Bashforth-Adams tables to 
evaluate y. If interpolation is necessary to arrive at the proper 0 value, then interpolation will 
also be necessary to determine ( ~ / b ) % ~ .  This results in some loss of accuracy. With pendant 
drops or sessile bubbles (i.e., negative 0 values), it is difficult to measure the maximum 
radius since the curvature is least along the equator of such drops (see Figure 6.15b). The 
Bashforth-Adams tables have been rearranged to facilitate their use for pendant drops. The 
interested reader will find tables adapted for pendant drops in the material by Padday (1969). 
The pendant drop method utilizes an equilibrium drop attached to a support and should not 
be confused with the drop weight method, which involves drop detachment. 

6.8b.3 Other Methods for Determining Surface Tension 
Several other methods for determining y- notably, the maximurn bubble pressure, the drop 
weight, and the DuNouy ring methods (see Section 6.2) -all involve measurements on surfaces 
with axial symmetry. Although the Bashforth-Adams tables are pertinent to all of these, the 
data are generally tabulated in more practical forms that deemphasize the surface profile. 

A method related to sessile drop and sessile bubble methods is a technique based on the 
measurement of the profile of a spinning drop. In this method a drop of a liquid is injected 
into a higher density liquid, and the whole container is rotated at a known angular velocity. 
The drop elongates because of the imposed centrifugal acceleration against the opposing effect 
of interfacial tension, which tries to reduce the area. The analysis of the shape of the drop is 
similar to the sessile drop method in principle, and the centrifugal acceleration can be related 
to the interfacial tension and the density difference from the liquids through a simple equation 
(see, for example, Miller and Neogi 1985). In contrast to the sessile drop and sessile bubble 
methods, the spinning drop technique requires no contact with a solid surface. Moreover, 
since the drop and the suspending liquid can be made quite thin, the method can be used even 
when the suspending liquid is moderately turbid. The spinning drop technique is particularly 
useful when the interfacial tension is very low. 

In addition to the methods discussed here and in Section 6.2, there are a few other 
methods for measuring surface tension that are classified as dynamic methods as they involve 
the f / o w  of the liquids involved (e.g., methods based on the dimensions of an oscillating liquid 
jet or of the ripples on a liquid film). As one might expect, the dynamic methods have their 
advantages as well as disadvantages. For example, the oscillating jet technique is ill-suited for 
air-liquid interfaces, but has been found quite useful in the case of surfactant solutions. A 
discussion of these methods, however, will require advanced fluid dynamics concepts that are 
beyond our scope here. As our primary objective in this chapter is simply to provide a basic 
introduction to surface tension and contact angle phenomena, we shall not consider dynamic 
methods here. Brief discussions of these methods and a comparison of the data obtained from 
different techniques are available elsewhere (e.g., see Adamson 1990 and references therein). 

6.9 CONTACT OF LIQUIDS WITH POROUS SOLIDS AND POWDERS 

Any solid can be pulverized into particles of small size; not all can be fabricated into the 
smooth supports we have discussed in this chapter. This consideration alone - not to mention 
the many practical applications of powdered solids - encourages us to look for a relationship 
that describes the junction of a liquid interface with such solids. One thought might be to 
compress the powder into a pellet and treat the surface of the pellet in the same way as we 
have treated other solid surfaces. On a fine scale the surface of such a pellet is rough, however, 
so hysteresis effects should be severe. Therefore we look for some alternative approach. 
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6.9a Penetration of Liquids Through Pores: 
Measurement of Contact Angles 

Instead of the exterior surface of a powder pellet, let us consider the network of irregular 
channels that permeate it - the hole instead of the doughnut! Figure 6.16a represents a section 
through such a pellet for irregularly shaped particles. It is easy to imagine an arrangement 
such as that shown in Figure 6.16b in which the powder pellet is positioned as a plug in a 
cylinder such that liquid can be forced through it by a movable piston. For now our main 
requirement for such an apparatus is that we are able to measure the applied pressure p needed 
to force the liquid into the plug. In a further development we will also be interested in 
measuring the depth h into the plug that the liquid penetrates under a pressure p .  

Commercial instruments are available that carry out these operations under the control of 
a computer, which also analyzes the results. Let us consider the penetration of the liquid into 
the pores of the plug to see the basis for this analysis. 

Instead of the actual network of irregular channels, the interpretation of this experiment 
is based on a model that imagines the plug to consist of a bundle of cylindrical pores of radius 
R,. The model is represented by Figure 6 . 1 6 ~ .  The intrusion of the liquid into the cylindrical 
pores in response to the applied pressure follows the same mathematical description as the rise 
of a liquid in a capillary. In view of the approximate nature of the model, it is adequate to use 
the Laplace equation in the form given by Equation (3) to describe this situation: 

In the capillary rise experiment p = Apgh, whereas p is the applied pressure in the case 
discussed in the present section. 

Now suppose a liquid is pushed through the plug that forms a contact angle of zero with 
the walls of the channels. Using the subscript 0 to represent this situation, Equation (86) 
becomes 

since cos 8 = 1 .O in this case. Equation (87) can be used to evaluate R,. for the plug. The value 
of R,. thus obtained is a parameter that is characteristic of the experiment; however, it might 
be very different from any physical distance within the plug. It might be called the radius of 
an equivalent cylinder, although some researchers feel that this name attaches too much 
significance to the R,. value thus obtained. The term tortuosity is sometimes applied to this 

FIG. 6.16 Contact of liquids with pores and powders: (a) schematic view of pores through a plug 
of particles; (b)  liquid intrusion into a plug under pressure; and (c) an idealized plug of cylindrical 
pores. 
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empirical R, value. Whatever terminology is used, this evaluation of R,. amounts to a calibra- 
tion with a known (with respect to 0) liquid so that R, can be eliminated from Equation (86) 
to give 

PO Y L  v cos! 
'P  

Y L V . 0  

or 

P Y L V . 0  

P O  Y L V  

case = -- - 

Note that values of y 

(89) 

are assumed to be available when this equation is used. Since numerous 
methods are available for measuring y, there is no loss of applicability in assuming this. Since 
all of the quantities on the right-hand side of Equation (89) are measurable, this approach 
provides a method for determining 0 for powdered solids. The method is not highly reliable, 
but is preferable to any technique based on the exterior surface of the plug as a liquid support. 

6.9b Porosimetry: Structure of Porous Materials 

Our approach until now has been to focus attention on the liquid-solid junction and to 
eliminate the parameter that characterizes the plug. Numerous porous solids exist for which 
there may be considerable interest in knowing the pore dimensions. The foregoing analysis can 
also be applied to this problem by assuming that both y and 8 ,are known. For this application 
the liquid is chosen for convenience, not because it is part of what is being measured. Mercury 
is generally used as the penetrating fluid, and the general technique is called mercuryporosime- 
try. Contact angles of 130-140' are generally assumed, although it would clearly be preferable 
to use the 0 value that is appropriate for the specific system. 

When the pore structure of a solid is being investigated, it is desirable to learn as much as 
possible from porosimetry. In general, solids will possess a distribution of pore sizes, so the 
volume (or surface area) associated with pores of various radii is of interest. The significance 
of this sort of information is apparent for such solids as zeolire catalysts. These are aluminasil- 
icates that can be synthesized with variable Si/Al ratios and variable pore sizes. Pore dimen- 
sions in the range of 0.8 to 2.0 nm can be obtained for solids with controllable acidity 
associated with A13+ in the silica matrix. Zeolites are used on a large scale in the petroleum 
industry as catalysts for the cracking and isomerization of hydrocarbons (see Vignette 1.9). 
Part of the specificity of these catalysts arises from the pore size distribution, so porosimetry 
becomes a valuable tool for the characterization of these materials. 

In an apparatus based on Figure 6.16b, the volume of mercury forced into the pores of 
the solid can be measured as a function of the applied pressure. Equation (86) shows that 
higher pressures are required for smaller pores. Therefore incremental increases in p will result 
in the filling of pores of progressively smaller radii. The volurne V that has intruded a porous 
solid at a pressure p gives the cumulative volume of all pores larger than the size associated 
with p .  Since plots of V versus p give information about the cumulative pore distribution, it is 
the derivative of such data that measures the increment in pore volume associated with an 
increment in R,. Written as a formula, dV/dp a dV/( -dR,) since Vincreases as R, decreases. 

To  develop this last relation further, note that Equation (86) can be written as pR, = 
constant since y and 0 are independent of pore structure. Therefore (pdR, + R,dp) = 0, or 

With Equation (90), the slope of the experimental V-p plot can be developed as follows: 

d V d p  - d V p  - - dV - - _ - -  -- 
dRc dP dR,. dP R, 

Combining Equations (86) and (91) gives 
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dV dV p2 
dR, dp 2 y c o s 8  

- - - -- 

which shows how the local slope of the experimental data can be converted into the desired 
information about increments of volume for pores of different radius. 

As noted above, much of the data manipulation of commercial porosimeters is computer- 
ized, so a pore size distribution is produced automatically by these instruments. 

6 . 9 ~  Contact Angle Measurement and Porosimetry 
Using the Poiseuille Equation 

The rate at which a liquid penetrates a porous solid can also be measured and interpreted at 
the same level of approximation as used in the above section. The Poiseuille equation, Equa- 
tion (4.20), gives an expression for the rate at which a liquid flows through cylindrical pores 
of radius R, under a pressure p .  We shall neglect the gravitational contribution to the driving 
force, which means that the following is better suited to horizontal than to  vertical arrange- 
ments. If we write the volume rate of flow dV/dt = d(.lrRfh)/dt and simplify, Equation (4.20) 
can be rewritten as 

dh p R f  
dt 8 7 h  

If Equation (86) is used to eliminatep, Equation (93) becomes 

dh 2 y c o s 8  Rf - yR,.cos8 
dt R,. 877h 4 7 h  

_ - -  - 

where h is the depth of penetration of the intruding liquid and 7 is its viscosity. 

- - - - -- 

(93) 

(94) 

As with Equation (86), R,  can be eliminated from Equation (94) by calibration with a liquid 
for which 8 = 0. In that case Equation (94) can be used to determine 8 for powders or porous 
solids. Alternatively, a value of 8 may be assumed, and R,. can be evaluated from the rate of 
mercury intrusion. Equation (94) is called the Washburn equation. 

Since advancing and receding contact angles are likely to be different in these experiments, 
mercury permeation curves are expected to be different, depending on whether the mercury is 
being pushed in or out of the plugs. This type of hysteresis is indeed observed. We encounter 
another type of hysteresis associated with pore filling in Chapter 9 (Section 9.7a). 

6.10 MOLECULAR INTERPRETATION OF SURFACE TENSION 

Throughout this chapter we have dealt with surface tension from a phenomenological point of 
view almost exclusively. From fundamental perspective, however, descriptions from a molecu- 
lar perspective are often more illuminating than descriptions of phenomena alone. In con- 
densed phases, in which interactions involve many molecules, rigorous derivations based on 
the cumulative behavior of individual molecules are extremely difficult. We shall not attempt 
to review any of the efforts directed along these lines for surface tension. Instead, we consider 
the various types of intermolecular forces that exist and interpret y for any interface as the 
summation of contributions arising from the various types of interactions that operate in the 
materials forming the interface. 

6.1 Oa Some Molecular Interactions Important in 
Interpreting Interfacial Phenomena 

To develop the above idea, several broad categories of molecular interactions should be 
considered. 

1. Hydrogen bonding: Hydrogen atoms serve as bridges linking together two atoms of 
high electronegativity. In the present context these atoms are in separate molecules so the 
molecules themselves are mutually “attracted” by these bonds. 
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2. Metallic bonding: A sea of mobile electrons shared by the atoms of a metal contrib- 
utes to the attraction between metal atoms in bulk samples. 

3 .  Permanent dipole interactions: Polar molecules have relatively positive and negative 
regions. Regions of opposite charge on different molecules result in an attraction between 
these molecules. Molecules must possess a permanent dipole moment to display this effect. 

London forces: Deformable electron clouds in adjoining molecules distort one an- 
other, resulting in an instantaneous polarity with accompanying attraction between the mole- 
cules involved. The polarizability of a molecule (see Chapter 5 ,  Section 5.2b) is a measure of 
its tendency to display this effect. 

Although additional entries could be included in this list, the foregoing entries are suffi- 
cient for our purposes. The main thing to recognize about these interactions is that all but 
London forces are highly specific. London forces require only the presence of electrons and 
therefore operate between all molecules. The other types of interactions, by contrast, require 
some specific feature: the metallic state, high electronegativity, or certain molecular geometry. 
Whether any of the other types of interactions operates or not, London forces are always 
present. 

In Chapter 10 we discuss in considerable detail the attractions between molecules arising 
from their polarity and polarizability. In that chapter, we also see how surface tension data 
can be used to obtain information on London forces between macroscopic objects and vice 
versa, thus providing a direct link between the London force and surface tension. For now, 
however, it is sufficient to recognize that London forces attract all molecules together, regard- 
less of their specific chemical nature. The other interactions itemized above operate only for 
systems possessing the requisite special features. What this means for surface tension is best 
illustrated by considering a specific surface. At the water-mercury interface, for example, the 
metallic bonds of the mercury end at the interface. Similarly, the hydrogen bonds of the water 
end at the surface. London attraction exists between water and mercury particles, however, 
just as it exists for water-water and mercury-mercury pairs. These various London attractions 
may differ in magnitude as a result of different molecular properties, but they share a common 
origin. 

4. 

6.10b Work Needed to Bring a Molecule to an Interface: 
The Girifalco-Good Equation 

Next we apply these concepts to a molecule of A in two different environments: in the interior 
of a bulk phase and near an interface between two phases. A molecule in the interior of a bulk 
phase is surrounded on all sides by a homogeneous molecular environment of A .  Any move- 
ment that would increase its separation from some neighbors would automatically decrease the 
separation from others, so large deviations from the equilibrium separation are improbable. 

For a molecule at an interface between a condensed phase and the gas phase, the environ- 
ment is quite asymmetrical. Movement toward the bulk phase is impeded by the excluded 
volume of the A molecules. Movement away from the bulk phase meets no resistance of this 
sort, although the prevailing attraction between molecules in the condensed phase opposes the 
A molecules from escaping the condensed phase altogether. Because of this, the equilibrium 
separation between the molecules at the surface will be larger than between those in,the 
interior. The intermolecular separation has been “stretched” in bringing a molecule to the 
surface. The contractile force in the interface of the substance is simply the restoring force 
attempting to return the molecules to their bulk spacing. Frorn an energetic point of view, the 
difference between the energy of the bulk and surface minimum separations gives the work 
needed to bring a molecule from the interior to the surface. 

Next let us consider the situation in which a second condensed phase B adjoins the 
reference phase A .  The new consideration in this case is the L,ondon component of attraction 
of the molecules in condensed phase B for the A molecules in the interface. This A-B attraction 
partially overcomes the A-A attraction that opposes the movement of an A molecule to any 
interface. As a consequence, there is a difference in the energy that must be expended to bring 
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an  A molecule to an  interface with a gas and to  an interface with another condensed phase. 
We call this difference U”. 

It is argued that only the London component of intermolecular attractions operates across 
the interface to decrease the work required to bring a particle to the surface. Suppose we 
define $ as that fraction of the surface tension due to London forces. Next we use the sort of 
geometric mixing rule that was employed in Chapter 3, Section 3.4b, to estimate U” as 
follows: 

us = J ( 4 A Y A H h i Y B )  (95) 

The assignment of a geometric mean rather than an arithmetic mean or some other function 
of the two y terms is justified primarily on  the basis of the successful use of this type of 
averaging in the theory of nonelectrolyte solubility. Only the London component of y is used 
since it is the part of y that crosses phase boundaries. 

According to these ideas, the work required to bring an A molecule to the AB interface is 
given by 

when A and B are both in condensed phases. A similar expression applies to the work required 
to bring a B molecule to the interface. The total work of forming the AB interface is the sum 
of these contributions: 

Combining the two fractions into the parameter CP, Equation (97) becomes 

T A B  = T A  + YB - 2 C P ( Y A y B ) ” 2  (98) 

with CP = 
equation. The parameter CP may be viewed from two different points of view: 

The relationship given by Equation (98) is called the Girifalco-Good 

We may regard CP as an  empirical constant evaluated by fitting data to Equation (98) 
or some other form of the basic relationship. 
We may estimate + from first principles by using molecular parameters and relation- 
ships from Chapter 10. 

With a few additional refinements, the two approaches are found to give satisfactory agree- 
ment. The + values often lie in the range 0.5 to 1 .O, which shows that, in general, half or more 
of the surface tension can be attributed to London forces. 

Equation (98) may be combined with several other relationships of this chapter to gener- 
ate expressions by which the contributions of London forces can be investigated. For example, 
if one of the condensed phases is a solid and the other a liquid, Equations (98) and (49) may 
be combined to give 

1.  

2 .  

y L v  cos 8 = -yL + 2CP(ysyL)”2 - 7rp (99) 

Equation (99) can be solved for any one of the factors, depending on the data available. 
Neglecting 

1. 

as usual (although we might solve for this also), we obtain the following: 

If ys, yL, and 8 are known, 

+SL = YL(1 + cos f W 2 ( Y S Y L Y 2  

cos 8 = - 1 + 2CP(yS/yL)”* 

2 .  If yL, ys, and + are known, 

3. If yL, 8, and CP are known, 
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yS = YL( 1 + COS e ) 2 / 4 ~  

The third item provides a valuable way for evaluating ys, a quantity that is otherwise difficult 
to determine. 

6.1 Oc The Fowkes Approximation to the Girifalco-Good Equation 

Rather than pursue the fractions r$ or their composite CP any further, we turn next to an 
empirical approach due to Fowkes to estimate the product 47 for various substances. We use 
the symbol y d  to represent the London contributions to y estimated by his method. The 
notation is derived from the fact that London forces are also called dispersion (superscript d )  
forces (see, for example, Chapter 10, Section 10.7b). In this notation Equation (98) can be 
written 

d d 112 
Y A B  = Y A  + Y B  - 2 ( Y A Y B )  

In this version the relationship is called the Girifalco-Good-Fowkes equation. (We use a 
similar approach again in Chapter 10, e.g., see Equations (10.77) and (10.78), to determine 
the Hamaker constant for the van der Waals interaction forces.) Although we use r$y and y d  
interchangeably, it is important to recognize that y d  values (are determined by a particular 
strategy as illustrated in Example 6.5. 

* * *  

EXAMPLE 6.5 Estimation of lnterfacial Tensions Using the Girifalco-Good-fowkes Equation. 
The following are the interfacial tensions for the various two-phase surfaces formed by n-octane 
(O), water (W), and mercury (Hg): for n-octane-water, y = 50.8 mJ m -*; for n-octane-mercury, 
y = 375 mJ m -2; and for water-mercury, y = 426 mJ m-2. Assuming that only London forces 
operate between molecules of the hydrocarbon, use Equation (100) to estimate ydfor water and 
mercury. Do the values thus obtained make sense? Take 7 values from Table 6.1 for the 
interfaces with air of these liquids. 

Solution: In general, Equation (100) contains two unknowns: the dispersion components of y 
for A and B. If yd  for one of these is known, the other ydvalue can be calculated from experimen- 
tal results. If it is assumed that y d  = y for the hydrocarbon, then the experimental y for an 
interface involving octane can be interpreted by Equation (1 00) to give the other yd value. Thus 
375 = 484 + 21.8 - 2(yig - 21.8)”2; therefore yig = 196 mJ m -2. Also 50.8 = 72.8 + 21.8 
- 2(y,d - 21.8 )”2; therefore y,d = 22.0 mJ m -2. The two y d  values are 30 and 4o0/o, respec- 
tively, of the y’s for water and mercury. These fractions are somewhat less than expected in 
terms of the preceding discussion, but are not totally out of line. A more meaningful test is to 
use these values to estimate y for the water-mercury interface. Repeating the above procedure, 
we obtain 

yHg-,,,, = 484 + 72.8 - 2[(196)(22)]”2 = 425 mJ m -2 

which compares quite favorably with the experimental value of 426 mJ m -2. 
* * *  

Table 6.3 lists the data and calculated results for a number of hydrocarbons forming interfaces 
with water and mercury. The relative constancy of the calculated y d  values adds to their 
plausibility. 

The average values of y d  for water and mercury are clearly successful in their ability to 
calculate y correctly for the water-mercury interface. Individually, however, they are the 
averages of slightly divergent values measured for several different interfaces with hydrocar- 
bons. In this sense the values of y d  we have considered are analogous to mean bond energies 
in physical chemistry, which also are averages obtained from a variety of compounds. Al- 
though mean bond energies are very useful, they are by nature insensitive to unique, specific 
effects. With both mean bond energies and values of y d ,  the user must be careful that no such 
special interactions are present, otherwise quite serious errors could arise. Furthermore, it is 
important to realize that any errors are perpetuated and compounded by this scheme for 
evaluating y ‘. 
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TABLE 6.3 
at 2OoC (All Values in mJ rn-,)” 

Experimental Values for y H ,  Y ~ - ~ ,  and Y ~ - ~ ~ ,  with H = Hydrocarbon, 

Mercury Water 
(YHg = 484) (yw = 72.8) 

Hydrocarbon Y Y H - H ~  Y H -  W 
d 

YHW 

n-Hexane 
n-Heptane 
n-Octane 
n-Nonane 
n-Decane 
n-Tetradecane 
Cyclohexane 
Decalin 
Benzene 
Toluene 
o-Xylene 
rn-Xylene 
p-Xylene 
n-Propylbenzene 
n-Butylbenzene 
Average 

18.4 
18.4 
21.8 
22.8 
23.9 
25.6 
25.5 
29.9 
28.85 
28.5 
30.1 
28.9 
28.4 
29.0 
29.2 

378 

375 
372 

- 

363 
359 
359 
357 
36 1 
363 
363 

210 

199 
199 

- 

194 
208 
200 
21 1 
203 
194 
193 

= 201 

51.1 
50.2 
50.8 

51.2 
52.2 
50.2 
51.4 

- 

21.8 
22.6 
22.0 

21.6 
20.8 
22.7 
22.0 

- 

- 

= 21.9 

Source: Data from F. M. Fowkes, Ind. Eng. Chem., 56, 40 (1964). 
ye and &,,, are calculated as in Example 6.5. a d  

6.1 Od London Components of Interfacial Tensions of Solid Surfaces 

It is not difficult to apply the concept of the dispersion component of y to solid surfaces. In 
doing this, it is necessary to treat high- and low-energy surfaces differently. We shall not 
consider solid interfaces in detail; our treatment is limited to the following observations: 

For low-energy surfaces, 7re = 0. Manipulation of Young’s equation (Equation (44) ) 
generates a relationship that expresses y: in terms of 0 and other experimental quanti- 
ties. 
For high-energy surfaces, 7re > 0 owing to adsorption. Relationships have been de- 
rived that express y: in terms of gas adsorption. 

Values of 7s” that have been determined for high- and low-energy surfaces by these two 
methods are listed in Table 6.4. 

Examination of the values of y d  for high- and low-energy solids in Table 6.4 reveals 
several interesting points. To  begin, there is a slight overlap in the data inasmuch as polypro- 
pylene was studied by the gas adsorption technique, even though it might reasonably be 
expected to resemble paraffin wax or polyethylene in y d  value. As the table shows, the value 
of y d  for this substance lies in the same neighborhood as the values for these other compounds, 
even though very widely different procedures were used to arrive at the different values. The 
multiple values of y d  listed for some high-energy solids correspond to evaluations based on the 
adsorption of different gases at widely different temperatures. For example, the y d  values for 
TiO, are obtained from adsorption studies conducted with butane at O O C ,  heptane at 25OC, 
and N, at - 195OC. With these ideas in mind, the observed variation between ostensibly 
duplicate values becomes more acceptable. The evaluation of yg also depends on the accuracy 
of the value of y for a substance other than the solid. Again we see that errors may be 
propagated in the analyses that led to the results presented in Table 6.4. 

1. 

2. 
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TABLE 6.4 
Contact Angles and From Gas Adsorption 

Values of 7; (in mJ mp2) for a Variety of Solids as Determined From 

Material 
By measurements By measurements 

of 8 of 7re 

Dodecanoic acid on Pt  
Polyhexafluor opropylene 
Pol ytetrafluoropropylene 
n-C,,H,, 
n-Octadecylamine on Pt 
Paraffin wax 
Polypropylene 
Polytrifluoromonochloroethylene (Kel F) 
Nylon-6,6 
Polyethylene 
Polyethyleneterephthalate 
Polystyrene 
BaSO, 
Silica 
Anatase (Ti02)  
Iron 
Graphite 

10.4, 13.1 
11.7,* 18.0 

19.5 
21 .o 

22.0,* 22.1 
23.2,* 25.5 

30.8 
33.6* 

31.3,* 35.0 
36.6* 

38.4,* 44.0 

- 

- 
- 
- 
- 
- 

- 
- 
- 
- 
- 
- 

26, 28.5 
- 
- 
- 
- 
- 

76 
78 

89,92, 141 
89, 106, 108 

115, 120, 123, 132 

Source: Most data from F. M. Fowkes, Znd. Eng. Chem., 56, 40 (1964); the data with an 
asterisk are from D. H. Kaelbe, Physical Chemistry of Adhesion, Wiley, New York, 1971. 

REVIEW QUESTIONS 

1. 

2. 
3. 

4. 

5. 

6. 

7. 

8. 
9. 

10. 
11. 
12. 

13. 

14. 

What is surface tension? What are its units? Explain the physical significance of surface 
tension. 
What is contact angle? What is the range of magnitudes it can take? 
Describe a few methods to  measure surface tension and contact angle of a liquid on a solid 
substrate and discuss the assumptions and approximations involved in the measurement proce- 
dure. 
Why are the surface tension and contact angle thermodynamic properties of a substance? 
What does it mean? 
What is the Laplace equation? What is the Kelvin equation? What are the differences between 
the two? 
What assumptions have been made in the derivation of the Kelvin equation in the text? How 
restrictive are these assumptions? 
What is the Young-Dupe equation? What are the approximations made in its derivation? 
Discuss the merits of those approximations. 
Describe the terms wetting, cohesion, adhesion, and spreading. 
Define the following terms and their relation to surface energies: (a)  work of adhesion, (b)  
work of cohesion, and (c) spreading coefficient. 
What is the physical significance of the spreading coefficient? 
What is equilibrium film pressure? What is its physical significance? 
What is the Bashforth-Adams equation? How would you use it to determine the surface 
tension of a liquid and the contact angle of a liquid with a surface? 
List a few methods for the measurement of surface tension and contact angle. Discuss the 
basic principles involved in each method. What are the experimental advantages and disadvan- 
tages in each case? 
What are some of the dynamic methods for measuring surface tension? What are the differ- 
ences between these and the static methods? 
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15. 

16. 
17. 

Explain the basic principle behind porosimetry. How would you use a porosimetry experiment 
to measure the contact angle of a liquid with a powdered solid? What are the limitations of 
this approach? 
Present a molecular interpretation of surface tension. 
What is the Girifalco-Good equation? What is the Fowkes approximation to the Girifalco- 
Good equation? 
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PROBLEMS 

The frictional force was measured on a strand of viscous rayon fiber moving through a wad 
of identical fibers as a function of the water content of the wadded fiber.* It was found that 
the friction incresed from 59 to 133 mN cm-’ when the water content decreased to the point 
at which capillary “necking” between the fibers occurred. A model for this situation may be 
visualized by considering two parallel, tangent cylinders connected by a “neck” of water held 
in the neighborhood of the contact by capillary forces. Sketch the situation represented by this 
model and explain why the force of fiber-fiber attraction increases with decreasing water 
content. Use this model to discuss (a) the behavior of a wet paintbrush, (b) the practice of 
wetting the tip of a thread before threading a needle, and (c) the dewatering of cellulose fibers 
to form paper. 

The accompanying data give experimental values of the capillary rise for various 1iquids:t 

Liquid A p  (g cm-,) h (cm) R,. (cm) 

1.4343 0.100990 Water 0.9972 
Benzene 0.8775 1.5425 0.043 135 
CHCl, 1.4869 I .9210 0.0 19320 

“Skelton, J . ,  Science, 190, 15 (1975). 
YRichards, T. W., and Carver, E. K., J .  Am.  Chem. Soc., 43, 827 (1921). 
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Use values from the following table (interpolated from Padday 1969) to evaluate L? (and y) by 
successive approximation: 

P 0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 
( ~ / b ) , , ~  1.00 0.997 0.994 0.991 0.978 0.984 0.981 0.978 0.975 0.972 0.970 

Compare the values of y calculated by this procedure with those obtained by the approxima- 
tion given by Equation (4). 

Finely dispersed sodium chloride particles were prepared, their specific area was measured, 
and their solubility in ethanol at 25OC was studied.* It was found that a preparation with a 
specific area of 4.25 x 10’ cm2 g- ‘  showed a supersaturation of 6.71%. Estimate the radius 
of the NaCl (p = 2.17 gm ~ m - ~ )  particles, assuming uniform spheres. Calculate y for the 
NaC1-alcohol interface from the solubility behavior of this sample. 

Eniistiin and Turkevicht prepared SrSO, (p = 3.96 g cm-’) precipitates under conditions that 
resulted in different particle sizes. Particle sizes were characterized by electron microscopy, 
and solubilities were determined at 25OC by a radiotracer technique. In the following data the 
supersaturation ratios are presented for different preparations, each of which is characterized 
by an average particle width and a minimum particle width: 

s/so 

247 96 1.43 
269 130 1.35 
388 155 1.28 
54 1 168 1.29 
629 252 1.16 

1260 378 1.10 
1660 500 1.07 

Which size parameter gives the best agreement with the Kelvin equation? Explain. Use the best 
fitting data to evaluate y for the SrSO,-H,O interface. 

Bartell and Osterhoft describe an experimental procedure for measuring the work of adhesion 
between liquids and solids. With carbon (lampblack) as the solid, the following values for the 
work of adhesion were obtained: 

Liquid Benzene Toluene CCl, CS2 Ethyl ether H2O 

wAB (erg cmP2) 109.3 110.2 112.4 122.1 76.4 126.8 

Use these data together with the surface tensions of the pure liquids from Table 6.1 to 
calculate the spreading coefficients for the various liquids on carbon black. Use your results 
to interpret the authors’ observations: “About equal quantities of water and organic liquid 
were put into a test tube with a small amount of the finely divided solid and shaken. It was 
noted that the carbon went exclusively to the organic liquid phase.” 

The effect of mutual saturation on the L-V and L-L interfacial tensions is effectively illus- 
trated by considering the spreading coefficient of one liquid on another using both the initial 
(unsaturated) and equilibrium values of y.  Use the following data$ to calculate S B / A  (equilib- 
rium) and SL,A (nonequilibrium): 

*Van Zeggeren, F., and Benson, G. C., Can. J.  Chem., 35, 1 150 (1957). 
TEniistiin, B. V., and Turkevich, J . ,  J. Am. Chem. Soc., 82, 4502 (1960). 
$Bartell, F. E., and Osterhof, H.  J . ,  J.  Phys. Chem., 37, 543 (1933). 
§Harkins, W. D., The Physical Chemistry of Surface Films, Van Nostrand-Reinhold, Princeton, 
NJ, 1952. 
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H,O/air H,O/IAA IAA/air H,O/air H20/CS, CS,/air 

y ’ (erg cm -’) 72.8 5.0 23.7 72.8 47.4 32.4 
y (erg ern-,) 25.9 5 .O 23.6 70.3 48.4 31.8 

Describe what happens when a drop of pure isoamyl alcohol (IAA) is placed on the surface of 
pure water. What happens with the passage of time? Repeat this description for the case of 
pure CS, on pure water. 

Water drops were formed at the mercury-benzene interface by means of a syringe, and the 
contact angle (measured in the water) was recorded as a function of time.* For the interface 
between Hg and benzene saturated with water, y was measured independently as a function of 
time. The following table summarizes these data (all measured at 25OC): 

7. 

0.10 
0.42 
1 .o 
2.5 
5.0 

13 
23 

363.0 118 
359.5 119 
358.0 122 
354.5 138 
350.0 144 
336.0 - 
- 180 

Using 379.5 and 34.0 erg cm-2, respectively, as the values of y for the mercury-water and 
benzene-water interfaces, compare the observed contact angles with the predictions of Young’s 
equation. Comment on the fact that constant values are used for yHg.w and ybenze,,e.w. 

A cylindrical rod may be used instead of a rectangular plate in a slight variation of the 
Wilhelmy method. Derive an expression equivalent to Equation (63) for a suspended solid of 
cylindrical geometry. Prepare semiquantitative plots analogous to Figure 6 . 1 0 ~  based on the 
following data, assuming cylindrical rods 1 .O mm in diameter at the air-water interface:? 

8. 

Au 
Pt 

19.3 70 40 
21.5 63 28 

In both cases the metal surfaces were carefully polished, washed, steamed, and then heated in 
an oven for 1 hr at 100OC. 

The vertical rod method of the preceding problem was used to study the contact angle of water 
at the gold-water-air junction at 25 OC. The following data show how the value of 8, depends 
on the prior history of the metal surface.$ For a gold surface polished, washed, and heat 
treated for 1 hr at TOC, then allowed to stand in air for t hr we obtain 

9. 

T(OC) 100 200 300 400 500 600 600 600 600 600 600 
t (h) < %  < %  c %  <!4 <1/4 1/4 1 5 10 24 120 
B,(deg) 68 57 45 36 25 13 22 38 47 53 55 

Calculate the work of adhesion between water and gold for each of these cases on the assump- 
tion that re = 0. Is the variation in W,, consistent (qualitatively? quantitatively?) with the 
expected validity of the assumption concerning re? 

The tendency of spilled mercury to disperse as small drops that roll freely on most surfaces is 
a well-known characteristic of this liquid. Discuss this behavior in terms of (a) the work of 
adhesion and the spreading coefficient for mercury on various substrates, (b) surface tension 

10. 

*Bartell, F. E., and Bjorkland, C. W., J. Phys. Chem., 56, 453 (1952). 
?Bartell, F. E., Culbertson, J. A., and Miller, M. A., J.  Phys. Chem., 40, 881 (1936). 
$Bartell, F. E., and Miller, M. A., J. Phys. Chem., 40, 889 (1936). 
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11. 

12. 

13. 

14. 

15. 

versus contact angle (measured in Hg) as causes of this behavior, and (c) the implications of 
the Kelvin equation on the health hazards associated with mercury spills. 

Use the data of Table 6.2 to  plot the profile of a drop with 0 = 25. Measure (in cm) the radius 
of the drop you have drawn at its widest point. By comparing this value with the value of 
( ~ / b ) , , ~  from the table, evaluate b (in cm) for the drop as you have drawn it. Suppose an 
actual drop is characterized by this value of ,O. I f  the actual radius at the widest point is 0.25 
cm and A p  = 0.50 g cmP3, what is y for the interface of the drop? 

Suppose the drop profile shown in Figure 6.15b describes an actual drop for which the radius 
at the widest point equals 0.135 cm. Use the value of ( ~ / b ) , , , ~  from the figure to calculate y for 
each of the following situations: 

(a) Oil in water 0.20 
(b) Water in oil 0.20 
(c) Oil in air 0.80 
(d) Air in water 1 .oo 
(e) Water in air 1 .oo 

State whether the drop is pendant or sessile in each case. 

Sometimes it is difficult to  locate the bottom of the meniscus of a colorless solution in a buret. 
If this is the case, it is surely that much more difficult to .try to estimate contact angles by 
direct observation of a meniscus. In view of this, criticize or defend the following proposition: 
Before attempting to  read contact angles directly by viewing the surface through a low-power 
microscope, a new worker should practice with simulated drops (recommended by Neumann 
and Good 1979). By masking off the lower part of a sphere such as a ball bearing and looking 
at its silhouette, a practice junction is obtained. The angle estimated can be compared with the 
true value by calculating the true value from the height of the apex and the width of the base. 
In fact, values for actual drops can be determined by this method if the profile of the entire 
drop is visible in the microscope. 

The following combinations of 8, y L ,  and p values were reported by Bartell and Whitney* for 
the wetting of silica plugs by various liquids: 

Liquid p (g cm-2) yL (dyne cm-') 8 

Nitrobenzene 
Chloroform 
Benzene 
Toluene 

Hexane 
cc1, 

125 25.3 41 O25 
192 31.6 22O11' 
215 34.7 19O16' 
22 1 36.5 - 
265 44.5 - 
333 51.0 - 

Use the first three sets of data to  determine a value of R, for the plug; then use this value to  
determine 8 for the remaining liquids against silica. Are large or small contact angles more 
sensitive to, say, a 5 %  error in R,.? 

Drake? has reported the accompanying data for the porosimetry analysis of a catalyst prepara- 
tion; the cumulative pore volume occupied by mercury is given for the applied pressures 
i ndica t ecl : 

Volume Volume 
Pressure (psi) (cm3 g-'1 Pressure (psi) (cm3 g-'1 

1,000 
1,500 

0.082 20,000 0.228 
0.115 25,000 0.249 

*Bartell, F. E., and Whitney, C.  E., J .  Phys. Chem., 36, 31 15 (1932). 
?Drake, L. C.,  Znd. Eng. Chem., 41, 781 (1949). 
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16. 

17. 

18. 

19. 

2,000 
3,000 
4,000 
6,000 

10,000 
15,000 

0.132 30,000 0.276 
0.150 35,000 0.307 
0.160 40,000 0.336 
0.177 45,000 0.358 
0.190 50,000 0.363 
0.213 

Plot these data and from the tangents to the curve estimate dV/dR,  at 2000, 10,000, 30,000, 
and 45,000 psi. To what radii do  these pressures correspond? Use y = 484 mJ m P 2  and 8 = 
140° for these calculations. 

By a suitable combination of Equations (49) and (97) show that 
2 

y; = ( 1  + 
47: 

for low-energy surfaces. Use the following data (see Table 6.4 for reference) to  evaluate either 
y$ or  yf as appropriate: 

S 
8 (deg) 

L y L v  (erg crnp2) yd (erg cm-2) in liquid 

Dodecanoic a-Bromonaphthalene 44.6 10.4 for S 92 

Kel F a-Bromonapht halene 44.6 30.8 for S 48 

Paraffin wax Fluorolube 20.2 13.5 for L 31 

acid on P t  

Paraffin wax Glycerol 63.4 36 for L 97 

The equation derived in the preceding problem suggests that a plot of cos 8 (as ordinate) 
versus Ja (as abscissa) should be linear with a slope of 2 a  and an intercept of - 1. De- 
scribe how this result can be used to  evaluate y$ when contact angle measurements are made 
on a particular solid with a variety of liquids for which y and yf are known. Describe 
how the same graphing procedure can be used to evaluate Jz when contact angles are 
measured in a liquid of unknown yf on different solids of known 7;. Use the data of the 
preceding problem to  illustrate these two graphical interpretations. Include the additional 
datum that a-bromonaphthalene forms a contact angle of 5 8 . 5 O  with paraffin (see Table 6.4 
for reference). 

If y L  and 8 are measured for a homologous series of liquids on a given low-energy solid, a plot 
of cos 8 versus yL results in a straight line. Verify that this is the case for the following data,  
determined for alkanes on Teflon at 2OoC:* 

Compound y L  (mJ m-’) 8 (deg) Compound yL (mJ m-2) 8 (deg) 

Hexadecane 27.6 46 Nonane 22.9 32 
Tet radecane 26.7 44 Hexane 21.8 26 
Dodecane 25.4 42 Heptane 20.3 21 
Undecane 24.7 39 Octane 18.4 12 
Decane 23.9 35 Pentane 16.0 spreads 

The intercept at 8 = 0 is viewed as a kind of critical state for these systems, and the corre- 
sponding surface tension is represented by yc. What is the value of yc for Teflon? 

Use Equation (99) to  show that yc as defined in the last problem is equal to 7; for those 
systems where yL = 7;. What else must be assumed to prove this? 

*Fox, H. W., and Zisnian, W. A.,  J.  Colloid Sci., 5, 514 (1950). 



7 
Adsorption from Solution and 

Monolayer Formation 

You are living on a plane. What you style Flatland is the vast level surface of what I may 
call a fluid, on, or in, the top of which you and your countrymen move about, without 
rising above it or falling below it. 

From Abbott’s Flatland 

7.1 INTRODUCTION 

The interest of scientists on monolayers of oil on a water surface is frequently traced to 
Benjamin Franklin’s now-famous experiment on stilling the waves with oil in the pond at 
Clapham Common in England on a windy day,* but the striking properties of such mono- 
layers are brought to light by an  equally simple experiment most students have seen at home 
or high school. Shake some pepper or  flour on a pan of water and touch the surface of the 
water with a bar of soap; you can see the pepper or flour race to the edges. Why does an oil 
film dampen the surface? Why does the pepper retreat so rapidly to the edge of the water’s 
surface? Investigations of such questions are what lead us to the material we discuss in this 
chapter. 

7.la Surfactant Layers: Langmuir and Gibbs Layers and 
Langmuir-Blodgett Films 

Monolayers formed by a substance that is insoluble in the liquid subphase are labeled Lang- 
muir layers, whereas those formed by substances soluble in the bulk but adsorbed preferen- 
tially at the interface are known as Gibbs layers. Langmuir layers transferred to solid sub- 
strates are known as Langmuir-Blodgett (LB) layers (see Vignette VII below). Our objective 
in this chapter is to lay the basic foundations necessary for understanding adsorption and 
formation of such layers and their structures. The Langmuir-Blodgett films usually consist of 
multiple layers; however, we restrict ourselves to monolayers. 

Until now, we have avoided considering the above topics by intentionally excluding sol- 
utes of variable concentration from our consideration of surfaces. Now, the effects of such 
solutes are our specific interest. We are especially concerned with a particular class of solutes 
that show dramatic effects on surface tension. These are said to be surface active and are often 
simply called surfactants. Our primary emphasis here is on the relationship between adsorp- 

*An engaging discussion of the history of Benjamin Franklin’s experiment and a relatively nontech- 
nical treatment of monolayers and bilayers of surfactants and their implications to biochemistry 
and biology are presented by Tanford, a pioneer of what is known as the hydrophobic effect and 
the biological applications of mono- and multilayers (Tanford 1989). Almost all of the material 
discussed in this highly readable volume is relevant to the focus of this chapter. 
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tion phenomena and surface tension/surface energy. In the process of describing experimental 
methods, results, and interpretations, however, a variety of related concepts enters the picture, 
as explained in Section 7. lc. 

7.1 b Why Are Monolayers and Multilayers Important? 
Traditionally, monolayer and multilayer adsorption have been used in detergency, mineral 
processing, flotation, stability of food and pharmaceutical emulsions, and the like, and, as a 
consequence, the topics of this chapter have been a central part of colloid science. In recent 
years, however, research on monolayer and multilayer deposition has mushroomed rapidly 
because of significant new opportunities. 

At the most fundamental level, monolayers of surfactants at an air-liquid interface serve 
as model systems to examine condensed matter phenomena. As we see briefly in Section 7.4, a 
rich variety of phases and structures occurs in such films, and phenomena such as nucleation, 
dendritic growth, and crystallization can be studied by a number of methods. Moreover, 
monolayers and bilayers of lipids can be used to  model biological membranes and to produce 
vesicles and liposomes for potential applications in artificial blood substitutes and drug deliv- 
ery systems (see, for example, Vignette 1.3 on liposomes in Chapter 1). 

Equally important are the new developments in electronic and optical materials and other 
“advanced materials.” Developments in chemical synthesis and in experimental techniques 
such as atomic force microscopy, scanning tunneling microscopy, and optical imaging tech- 
niques have opened the way for manipulating the structure and properties of ultrathin films. 
As a result, it might be possible to “engineer” surface coatings with special optical, electrical, 
and magnetic properties, and the monolayer and multilayer structures engineered in this 
manner can be used for fabricating microelectronic devices, chemical and biochemical sensors, 
and optical switches and storage devices, to name a few. 

Vignette VII presents a historical snapshot of the early experiments of Agnes Pockels that 
led to the above exciting possibilities. A couple of specific examples along these lines and some 
additional information follow in Sections 7.10b and 7 .10~ .  

VIGNETTE VII MOLECULAR MONOLAYERS AND MULTILAYERS: 
Langmuir-Blodgett Films 

When Agnes Pockels (1862-1935) of Brunswick, Germany, sent a registered letter on January 
12, 1891, to Lord Rayleigh (John William Strutt, Third Baron Rayleigh, 1842-1919) describ- 
ing her simple apparatus for studying properties of oil films and oil-contaminated water, little 
did she realize that her work and the essential design of her apparatus would pave the way for 
fundamental research on molecular films for possible use in molecular electronics, bio- and 
chemical sensors, tribology, and catalysis, among others. 

Pockels described in the letter her design of a rectangular tin trough with a thin tin strip 
laid across it. The trough was filled to the brim with water, with a thin layer of oil covering 
the surface of the water on one side of the tin strip and clean water on the other side. The tin 
strip served to vary the area of the oil-contaminated surface, and a balance measured the 
force necessary to lift a small disk (a button) from the surface. Pockels used this setup to 
study the surface tension of the oil-contaminated layer. 

This groundbreaking work from a woman with a “domestic background” impressed 
Lord Rayleigh immensely, and he sent it to Nature, a prestigious British journal, with his 
strong recommendation for publication (Pockels 189 1). Additional papers from Pockels and 
Lord Rayleigh followed, and Lord Rayleigh proposed that layers a single molecule in thick- 
ness could be studied using the Pockels technique. 

While the experiments of Pockels and Rayleigh generated some activity on the properties 
of thin films, the area was essentially dormant until the work of Irving Langmuir (1881- 
1957; Nobel Prize, 1932, for surface chemistry) at the General Electric Corporate Research 
Laboratories in Schenectady, New York. Langmuir developed a number of new techniques 
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(including the well-known surface film balance named after him) to study the chemistry and 
physics of monolayers on water surfaces. Such “floating” monolayers are now known as 
Langmuir films, in honor of Langmuir’s pioneering work. 

The scientific and industrial importance of monolayers and multilayers of organic and 
polymeric materials would not have been possible without the work of another pioneer, 
Katherine Blodgett (1898-1979), the first woman scientist to join G.E. Research Labora- 
tories, and the first woman to obtain a doctorate from the famed Cavendish Laboratory in 
Cambridge, England. Blodgett devised an apparatus to transfer fatty acid monolayers to 
solid substrates from water surfaces. The films thus produced are now known as Langmuir- 
Blodgett films and can be fabricated using a number of different substances (see Fig. 7.1). 

The Langmuir-Blodgett films are believed to hold considerable promise in numerous 
high-technology applications such as molecular electronics, piezoelectric organic films, wave- 
guides, nonlinear optics, and optical information storage, in addition to classical applications 
such as adhesion, prevention of corrosion, catalysis, and solubilization (see Section 7.10 and 
Roberts 1990). The challenge to the surface chemists, physicists, and engineers is to devise 
and fabricate films with special chemical and physical properties (i.e., use molecular engineer- 
ing to manipulate the architecture of the films to provide the desired properties). This field is 
thus a very active area of current research and development in colloid and surface science. 

7.lc Focus of This Chapter 

The material in this chapter is organized broadly in two segments. The topics o n  monolayers 
(e.g., basic definitions, experimental techniques for measurement of surface tension and sur- 
face-pressure-versus-area isotherms, phase equilibria and morphology of the monolayers, for- 
mulation of equation of state, interfacial viscosity, and some standard applications of mono- 
layers) are presented first in Sections 7.2-7.6. This is followed b y  the theories and experimental 
aspects of adsorption (adsorption f rom solution a n d  Gibbs equation for the  relation between 

FIG. 7.1 
deposition; and (c and d) multilayer deposition. 

Deposition of multilayers using the Langmuir-Blodgett technique: (a and b) monolayer 
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surface tension and surface excess concentration, experimental aspects of Gib bs equation, 
adsorption on solid substrates, the Langmuir equation and its application, and examples of 
traditional and some modern applications of adsorbed layers) in Sections 7.7-7.10. We close 
the chapter with a brief discussion of adsorption in the presence of applied potentials as this is 
an important topic in many aspects of colloid science. 

Despite the above organization, in studying the material of this chapter it may be helpful 
to realize that the topics covered may be grouped in several different ways. Let us enumerate 
what these various ways of looking at the material are. 

First, we may focus our attention on the solubility of the adsorbed species in one or both 
of the adjacent phases. In this way two broad categories of phenomena emerge: insoluble and soluble 
surface layers. 

A second way of classifying the material is on the basis of the experimental methods 
involved. For mobile interfaces, surface tension is easily measured. For these it is easiest to 
examine the surface tension-adsorption relationship starting with surface tension data. When 
insoluble surface films are involved, we shall see how the difference in y between a clean 
surface and one with an adsorbed film may be measured directly. For solid surfaces, surface 
tension is not readily available from experiments. In this case adsorption may be measurable 
directly, and the relationship between adsorption and surface tension may be examined from 
the reverse perspective. 

Third, the material of this chapter is a mix of descriptive and theoretical concepts. The 
most important descriptive observation is the existence of two-dimensional phases. The theo- 
retical content of the chapter is mostly thermodynamic in origin. Three major results are the 
equations named after Gibbs, Langmuir, and Lippmann. We are mostly concerned with 
uncharged surfaces, except for a brief discussion of electrolyte adsorption at a polarizable 
mercury electrode in Section 7.1 1. 

Finally, the material may also be regarded as a mixture of fundamentals and applications. 
Although the entire book stresses principles, applications are considered from time to time as 
examples of more abstract ideas. This is also the intent of the sections on applications in this 
chapter. In addition, however, many applications of adsorption phenomena are the basis of 
large and important areas of technology. To omit mention of them would lead to a very 
incomplete picture of these fields. As it is, many important applications must be omitted for 
lack of space, and those mentioned are sketched in only a superficial way. 

7.2 INSOLUBLE MONOLAYERS: SPREADING OF SURFACTANTS ON 
AQUEOUS SURFACES 

7.2a Spread or Insoluble Monolayers 

Suppose a dilute solution is prepared fi-om an aliphatic solvent and an organic solute RX in 
which R is a long-chain alkyl group and X is a polar group. Then, a small amount of this 
solution is placed on a large volume of water with a horizontal surface. The components of 
this system were chosen because they are assumed to meet the following experimental criteria: 

1. 

2. 

3. 

With these facts in mind, let us examine the fate of the drop of solution placed on the 
surface of water. The initial sprerrding coefficient So,, (Equation (6.61) ) for the organic layer 
on water is positive. This is primarily because yoIw is unusually low and y w  is high, even with 
an adsorbed layer of the organic solvent. After spreading, we allow sufficient time to elapse 
for all the solvent to evaporate from the spread layer. At this point the surface will contain a 

The solubility in water of both components of the organic phase is negligible at  room 
temperature. 
The likelihood of any complex being formed between the organic solvent and solute 
is exceedingly low. 
The volatility of the organic solvent is high and that of the solute is low. 
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layer of the organic solute similar to that which would result from the spreading of a sessile 
drop of pure liquid solute or from the adsorption of vapors of the solute component from the 
gas phase. Using a solution with a volatile solvent to form such a layer is a very common 
technique and has the advantage of permitting very small amounts of solute to be quantita- 
tively deposited on a surface. 

The nature of the layer that remains after the solvent has evaporated depends on the 
amount of solute deposited and the area available to it. It is convenient to distinguish among 
three situations in this regard. If the amount of added material and the area are such that the 
water surface is covered uniformly to a depth of one molecule with the solute, the resulting 
film is called a monolayer. On the other hand, submonolayer coverage and multilayer coverage 
result when the amount of added material per area is less or more, respectively, than that 
which produces the monolayer. In this chapter we are concerned mostly with degrees of 
coverage up to and including the monolayer. If a large excess of spread material (beyond the 
amount needed for monolayer coverage) is used, the excess collects into droplets of a bulk 
phase. The equilibrium situation is then identical to what would be produced by the spreading 
of a sessile drop of the solute material. Films of the sort described here are called either spread 
monolayers (when the method of their preparation is stressed) or insoluble monolayers (when 
the chemical nature of the solute is emphasized). We use these terms interchangeably. 

7.2b Some Properties of Spread Monolayers 

Now let us examine some of the properties of the spread monolayer that we have described. It 
was seen in the preceding chapter (e.g., Equation (6.48) ) that the presence of an adsorbed 
layer lowers the surface tension of an interface. The phenomenon is quite general, so we 
redefine T (no subscript) in the following symbols: 

where yo refers to the surface tension of any phase in the absence of an adsorbed layer, and y 
refers to the tension of the same surface with an adsorbed layer. Specific subscripts are used 
only when the problem clearly involves more than one interface. 

The spread monolayer just described may be discussed from two points of view. First, 
there are those aspects of the film that pertain explicitly to the chemical nature of the compo- 
nents: water and the organic solute. Second, there are certain properties of the monolayer that 
depend on physical variables such as temperature, area of the water surface, and number of 
molecules of RXpresent. Let us  briefly discuss both of these viewpoints. 

7.2b. I Struciural Aspects of Monolayers 
The organic solute RX is a prototype of an important array of surface-active materials. Many 
surface-active substances are composed of what are known as amphipathic molecules. This 
term simply means that the molecule consists of two parts, each of which has an affinity for a 
different phase. We are concerned mostly with surfaces in which one of the phases is aqueous, 
so the surfactants that we consider will contain polar or ionic groups, or “heads,” and nonpo- 
lar organic residues, or “tails.” In the compound R X ,  for example, R is an alkyl group, 
generally containing 10 or more carbon atoms. The literature of surface chemistry contains 
many references to  these organic groups by both their International Union of Pure and 
Applied Chemistry (IUPAC) and their common names. Table 7.1 lists some of the more 
commonly encountered examples. In RX,  the polar Xgroup may be -OH, -COOH, -CN, 
-CONH,, or -COOR’ , or an ionic group such as -SO3 - -C>S03 - , or -NR, + . 

With the foregoing ideas in mind, one characteristic of the adsorbed monolayer becomes 
apparent: molecular orientation at surfaces. For a film of RX on water, the picture that 
emerges is one in which the polar groups are incorporated into the aqueous phase with the 
hydrocarbon part of the molecule oriented away from the water. Such details as the depth of 
immersion of the tail and the configuration of the alkyl group are best approached by consid- 
ering how the properties of the monolayer depend on the physical variables. 
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TABLE 7.1 
Saturated and Unsaturated Surface Active Compounds 

IUPAC and Common Names for a Variety of Normal 

Normal, saturated compounds 

n 

Alcohols, amines, 
Carboxylic acids sulfates, etc. 

(number of Common 
C atoms) IUPAC name name 

Common 
name 

12 Dodecanoic Lauric 
14 Tetradecanoic Myristic 
16 Hexadecanoic Palmitic 
17 Heptadecanoic Magaric 
18 Octadecanoic S tear ic 
20 Eicosanoic Arac hidic 
22 Docosanoic Behenic 

Lauryl 
Myristyl 
Ce tyl 
Heptadecyl 
St earyl 
Eicosyl, arachic 
Docosyl 

Normal, unsaturated carboxylic acids 

IUPAC name Common name 

18 
18 
18 
18 
22 
22 

cis-9-Octadecenoic Oleic 
cis,cis-6,9-Octadecenoic Linoleic 
cis,cis,cis-3,6,9-Octadecenoic Linolenic 
trans-9-Octadecenoic Elaidic 
cis-9-Docosenoic Erucic 
trans-9-Docosenoic Brassidic 

7.2b.2 Surface Pressure Versus Area Isotherms 
Next let us consider some of the physical properties of the spread monolayer we have de- 
scribed. Equation (1 )  states that the surface tension of the covered surface will be less than 
that of pure water. It is quite clear, however, that the magnitude of y must depend on  both the 
amount of material adsorbed and the area over which it is distributed. The spreading technique 
already described enables us to control the quantity of solute added, but so far we have been 
vague about the area over which it spreads. Fortunately, once the material is deposited on the 
surface, it stays there-it has been specified as insoluble and nonvolatile for precisely this 
reason. This means that some sort of barrier resting on the surface of the water may be used 
to “corral” the adsorbed molecules. Furthermore, moving such a barrier permits the area 
accessible to the surface film to be varied systematically. In the laboratory this adjustment of 
area is quite easy to do in principle. As we see below, the actual experiments must be per- 
formed with great care to prevent contamination. 

Suppose that the initial film is spread on  water that fills to the brim a shallow tray made 
of some inert material. Rods with low-energy surfaces may then be drawn across the water to 
adjust the area accessible to  the molecules of the monolayer. Figure 7.2a indicates schemati- 
cally how such an arrangement might appear. In practice, several barriers would be used, first 
to sweep the surface free of insoluble contaminants and then to confine the monolayer. 

7.2b.3 
Next, an experiment such as that shown in Figure 7.2b could be conducted. The apparatus 
consists of a pair of Wilhelrnyplates attached to two arms of a balance. One plate contacts the 
clean surface and the other the surface with the monolayer. Note that the barrier separates 
the two portions of surface. The surface tension will be different in the two regions, and the 
weight (and volume) of the meniscus entrained by the plate will be larger for the clean surface 

Wilhelmy-Plate Technique f or Surface Tension Measurement 
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FIG. 7.2 Schematic illustrations of a monolayer and a Wilhelmy plate arrangement for surface 
tension measurement: (a) schematic illustration of a barrier delineating the area of a monolayer; 
and (b) a Wilhelmy plate arrangement for measuring the difference in y on opposite sides of 
barrier. 

because of its higher surface tension (Equation (6.2)). Ideally, the two plates are identical in 
weight, perimeter, and contact angle, although the last may be difficult to achieve in practice. 
If these conditions are met, however, the additional weight needed to bring the apparatus to 
balance measures the difference in y for the two surfaces. By Equation (6.2), this is given by 

Of course, there is no necessity to measure both yo and y o n  the same apparatus; they may 
be determined independently by any of the methods of Chapter 6. The experiment represented 
by Figure 7.2b is intended mainly to emphasize that the surface tension of the two areas will 
be different. Furthermore, as the barrier is moved in such a way as to compress the area of the 
spread monolayer, the value of n- will increase. 

Although T and the area A of the surface vary inversely, the precise functional form by 
which they are related is more difficult to describe. For very large areas, n- and A show a 
simple inverse proportionality such as pressure and volume for an ideal gas. As the area is 
decreased, a more complex relationship is needed to  connect these variables, just as the 
equation of state becomes more complex for nonideal gases and condensed phases. This 
analogy of n- and A with p and I/ turns out to be a very profitable way of thinking about 
insoluble monolayers. For one thing, it suggests an  alternative to the difference between two 
values of surface tension as a means of measuring n-. In addition, the analogy to three- 
dimensional states suggests models for understanding monolayers. In succeeding sections each 
of these points is developed in greater detail. 

Identification of area as the two-dimensional equivalent of volume is a straightforward 
geometrical concept. That T should be interpreted as the two-dimensional equivalent of pres- 
sure is not so evident, however, even though the notion was introduced without discussion in 
Chapter 6, Section 6.6. Figure 7 . 3  helps to clarify this equivalency as well as suggest how to  
compare quantitatively two- and three-dimensional pressures. The figure sketches a possible 
profile of the air-water surface with an adsorbed layer of amphipathic molecules present. In 
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FIG. 7.3 
the clean surface. 

Schematic profile of the air-water interface at a barrier that separates a monolayer from 

general, we must allow for the fact that different configurations might exist among the ad- 
sorbed molecules; nevertheless, the surface layer has some mean thickness r. 

If the barrier represents the limit of the monolayer, then it is clear that the contractile 
force exerted by the surface is different on opposite sides of the barrier. Since y is less than yo, 
it is as if the film were exerting a force on the barrier along the perimeter of the film equal to 
T .  Force per unit length- the units of y-is the two-dimensional equivalent of force per unit 
area, the units of pressure in the bulk. 

The surface layer does not have zero thickness, of course, even though it is conceptually 
convenient t o  think of it as two-dimensional matter. If we assume that the film pressure T 

extends over the entire thickness of the film, then it is an easy problem to convert the two- 
dimensional pressure to its three-dimensional equivalent. Taking 10 mN m - '  as a typical value 
for 71- and 1 .O nm as a typical value for T enables us  to write 

or 

1 atm 
1.01 3 105 N m-2 

p = 1 0 J N m - 2  * = 100atm (4) 

In view of this calculation, it is not too surprising that insoluble monolayers do not usually 
display a simple inverse proportionality between T and A .  At pressures this high, three- 
dimensional matter is not likely to obey the ideal gas law either. 

7.3 EXPERIMENTAL MEASUREMENT OF FILM PRESSURE 

7.3a LANGMUIR FILM BALANCE 

The considerations of the preceding section suggest a second way to study spread monolayers. 
This technique involves measuring the film pressure directly rather than calculating it from 
surface tension differences by Equation (1). Figure 7.4a is a schematic representation of an 
apparatus called the Langmuir film balance after Irving Langmuir, a pioneer in this field as 
mentioned in Vignette VII. Its base is a shallow tray or trough of some inert material. As was 
the case in Figure 7.2a, the surface must be swept by barriers both to clean the surface and to 
compress monolayers. In the Langmuir balance, however, one of the barriers is attached to a 
pivoted arm, arranged in such a way that a torque balance around point P can be measured, 
for example, by adding weights to the pan. As the figure shows, an insoluble monolayer may 
be confined to a portion of the surface adjacent to the pressure-sensing float. The shaded area 
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FIG. 7.4 Langmuir film balance: (a) a schematic representation of a Langmuir balance; and (b) a 
Langmuir trough with a laser optics instrument to measure the orientations of the hydrocarbon tails 
of the surfactant molecules. The apparatus shown monitors the orientation of the tails through the 
second harmonic signals generated at various angles of incident light beam. (Redrawn with permis- 
sion of G. A. Somarjai, Introduction to Surface Chemistry and Catalysis, Wiley, New York, 1994.) 

in the figure corresponds to the area of the film. It is obviously adjustable by moving the other 
barrier. To prevent the film from leaking past the edges of the float, flexible barriers connect 
the ends of the float to the edges of the tray. 

By means of this apparatus, it is possible to vary the area of a spread monolayer and 
measure the corresponding film pressure directly. Many different variations of the film bal- 
ance are available, and a number of instrumentational techniques can be combined with the 
Langmuir balance to obtain information on the microstructure of the films and the properties 
of the films. Figure 7.4b illustrates, for example, a laser optics arrangement to monitor the 
molecular orientation of the hydrocarbon tails of the surfactant molecules. Below in this 
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chapter we come across another technique, based on fluorescence microscopy , for observing 
the different “surface phases” that can develop in the film. Figure 7.5 is a photograph of a 
commercial apparatus, shown without the peripherals such as illustrated in Figure 7.4b. 

7.3b Using the Langmuir Balance 

Although the Langmuir balance is quite simple conceptually, obtaining unambiguous results 
by this technique is far from simple. As we have done in discussing other experimental 
techniques in this book, we only touch on those aspects of the method that will somehow 
contribute to our fundamental understanding of insoluble monolayers. Anyone considering 
experiments of this sort should consult more detailed discussions, such as the book by Gaines 
(1966). 

A convenient way to discuss the Langmuir balance is to examine the difficulties involved 
in measuring each of the two-dimensional state variables T ,  A ,  T,  and, of course, the number 
of moles n of material in the insoluble layer. 

The float-torsion wire assembly is the pressure-sensing system in the film balance. The 
flexible barriers that connect the float to the edges of the tray must be considered part of this 
mechanism. As with gas pressure determinations, it is essential that the system be leakproof. 
For this reason the float and flexible barriers must always be hydrophobic, that is, not wetted 
by the aqueous substrate. If these surfaces were wet by water, the possibility of surfactant 
transferring to them - that is, a leak in the system - would be enhanced. Thin pieces of mica 

FIG. 7.5 Photograph of a commercial film balance. The photograph shows a “minitrough” with 
microscopy setup. (Courtesy of KSV Instruments, Ltd., Hoylaamotie 11 B, SF-00380 Helsinki, 
Finland.) 
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are commonly used as float material, and platinum ribbons or threads of silk or nylon are 
often used for flexible barriers. All of these are waxed to give them suitably hydrophobic 
characteristics. The sweeping barriers and the tray must also be hydrophobic for the same 
reasons. These are usually waxed metal, although Teflon is also quite popular because of its 
inertness. The barriers must make intimate contact with the edges of the tray, also to prevent 
leaks. Therefore both tray and barriers must be carefully machined to assure good contact. 
Plastics are generally unsuitable as barrier materials because they are too light to make good 
contacts. 

To  convert the measured torque into a two-dimensional pressure, it is necessary to know 
both the length of the float and the distance between the float and the torsion wire. The 
distance measurement requires that the water level be controlled quite accurately. As far as the 
length of the float is concerned, the flexible connectors must be included in this figure. Since 
they are anchored at one end, only part of their length may be considered a part of the 
pressure-sensing system. Some approximations are required here, but if the length of the 
connector is small compared to the total length of the float, the error is negligible. 

The float is effectively a two-dimensional manometer, and, like its open-ended counter- 
part, it measures the film pressure difference between the two sides of the float. This is another 
reason why it is imperative that no leakage occur past the float assembly: Leakage would 
increase the pressure on the reference side of the float. For the same reason, the side of the 
float opposite the monolayer must be carefully checked for any possible source of contamina- 
tion, not just misplaced surfactant. One way of doing this is to slide a barrier toward the float 
from that side to verify that no displacement of the float occurs. In all aspects of film pressure 
measurement, the torque must be measured with sufficient sensitivity to yield meaningful 
results. 

Measuring the area of the film is less troublesome. If the edges of the tray are parallel and 
the barriers perpendicular to them, the area of the rectangular surface is easily determined. 
The curvature of the surface at the hydrophobic boundaries introduces a small error but- 
since the total area is of the order of magnitude of 10 -‘ m’- this is generally negligible. 

The results obtained in 7r versus A experiments may be sensitive to the rate at which the 
film area is changed. We shall not discuss the factors responsible for this, but merely note that 
the same film pressures should be obtained on compression and expansion if true equilibrium 
values are being measured. 

Temperature is an important variable in any equation of state. The experiments we are 
describing are isothermal; therefore it is important that both the water substrate and the 
adjoining vapor be thermostated. 

Next let us consider those difficulties associated with the determination of the amount of 
material deposited on the surface. We have already noted that the method of depositing 
insoluble monolayers by spreading permits the accurate determination of n. Since the spread- 
ing technique requires solvent volatility, care must be exercised to prevent the stock solutions 
from changing concentration due to evaporation prior to their application to the surface. 
Also, precise microvolumetric methods must be used to dispense the solution on the aqueous 
surface since the quantity used is small. The solvent (as well as the solute) must be free from 
contaminants. There is also the possibility that the solvent will extract spreadable contami- 
nants from the waxed surfaces of the float, barriers, and tray. Some workers advocate addi- 
tion and evaporation of one drop at a time to minimize this. Oily contaminants may also reach 
the water surface from the fingers and from the atmosphere. These last sources are particularly 
hard to control: Tests for reproducibility and blank compressions (i.e., moving the barrier 
toward the float on a “clean” surface) are the best evidence of their absence. 

Not all solvents are equally suitable for spreading monolayers. The requirement that the 
solvent evaporate completely is self-evident. It has been suggested that if the organic solvent 
dissolves much water, the properties of the monolayer will be different from those in which no 
water is trapped. Verification that no artifacts are entering the observations from the solvent 
may be accomplished by conducting duplicate experiments with different solvents. 

Until now we have concentrated on those difficulties in using the Langmuir balance that 
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arise from the determination of T ,  A ,  T,  and n. A few remarks are also in order about 
considerations that may affect the monolayer and originate in the adjacent phases. We have 
already discussed contaminants originating in the gaseous phase. For some monolayer materi- 
als, air oxidation may also be a problem. The aqueous substrate is the source of a wide 
assortment of contaminants in addition to spreadable oily matter. Ionic impurities, including 
those that affect the pH, are quite troublesome. The charge state of many amphipathic 
molecules, for example, amines and carboxylic acids, is obviously pH dependent. Salts or 
complexes formed between amphipathic molecules and ions in the aqueous phase will have 
different monolayer properties from those of the unreacted surfactant molecule. 

An extensive discussion of the Langmuir balance technique and a comparison with the 
Wilhelmy plate method are given by MacRitchie (1990). This book also discusses modifica- 
tions that are possible to the techniques and other experimental details. 

7.4 RESULTS OF FILM BALANCE STUDIES 

The preceding section shows that it is possible to determine T-A isotherms for surfaces just as 
p-Visotherms may be measured for bulk matter. The results that are obtained for surfaces are 
analogous to bulk observations also, although some caution must be expressed about an overly 
literal correlation between bulk and surface phenomena. We return to a discussion of these 
reservations below. There can be no doubt, however, that analogies with bulk behavior supply 
a familiar framework within which to consider T-A isotherms. 

The curve sketched in Figure 7.6, which is drawn with grossly distorted coordinates to 
encompass all features, contains several similarities to p-  V isotherms. Not all the features 

FIG. 7.6 Composite two-dimensional pressure 7r versus area (T isotherm, which includes a wide 
assortment of monolayer phenomena. Note that the scale of the figure is not uniform so that all 
features may be included on one set of coordinates. The sketches of the surfactants show the 
orientations of the molecules in each phase at various stages of compression. 
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FIG. 7.7 Schematic illustration showing the collapse of the film. 

shown here are always observed, nor are all known idiosyncrasies of 7r-A isotherms repre- 
sented. The presence or absence of various features and their T-A coordinates vary with 
temperature for a particular amphipathic molecule and from one amphipathic substance to 
another. Last, there is some diversity in the terminology used to describe various monolayer 
phenomena. In short, Figure 7.6 is a composite isotherm that will introduce and summarize a 
variety of observations. 

In this section we discuss in turn the various two-dimensional phases and phase equilibria 
represented in Figure 7.6, progressing from low values of T to high ones. The existence of 
these two-dimensional states and the properties they possess are presumably unfamiliar to 
most readers. Therefore it is important to keep the following ideas in mind in reading this 
section: 

1. 

2. 

3. 

We are concerned with two-dimensional matter situated at  the boundary between two 
bulk phases. 
The properties of the two-dimensional phases are relatively independent of the prop- 
erties of the bulk phases of the same material. 
Many surface states are two-dimensional analogs of three-dimensional states. As with 
any analogy, however, there are points of similarity and points of difference between 
the surface and bulk states. For most of the states we discuss, we consider the phe- 
nomenological behavior as represented by Figure 7.6 and Figure 7.7. 

7.4a Microstructural Phases in Monolayers 

Let us first take a look at  the types of microstructural phases one typically finds in a mono- 
layer. For this consider the isotherm shown in Figure 7.6. The Langmuir layers have a (two- 
dimensional) “gaslike” distribution of surfactants when the area per molecule is large com- 
pared to the dimensions of the molecule. In this phase, denoted as G in Figure 7.6, the 
hydrocarbon tails of the molecules make significant contact with water. As the concentration 
of the surfactant at the surface increases, the gas phase begins condensing to a liquidlike phase 
known as the liquid-expanded (LE) phase. This two-phase region corresponds to the plateau 
region in Figure 7.6 (analogous to the three-dimensional gas-liquid coexistence region on the 
pressure-volume isotherm). At higher surfactant concentrations the gas phase completely 
condenses to the LE phase. In the LE phase, the hydrocarbon tails of the surfactants lift from 
the surface of the water but remain disordered. At further increases in surfactant concentra- 
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tion, the LE phase is transformed to another “liquid” phase known as the liquid-condensed 
(LC) phase. Current research suggests that the LC phase is not a liquid (Knobler 1990b), as 
one observes a higher degree of alignment of the hydrocarbon chains (and possibly some 
long-range order). The LC phase becomes a solidlike (S) phase with further compression as 
shown in Figure 7.6. The area per molecule in the solid phase is close to what one would expect 
for close packing of the hydrocarbon chains. The phase diagram shown in Figure 7.6 can also 
be plotted in terms of a temperature-versus-area diagram (similar to the temperature-volume 
diagram in three dimensions) as shown in Figure 7.8, in which some sample tie lines (the 
horizontal lines connecting coexisting phases) are also marked. The diagram shown is only a 
schematic representation, as emphasized in the legend. 

It is instructive to examine the morphology of a monolayer as the above phase changes 
occur. The different phases can be visualized t o  a limited extent by using fluorescence micro- 
scopy. In this technique, a monolayer is prepared with a small amount of solute with a 
fluorescence label. One can then excite the fluorescence markers with a laser and observe the 
morphology using a high-sensitivity camera. A sequence of such results is shown in Figure 7.9 
(Knobler 1990b). Figure 7.9a corresponds to a point in the LE/G coexistence region in Figure 
7.8 (at a density of 1 molecule per 61 A in this case). The dark regions in the figure are the 
gas “bubbles”, which appear dark because of the difference in the density of the phases and 
(possibly) because of the quenching of the fluorescence of the labeled molecules in the gas 
phase. The white regions are the LE phase. 

As the layer is compressed at constant temperature (i.e., as one moves horizontally from 
right to left in Fig. 7.8), one sees the sequence of morphologies shown in Figures 7.9b-7.9e. 
The layer in Figure 7.9b is still the LE/G coexistence region, but the amount of gas phase has 
clearly decreased. On  further increase in density one enters the single-phase LE region (Fig. 
7.9c), as indicated by the completely white layer. Figure 7.9d may be misleading as it appears 
similar to Figures 7.9a and b, but in this case the dark circles correspond to the LC phase in 
which the (fluorescence-labeled) probe molecules have low solubility (hence the contrast). 
Figure 7.9e shows that the LC phase increases in quantity at a higher solute concentration. 
Although the fluorescence technique described here provides only black-and-white pictures 
and it may appear that the technique is limited to two-phase regions, detection of more than 
two phases can be achieved by analyzing the evolution of the features in the morphology. 

1 PhaseDiagram 1 

line 

I LC+G 

Area 
FIG. 7.8 A schematic representation of the temperature-versus-area diagram for a Langmuir 
layer (a two-dimensional phase diagram). The coexistence regions are exaggerated for clarity. The 
horizontal lines shown are the tie lines. The arrow marked “quenching” starts at the LE + G 
coexistence region and is used in the text to illustrate the morphological changes when a two-phase 
liquid-expanded/gaslike (LE + G )  mixture is quenched. (Redrawn with permission of Knobler 
1990b.) 
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FIG. 7.9 Fluorescence microscope pictures of a monolayer of pentadeconoic acid (PDA) contain- 
ing 1 070 fluorescent probe (4-( hexadecylamino)-7-nitrobenz-2-oxa-l,3-diazole, i.e., NBD-hexa- 
decylamine): (A) 1 molecule per 61 A’ at 25OC with G (dark) and LE (white) phases; (B) 1 molecule 
per 50 A’ at 25OC with G (dark) and LE (white) phases; (C) 1 molecule per 36 A’ at 25OC with a 
single LE phase;a(D) 1 molecule per 27 A2 at 25OC with LC (dark) and LE (white) phases; (E) 1 
molecule per 24 A‘ at 25OC with LC (dark) and LE (white) phases; (F) temperature quench starting 
at the LE/G coexistence region (overall density = 1 molecule per 51 A?). The final point is a 
three-phase region consisting of LC, LE, and G phases. See the text for details. (Redrawn with 
permission of Knobler 1990b.) 

One such case is shown in Figure 7.9f, which is obtained by quenching a state in the 
LE/G coexistence region to a point in the LC/LE/G three-phase region (the arrow marked 
“quenching” in Fig. 7.8). The large circles in the centers of the flower-shaped domains corre- 
spond to the LC phase. Circling the LC “drops” are small circular domains of the gas phase. 
These grow at the expense of the LE phase, and with further quenches one moves into an 
LC/G mixture (see the arrow marked “quenching” in Fig. 7.8). A considerable number of 
studies have appeared in the literature in recent years on the morphological changes in Lang- 
muir monolayers (see Knobler 1990b) because of the potential and the projected uses of such 
monolayers in advanced technological applications (see Sections 7.6 and 7.10). 

7.4b The “Gas” Phase and Its Models 

As evident from the above discussion, if measurements can be made at sufficiently low pres- 
sures, all monolayers will display gaseous behavior, represented by region G in Figure 7.6. The 
gaseous region is characterized by an asymptotic limit as n -+ 0. In the limit of very low film 
pressures, a two-dimensional equivalent to the ideal gas law applies: 

T A  = nRT 

where R is the gas constant, usually in SI units. This is a convenient place to define another 
quantity, the area occupied per molecule in the interface U. Since R equals Avogadro’s number 
times the Boltzmann constant, and nN,, equals the total number of surface molecules, we may 
write 
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As a model for this highly expanded state we may choose a situation like that depicted in 
one of the insets of Figure 7.6 corresponding to very low surface coverage; the inset corre- 
sponding to the gas phase shows the hydrocarbon chain lying flat on the surface, blocking an 
area d2, where P is the length of the “tail.” We may then use Equation (6) to calculate the 
value of T corresponding to this area per molecule. At 25 OC and with 4 = 1 .O nm, we obtain 

Allowing the above amount of area per molecule is equivalent to taking the distance of closest 
approach for the typical distance between the molecules. Therefore ideal behavior will be 
expected only if the areas per molecule are larger than this, on the order of 10 nm2 perhaps. 
Correspondingly lower film pressures will be involved also. I f  we recall that the pressure of 
this example is equivalent to a bulk gas pressure of about 13 atm, it is less surprising that such 
low film pressures are needed to observe gaseous monolayer behavior. The repulsion between 
particles in a charged monolayer increases the effective area these molecules occupy at the 
surface. The effect of this is to increase the pressure of charged films, making them more 
accessible to measurement. Since ionic surfactants are soluble, techniques other than the film 
balance must be used to study their T-(T isotherms. 

It is not difficult to propose and develop a model for the gaseous state of insoluble 
monolayers. The arguments parallel those developed in kinetic molecular theory for three- 
dimensional gases and lead to equally appealing results. The problem, however, is that many 
assumptions of the model are far less plausible for monolayers than for bulk gases. To see 
this, a brief review of the derivation seems necessary. 

7.4b. I Equation of State from Kinetic Theory 
Suppose we imagine a single molecule bouncing back and forth across a surface between two 
restraining barriers. If we define the direction of this motion to be the x direction and the 
velocity of the molecule to be v,, then the change in momentum at each collision (if we assume 
they are elastic) is 

(8) 

where m is the mass of the molecule. The time interval between two successive collisions at the 
same wall is given by 

A(momentum)/collision = mv, - (-mv,) = 2 m v, 

elapsed time/collision = 2P/v, (9) 

if the distance between barriers is P since the molecule must cross the distance between the 
barriers twice before returning to the same spot. The force exerted by the molecule on impact 
equals the rate of change in momentum, which, in turn, equals the ratio of Equation (8) to 
Equation (9): 

(10) 

This force is converted to two-dimensional pressure by dividing it by the length of the 
edge to which the force is applied. Assuming the accessible surface area to be a square means 
that the length of this edge is also 4; the pressure contribution of this one collision equals 

A(momentum)/A(time) = F, = m v:/P 

The quantity l2 in this equation clearly describes the area accessible to  the molecule. 
Since pressure is isotropic, we assume that the forces on the perpendicular barriers are 

identical. Therefore, if the surface contains N molecules, they behave as if N/2 were exerting 
a pressure given by Equation (1 1) on the barriers perpendicular to the x direction, with the 
other N/2 exerting an identical pressure in the other direction. That is, for a surface containing 
N molecules 
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The average value of the square velocity has been used in Equation (12) to allow for the 
fact that a distribution of molecular velocities exists. The nature of the averaging procedure to 
be used in this case is well established from physical chGistry.  We also know from physical 
chemistry that the average kinetic energy per molecule (KE) per degree of freedom is 

Since the molecules on the surface have two translational degrees of freedom, Equations (12) 
and (13) may be combined to give 

which is identical to Equation (6). 
The foregoing derivation is a straightforward two-dimensional analog of the three- 

dimensional case and leads to a result that describes the experirnental facts. From a pragmatic 
point of view, it is a great success. One of the theoretical assumptions underlying Equation 
(13), however, is that translational quantum states are sufficiently close together to justify 
treating them as continuous rather than discrete. This is unquestionably true for gases. For 
an amphipathic molecule with a polar head that contacts - arid interacts with - the aqueous 
substrate, it is somewhat harder to justify. We see below that there is a totally different way 
of looking at Equation (14) that is free from this objection. 

Like its three-dimensional counterpart, Equation ( 5 )  is a limiting law, which means that 
deviations may be expected at higher pressures, lower temperatures, or with more strongly 
interacting molecules. Figure 7.10 is a plot of 7ra/k,T versus T for several members of the 
carboxylic acid homologous series. The film balance was used to collect the data only for 
the C,, acid. Shorter chain compounds are soluble and were investigated by surface tension 
measurements and interpreted by the Gibbs equation, which we discuss in Section 7.7. 

The main point to note about Figure 7.10 is the strong resemblance it bears to similar 
plots for three-dimensional gases. Negative deviations occur at low pressures, becoming more 
pronounced as the length of the alkyl chain increases. As with gases, this may be attributed to 
attraction between molecules, an effect that increases with chain length. At higher pressures, 
deviations tend to be positive. This is analogous to the excluded volume effect for gases, 
except that it becomes an excluded area in two dimensions. 

* * *  

EXAMPLE 7.1 Determination of the Molecular Weight of a Solute from T Versus A Isotherms. 
The molecular weight of a gas may be determined by measuring the mass of the sample as well 
as a set of p,  V, and T values for the same sample. Use this fact to criticize or defend the 
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FIG. 7.10 
(5) Cl0, and (6) CI2. (Data from N. K .  Adam, Chern. Rev., 3, 172 (1926) ). 

Plots of .rra/k,T versus T for n-alkyl carboxylic acids: (1) C4, (2) C5, (3) C,, (4) C8, 
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following proposition: The molecular weight of a solute in a monolayer may be calculated by the 
formula M = mRT/TA, where Alm gives the area mass -’ of the monolayer under a pressure T 

and at a temperature T. 

Solution: The formula given is the two-dimensional analog of the ideal gas law; therefore two 
conditions must be met to justify its use. First, the monolayer must be in the gaseous state, and, 
second, the gas pressure must approach zero. The first point may appear trivial since no one 
would apply pV = nRT to a bulk liquid sample for which p, V,  and T had been measured. The 
two-dimensional state of a monolayer is not directly perceptible, however, and T-U data must be 
evaluated to verify that the monolayer is indeed in the G state. With T-A data measured over a 
range of (low) T ’ S ,  Figure 7.10 shows that the limiting value of TA/RT is the number of moles in 
the sample. Dividing the mass of the sample by this value of n yields the correct molecular 

rn weight. The proposition needs to be qualified by adding “in the limit of T -+ 0.” 

7.46.2 
We noted above that the applicability of Equation (14) to insoluble monolayers is severely 
restricted to very low values of T .  Figure 7.10 shows that the deviations from Equation (14) 
with increases in P are very similar to what is observed for nonideal gases. Specifically, the 
positive deviations associated with excluded volume effects in bulk gases and the negative 
deviations associated with intermolecular attractions are observed. I t  is tempting to try to 
correct Equation (14) for these two causes of nonideality in a manner analogous to that used 
in the van der Waals equation: 

Van der Waals Equation of State f o r  Monolayers 

(T + :) (U - b )  = kBT 

where a and b are the two-dimensional analogs of the van der Waals constants. Note that b, 
the excluded area per molecule, is conceptually equivalent to U’, although which of the values 
( o & , o ~ ~ , o ~ )  best fits the data cannot be predicted a priori. 

The temperature at which the van der Waals equation goes from one having three real 
roots to one having one real root is generally identified with the critical temperature. In the 
same way, Equation (15) may be considered to connect both the gaseous (G) and liquid- 
expanded (LE) states in monolayers, the transition between which also displays a critical 
point. Statistical mechanics shows, however, that the van der Waals constant a explicitly 
ignores orientation effects as contributing anything to the energy in gases; it is hard to imagine 
the properties of insoluble monolayers as being independent of orientation. Therefore any 
attempt to correct Equation (14) in such a way as to extend its range encounters difficulties. 
Ultimately, all objections to two-dimensional equations of state seem to center on their neglect 
or unsatisfactory inclusion of the substrate. 

7.4b.3 

An alternative way of looking at monolayers is to consider them as two-dimensional binary 
solutions rather than two-dimensional phases of a single component. The advantage of this 
approach is that it does acknowledge the presence of the substrate and the fact that it plays a 
role in the overall properties of the monolayer. Although quite an extensive body of thermody- 
namics applied to two-dimensional solutions has been developed, we consider only one aspect 
of this. We examine the film pressure as the two-dimensional equivalent of osmotic pressure. 
It will be recalled that, at least for low osmotic pressures, the relationship among K,,,, , V, n, 
and T is identical to the ideal gas law (Equation ( 3 . 2 5 )  ). Perhaps the interpretation of film 
pressure in these terms is not too farfetched after all! 

As we saw in Chapter 3,  the heart of any osmotic pressure experiment is a semipermeable 
membrane that allows the solvent but not the solute to pass. The float of a Langmuir balance 
accomplishes this. That portion of surface with the monolayer is considered to be the two- 
dimensional solution; the clean surface is the two-dimensional solvent. The solvent can cer- 
tainly pass from one region to another (remember that the mechanism of the partitioning has 

Monolayers as Two-Dimensional Binary Solutions 
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nothing to do with the equilibrium osmotic pressure) through the bulk substrate. However, 
the insoluble solute is restrained by the float. 

For osmotic equilibrium, the chemical potential of the solvent must be the same on both 
sides of the membrane. In the two-dimensional analog also the chemical potential must be the 
same for the water on both sides of the float. The presence of the solute lowers the chemical 
potential of the solvent, but the excess pressure compensates for this. Therefore, by analogy 
with Equation (3.19), we write 

where the subscript s indicates the surface and the subscript 1 identifies the solvent. If the 
partial molal area of the solvent A, is assumed to be independent of T ,  Equation (16) may be 
integrated to give 

-RTlna , ,  = TA, (17) 

For ideal (dilute) solutions the activity is replaced by the mole fraction xls, which, for a 
two-component surface solution, equals ( 1  - x,,). With the customary expansion of the loga- 
rithm as a power series (see Appendix A), these substitutions yield 

RTX,~ = TZ, (18) 

the two-dimensional equivalent of Equation (3.23). Finally, it is necessary to relate the surface 
mole fraction and the molar area of the solvent to more familiar variables. 

The surface mole fraction is entirely analogous to the bulk value of this quantity, 

where the n terms are the numbers of moles, and the N terms are the numbers of molecules. 
For dilute surface solutions - that is, expanded monolayers -NIs >> N2A; therefore 

x, E N J N , ,  (20) 

A T  = n, ,  A, + n,, A ,  = N,,a; + N,,a:‘ 

The total area of the surface may be written 
- 

(21) 

Applying these various relationships to Equation (18) leads to the following result for low film 
osmotic pressures: 

(22) n(A,  - N&) = nzs R T  = N,,k,T 

~ ( 0  - 0:) = k,T 

Dividing through by N2$ to express the total area as area per solute molecule gives 

(23) 

Equation (23) obviously gives the two-dimensional ideal gas law when U % a; and with 
the a; term included represents part of the correction included in Equation (15). This model 
for surfaces is, of course, no more successful than the one-component gas model used in the 
kinetic approach; however, it does call attention to the role of the substrate as part of the 
entire picture of monolayers. We saw in Chapter 3 that slolution nonideality may also be 
considered in osmotic equilibrium. Pursuing this approach still further results in the concept 
of phase separation to form two immiscible surface solutions, which returns us to the phase 
transitions described above. 

* * *  

EXAMPLE 7.2 Use of the van’t Hoff Equation for Monolayers. A monolayer of egg albumin 
was spread on a concentrated aqueous solution of ammonium sulfate and T-A data were 
collected at 25OC by Bull (1945). Use the two-dimensional van’t,Hoff equation to evaluate the 
molecular weight of the albumin if (dc’), = 5.54 105 erg g -  . In this expression c ’  is the 
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two-dimensional concentration in practical units, g cm -2. How does this interpretation of T-A 
data compare with the interpretation given in Example 7.1? 

Solution: According to the van’t Hoff equation, 

1 /M = (1 /RT)(T/c ’ ),, = (5.54 * 1 05)/(8.31 4 * 1 07)(298) 
= 2.24. IOp5 mole g-’ 

therefore M = 44,700 g mole-’. This is completely equivalent to the interpretation given in 
Example 7.1 since T -, 0 as c ’  + 0. Therefore the same limiting value is obtained whether the 
limit is taken in terms of T or c’. rn 

* * *  

In summary, we see that insoluble monolayers may be viewed either as examples of two- 
dimensional phases of one component or as two-dimensional solutions with two components. 
The former model is somewhat simpler and is often adequate. The latter, although more 
complex, is more realistic. In spite of our interest in the monolayer, we must not neglect the 
fact that none of the monolayer phenomena would exist without the aqueous phase as the 
substrate. 

7 . 4 ~  The Liquid-Expanded Phase 

Next, let us return to Figure 7.6, discussing the features labeled LE and LE/G. As mentioned 
above, the horizontal line of the LE/G region in Figure 7.6 is analogous in every way to the 
corresponding feature in bulk matter. At a given temperature there is a constant-pressure 
region over which a significant compression occurs. The film pressures at which LE/G equilib- 
rium occurs are known as film vapor pressures T,. Like the gaseous state itself, the LE/G 
equilibrium occurs at very low pressures. Tetradecanol, for example, has a two-dimensional 
vapor pressure of 1.1 - 10 - 4  N m - ’  at 15 OC. 

It is important to remember the significance of T ” .  It refers specifically to the equilibrium 
between two surface states. There is a danger of confusing T,  with the equilibrium spreading 
pressure T ~ ,  introduced in Chapter 6. The latter is the pressure of the equilibrium film that 
exists in the presence of excess bulk material on the surface. It is the equilibrium spreading 
pressure that is involved in the modification of Young’s equation (Equation (6.49) ), for which 
a bulk phase is present on the substrate. For tetradecanol at 15 O C ,  the equilibrium spreading 
pressure is about 4.5 * 10 -2  N m -’, so xe and T, are very different from one another. 

The temperature variation of T,, may be analyzed by a relationship analogous to the 
Clapeyron equation to yield the two-dimensional equivalent to the heat of vaporization. 
The numerical values obtained for this quantity more nearly resemble the bulk values for 
hydrocarbons than those for polar molecules. This suggests that most of the change in the 
surface transition involves the hydrocarbon tail of the molecule rather than the polar head. 

Finally, note that the LE/G equilibrium region disappears above a certain temperature 
that is the two-dimensional equivalent of the critical temperature for liquid-vapor equilibrium 
(see Fig. 7.8). 

As described in Section 7.4a, the liquid-expanded state is the first of several condensed 
states. Because it is bound on the low-pressure side by a two-phase region with a critical 
temperature, the LE state is easily compared to a bulk liquid state. Since gaseous behavior is 
observed only at very low pressures, it is easy to extrapolate the isotherm for the LE state to 
the T = 0 value, as the dashed line in Figure 7.6 shows. For amphipathic molecules with 
saturated unbranched R groups, this intercept is in the range 0.45 to 0.55 nm’. We shall 
identify the limiting area per molecule (superscript zero) for this state (subscript LE) by 
the symbol a&. The presence of branched chains or double bonds-particularly in the cis 
configuration - increases the value of this limiting area. 

The precise structural details of the liquid-expanded state at the molecular level are not 
fully understood, but several generalizations do appear to be justified. The value of a:‘ is 
several times the actual cross-sectional area of the amphipathic molecule, when oriented 
perpendicular to the surface. At the same time the area per molecule is considerably less than 
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could be permitted if the entire tail were free to move in the surface. The inset corresponding 
to the LE phase in Figure 7.6 represents a model of the surface at the molecular level. Here, 
part of the hydrocarbon chain lies in the surface, and some has been lifted out of the surface 
plane. That portion of the tail in the surface defines the effective area per molecule. Neither 
this area nor the length of the chain out of the surface will be the same for all molecules, so 
experimental values of a:' correspond to average values. Furthermore, there will be consider- 
able lateral interaction between those segments that are not in contact with the substrate. 

The compressibility of the LE state is expected to be far less than that of the gaseous state, 
but not yet incompressible, because the average area per molecule may be altered by squeezing 
additional CH, groups out of contact with the water. 

7.4d The Intermediate Liquid Phase 

With sufficient compression the isotherm of the LE state shows a sharp break to enter a 
situation variously known as the intermediate or transition state, indicated by 1 in Figure 7.6. 
Recent results suggest that the region I does represent a first-order phase transition (Knobler 
1990a). 

For a number of years, no satisfactory molecular interpretation existed for the I state. As 
its name implies, the I state was thought of as an intermediate transition state between the LE 
and LC states. If, however, the I state is a transition state that somehow becomes trapped in 
transit, it should be described as a metastable rather than a stable state. We saw in Chapter 6, 
Section 6.7 that metastable states are associated with nonreversible behavior, and I states seem 
to be reversible. A considerable number of studies have emerged in recent years on the 
evolution of the LC phase from the LE phase. It is known that very complex patterns (e.g., 
fractal dendritic structures) develop during this transition. I11 some cases, additional phases 
have also been identified (see Knobler 1990a). We shall not go into these here and merely 
emphasize that the isotherm shown in Figure 7.6 and the phase diagram Figure 7.8 are highly 
simplified. 

7.4e The Liquid-Condensed and the Solid Phases 

If the area of an insoluble monolayer is isothermally reduced still further, the compressibility 
eventually becomes very low. Because of the low compressibility, the states observed at these 
low values of c are called condensed states. In general, the isotherm is essentially linear, 
although it may display a well-defined change in slope as 7r :is increased, as shown in Figure 
7.6. As mentioned above, the (relatively) more expanded of these two linear portions is the 
liquid-condensed state LC, and the less expanded is the solid state S. It is clear from the low 
compressibility of these states that both the LC and S states are held together by strong 
intermolecular forces so as to be relatively independent of the film pressure. 

Because of the near linearity of these portions of the isotherm, it is easy to extrapolate 
both regions to their value at 7r = 0. The intercepts for the solid and liquid-condensed regions, 
a! and &, respectively, differ only slightly. Values of aEc for alcohols are about 0.22 nm ,, and 
for carboxylic acids about 0.25 nm', more or less independent of the length of the hydrocar- 
bon chain. The intercept a: has a value of about 0.20 nm', independent of both the length of 
the chain and the nature of the head. The film pressures in the condensed states (LC or S) are 
of the same magnitude as the equilibrium spreading pressure for amphipathic molecules. 

For the condensed LC and S states a molecular interpretation is again possible. In both 
the values of ao are close to actual molecular cross sections when the molecules are oriented 
perpendicular to the surface. The difference between these two regions seems to involve the 
polar part of' the molecule more than the hydrocarbon chain, which was more important for 
the more expanded states. The difference between a: and aEc may involve a more efficient 
packing of the heads or the formation of fairly specific lateral interactions through hydrogen 
bonds, for example. The values of a' that are observed for monolayers of saturated n-alkyl 
compounds are only slightly larger than the close-packed cross sections obtained for these 
compounds in the bulk solid state by x-ray diffraction. 
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Additional compression eventually leads to the collapse of the film. The pressure nc at which 
this occurs is somewhere in the vicinity of the equilibrium spreading pressure. Figure 7.7 
represents schematically how this film collapse may occur. The mode of film buckling shown 
in Figure 7.7 is not the only possibility: head-to-head as well as tail-to-tail configurations can 
be imagined. The second structure strongly resembles that of cell membranes, which we discuss 
in the next chapter. 

Film collapse represents the squeezing out of the surface of highly ordered aggregates that 
may quite plausibly be regarded as nuclei to bulk phase particles. If collapse marked the 
appearance of the amphipathic material in a bulk phase, then the collapse pressure and the 
equilibrium spreading pressure should be identical. Here a significant complication appears. 
The collapse pressure is highly sensitive to the rate at which the film is compressed. This 
indicates nonequilibrium conditions, showing that the two-dimensional solid phase resembles 
three-dimensional solids in this respect also, a difficulty in the attainment of thermodynamic 
equilibrium. 

In summary, it must be emphasized again that there are wide variations in the properties 
of insoluble monolayers. Extensive compilations of T-A data for a large number of surfactants 
are available, although not over the full range of densities (Mingotaud et al. 1993). Some of 
the phenomena reported in the literature are probably artifacts due to impurities or nonequi- 
librium conditions. Others are probably unique effects that apply only to a very specific 
system. In the descriptive material of this section both phenomenological and modelistic 
information were provided for various stages along the isotherm. At the very least, the models 
serve the pedagogical function of assisting the student in remembering an assortment of 
probably unfamiliar facts. At best, the models provide the basis for quantitatively understand- 
ing these phenomena. In the next section we take a more quantitative look at the model for 
the gaseous state. 

7.5 VISCOUS BEHAVIOR OF TWO-DIMENSIONAL PHASES 

Our discussion of two-dimensional phases has drawn heavily on the analogy between bulk and 
surface behavior. This analogous behavior is not restricted to thermodynamic observations, 
but extends to other areas also. The viscosity of surface monolayers is an excellent example of 
this. To illustrate the parallel between bulk and surface viscosity, let us retrace some of the 
introductory notions of Chapter 4, restricting the flow to the surface region. 

7.5a Coefficient of Surface Viscosity 

We begin by defining the coefficient of surface viscosity qs .  Equation (4.1) serves to define the 
bulk viscosity; for surfaces we ignore the area extending in the z direction and consider the 
force per unit edge of the surface l'. Assuming a velocity gradient dv/dy  exists between two 
edges of an element of area, we can write the two-dimensional analog of Equation (4.1) as 

F dv 
P = ? l -  dY 

This gives v s  units of mass time - '  in contrast to bulk viscosity, which has dimensions mass 
length time - I .  In discussing Figure 7.3 we noted that-from a chemical if not geometrical 
point of view-surfaces extend over a thickness r .  By analogy with Equation (3), we might 
expect surface and bulk viscosities to be related by 

?#J = r f / r  (25) 

7.5b Measurement of Surface Viscosity 

Next let us consider how surface viscosities can be measured. A variety of methods for 
measuring v s  exist, including a method based on concentric rings, the two-dimensional equiva- 
lent of the concentric cylinder viscometer. We limit our discussion to the analog of the 
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capillary viscometer. Figure 7.1 l a  shows an arrangement by which a monolayer can be pushed 
through a narrow channel by a moving barrier. Following a derivation that parallels the 
development of the Poiseuille equation (Equation (4.20) ), the area rate at  which the mono- 
layer emerges from the channel under an applied pressure y o  - y = Ay can be obtained. As 
in Section 4.4, we continue to describe the locations within the channel in terms of the distance 
r from its center line, with h the distance of the wall from the center line (see Figure 7.11b). 
The following steps are highlights of the derivation and parallel the presentation in Section 
4.4: 

Viscous and surface pressure forces balance under stationary-state conditions along 
the edge of the film a distance r from the center line. In terms of Figure 7.1 lb ,  this 
force balance is given by 

1. 

5 dv qP- + Ayr = 0 
dr 

2. Integrating Equation (26) and using the nonslip condition at the wall ( v  = 0 at r = 
h )  to evaluate the constant of integration yields 

3. The rate of emergence of area, A / t ,  of the monolayer from the channel is twice the 
integral of vdr between r = 0 and r = h: 

This is the two-dimensional equivalent of Poiseuille’s equation. All of the other quantities 
besides q 5  in Equation (28) are measurable, so q 5  can be evaluated by measuring the rate at  which 
the monolayer flows through the channel. In practice, a second barrier is moved along in front 
of the advancing interface to maintain a constant film pressure for an insoluble monolayer. 

FIG. 7.1 1 
narrow channel; and (b) definition of variables for analysis. 

Schematic representation of a surface viscometer: (a) a monolayer is pushed through a 
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In the two-dimensional gaseous state, surface viscosities can be as low as 10-8 kg s-l ,  

while for condensed states values range from 10 - 7  to 10 -' kg s - I .  While it makes sense that 
the surface viscosity increases as we move from G to L to S states, the numbers themselves 
mean little t o  us. To remedy this we repeat the sort of calculation done for two-dimensional 
pressure and examine what Equation (25) tells us about the equivalent bulk viscosity. As with 
Equation (3), we assume T = 1 .O nm; therefore a surface viscosity of 10 - 7  kg s - '  is equivalent 
to a bulk viscosity of 

= 1O2kgs- 'm- '  = 103P  
vs 10-7 kg s K '  

1 0 - ~  m v = - =  

a value that suggests a consistency like that of butter for the molecules of the monolayer in 
condensed states. This is consistent with a high degree of lateral interaction between the 
vertically oriented chains. Once again, we see that a highly localized phenomenon translates 
into a dramatic effect when scaled up to macroscopic dimensions. In the next section we see 
some app!icztions cf rnonolayers or monolayer concepts that take advantage of the properties 
we have discussed. 

Surface viscosities have been measured for soluble and insoluble monolayers, for charged 
and uncharged molecules, and at  water-air and water-oil interfaces. We will not consider all 
these possibilities, but note instead that all share as a common feature the presence of polar 
head groups in the aqueous phase. In general, this means hydrogen bonding will occur between 
the amphipathic molecules at the surface and the substrate. A certain amount of water is 
dragged along with the surface molecules as a consequence. This effect was not taken into 
account in the derivation of Equation (28), although it has been investigated extensively. The 
effect of the entrained substrate may be incorporated into Equation (28) by multiplying the 
equation by a correction factor of the form (1 + 2hr,dnv") - I .  This shows that the resistance 
to the motion of the monolayer due to this effect increases as the ratio v / v s  increases. This 
factor is incorporated into Equation (28) when rjs is determined experimentally by this method. 

7.6 APPLICATIONS OF MONOLAYERS AND MONOLAYER CONCEPTS 

At the surface of water, amphipathic molecules are oriented in such a way as to interact 
extensively, at  least for ordinary surface concentrations. This results in the formation of the 
various two-dimensional condensed phases with the attendant effect on surface viscosity. In 
this section we consider some situations for which monolayers or  the concepts involved in their 
discussion find application. 

7.6a Retardation of Evaporation Using Monolayers 

One area in which monolayers have been successfully employed is the retardation of evapora- 
tion. Particularly in arid regions of the world, evaporation of water from lakes and reservoirs 
constitutes an  enormous loss of a vital resource. Under some conditions the water level of such 
bodies may change as much as 1 ft per month due to evaporation. The usual unit for water 
reserves is the acre-foot, a volume of water covering an acre of surface to the depth of 1 ft. It 
equals about 1/3 million gallons for each acre of water surface. Considerable research has 
been conducted both in the laboratory and in the field on the effectiveness of insoluble 
monolayers in reducing evaporation. An American Chemical Society Symposium in 1960 dealt 
exclusively with this topic; the proceedings of that symposium are given by LaMer (1962). 

Laboratory research in this area is conducted by suspending a porous box of desiccant 
very close to the surface of a film balance. The rate of water uptake is determined by weighing 
at various times. This way the retardation of evaporation may be measured as a function of 
film pressure and correlated with other properties of the monolayer determined by the same 
method. As might be expected, the resistance to evaporation that a monolayer provides is 
enhanced by those conditions that promote the most coherent films, most notably high film 
pressures and straight-chain compounds. To see how this is quantified, consider the Example 
7 . 3 .  
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EXAMPLE 7.3 Suppression of Evaporation by Monolayers. The rate of evaporation is quanti- 
fied by a parameter called the transport resistance r .  For water with octadecanol monolayers at 
surface pressures of 10, 20, 30, and 40 mN m -’, r is about 1, 2, 3, and 4 s cm -’, respectively. 
This resistance drops off rapidly at lower pressures and approaches 2 * 10 - 3  s cm -’ for pure 
water. By considering the rate of water uptake as a diffusion problem, suggest how these r 
values are calculated from data collected in an experiment like that described above. Use the 
fact that l l r  is dimensionally equivalent to the diffusion coefficient D divided by a length. 

Solution: To be collected by the desiccant, molecules evaporating from a surface of area A 
must diffuse across a gap of width Ax between the water surface and the desiccant. The gap 
contains the monolayer as well as the air space, so the diffusion coefficient used is an effective 
value rather than the actual D value for a homogeneous region. According to Equations (2.20) 
and (2.22), the rate at which the desiccant increases in weight ns given by 

dQldt = AD(Ac/Ax) 

In this expression Ac describes the difference between the concentration of water vapor at the 
water surface and that at the desiccant surface: Ac = c, - Cdes. Since Cdes 6 c,, Ac may be 
replaced by c,, which in turn equals pMlRT, where p and M are the vapor pressure and 
molecular weight, respectively, of water. With this substitution the expression for dQldt be- 
comes A(DIAx)(pMIRT). The ratio DlAx has units length time -’, so we identify it as the recipro- 
cal of the transport resistance. Note that r increases as the effective value of Ax increases 
and the effective value of D decreases. Thus Ilr is the only unknown in the expression dQldt = 
A(l/r)(pM/RT) and can be calculated from the measured rate of weight increase with different 
monolayers present. 

* * *  

To be acceptable for use in the field, the monolayer material must have the following 
properties: 

1. 
2. 

3 .  

4. 

It must spread easily, probably as bulk material, so a high value of R, is desirable. 
It must be self-healing since surface ripples will disrupt the monolayer. This implies 
viscous rather than rigid monolayers. 
It must be inexpensive, which means, effectively, capable of forming good films from 
naturally occurring mixtures. 
It must be nontoxic and free from other deleterious effects on aquatic life. 

Hexadecyl and octadecyl alcohol have been extensively studied and shown to be highly 
effective in evaporation retardation. Scattering powdered samples of commercial-grade alco- 
hols by boat on lake surfaces or the continuous addition of alcohol slurries from floating 
dispensers are two of the methods that have been employed to apply these monolayers. Wind 
conditions and the activity of aquatic birds have a considerable effect on the stability of the 
monolayer and therefore on the rate at which the monolayer chemicals must be reapplied. 
Rates of application rarely exceed 0.5 lb acre-’ day-’,  however, so that the cost of the 
materials used is not excessive. 

An indication of the effectiveness of such field treatment is seen in Figure 7.12, which 
compares the amount of water lost by evaporation from two small adjacent lakes in Illinois. 
Treatment of North Lake (ordinate) with commercial hexadecanol was begun in late June 
1957; untreated South Lake was the control (abscissa). Prior to treatment the evaporation 
losses from the two lakes were identical, as shown by the 45 O line in the figure. After treatment 
was begun, however, the loss of water from North Lake fell (considerably behind that from 
South Lake. By the end of the summer a difference of about 40% in the water loss was 
observed. This was equivalent to about 7600 gallons of water saved per pound of hexadecanol 
used. For areas where water is scarce-the southwestern United States, Israel, and western 
Australia, for example - such conservation of water is highly valued, and research continues 
to look for methods to improve the efficiency of this technique. 
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FIG. 7.12 Comparison of the water level in two adjacent lakes during the summer, 1957. The 
ordinate shows the level in the lake with the monolayer; the abscissa is the level in the untreated 
lake. (Redrawn with permission of LaMer 1962.) 

7.6b Damping of Waves 

Surface viscosity also has observable effects on macroscopic bodies of water. As mentioned in 
the opening paragraph of this chapter, the calming effect on surface turbulence of pouring oil 
on the sea has been known from antiquity. In terms of the concepts of this chapter, the 
increase in surface viscosity produced by the film has a damping effect on waves. Such 
damping has been studied both theoretically and in laboratory situations; the book by Davies 
and Rideal (1961) contains some interesting photographs of the ripples on a pond before and 
after the application of hexadecanol to the surface. 

7 . 6 ~  Stabilization of Emulsions and Foams 

Emulsions and foams are two other areas in which dynamic and equilibrium film properties 
play a considerable role. Emulsions are colloidal dispersions in which two immiscible liquids 
constitute the dispersed and continuous phases. Water is almost always one of the liquids, and 
amphipathic molecules are usually present as emulsifying agents, components that impart 
some degree of durability to the preparation. Although we have focused attention on the 
air-water surface in this chapter, amphipathic molecules behave similarly at oil-water inter- 
faces as well. By their adsorption, such molecules lower the interfacial tension and increase 
the interfacial viscosity. Emulsifying agents may also be ionic compounds, in which case they 
impart a charge to the surface, which in turn establishes an ion atmosphere of counterions in 
the adjacent aqueous phase. These concepts affect the formation and stability of emulsions in 
various ways: 

Most emulsions are formed by some sort of comminution process in which large blobs 
of the dispersed phase are eventually ground down to small drops. This is a complex process, 
but basically consists of drops becoming elongated under shearing forces, necking, and finally 
separating into smaller drops. The adsorption of a surface film with the attendant lowering of 
y and increase in v s  clearly enters the picture. 

The first step in the “breaking” of an emulsion is the coming together of the individual 
drops. If water is the continuous phase and the emulsifier is ionic, then it is the ion atmo- 

1. 

2. 
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spheres of the approaching particles that make the first contact. We have already seen in 
Chapter 4 that the overlap of the electrical double layers affects the viscosity of the dispersion. 
We see in Chapter 13 that the details of this first encounter can determine whether the drops 
form an aggregate or go their separate ways. 

If droplets can aggregate into a single kinetic unit, ,they might also coalesce into a 
single geometrical unit. This involves rupture of the thin film of continuous phase that sepa- 
rates them in an aggregate. Again, surface tension and surface viscosity are certainly pertinent 
t o  the coalescence process. 

The huge variety of emulsions used as food, medicinal, cosmetic, and other industrial 
products make these colloids important practical systems in which the surface monolayers 
exert considerable influence. We have already discussed the use of lecithin to control the 
viscosity and the texture of chocolate in Vignette IV in Chapteir 4. 

Foams are colloidal systems in which a gas is the dispersed phase. Although a whole range 
of concentrations is possible, we shall focus on  those foams that consist of volume-filling, 
distorted polyhedra separated by liquid films. For aqueous foams the high area of air-water 
interface requires adsorption to lower the surface tension sufficiently to make the foam in the 
first place. Foams drain by losing liquid through the channels that occur at the junction of the 
planar film surfaces. Such surfaces meet with curved menisci between them. This means that 
the pressure is lower in the junction than in the flat faces of the film according to the Laplace 
equation, Equation (6.29). As a consequence, liquid flows from the planar regions into these 
junctions-called plateau borders- through which the drainage occurs. As the film thickness 
of the continuous phase decreases, the probability of rupture due to thermal or mechanical 
fluctuations increases. Surface energetics and viscosity are important here also. As with emul- 
sions, foams occur in many systems familiar to consumers, such as fire-fighting foams, 
whipped cream, shaving lather, and the head on  a glass of beer! 

3. 

7.6d Preparation of Langmuir-Blodgett Films 

As we pointed out in the vignette at the beginning of this chapter, many potential applications 
emerge when the Langmuir layers are transferred to a solid substrate. We have some more to 
say about Langmuir-Blodgett films in Section 7.10c, but it is clear, based on what we have 
discussed so far, that understanding the different structural features of Langmuir layers and 
how to control the stability of the layers is the first prerequisite for depositing Langmuir- 
Blodgett layers on solid substrates. 

Finally, it is worth noting that the monolayers of the type discussed in the previous 
sections may serve as good model systems for examining some of the theories of condensed 
matter physics. 

Although we started out this chapter by discussing insoluble monolayers, it is evident that 
we have slipped into examples for which soluble amphipathics are being considered. In the 
next section we examine the thermodynamics of adsorption from solution. 

7.7 ADSORPTION FROM SOLUTION: THERMODYAMICS 

Until now we have discussed only insoluble monolayers. Although their behavior is complex, 
they have the conceptual simplicity of being localized in the interface. It has been noted, 
however, that even in the case of insoluble monolayers, the substrate should not be over- 
looked. The importance of the adjoining bulk phases is thrust into even more prominent view 
when soluble monolayers are discussed. In this case the adsorbed material has appreciable 
solubility in one or both of the bulk phases that define the interface. 

7.7a The Gibbs Equation: Multicomponent Systems 

Gibbs treated this situation as part of his investigations into phase equilibria. Suppose we 
consider two phases a and ,O in equilibrium with a surface s dividing them. For the system so 
constituted, we may write 
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G = G” + GO + G” (30) 

where the superscripts indicate the contribution from each category. For the bulk phases 

G = E + ~ v -  T S +  C p i n i  
I 

where the chemical potential terms are summed for all components i .  The superscript has been 
omitted for convenience. The volume term is replaced by an area term in the corresponding 
expression for G”: 

G” = E S  + T A  - TS” + C plnl 
I 

where pi)s and ni’s here are for the surface phase. Substituting Equations (31) and (32) into 
Equation (30) and taking the total derivative yields 

For a reversible process 

I I 

dE = 6q  - 6w = C dE = C [TdS - ( p d v  + 6 ~ , , ~ ~ - ~ p v ) l  
“,OJ %B,S 

Substituting this result into Equation (33) gives 

(34) 

Vdp - SdT + p l  dn, + c nidpl - 6wfl0,,,) + Ady + ydA (35) 
I I 

As we saw in Chapter 6 (Equation (6.16) ), the quantity ydA may be equated to non- 
pressure-volume work when surface energy is being considered. With this consideration, Equa- 
tion (35) simplifies still further to become 

Vdp - SdT + C p ,  dn, + c nldpl) + Ad7 
I I 

Another well-known relationship from thermodynamics may 

dG = Vdp - SdT -+ c p l d n i  
I 

Applying Equation (37) to the bulk phases and the surface 
Equation (36) gives 

CnPdp, + e n f d p ,  + Cn:dpl  + Ady = 0 
I I I 

be introduced at 

and subtracting 

(36) 

this point: 

(37) 

the result from 

(38) 

When only one phase is under consideration, only one of the terms in Equation (30) is 
required, and only one of the bulk phase summations in Equation (38) survives. The result in 
this case is the famous Gibbs-Diihern equation: 

ni dpi = 0 (39) 
I 

It will be recalled from physical chemistry that this relationship permits the evaluation of the 
activity of one component from measurements made on the other in binary solutions. 

By means of the Gibbs-Duhem equation, we may eliminate the terms in Equation (38) 
that apply to bulk phases and write 

C nf dpi + Ady = 0 (40) 
I 
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This is the Gibbs adsorption equation that relates y to the number of moles and the chemical 
potentials of the components in the interface. 

7.7b Two-Component Systems 

In subsequent developments we consider only two-component systems and identify the solvent 
(usually water) as component 1 and the solute as component 2. In terms of this stipulation, 
Equation (40) becomes 

(41) nidp, + n i d p Z  + Ad7 = 0 

It is conventional to divide Equation (41) through by A to give 

The quantity n:/A is called the surface excess of component i and is given the symbol I?, 

r, = ns/A 

In this notation, Equation (42) becomes 

-dy = I?, dp, + rz dp2 

(43) 

(44) 

We return to further simplifications of this equation after a brief discussion of how to  define 
the position of a surface and how to define surface excess quantities. 

7 . 7 ~  Location of the Surface and the Meaning of 
Surface Excess Properties 

Before proceeding any further, it is necessary to examine just what the concept of a surface 
excess means. To  do this it is convenient to consider the changes that occur in some general 
property P as we move from phase CY to phase 0. The situation is represented schematically by 
Figure 7.13, in which x is the distance measured perpendicular to the interface. The scale of 
this figure is such that variations at the molecular level are shown. The interface is not a 
surface in the mathematical sense, but rather a zone of thickness T across which the properties 
of the system vary from values that characterize phase CY t o  those characteristic of 0. In spite 
of this, we generally do not assign any volume to the surface, but treat it as if the properties of 
CY and 0 applied right up to some dividing plane situated at  some specific value of x. What is 
this position x, at which we draw such a boundary? 

Suppose the solid line in Figure 7.13 represents the actual variation of property P. The 

FIG. 7.13 
the vicinity of an interface between two phases a and p. 

Variation of some general property P with perpendicular distance from the surface in 
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squared-off extensions of the bulk values of this property represent the approximation made 
in assuming the surface to have zero thickness. Then the shaded area to the left of x, shows 
the amount by which the value of P for the system as a whole has been overestimated by 
extending P,. Likewise, the shaded area to the right of x, shows how the extension of PO leads 
to an underestimation of P for the system as a whole. In principle, the “surface” may be 
located at an x value such that these two areas compensate for one another; that is, x, may be 
chosen so that the two shaded areas in the figure are equal. 

This is where the trouble begins! Generally speaking, the kind of profile sketched in 
Figure 7.13 will be different for each property considered. Therefore we may choose x, to 
accomplish the compensation discussed herein for one property, but this same line will divide 
the profiles of other properties differently. The difference between the “overestimated” prop- 
erty and the “underestimated” one accounts for the “surface excess” of this property. 

From the point of view of thermodynamics - which is oblivious to details at the molecular 
level-the dividing boundary may be placed at any value of x in the range T. The actual 
placement of x, is governed by consideration of which properties of the system are most 
amenable to thermodynamic evaluation. More accurately, that property that is least conve- 
nient to handle mathematically may be eliminated by choosing x, so that the difficult quantity 
has a surface excess of zero. 

For example, if the property in Figure 7.13 was G and the dividing surface was placed so 
that the two shaded regions would be equal, then there would be no surface excess G: The last 
term in Equation (30) would be zero. The Gibbs free energy is convenient to work with, 
however, so such a choice for x, would not be particularly helpful. Until now we have not had 
any reason to identify the surface of physical phases with any specific mathematical surface. 
We had not, that is, until Equation (44) was reached. Now things are somewhat different. 

Suppose the property represented in Figure 7.13 is the number of moles of solvent per 
unit area in a slice of solution at some value of x. This quantity will clearly undergo a 
transition in the vicinity of an interface. We choose x, so that the shaded areas are equal when 
this is the quantity of interest. This placement of the dividing surface means 

rl = o (45) 

dy = - r 2 d p 2  (46) 

With this situation, Equation (44) becomes 

The physical significance of r2 is determined by the arbitrary placement of the mathemati- 
cal surface that made rl = 0; that is, r2 equals the algebraic difference between the “overesti- 
mated” and “underestimated” areas of the curve describing moles of solute when this curve is 
divided at a location x, that makes the surface excess of the solvent zero. 

It is important to realize that the mathematical dividing surface just discussed is a refer- 
ence level rather than an actual physical boundary. What is physically represented by this 
situation may be summarized as follows. Two portions of solution containing an identical 
number of moles of solvent are compared. One is from the surface region and the other from 
the bulk solution. The number of moles of solute in the sample from the surface minus the 
number of moles of solute in the sample from the bulk give the surface excess number of 
moles of solute according to this convention. This quantity divided by the area of the surface 
equals r2. To emphasize that the surface excess of component 1 has been chosen to be zero in 
this determination, the notation 

It should be evident from the foregoing discussion that the property defined to have zero 
surface excess may be chosen at will, the choice being governed by the experimental or 
mathematical features of the problem at hand. Choosing the surface excess number of moles 
of one component to be zero clearly simplifies Equation (44). The same simplification could 
have been accomplished by defining the mathematical surface so that r2 would be zero, a 
choice that would obviously deemphasize the solute. If the total number of moles N, the total 
volume V ,  or the total weight W had been the property chosen to show a zero surface excess, 
then in each case both rl and r2 (which would be identified as I”, I’ “, or I’ for these three 
conventions) would have nonzero values. Last, note that the surface “excess” is an algebraic 

is generally used. 
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quantity that may be either positive or negative depending on the convention chosen for I?. A 
variety of different experimental methods are encountered in t:he literature to measure “surface 
excess” quantities; one must be careful to understand clearly what conventions are used in the 
definition of these quantities. 

7.7d Relation Between Surface Tension and 
Surface Excess Concentration 

Equation (46), one form of the Gibbs equation, is an important result because it supplies the 
connection between the surface excess of solute and the surface tension of an interface. For 
systems in which y can be determined, this measurement provides a method for evaluating the 
surface excess. It might be noted that the finite time required i:o establish equilibrium adsorp- 
tion is why dynamic methods (e.g., drop detachment) are not favored for the determination 
of y for solutions. At solid interfaces, y is not directly measurable; however, if the amount of 
adsorbed material can be determined, this may be related to the reduction of surface free 
energy through Equation (46). To understand and apply this equation, therefore, it is impera- 
tive that the significance of r2 be appreciated. 

Now let us return to the development of Equation (46). The chemical potential depends 
on the activity according to the equation 

(47) 

In applying these results to adsorption from solution, the activity equals the pressure or 
concentration multiplied by the activity coefficient f. Differentiation of Equation (47) at 
constant temperature yields 

p2 = p: -t ~ ~ l n a ,  

(48) 
da2 dp2 = R T -  = R T d l n  (fc) 
a2 

This relationship may also be applied to the adsorption of gases by replacing concentra- 
tion by gas pressure and continuing to use the appropriate activity coefficient. We return to 
the application of this result to the adsorption of gases in Chapter 9. 

For adsorption from dilute solutions the activity coefficient approaches unity, in which 
case the combination of Equations (46) and (48) leads to the result 

This form of the Gibbs equation shows that the slope of a plot of y versus the logarithm of 
concentration (or activity if the solution is nonideal) measures the surface excess of the solute. 
It might also be noted that the choice of units for concentration is immaterial at this point. 

7.8 THE GlBBS EQUATION: EXPERIMENTAL RESULTS 

7.8a Typical Variations of Surface Tension in Aqueous Solutions 

Surface tensions for the interface between air and aqueous solutions generally display one of 
the three forms indicated schematically in Figure 7.14. The type of behavior indicated by 
curves 1 and 3 indicates positive adsorption of the solute. Since dy/dc and therefore dy/d In c 
are negative, I?:! must be positive. On the other hand, the positive slope for curve 2 indicates a 
negative surface excess, or a surface depletion of the solute. Note that the magnitude of 
negative adsorption is also less than that of positive adsorption. 

Curve 1 in Figure 7.14 is the type of behavior characteristic of most un-ionized organic 
compounds. Curve 2 is typical of inorganic electrolytes and highly hydrated organic com- 
pounds. The type of behavior indicated by curve 3 is shown by soluble amphipathic species, 
especially ionic ones. The break in curve 3 is typical of these compounds; however, this degree 
of sharpness is observed only for highly purified compounds. If impurities are present, the 
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FIG. 7.14 
(2) simple electrolytes, and (3) amphipathic solutes. 

Three types of variation of y with c for aqueous solutions: ( 1 )  simple organic solutes, 

curve will display a slight dip at this point. All three of these curves correspond to relatively 
dilute solutions. At higher concentrations effects other than adsorption may lead to departures 
from these basic forms. We say a bit more about adsorption from binary solutions over the 
ful l  range of compositions in Section 7.9c.4. 

7.8a. 1 Simple Organic Solutes 
For the limit as c -+ 0, curve 1 may be presented by the equation of a straight line: 

y = yo - mc (50) 

where rn is the initial slope of the line. This is the same as 

T = mc (51) 

From Equation (50) dy/dc = -m,  and from Equation (51) c = T/m; therefore Equation 
(49) may be written 

I'd = r / R T  (52)  

Recalling the definition of I'i provided by Equation (43), we see that Equation (52) may 
also be written 

T A  = n iRT  ( 5 3 )  

the two-dimensional ideal gas law again! Those carboxylic acids containing less than 12 car- 
bons in the alkyl chain for which results were presented in Figure 7.10 were investigated by 
this method. This same analysis also applies to the branch of curve 3 in Figure 7.14 as c --.t 0. 

7.8a.2 Simple Electrolytes 
Curve 2 in Figure 7.14 indicates a negative surface excess of simple electrolytes. This means 
that portions of solution from both the surface and bulk regions that contain the same number 
of moles of solvent will have more solute in the bulk region than at the surface. Obviously, the 
surface is enriched over the bulk in solvent, a fact that is easily understood when the hydration 
of the ions is considered. Water molecules interact extensively with ions, a fact that accounts 
in part for the excellent solvent properties of water for ionic compounds. To move an  ion 
directly to the air-water interface would require considerable energy to partially dehydrate the 
ion. Accordingly, the first couple of molecular diameters into the solution will be a layer of 
essentially pure water, the ions being effectively excluded from this region. The surface tension 
is not that of pure water, but is increased slightly due to the small surface deficiency of solute. 
Other highly solvated solutes such as sucrose also show this effect. 
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7.8a.3 Arnphipathic Solutes 
Curve 3 in Figure 7 .14  applies primarily to amphipathic species. Most long-chain amphipathic 
molecules are insoluble unless the hydrophobic alkyl part of the molecule is offset by an ionic 
head or some other suitably polar head such as a polyethylene oxide chain, -(CH,CH,O),-. 
Like their insoluble counterparts, these substances form an oriented monolayer even at low 
concentrations. Figure 7.15  shows some actual experimental plots of type 3 for the ether that 
consists of a dodecyl chain and a hexaethylene oxide chain ( n  := 6) in the general formula just 
given. Example 7 . 4  illustrates the application of the Gibbs equation to these data. 

* * *  

EXAMPLE 7.4 Determination of Surface Excess Concentration from Surface Tension Data. 
The slope of the 25OC line in Figure 7.15 on the low-concentration side of the break is about 
- 16.7 mN m -'. Calculate the surface excess and the area per molecule for the range of 
concentrations shown. How would Figure 7.15 be different if accurate measurements could be 
made over several more decades of concentration in the direction of higher dilution? Could the 
data still be interpreted by Equation (49) in this case? 

Solution: The surface excess is constant over this range of concentrations as indicated by the 
linearity of Figure 7.15. Equation (49) can be used directly to evaluate rd. Since base 10 
logarithms are used in the figure, we write 

The reciprocal of this gives the area of surface occupied by a mole of adsorbed molecules. 
Division by Avogadro's number converts the reciprocal of I'J into a value for (T: 

I': = -(0.0167)/(2.303)(8.314)(298) = 2.93 - 1OW6 mole ni -2 

(T = (1 m2/2.93 
= 0.56nm2 

10-6 mole) . (1 mole/6.02 . 1023 molecules) . (lO-' nmll  m)2 

If accurate measurements could be made to increasingly lower concentrations, the surface 
excess would gradually decrease toward zero. This means that the lines in Figure 7.15 must 
eventually curve until they show a slope of zero at infinite dilution. Curved lines on a semiloga- 
rithmic plot of y versus c are interpreted by drawing tangents at the concentrations of interest 
and applying the Gibbs equation to the slopes of the tangents to give the corresponding surface 
excesses. rn 

* * *  

The polar heads of the solute molecules in Figure 7.15 are much bulkier than those of the 
simple amphipathic molecules with insoluble monolayers that we discussed above. This is 

n 

I 
- 
E 

?- 

40 

35 

30 

FIG. 7.15 Plot of y versus log,, c for the dodecyl ether of hexaelhylene oxide at three tempera- 
tures: (1) 15OC, (2) 25OC, and (3) 35OC. (Redrawn with permksion of J .  M. Corkill, J. F. 
Goodman, and R. H. Ottewill, Trans. Faraday Soc., 57, 1927 (1961).) 
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especially true when the hydration of the ether oxygens is considered. In view of this, the value 
calculated in Example 7.4 is probably about as small a value as these molecules can achieve. 
This suggests that the amphipathic molecules are in a highly condensed surface state at the 
concentrations investigated in Figure 7.15. 

The break in curve 3 in Figure 7.14 is characteristic of this type of plot for soluble 
amphipathic molecules. Note that it appears in the experimental curves of Figure 7.15 also. 
The break is understood to indicate the threshold of rnicelle formation (see Chapter 1, Section 
1.3a), known as the critical rnicelle concentration (see Chapter 8). We do not discuss this 
phenomenon any further since the next chapter is devoted entirely to rnicelles and related 
structures. 

7.8b Effect of Ionic Dissociation on Adsorption 

It is instructive to consider the effect of dissociation on the adsorption of arnphipathic sub- 
stances since many of the compounds that behave according to curve 3 are electrolytes. We 
consider only the case of strong 1 : 1 electrolytes; for weak electrolytes the equilibrium con- 
stant for dissociation must be considered. 

If an ionic solute is totally dissociated into positive and negative ions, then its activity is 
given by 

(54) 

where the subscripts M and R refer to the cation and amphipathic anion, respectively. Analo- 
gous results would be obtained if the cation were the amphipathic species. The approximation 
included in Equation (54) applies to the case in which the activity coefficient equals unity. 
Substituting this result into Equation (49) gives 

- 
aMR = = c d R  

The assumption that no other electrolyte is present is implicit in this result. Now let us consider 
what happens when the system also contains a nonamphipathic electrolyte with a common ion 
to the surface-active electrolyte. 

If a second electrolyte MX is present in addition to MR, then Equation (44) must be 
written 

(56) -dr = ridpM + r idPR + ridfix 

Now the condition of surface neutrality becomes 

r,; = r; + r,: 

- d Y  = ~ ; ( d c L M  + 4.4 + r;(dPM + dPx) 

so Equation ( 5 6 )  may be written 

(57) 

This result may now be simplified by invoking some previous results. Recalling curve 2 
from Figure 7.14, we know that the surface excess of the X -  ions is likely to be a small 
negative number that we shall set equal to zero as a first approximation. With this approxima- 
tion, Equation (58) becomes 

Now let us consider a small change in the concentration of MR while the concentration of 
MX remains constant and considerably greater than the total MR concentration. Under these 
conditions, dc, = dc, and C, % c,; therefore d In c, + d In C ,  and Equation (59) becomes 

-dy = I'd(RTd1nc) (60) 

Equations ( 5 5 )  and (60) are thus seen to describe the adsorption of MR in the absence of 
electrolyte and in the presence of swamping amounts of electrolyte, respectively. It is clear 
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from the difference between these two results that extreme care must be taken in the study of 
charged monolayers if the effect of the charge on the state of the monolayer is to be properly 
considered in the interpretation of experimental results. 

The difference between Equations ( 5 5 )  and (60) may be qualitatively understood by 
comparing the results with the Donnan equilibrium discussed i n  Chapter 3. The amphipathic 
ions may be regarded as restrained at the interface by a hypothetical membrane, which is of 
course permeable to simple ions. Both the Donnan equilibrium (Equation (3.85) ) and the 
electroneutrality condition (Equation (3.87) ) may be combined to give the distribution of 
simple ions between the bulk and surface regions. As we saw in Chapter 3 (e.g., see Table 
3.2), the restrained species behaves more and more as if it was uncharged as the concentration 
of the simple electrolyte is increased. In Chapter 11 we examine the distribution of ions near a 
charged surface from a statistical rather than a phenomenological point of view. 

7 . 8 ~  Measuring Surface Excess Concentrations 

We have noted previously that measuring y as a function of concentration is a convenient 
means of determining the surface excess of a substance at a mobile interface. In view of the 
complications arising from charge considerations, the need for an independent method for 
measuring surface excess becomes apparent. Some elaborate techniques have been developed 
that involve skimming a thin layer off the surface of a solution and comparing its concentra- 
tion with that of the bulk solution. 

A simpler method for verifying the Gibbs equation involves the use of isotopically labeled 
surfactants. If the isotope emits a low-energy /3 particle, the range of /3 in water will be very 
low. Thus a detector placed just above the surface will count primarily those emissions origi- 
nating from the surface region. Tritium OH), for example, emits a 0.0186-MeV /3 particle with 
a range in water of only about 17 pm, which means that only a negligible fraction of the /3 
particles can travel farther than this in water. In fact, most are absorbed in an even shorter 
distance, so any 3H /3 particles detected above an aqueous solution of tritiated surfactant 
probably originate within approximately 3 pm of the surface. The contribution of the bulk 
solution to the “background” of the former measurement is made using the same isotope in a 
compound that is known not to be adsorbed. By such studies the kinds of effects just described 
have been investigated and verified. 

The surface-active substances we have discussed have been purified, research-quality ma- 
terials. In practical situations the cost of synthesizing and purifying such surfactants is prohibi- 
tive. The materials commercially used, therefore, are inevitably mixtures. Commercial surfac- 
tants originate, for example, from the esterification of sugars or the sulfonation of alkyl-aryl 
mixtures. Such mixtures are marketed under a bewildering variety of trade names, and often 
as members of number- or letter-designated series that corresportd, roughly, to a set of homo- 
logs. Table 7.2 lists examples of several specific members of such series, along with a brief 
description of the general nature of the family to which they belong. 

7.9 ADSORPTION ON SOLID SURFACES 

7.9a The Langmuir Equation: Theory 

Throughout most of this chapter we have been concerned with adsorption at mobile surfaces. 
In these systems the surface excess may be determined directly from the experimentally accessi- 
ble surface tension. At solid surfaces this experimental advantage is missing. All we can obtain 
from the Gibbs equation in reference to adsorption at solid surfaces is a thermodynamic 
explanation for the driving force underlying adsorption. Whatever information we require 
about the surface excess must be obtained from other sources. 

I f  a dilute solution of a surface-active substance is brought in contact with a large adsorb- 
ing surface, then extensive adsorption will occur with an attendant reduction in the concentra- 
tion of the solution. To meet the requirement of a large surface available for adsorption, the 
solid -which is called the adsorbent - must be finely subdivided. From the analytical data 
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TABLE 7.2 Some Familes of Commercial Surfactants and Specific Examples from Each 
~~ ~ ~ 

Specific 
designation 
(“-”) and 

Name of General chemical chemical nature 
series nature of example Example 

Igepon Fatty acid amide of 
- methyltaurine 4 4  99  

Aerosol Alkyl ester of 
- sulfosuccinic acid 6 6  9 9  

Span Fatty acid esters of 
- anhydrosor bitols 6 6  9 ,  

Tween Fatty acid ester and 

esters of anhydro- 
sorbitols 

- ethylene oxide ( 6  99  

“TN” 
R = palmityl 

“OT” 
R = octyl 

“60” 
R = stearyl 

“2 1 ” 
n = 4, 
R = lauryl 

RCON(CH,)C,H4S0 ;Nat 

CH,-COOR 

CH,-COOR 
I 
I 
SO;Na+ 

HO-CH-C HOH 
I \  
CH, CH-CHOH-COOR 
\ /  
0 

ROOCCH- CHOH 
I 1  

CH, CH(OC2H4),0H 
\ /  

0 

Triton Ethylene oxide ethers 
- of alkyl benzene 

Hyamine Alkylbenzyl dimethyl 
- ammonium salts 

( 6  9 9  

6 6  > ?  

“X-45” 
n = 5, R = octyl 
“3500” 
R = C12 - C16 R- 0 -“(CH,),Cl- 0: 

describing the concentration change in the solution as well as a knowledge of the total amount 
of solid and solution equilibrated, it is possible to determine the amount of solute adsorbed - 
which is called the adsorbate-per unit weight of adsorbing solid. If the specific area of the 
adsorbing solid is known, then the results may be expressed as amount adsorbed per unit area. 
These studies are generally conducted at constant temperature, and the results - which relate 
the amount of material adsorbed to the equilibrium concentration of the solution - describe 
what is known as the adsorption isotherm. 

One isotherm that is both easy to understand theoretically and widely applicable to experi- 
mental data is due to Langmuir and is known as the Langmuir isotherm. In Chapter 9, we see 
that the same function often describes the adsorption of gases at low pressures, with pressure 
substituted for concentration as the independent variable. We discuss the derivation of Lang- 
muir’s equation again in Chapter 9 specifically as it applies to gas adsorption. Now, however, 
adsorption from solution is our concern. In this section we consider only adsorption from 
dilute solutions. In Section 7.9c.4 adsorption over the full range of binary solution concentra- 
tions is also mentioned. 

Suppose we imagine a dilute solution in which both the solvent (component 1) and the 
solute (component 2) have molecules that occupy the same area when they are adsorbed on a 
surface. The adsorption of solute may then be schematically represented by the equation 

(61) Adsorbed solvent + Solute in solution + Adsorbed solute + Solvent in solution 

The equilibrium constant for this reaction may be written as 
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where a stands for the activity of the species and the superscripts s and b signify surface and 
bulk values, respectively. Next let us assume that the two-dimensional surface solution is ideal, 
an assumption that enables us t o  replace the activity at the surface by the mole fraction at the 
surface xs: 

Since the surface contains only two components, xi + xi = 1 a.nd Equation (63) becomes 

Equation (64) may be rearranged to give 

K' ai/af 
K' ai/af -+ 1 

x"z= 

In dilute solutions the activity of the solvent is essentially constant, so the ratio K ' / a f  may be 
defined to equal a new constant K ,  in terms of which Equation (65) becomes 

Kui 
Ka: + 1 

$ = -- 

This is one form of the Langmuir adsorption isotherm. 
An equivalent form of the Langmuir equation expressed in slightly different variables is 

obtained by writing both xi and xi in Equation (63) in terms of area fractions occupied by '1' 
and '2'. We have already postulated that both the solvent and :;olute molecules occupy equal 
areas on the surface. Therefore, X S  equals the fraction of the surface occupied by component 
i, 8;. Since 8, + 8, = 1 ,  we have 

Kai 8, = -- 
Kai -t 1 

In this form the Langmuir equation shows how the fraction of surface adsorption sites occu- 
pied by solute increases as the solute activity in solution increases. From now on we drop the 
subscript 2 and the superscript b. Since Equation (67) is written solely in terms of the solute, 
these designations are redundant. 

Two limiting cases are of special interest: 

1 .  At infinite dilution a -+ 0 and Equation (67) becomes 

8 = Ka 

2. If Ka 9 1 ,  Equation (67) becomes 

8 = 1  (69) 

Equation (68) shows that 8 increases linearly with an initial slope that equals K .  This slope 
will be larger the farther to the right the equilibrium represented by Equation (61) lies. At 
higher concentrations, Equation (69) indicates that saturation of the surface with adsorbed 
solute is achieved. Figure 7.16a shows how these two limiting conditions affect the appearance 
of the isotherm. 

Experimentally, one does not measure the fraction of sites containing adsorbed solute 
directly; instead, either the number of moles of solute adsorbed per unit weight of adsorbent 
n f / w  or the number of moles per unit area of adsorbent n i / A  is measured. These quantities 
are related by the equation 
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FIG. 7.16 Schematic plots of the Langmuir equation showing the significance of the initial slope 
and the saturation value of the ordinate: (a) the fraction covered versus solute activity; and (b)  the 
number of moles of solute adsorbed per unit weight of adsorbent versus concentration. 

where A ,  is the specific area of the adsorbent (see Chapter 1 ,  Section 1.2). The fraction 
covered is related to these quantities as follows: 

where N ,  is Avogadro's number and a0 is the area occupied per molecule. The level at which 
saturation adsorption occurs may be identified with 8 = 1.  Therefore Equation (71) shows 
the saturation values of the usual ordinates to be either 

or 

Since the entire derivation of the Langmuir isotherm assumes dilute solutions, the concentra- 
tion c, of the solute (denoted by c, for simplicity) rather than the activity is generally used 
in presenting experimental results. Figure 7.16b shows how actual experimental data might 
appear. 
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7.9b The Langmuir Equation: Application 

Many systems that definitely do not conform to the Langmuir assumptions - the adsorption 
of polymers, for example - nevertheless display experimental isotherms that resemble Figure 
7.16. Although these can be fitted to Equation (67), the significance of the constants is 
dubious. Therefore the Langmuir equation is often written as 

(rn/b)c 
rn($) -(rn/b)c + 1 (74) 

where rn and m/b are regarded simply as empirical constants. A method for obtaining the 
numerical values for these constants from experimental data is easily seen by rearranging 
Equation (74) to the form 

C 
= r n c + b  (75) ni/w 

This form suggests that a plot of c / (n i /w)  versus c will be a straight line of slope rn and 
intercept b. 

If the experimental system matches the model, then the values of rn and b can be assigned 
a physical significance by comparing Equation (74) with Equations (67) and (71): 

and 

rn/b = K (77) 

I f  the model does not apply, these constants are treated merely as empirical parameters that 
describe the adsorption isotherm. 

When the model does apply, the experimental value of rn permits A ,  to be evaluated if oo 
is known, or U(' to be evaluated if A ,  is known. It is often difficult to decide what value of go 

best characterizes the adsorbed molecules at a solid surface. Sometimes, therefore, this method 
for determining A, is calibrated by measuring ao for the adsorbed molecules on a solid of 
known area, rather than relying on some assumed model for molecular orientation and cross 
section. 

Example 7.5 illustrates how adsorption data can be interpreted if the data conform to the 
Langmuir model. 

* * *  

EXAMPLE 7.5 Use of Langmuir Adsorption Isotherm. The moles of solute E3 adsorbed per 
gram of solid C were determined by measuring concentration changes in the solution. The 
accompanying results report the adsorption versus the concentration of the equilibrium solution: 

c (mole B liter-') 0.75 1.40 2.25 3.00 3.50 4.25 
nlw 104 [mole B 

(g C) - ' I  6.00 8.00 9.57 10.0 10.4 10.8 

Plot these data in the form suggested by Equation (75) and evaluate the slope and intercept. If 
A, for solid C is known by independent study to be 325 m2 g - l , ,  what is U' for the adsorbate? 
Alternatively, suppose 0' for the adsorbate is known to be 0.25 nm2 on this surface. What value 
of A,, is consistent with the adsorption data? 

Solution: The ratio cl(n/w) is evaluated as required to test Equation (75): 

c(n/w) -' - 10 -" (g C liter -') 1.25 1.75 2.35 3.00 3.35 3.95 

A plot of these values against the equilibrium concentrations is shown in Figure 7.1 7. The slope 
and intercept of the line drawn are 769 g C (mole B)-' and 0.0700 g C liter -', respectively. 

Equation (76) permits the interpretation of the slope m. 
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FIG. 7.17 Plot of the Langmuir equation in the form given by Equation (75) for data in Example 
7.5. 

If A, is known, 

(T = mAsp/NA = (769)(325)(1Og))'/S.02 - 1023 = 0.42 nm2 

and if (TO is known, 

A, = NAaolm = (6.02 10 23)(0.25)(10 -9) 'R69 = 196 m *g  -' 
The value of K is given by the ratio m/b according to Equation (77). For this (hypothetical) 
system, K = (769)/(0.0700) = 1.10 - 104 liter (mole B) -'. These reciprocal concentration units 
are appropriate for K of Equation (66) since the activity of the bulk solvent has been absorbed 
into the definition of K. U 

* * *  

The method of Example 7.5 applied to the adsorption of benzene, naphthalene, and anthracene 
on carbon black from heptane solutions gives values of 0.42, 0.67, and 0.83 nm ', respectively, for 
0'. The progression of sizes indicates that the molecules lie flat on the surface of the carbon. 

It might also be noted that K' (Equation (62) ) may be related to AGO for the adsorption 
process if the model applies t o  the experimental system. Therefore, from studies of adsorption 
at different temperatures, values of AH" and ASo may be determined for the process described 
by Equation (61). It must be emphasized that compliance with the form predicted by the 
Langmuir isotherm is not a sensitive test of the model; therefore interpretations of this kind 
must be used cautiously. 

In summary, adsorption from dilute solutions frequently displays the qualitative form 
required by the Langmuir equation. If this form is observed, it may be quantitatively described 
by Equation ( 7 9 ,  in which rn and b are empirical constants. Sometimes there may be a 
justification for further interpretation of these parameters in terms of the theoretical model. 

7 . 9 ~  Limitations of the Langmuir Equation 

We should not be too surprised that the Langmuir equation often yields only an empirical 
isotherm. There are several reasons why real systems are likely to deviate from the theoretical 
model: 
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1. The adsorption process described by Equation (61) is a. complex one involving several 
different kinds of interactions: solvent-solute, solvent-adsorbent, and solute-ad- 
sorbent. 
Few solid surfaces are homogeneous at the molecular level. 

Our interest often extends beyond the region of dilute concentrations. 

2. 
3. Few nionolayers are ideal. 
4. 

We briefly comment on each of these limitations. 

7 . 9 ~ .  1 Multiplicity of Interactions 
In discussing adsorption from solution, there is nothing that can be done about the multiplicity 
of possible interactions, except possibly to avoid systems in which highly specific interactions 
are to be expected. In Chapter 9 we again discuss the Langmuir isotherm as it applies to the 
adsorption of gases. In that case there are considerably fewer interactions involved in the 
adsorption process, making it more amenable to analysis. 

7.9c.2 Surface Heterogeneity 
The assumption of surface homogeneity is one that was not explicitly stated in deriving the 
Langmuir equation. It is essential, however; otherwise a different value of K would apply to 
Equation (61) at various places on the surface. Attempts to deal with surface heterogeneity 
have been undertaken, but this enterprise seems more likely to be successful for gas adsorption 
rather than for adsorption from solution because the variety of interactions that must be 
considered is less in the former than in the latter. There is an equation- known as the Freund- 
lich isotherm - that may be derived by assuming a certain distribution function for sites having 
different AGO values for the process represented by Equation (6 1) and assuming Langmuir 
adsorption at each type of site. The Freundlich isotherm is given by the expression 

,g = ac'In (78) 

in which a and n are constants with n > 1. This equation was in use long before the interpreta- 
tion of a certain distribution of sites was assigned to it. Therefore it is best regarded as an 
empirical isotherm, the constants for which may be evaluated from the slope and intercept of 
a log-log plot of 8 versus c. The Freundlich isotherm is no cure-all for surface heterogeneity: 
Its theoretical derivation depends on a highly specific distribution of site energies. In addition, 
the Langmuir equation gives adequate results in many cases in which surface heterogeneity 
is known to be present. Note that with n = 1 the Freundlich isotherm is identical to the 
low-concentration limit of the Langmuir isotherm (Equation (68) ), and with n = 03 to the 
high-concentration limit (Equation (69) ). 

7.9c.3 Multiluyer Adsorption 
In the Langmuir derivation the adsorbed molecules are allowed to interact with the adsorbent 
but not with each other: The adsorbed layer is assumed to be ideal. This necessarily limits 
adsorption to a monolayer. Once the surface is covered with adsorbed molecules, it has no 
further influence on the system. The assumption that adsorption is limited to monolayer 
formation was explicitly made in writing Equations (72) and (5'3) for the saturation value of 
the ordinate. It is an experimental fact, however, that adsorption frequently proceeds to an 
extent that exceeds the monolayer capacity of the surface for any plausible molecular orienta- 
tion at the surface. That is, if monolayer coverage is postulated, the apparent area per mole- 
cule is only a small fraction of any likely projected area of the actual molecules. In this case 
the assumption that adsorption is limited to the monolayer fails to apply. A model based on 
multilayer adsorption is indicated in this situation. This is easier to handle in the case of gas 
adsorption, so we defer until Chapter 9 a discussion of multilayer adsorption. 

7.9c.4 Adsorption from Concentrated Solutions 
Next let us consider adsorption from solutions that are not infinitely dilute. Suppose, for 
example, that adsorption is studied over the full range of binary liquid concentrations. Figure 
7.18 is an example of such results for the benzene-ethanol system adsorbed on carbon. At 
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FIG. 7.18 Adsorption on carbon from the ethanol-benzene system. The ordinate equals the total 
number of moles of solution times the change in solution mole fraction per unit weight of carbon. 
(Data from F. E. Bartell and C. K. Sloan, J .  A m .  Chem. Soc., 51, 1643 (1929).) 

first these results appear quite bewildering, displaying maximum, minimum, and negative 
adsorption. Recall, however, that what is actually measured is an isotherm of concentration 
change. The observed change in concentration is then expressed as moles of solute adsorbed. 
In a totally different range of solution concentrations, the solvent rather than the solute may 
adsorb. The associated change in the solution would then be an increase in solute concentra- 
tion or the apparent negative adsorption of solute. A curve like that shown in Figure 7.18 
should therefore be understood as a composite of two distinctly different isotherms. A good 
deal of work has been done with composite isotherms, particularly toward separating them 
into individual isotherms. A summary of this kind of research can be found in Kipling (1965). 

7.1 0 APPLICATIONS OF ADSORPTION FROM SOLUTION 

No discussion of adsorption from solution is anywhere near complete unless it includes some 
indication of its enormous practical applicability. As a matter of fact, the examples we briefly 
consider - detergency and flotation -encompass a wide variety of concepts from almost all 
areas of surface and colloid chemistry. We have chosen to stress principles rather than applica- 
tions, however, so these subjects will receive an  amount of attention that belies their actual 
importance. Following these traditional applications, two examples of new applications that 
are envisioned for surfactant layers depositea on solid substrates are discussed. 
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7.1 Oa Detergency and Flotation: Similarities 

It is impossible to do justice to the complex phenomena of detergency and flotation in a few 
paragraphs. All we can do is point out some of the ways in which the principles of colloid and 
surface chemistry apply in these areas. There are several ways in which detergency and flota- 
tion phenomena resemble one another: 

Both terms give simple names to processes involving many different steps. The more 
familiar of the two, detergency, may be defined as the process by which some unwanted foreign 
matter is removed from a substrate by a combination of chemical treatment, temperature, and 
mechanical agitation. Flotation is the process by which a specific mineral component of an ore 
mixture is separated from other components (called “gangue”) by being concentrated in the froth 
of an aerated slurry. Chemical additives and mechanical forces are involved here also. 

In actual practice, both detergency and flotation deal with systems that are terribly 
difficult to idealize by any sort of model. In a laundering operation, for example, there will be 
present a variety of different fabric surfaces (cotton, polyester, etc.), different kinds of foreign 
matter (particulate, oily, etc.), and different chemical additives (detergent, inorganic phosphate, 
fluorescent whitening agents, as well as the solvent, water). In flotation, all three states of 
matter - solid, liquid, and gas - are involved and each of these involves several chemical compo- 
nents. The ore is a complex mixture of minerals (assumed to be crushed to such an extent that 
each particle is a different phase), the air is a mixture of gases (including chemically reactive 
oxygen), and the liquid contains at least three deliberately added reagents (known as regulator, 
collector, and frother), in addition to whatever dissolved minerals are present in the water. 

A third point of resemblance between detergency and flotation (perhaps redundant in 
view of what has already been said) is that both have developed largely by empirical research 
with (partially satisfactory) explanations trailing far behind the actual practice. 

7. IOa. I Detergency 
With this much general background, let us now consider these two processes separately. In 
discussing detergency we must first examine the availability of the surfactant. Weak acid soaps 
form insoluble compounds with Ca*+,  for example, and are converted to insoluble molecular 
acids at low pH levels. One of the reasons for the addition of inorganic phosphate to laundry 
products is to prevent or minimize these reactions. In this discussion we assume that the 
impurity has not been imbibed into the interior of the fiber (soaking might help if it has) and 
that it is a semiliquid soiled spot rather than a solid contaminant with which we are dealing. 
One advantage of washing this type of soiled material at high temperatures is that the viscositv 
of the oily spot is lowered so that the shape of these drops is more readily altered. 

The process of removing an oily drop from a solid substrate may be described in terms of 
the work of adhesion, given by Equation (6.57). Applying this idea to the separation of oil 
(0) from solid ( S )  gives 

1. 

2. 

3.  

Wadheslo“ = Y o w  + Ysw - Yos (79) 

where the subscript W describes the aqueous solution. For the separation to be spontaneous in 
the thermodynamic sense, this quantity (AG) must be negative. Positive surface excesses of 
surfactant molecules at the interface between the aqueous phase and the oil and/or the solid 
will lower y for these surfaces. This change is a favorable one for the process of removing 
foreign matter. 

In addition, the contact angle between an oil spot and a solid surface to be cleaned 
may be a contributing factor in detergency. For example, Figures 7.19b and 7.19d illustrate 
schematically two different situations for an oily drop being lifted off a substrate by currents 
in the adjacent phase. The contact angles 8, between the drop and the substrate are assumed to 
be the same at “lift off” (Figs. 7.19b and 7.19d) as in the quiescent state (Figs. 7.19a and 
7 .19~) .  It is evident from the figure, however, the necking of the drop for 8, < 90° is likely to 
leave a residue, whereas 8, > 90° would lead to a clean detachment. Young’s equation (Equa- 
tion (6.44) ) may be applied to this situation: 

Y o w  cos 81 = Ysw - Yos (80) 
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FIG. 7.19 Schematic illustration of several configurations of three phases useful in the discussion 
of detergency and flotation. The shaded region represents the soiled spot in detergency and 8, is the 
relevant contact angle; the shaded region is an air bubble in flotation, and e2 is the appropriate 
contact angle. The arrows in (b) and (d) indicate flow in the adjacent phase. 

where 8, is measured in the oil drop as shown in Figure 7.19. Equation (80) shows that 8, > 
90’ and 8, < 90’ correspond to ysu < yos and ysw > yos, respectively. Any adsorption at 
the solid-water interface will lower ySMr and therefore be conducive to a contact angle that 
favors the complete “rollback” of the oily spot. 

Once the dirty spot is removed from the substrate being laundered, it is important that it 
not be redeposited. Solubilization of the detached material in micelles of surfactant has been 
proposed as one mechanism that contributes to preventing the redeposition of foreign matter, 
Any process that promotes the stability of the detached dirt particles in the dispersed form will 
also facilitate this. We see in Chapter 11 how electrostatic effects promote colloidal stability. 
The adsorption of ions - especially amphipathic surfactant ions - onto the detached matter 
assists in blocking redeposition by stabilizing the dispersed particles. Materials such as carbox- 
ymethylcellulose are often added to  washing preparations since these molecules also adsorb on 
the detached dirt particles and interfere with their redeposition. 

7. IOa.2 Flotation 
Now let us turn to a brief examination of flotation. Virtually all nonferrous metallic ores are 
concentrated by the flotation process. Sulfide ores have been studied particularly extensively, 
although the method has been used with oxides and carbonates as well as such nonmetallic 
materials as coal, graphite, sulfur, silica, and clay. Something on the order of a billion tons of 
ore a year are processed in this way. 

We assume that the ore has been pulverized and mixed with water so that our involvement 
begins with a slurry known as pulp. We consider, in turn, the chemical nature and the effects 
of each of the three broad classes of chemicals added in the flotation process. 

The first class of chemical additives to be considered is the regulator, a compound that 
affects the adsorption of the collectors. Regulators, like catalysts, may be positive or negative 
in their role. For the case in which the collector adsorption is enhanced, the regulator is called 
an activator; when the effect is negative, it is called a depressant. Regulators are frequently 
compounds that control the pH and sequester metallic cations that would otherwise compete 
with the mineral particle surfaces for the surface-active collectors. The pH affects not only the 
availability of certain collectors, but also the charge of the mineral particles (see Chapter 11, 
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Section 11.2 for a discussion of potential-determining ions).. This last consideration plays a 
role in determining whether the mineral particles will be dispersed as small units (easier to lift 
by flotation) or whether they will be aggregated. Ammonia, lime, and sources of C N -  and 
HS - are commonly used as regulating agents. 

Collectors are surface-active additives that adsorb onto the mineral surface and prepare 
the surface for attachment to an air bubble so that it will float to the surface. Therefore 
collectors must adsorb selectively if flotation is to result in any fractionation of the crude ore. 
In addition, t he adsorbed collector must impart a hydrophobic: character to the particle surface 
so that an air bubble will attach to the mineral or vice versa. 

Amphipathic substances such as we have discussed throughout this chapter are used as 
collectors. Alkyl compounds with c8 to c,, chains are widely used with carboxylate, sulfate, 
or amine polar heads. For sulfide minerals, sulfur-containing compounds such as mercaptans, 
monothiocarbonates, and dithiophosphates are used as collectors. The most important collec- 
tors for sulfides are xanthates, the general formula for which .is 

S 

R-0-C 
II 

\ 
S-CH3 

In the collectors used, R is generally in the C2 to C, range. X.anthates are readily oxidized to 
dixanthogens, and the extent of this reaction may have a big effect on the efficiency of the 
collector. 

The fundamental role of the collector is to produce a solid surface that is sufficiently 
hydrophobic so that it will attach to an air bubble when the pulp is aerated. Figure 7.19 may 
also be used to represent this situation, except that for flotation the shaded region is an air 
bubble. Since contact angles are measured in the liquid phase, the contact angle in the flotation 
case will be 8,. For good bubble adhesion contact angles greater than 90° are preferred. Unlike 
the parallel situation in detergency, the adhesion of the bubble rather than its detachment is 
required for the success of the process. 

Once again, we may use Young’s equation to decide what adsorption situation is most 
conducive to values of 8, > 90° 

From this, we see the optimum condition corresponds to ysw yAs, or extensive adsorption 
at the air-solid surface and minimum adsorption at the solid-water interface. The hydrophobic 
nature of the collectors and their chemical affinity for specific solids promote this situation. 

The formation of a large bubble that facilitates flotation requires a large area of attach- 
ment or, more specifically, a large perimeter of attachment since the three-phase contact 
boundary occurs along the perimeter. Increasing this perimeter is favored by a positive value 
of the spreading coefficient (Equation (6.61) ). In the notation of this problem (air spreading 
on solid in water), the spreading coefficient equals 

The collector lowers Y ~ ~ ,  an effect favorable to a positive spreading coefficient. 
Finally, the frothing agents are intended to stabilize the mineral-laden foam at the surface 

of the aeration tank until it can be scooped off. Alkyl or aryl alcohols in the C, to C,, range 
are typical frothers. We have already seen how the long-cha.in members of this series form 
monolayers at the air-water surface. This lowers y A W ,  which is beneficial to the stability of the 
foam and also favors a large contact angle (if 8 2  > 90°), positive spreading, and large bubbles 
for flotation. Neither the collector nor the frother is adsorbed exclusively at the solid-air or 
the water-air surface where their respective effects would be greatest. To a certain extent these 
two classes of additives compete with each other for adsorption sites; therefore conditions 
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FIG. 7.20 An admicelle (a bilayer adsorbed on a solid substrate) as a two-dimensional solvent for 
a polymerization reaction. (Redrawn with permission of J. Wu, J .  H. Harwell, and E. A. O’Rear, 
J.  Phys. Chern., 91, 623 (1987).) 

under which each produces the maximum effect are difficult to achieve, so compromise 
conditions in which the net effect is optimized are sought. 

Another aspect of the frothers used is the fact that they form fairly condensed and 
therefore relatively viscous slow-draining films. In addition to thermodynamic considerations, 
then, kinetic factors are also important in stabilizing the froth. 

A number of additional applications of the ideas of this chapter could be profitably 
considered if space permitted. Included among these are adhesives, lubricants, waterproofing, 
and the recovery of oil from the pores of rocks. Like detergency and flotation, these topics 
involve a variety of surface and colloid phenomena. The interested reader will find an intro- 
duction to these fields in some of the references listed at the end of this chapter, especially 
Adamson ( 1990), Davies and Rideal ( 196 1 ) , and Osipow ( 1962). 

7.1 Ob Surfactant Films as Two-Dimensional Solvents and Reactors 

Surfactants adsorbed on solid substrates can also be used as “two-dimensional solvents” or 
“reactors” (see Fig. 7.20). The objective is to form thin polymer layers on a solid surface for 
potential use in devices that require ultrathin polymer films with specific properties (e.g., 
ultrathin photoresists and waveguides for integrated optical systems). The basic idea is to form 
a layer of surfactants on a suitably treated solid surface so that the hydrocarbon tails of the 
surfactants project out from the surface. An additional layer of surfactants can then be 
deposited with the hydrocarbon chains of the second layer in contact with the exposed tails 
from the first layer (see Fig. 7.20). The resulting film, a bilayer adsorbed on a solid substrate, 
is sometimes called an admicelle (adsorbed micelle). This bilayer serves as a two-dimensional 
solvent for the chosen monomer. The monomer solution is exposed to the surfactant film and, 
when the appropriate amount of monomers is dissolved in the film, the polymerization reac- 
tion is initiated by chemical, thermal, or photochemical methods. The surfactant film serves 
to  localize the polymerization reaction and allows a thin polymer film to form on the solid 
surface. In principle, such a procedure can be used for fabricating single and multilayer 
polymer coatings for use in a wide variety of applications such as corrosion protection, solid 
lubricants, conducting or semiconducting films, and films for controlled release of drugs, in 
addition to the ones mentioned above. 

7.1 Oc Langmuir-Blodgett Films 

As mentioned above (Vignette VII and Section 7.6d), Langmuir-Blodgett (LB) films have 
received considerable attention in recent years as potentially capable of providing a number of 
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applications. Excellent reviews of such applications are available in the compendium on LB 
films by Roberts (1990). The projected applications include the use of LB films in molecular 
electronics, passive thin-film applications such as electron-beam microlithography and lubrica- 
tion, piezoelectric films, optical devices (e.g., waveguides), semiconductor devices (e.g., 
metal-insulator-semiconductor [MIS] diodes), and chemical and biological sensors. Some of 
these applications are speculative at this time, whereas others are closer to reality. Detailed 
discussions of any of these will require concepts that are outside the area of colloid science, 
and we restrict ourselves to one brief example (Ball 1994), which will illustrate how the 
structures and properties of LB films are taken advantage of in devising novel applications. 
Specialized monographs such as MacRitchie (1990), Roberts (199O), Ulman (1991), and 
Tredgold (1994) contain other examples. 

For instance, optical memories or switches may be fabricated using LB films such as the 
one illustrated in Figure 7.21. The LB film in this case is made of molecules consisting of 
7,7,8,8-tetracyano-p-quinodimethane (TCNQ, for short) at one end and a long hydrocarbon 
chain on the other. Each hydrocarbon chain contains an azobenzene unit, which can switch 
between two isomeric forms when exposed to visible and ultraviolet light. The stacking of the 
TCNQ units is affected by the isomeric state of the azobenzene unit, and this in turn changes 
the conductivity of the film. One can thus use photoisomerization to change the film from 
conducting to semiconducting, and it might be possible to use such an LB film in electronic 
devices such as MIS sandwich structures. 

7.1 1 ADSORPTION IN THE PRESENCE OF AN APPLIED POTENTIAL 

We conclude this chapter with a discussion of adsorption at  the interface between mercury and 
a solution (usually aqueous) under the influence of an applied potential. The y value for this 
interface is easily measured, and potential and electrolyte concentration can be studied as 
variables. The Nernst equation provides a familiar reminder that potentials can be dealt with 
by thermodynamics. 

Moving a charge of q coulombs to a surface at  which the potential is il/ volts involves a 
quantity of work (in joules) 

6 w  = qil/ (83) 

FIG. 7.21 
sion of P. Ball 1994.) 

An optical switching device based on Langmuir-Blodgett films. (Redrawn with permis- 
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Since this is non-pressure-volume work, it can be identified with a change in Gibbs free energy. 
In addition, the charge q carried by n moles of ions having a relative charge of * z  is given by 
q = *nNAze, where e is the proton charge, 1.60 * C. The product N,e is called the 
Faraday constant 5 and equals 96,480 C. In view of these ideas, we can write 

AG = *nN,ze$ = +z,nS$ (84) 

where the sign depends on whether the charge is moved with or against the potential. 

7.1 1 a Electrocapillarity 

Figure 7.22 illustrates an apparatus by which the relationship between interfacial tension, 
applied potential, and electrolyte concentration can be investigated using what is known as the 
electrocapillary effect. Since mercury has a contact angle (measured in the mercury) that is 
greater than 90°, the mercury-solution interface is depressed (again in reference to the mer- 
cury). If an etched mark is placed on the capillary, it is possible to bring the mercury-solution 
meniscus to that mark by varying the height of the mercury reservoir. It turns out that this is 
quite sensitive to the potential E between the electrodes. The height of the capillary depression 
(a negative capillary “rise”) can be readily converted to the interfacial tension through Equa- 
tion (6.4). We see, therefore, that y for the Hg-solution interface depends on the electrical 
potential across the system. In addition, the detailed shape of the so-called electrocapillary 
curve-a plot of y versus E-depends on the concentration and nature of the electrolyte 
present. Figures 7.23a and 7.23b show examples of typical electrocapillary curves. 

Several generalizations are evident from an inspection of Figure 7.23: 
1. The general shape of the curves is roughly parabolic. The coordinates of the maxi- 

mum in the electrocapillary curve depend on the electrolyte content of the system. Since y 
decreases on both sides of the electrocapillary maximum and since reductions in y are associ- 
ated with adsorption, we conclude that adsorption increases as we move in either direction 
from the maximum; that is, the electrocapillary maximum seems to be a point of minimum 
adsorption. 

2. The left-hand branch of the electrocapillary curves (also called the rising or ascending 
branch) is sensitive to the chemical nature of the anion present. In Figure 7.23a, for example, 
different potassium salts are used as the electrolytes. Although the ascending branches of these 
curves differ, the descending branches (to the right of the maximum) lie on a common curve. 
Figure 7.23b shows that the right-hand branch of the curves is sensitive to the nature (and 

FIG. 7.22 Schematic illustration of an apparatus to measure the electrocapillary effect. 
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FIG. 7.23 Typical electrocapillary curves: (a) anions are adsorbed; and (b) cations are adsorbed. 
(Redrawn with permission of N. K .  Adam, The Physics and Chemistry of Surfaces, Dover, New 
York, 1968.) 

concentration) of the cation. These observations, coupled with the above remarks about 
adsorption, suggest that the anion is preferentially adsorbed on the ascending branch of the 
curve, the cation is preferentially adsorbed on the descending branch, and that neither ion 
is preferentially adsorbed at the maximum, although both may be adsorbed in equivalent 
amounts. 

3. The charge carriers in the system-ions in the solution and electrons in the mercury- 
come to an equilibrium distribution that is consistent with the applied potential. To the left of 
the maximum, the mercury surface is a positively charged anode (this branch is also called the 
anodic branch), toward which anions are attracted. Electrons in the mercury are repelled from 
the surface by the anions in the water, so the potential on the mercury must become progres- 
sively more positive (relative to the maximum) for increased anion adsorption to occur. To  
the right of the maximum, the mercury is negative (the cathodic branch), attracts cations, and 
must become progressively more negative (relative to the rnaximum) for increased cation 
adsorption. 

4. The potential at which the maximum occurs is different for different ions. In light of 
the third item, the differences in the voltage coordinates of the maxima must reflect differences 
in the chemical (as opposed to purely electrostatic) affinities of the ions for the interface. 
Nonionic solutes have also been investigated extensively, but we do not go into this aspect of 
the subject. 

Electrocapillary phenomena have been studied for a long time; the apparatus shown in 
Figure 7.22 is essentially that used by G. Lippmann in 1875 in his comprehensive studies of 
electrocapillarity. We do not examine either the experimental or the theoretical aspects of this 
system in great detail; however, an interpretation of the results that is more quantitative than 
that just outlined qualitatively is possible with relatively little additional effort. 

7.1 1 b The Lippmann Equation 

As a starting point, it is convenient to return to the kind of argument that leads to the 
Gibbs-Duhem equation (Equation (39) ) for one-phase systems and to the Gibbs adsorption 
equation (Equation (44) ) for systems containing an interface:. In the present context, we are 
interested not only in the interface, but also in possible charge effects at that interface. 
Accordingly, it is convenient to distinguish between charged and uncharged components in the 
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system; we use the subscript i to identify the former and j for the latter. In this notation, 
Equation (44) may be written 

In this expression p, is the usual chemical potential for the uncharged species. The quantity & 
is called the electrochernicalpotential and is related to pJ as follows: 

(86) 

The second term on the right-hand side of Equation (86) arises from Equation (84) since 
chemical potential is the partial molar free energy. In this expression z, is the relative charge of 
the ith species and II/ is the potential of the surface. 

In this discussion the mercury-solution interface is assumed to be completely polarizable; 
that is, there is no transfer of charge across the interface. Therefore each of the charged 
species (including electrons) occurs in only one of the phases. The requirement of complete 
polarizability means that the surface excess may be divided between that in the aqueous phase 
( W) and that in the mercury (Hg).  In view of Equations (85) and (86), we write 

- 
PI = PI + 21 e II/ 

- dr  
= z ( ~ l d P l ) w  + z ( z l r l e I I / ) w  + z ( ~ l d P l ) H g  + C(z1r1eII/hg + z r , d P J  (87) 

I I I I J 

Since the system as a whole is electrically neutral, the charge density on each of the phases 
must be equal and opposite; that is, 

Substituting Equation (88) into Equation (87) yields 

I I I 

The difference in potential between the two phases varies as dE, the externally applied poten- 
tial difference. Therefore Equation (89) may also be written 

For a completely polarizable electrode, the concentration of each of the components in 
both solutions is constant and therefore so is the chemical potential for each. Therefore we 
obtain 

This result is known as the Lippmann equation. The charge density on the right-hand side of 
this equation refers exclusively to the solution phase; therefore the subscript is no longer 
retained. 

For monovalent ions, Equation (91) is simply 

7.1 I c  Use of Electrocapillary Curves 

When the surface excess of anions exceeds that of cations, dy/dE is positive, as is observed in 
Figure 7.23a. Negative values of dy/dE correspond to larger surface excesses of cations, as 
shown by Figure 7.23b. Finally, the condition dy/dE = 0 corresponds to equal amounts of 
positive and negative adsorbed charge, that is, surface neutrality. Note that this is not the 
same as saying no ions are adsorbed. The slope of the electrocapillary curve measures the 
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difference between the cation and anion surface excesses. This is explored further in Example 
7.6. 

* * *  

EXAMPLE 7.6 lnterpretation of Adsorption Using Electrocapillary Curves. In electrocapillary 
curves like those shown in Figure 7.23a, the ascending branches cross for NaCl and Ca(NO,), 
solutions, with the steeper NaCl curve cutting across the fla.tter Ca(NO,), curve. Use this 
observation to criticize or defend the following proposition: E3oth solutes must show equal 
adsorption at the crossover point since the lowering of y depends on the surface excess. Since 
both show the same value for y, both must have the same surface excess. 

Solution: According to the Lippmann equation, it is not y per se, but rather d$d€ that is 
pertinent to these data. Even though the two interfaces show the same value of y at the point in 
question, they do not have the same slopes. In fact, (dy/dQNaC, > (dy/d€)Ca(NO,)L, which means, 
according to Equation (91), 

-e[(+l)rNa+ + (-l)Fc, ] > -e[(+2)rca2+ + ( - i ) I ' N o 1 - ]  

or 

This does not mean that rC, - > r N O ,  , but rather that the surface excess of the anion compared 
to the cation is greater for NaCl than for Ca(NO,),. 

* * *  

Another interpretation of the electrocapillary curve is easily obtained from Equation (89). We 
wish to investigate the effect of changes in the concentration of the aqueous phase on the 
interfacial tension at constant applied potential. Several assumptions are made at this point to 
simplify the desired result. More comprehensive treatments of this subject may be consulted 
for additional details (e.g., Overbeek 1952). We assume that ( a )  the aqueous phase contains 
only 1 : 1 electrolyte, (b) the solution is sufficiently dilute to neglect activity coefficients, (c) 
the composition of the metallic phase (and therefore pIHg)  is constant, (d) only the potential 
drop at the mercury-solution interface is affected by the composition of the solution, and (e) 
the Gibbs dividing surface can be located in such a way as to make the surface excess equal to 
zero for all uncharged components (r, = 0). With these assumptions, Equation (89) becomes 

(93) -dr = K T ( r +  + r - ) , d l n c  + e ( r +  - F - ) w d E  

where c is the concentration of the electrolyte. I f  we specify constant applied potential, 
Equation (93) becomes 

This result shows that the vertical displacements (at fixed potential) of the electrocapillary 
curve with changes in electrolyte concentration measure the sum of the surface excesses at the 
solution surface. Curves such as those in Figure 7.23b may be interpreted by this result. We 
have already seen that r+ = r-  at the electrocapillary maximum (where E = EmJ; therefore 

A final result that can be extracted from the Lippmann equation is readily obtained by 
differentiating Equation (91) with respect to E at constant p: 
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The quantity (eCiziI’,) gives the charge density of the surface, and d(charge density)/&? is 
called the differential capacitance C of an interface. Although experimental values of surface 
capacitance provide valuable information about the distribution of charge at an interface, we 
shall not pursue this topic. Our interest in Equation (96) is primarily in the suggestion it offers 
that the distribution of charge at an interface can be modeled as a capacitor. When we discuss 
the ion atmosphere at a charged surface in Chapter 11, we begin by using the parallel plate 
capacitor as a preliminary model. 

REVIEW QUESTIONS 

1. 
2. 

3. 

4. 

5. 

6. 
7. 

8. 
9. 

10. 

11. 

12. 
13. 

14. 
15. 

16. 
17. 
18. 
19. 

Provide a simple mechanistic description of adsorption. 
What is your conceptual picture of an interface between two liquids or a liquid and a gas? For 
example, in the case of a gas-liquid interface, can you imagine an infinitesimally thin surface 
that separates the gas from the liquid? If not, how would you define a surface that serves as 
the interface between the gas and the liquid? 
What is a surface-active agent (or a surfactant)? Why is it often referred to as an amphipathic 
molecule? 
What are Langmuir and Gibbs layers? What is a Langmuir-Blodgett film? How do they differ 
from each other? 
Describe the formation and the possible structures of a surfactant monolayer at an air-water 
interface. 
What is the meaning of “two-dimensional” phases? 
What types of two-dimensional phases can occur in a monolayer when the surface concentra- 
tion of the surfactant and the temperature are changed individually? 
Describe a technique to visualize the structures that form in a Langmuir film. 
Describe the Langmuir film balance and how it is used to measure surface tension. 
What is the meaning of surface pressure? Describe one or two models of pressure-area iso- 
therms for a monolayer. 
List a few applications of monolayers. List a few applications in which the formation of 
monolayer at a fluid-fluid interface is used in industry. 
What is a Gibbs surface? What are the definition and meaning of surface excess properties? 
Explain why the air-water interfacial tension decreases with adsorption of a surfactant at the 
interface. 
What is the Gibbs equation, and how is it derived? 
Sketch the surface tension of water as a function of solute concentration in the bulk for 
different types of solutes such as an ionizable surfactant, a nonionic surfactant, and an 
inorganic electrolyte. Why is there a sharp change in such a plot in the case of ionic surfac- 
tants? 
What is the Langmuir adsorption isotherm, and when is it applicable? Describe its limitations. 
What is a Freundlich isotherm? 
List a few (traditional as well as modern) applications of adsorbed layers of surfactants. 
What is the electrocapillary effect? How is it used to study adsorption of solutes under an 
applied potential? 
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PROBLEMS 

1. By analogy with the behavior of gases, monolayers are e:xpected to  expand to cover an  
entire surface. When the underlying liquid is flowing, the motion supplies a natural 
barrier to spreading at the edge of the monolayer. Use this concept to interpret the 
following bucolic scene:* 

On a calm day an observer who finds the right place on a stream or a river will see an 
unobtrusive yet startling phenomenon, a line on the surface of the water. The line may lie 
still, or it may contort itself, one way and another, in response to eddies. Very likely he 
will think a spider thread has fallen onto the water and try to cut it with his canoe paddle. 
As the disturbance caused by the cutting fades, the line rea.ppears, mended and whole. 

Use the concepts of this chapter to discuss the existence o:f the bulge or line at the edge of 
the monolayer . 

2. In some general chemistry laboratory courses the following experiment is done to evalu- 
ate Avogadro’s number. A watch glass is filled to the brim with water, and then a 
solution of stearic acid in benzene is slowly deposited dropwise on the surface until such 

*McCutchen, C. W., Science, 170,61 (1970). 
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3. 

4. 

5 .  
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time that a drop is added that “will not spread out, but will instead form a thick, 
lens-shaped layer.”* What is the name of the film pressure at  the “end point’’ of this 
experiment? What would be a reasonable estimate for U at this pressure? Estimate the 
number of 0.005-ml drops of stearic acid solution (c  = 0.200 g liter-’) needed to form a 
monolayer on a watch glass with a 14-cm diameter. Outline how data such as these could 
be interpreted to lead to a value for NA. Discuss some of the sources of error in this 
experiment. 

Isotherms of T versus U at both 15 and 25 OC were studied for oleic acid on a substrate of 
pH 2.0 using a high-sensitivity film balance.? The following results were obtained: 

7r (dyne cm-’) 

0 (A’ molecule-’) At 15OC At 25OC 

10,000 
8,000 
6,000 
4,000 
3,000 
2,000 
1,000 

500 

0.028 
0.035 
0.044 
0.055 
0.058 
0.076 
0.075 
0.074 

0.037 
0.040 
0.052 
0.071 
0.086 
0.095 
0.095 
0.095 

Prepare a plot of 7r versus U from these data. What is the apparent significance of the 
discontinuity in the curves? What quantity can be evaluated from the temperature varia- 
tion of this discontinuity? Estimate this quantity from the available data. 

The accompanying data give (T values corresponding to different film pressures for mono- 
layers of various lecithins spread on 0.1 M NaCl at 22OC: $ 

o <A2 molecule-’) 

7r (dyne cm- ’) Dibehenoyl Dist earoyl Dipalmitoyl Dimyristoyl Dicapryl 

2 
4 
6 
8 

10 
15 
20 
30 
40 

51.7 
50.0 
49.2 
48.3 
47.9 
46.7 
45.5 
45.0 
44.7 

53.3 
52.5 
50.8 
50.0 
49.5 
48.0 
46.7 
45.0 
44.7 

96.7 
88.3 
82.2 
76.7 
66.7 
53.3 
50.0 
46.3 
45.0 

96.7 
90.0 
85.0 
81.7 
77.5 
70.8 
65.8 
58.3 
53.8 

99.2 
93.8 
86.7 
82.5 
78.3 
71.7 
65.8 
58.3 
53.8 

Plot 7r versus CT for these isotherms and label the apparent two-dimensional phase present 
for various parts of the curves. Write the structural formulas for each of  the lecithins 
and discuss the features of the curves in terms of the structure of the molecules. 

If gas densities can be measured as a function of pressure, the molecular weight of a gas 
may be calculated from the expression 

*Ifft, J .  B . ,  and Roberts, J. L., Jr., Frantz/Malm’s Essentials of Chemistry in the Laboratory, 3d 
ed., W. H. Freeman, San Francisco, CA, 1975. 
j-Pagano, R. E., and Gershfeld, N. L., J. Colloid Interface Sci., 41, 31 1 (1972). 
SPhillips, M. C., and Chapman, D., Biochim. Biophys. Acta, 163, 301 (1968). 
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Likewise, if surface concentrations (in weight per area) are measured as a function of T ,  

the molecular weight of a solute that forms an insoluble monolayer may be determined. 
Romeo and Rosano* obtained the following data for a monolayer of acetyl lipopolysac- 
charide on 0.2 M NaCl at 20° C: 

c (mg m -  ') 0.06 0.09 0.11 0.14 0.17 0.23 
T (millidyne cm-') 10.3 16.4 20.4 25.9 34.3 50.0 

What is the molecular weight of the acetyl lipopolysaccharide? 

6. Cockbaint measured the interfacial tension of the water--decane surface at various con- 
centrations of sodium dodecyl sulfate (NaDS). The experiments were done at 2OoC both 
in the presence and absence of NaC1. Use the suitable form of the Gibbs equation in each 
case to calculate and g a t  y values of 10 and 20 dyne cm-' from the following data: 

Pure H 2 0  0.1 M NaCl (swamping) 

cNaDS (mole liter-') y (dyne cm-') cNaDS (mole liter-') y (dyne cm-') 

0.0079 
0.00694 
0.0052 1 
0.00347 
0.00 173 S 

8.5 0.0014 5.2 
10.8 0.000694 11.7 
15.3 0.000347 17.4 
20.8 0.000 173 22.7 
28.3 0.0000867 27.5 

Is the variation of (T with interfacial film pressure qualitatively consistent with the ex- 
pected behavior of monolayers in general? Of charged monolayers in particular? 

7. Blank$ has reported the permeability (in cm' of gas s - '  cm- * surface) of various spread 
monolayers to water vapor at 25OC. For several differeni: RX-type compounds at differ- 
ent 7r values, the permeabilities are as follows: 

Permeability x 103 
R X 7r (dyne cm-') (cm3 s- '  cm-2) 

Cl6 OH 44 
C'8 OH 44 
Cl, COOH 24 

3 80 
300 
430 

Discuss the observed differences in permeability between (a) the two alcohols at the 
same film pressure and (b) the two 18-carbon surfactants at different pressures. In your 
comments include comparisons of the molecular structure of the surfactants and the 
efficiencies of these monolayers in retarding evaporation. 

8. The pendant drop method has been used9 to measure the interfacial tension at the 
surface between mercury and cyclohexane solutions of stearic acid at 30 and 5OOC. 

*Romeo, D., and Rosano, H. L., J. Colloid Interface Sci., 33, 84. (1970). 
TCockbain, E. G., Tram Faraday Soc., 50, 874 (1954). 
$Blank, M. In Retardation of Evaporation by Monolayers (V. K. LaMer, Ed.), Academic Press, 
New York, 1962. 
OAmbwani, D. S., Jao, R. A., and Fort, T., Jr . ,  J .  Colloid Inter,race Sci., 42, 8 (1973). 
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Interpret the accompanying data by means of the Gibbs equation to evaluate I" and CT 
for stearic acid at these two temperatures when the equilibrium bulk concentrations are 
lOP3, lOP4, and lOP5 M: 

T = 3OoC T = 5OoC 

y (dyne cm-') cEq (mole liter-') y (dyne cm-') cEq (mole liter-') 

362 
355 
334 
3 07 
286 

4.8 x 1OP6 364 4.8 x 10-6 
8.5 x 1OV6 362 9.6 x 1 O W 6  
6.6 x 10-5 3 54 7.4 x 1 0 - ~  
2.7 x 1 0 - ~  334 4.4 x 1 0 - ~  
1.0 x 1 0 - ~  314 1.6 x 1 0 - ~  

Estimate the concentrations at which the stearic acid film at the interface reaches a 
condensed packing at  the two temperatures. 

9. A scintillation counter is used to measure tritium ,l3 particles adjacent to the surfaces of 
tritiated sodium dodecyl sulfate in 0.115 M aqueous NaCl solution and tritiated dodeca- 
no1 in dodecanol. The former system is surface active and the latter is not, so the 
difference between the measured radioactivity above the two indicates the surface excess 
of sodium dodecyl sulfate. The number of counts per minute arising from the surface 
excess A, is related to the surface excess in moles per square centimeter I" by the relation- 
ship A, = 4.7 x 10l2 I".* Use the following data (25OC) to construct the adsorption 
isotherm for sodium dodecyl sulfate on 0.115 M NaCl: 

Activity x 10-3 (cpm) Surf actan t 
concentration 

3H pC Tritiated Tritiated x 103 
(g solution)-' nonsurfactant surfactant (mole kg-') 

- 2 
4 
6 
8 0.50 

10 
15 0.95 
20 
30 1.85 

- 
- 

- 

- 

1.9 
2.1 
2.3 
2.5 
2.6 
2.9 
3.2 
3.8 

Briefly outline how the proportionality constant be 
experimentally. 

0.17 
0.34 
0.50 
0.67 
0.84 
1.20 
1.65 
2.45 

ween A, and I" migh be de ermined 

10. A quantity called the HLB (for hydrophile-lipophile balance) number has proved to be a 
useful way to match a surfactant to a particular application. For example, surfactants 
with HLB numbers in the range 4 to 6 produce water-in-oil emulsions; those in the range 
7 to 9 are useful as wetting agents; those ranging between 8 and 18 produce oil-in-water 
emulsions; and those with values in the range 13 to 15 make good detergents. Use these 
considerations plus the following specific examples to formulate a generalization about 
the dependence of the HLB number on the molecular structure of the surfactant:t 

*Muramatsu, M., Tajima, K., Iwahashi, M., and Nukina, K., J .  Colloid Interface Sci., 43, 499 
(1973). 
tOsipow, L. I., Surface Chemistry, Van Nostrand-Reinhold, Princeton, NJ ,  1962. 
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11. 

12. 

13. 

Surf act ant HLB number 

Sodium dodecyl sulfate 40 
Sodium oleate 18 
Tween 80 (rz = 20, R = oleate) 15 
Sorbitan monolaurate 8.6 
Span 60 4.7 
Sorbitan tristearate 2.1 

The adsorption of straight-chain fatty acids from n-heptane on Fe,O, has been studied.* 
In all cases studied the adsorption isotherms conform with the Langmuir equation. The 
following are values of the amount adsorbed at saturation : 

(3 x 105 
SUt 

Fatty acid (mole g-I) 

Acetic 
Propioni c 
n-Butyric 
n-Hexanoic 
n-Heptanoic 
n-Octanoic 
Lauric 
Myristic 
Palmitic 
Magaric 
Stearic 

3 .OO 
2.36 
2.11 
1.78 
1.40 
1.30 
1.04 
0.97 
0.91 
0.82 
0.81 

Calculate the area per molecule (a) of each on the saturated surface if the Fe,O, is known 
to have a specific surface of 3.45 m2 g-'. Do the adsorbed molecules appear to be in the 
same two-dimensional phase in each of these systems? 

The adsorption of various aliphatic alcohols from benzene solutions onto silicic acid 
surfaces has been studied.t The experimental isotherms have an appearance consistent 
with the Langmuir isotherm. Both the initial slopes of an n / w  versus c plot and the 
saturation value of n / w  decrease in the order methanol :* ethanol > propanol > buta- 
nol. Discuss this order in terms of the molecular structure of the alcohols and the 
physical significence of the initial slope and the saturation intercept. Which of these two 
quantities would you expect to be most sensitive to the structure of the adsorbed alcohol 
molecules? Explain. 

The Michaelis-Menton equation is an important biochemical rate law. It relates the rate 
of the reaction U to a substrate concentration [SJ in terms of two constants U,, and K M :  

It will be noted that this equation follows the same functional form as the Langmuir 
equation, specifically U --+ U,, as [SJ increases. The biochemical literature contains three 
different graphical procedures to evaluate the constants LmUx and K,,,, from kinetic data: 

*Allen, T., and Patel, R. M., J.  ColloidInterface Sci., 35, 647 (1971). 
tHoffman, R. L., McConnell, D. G., List, G. R., Evans, C. D., Science, 157, 550 (1967). 
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Name of method Plotted on ordinate Plotted on abscissa 

Lineweaver -Burk 1 /U 
Hanes [ s l / u  
Eadie U 

Describe how the three equivalent variations of the Langmuir equation would be plotted. 
Give the interpretation of the slope and intercept in each case. 

14. In laboratory tests of flotation, fluorite (CaF3 particles (range of particle diameters, 
0.074-0.147 mm) with oleic acid as collector were aerated under three different condi- 
tions. These conditions and the percent CaF, recovery after 10 rnin are as follows:* 

Aeration conditions 
Percent recovery after 

10 min of aeration 
~~~~~~ 

Bubbles precipitated from solution 
Bubbles produced by mechanical means 
Combination of both means of bubble production 

5 
20 
70 

Suggest an interpretation for this variation in the efficiency of fluorite recovery. 

15. Grahamet gives the following data for ymux versus log c (corrected for activity) for the 
interface between mercury and aqueous KI at 18OC: 

Y m u x  (dyne cm - '> 390 398 407 414 419 422 
log c ( c  in mole liter -') 0.5 0 -0.5 -1.0 - 1.5 -2.0 

Use these results to estimate I?, the surface excess of KI at the electrocapillary maximum, 
for 1 .O and 0.1 M KI. Express your results as moles of KI adsorbed per square centimeter 
and as total charge qrper square meter. 

16. Show by the double integration of Equation (96), that is -(d2y/dE2), = C, that a para- 
bolic relationship between ymax - y and E - E,,,, is expected if the capacitance of the 
double layer is constant. Use the equation you derive to test the assumed constancy of C 
for the interface between mercury and 1 M NaCl from the following data: 

y (dynecm-') 340 376 396 410 418 423" 421 

y(dynecm-') 415 405 396 384 373 358 340 

'Maximum. 

E (V) -0.02 -0.08 -0.18 -0.28 -0.38 -0.56"-0.68 

-0.78 -0.88 -0.98 - 1.08 - 1.18 - 1.28 - 1.38 

Double-layer capacitance values are usually expressed as microfarads per square centime- 
ter; remember that practical electrical units, including the farad, are consistent with SI 
units. Comment on these results in terms of anion and cation adsorption. 

*Klassen, V. I . ,  and Mokrousov, V.  A. ,  A n  Introduction to the Theory of Flotation, Butterworth, 
London, England, 1963. 
TGrahame, D. C., Chern. Rev., 41,441 (1947). 



Colloidal Structures in Surfactant Solutions 
Association Co I lo ids 

I for  my part have never known an Irregular who was not also what Nature evidently 
intended him to be- . . . up to the limits of his power, a perpetrator of all manner of 
mischief. 

From Abbott’s Flatland 

8.1 INTRODUCTION 

8. la  What Is Self-assembly and What Are Association Colloids? 

In the last chapter we examined the tendency of surfactant molecules in aqueous solutions to 
adsorb at a surface in the form of a monolayer. In this chapter we continue to study surfactant 
solutions, this time considering a few of the many possible :modes of organization they can 
adopt within a bulk phase. This process of organization is thermodynamically driven and is 
spontaneous, as in the case of Langmuir layers we discussed in Chapter 7. It is therefore often 
called selfassembly, and the resulting aggregates are known as association colloids. Both 
chapters share an interest in amphipathic solutes: Chapter 7 focuses on surface activity, while 
this chapter is concerned with structures in the colloidal size range formed by these molecules. 
In both, the head-to-headhail-to-tail ordering of the amphipathic molecules is observed. The 
difference is that in Chapter 7 the ordering occurs at the surface, under the influence of the 
surface, while it occurs in the bulk in this chapter. Quite an assortment of bulk surfactant 
structures is known, including ordinary and reverse micelles, liquid crystals, bilayers, vesicles, 
and microemulsions. This chapter is concerned primarily with micelles (Sections 8.2-8.8) and 
microemulsions (Sections 8.9 and 8. l O ) ,  although some additional structures are mentioned in 
passing. 

The colloidal structures we examine in this chapter are formed as a result of physical 
interactions among amphipathic molecules, rather than by covalent bonding. This sort of 
physical association has been recognized for a long time, although contemporary students may 
be relatively (or totally!) unaware of it. It is interesting to note that in the early days of 
polymer chemistry, macromolecules were believed to be physically associated rather than 
covalently bonded structures. The birth of modern polymer chemistry can be traced to the 
acceptance of the covalent character of these substances. Associated structures do exist, how- 
ever, and we see by the end of this chapter that their investigation is a very lively area of 
chemical research. 

8.1 b Why Are Association Colloids Important? 

In the last couple of decades one important insight has triggered a tremendous upsurge of 
interest in surfactant structures. This is the recognition that these structures may mimic biolog- 
ical structures in some ways. Enzymes, for example, are ,protein molecules into which a 

355 
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reactant molecule somehow “fits” to form a reactive intermediate. The highly efficient and 
specific catalytic effect of enzymes makes their investigation one of the most fruitful areas of 
biochemical research. Likewise, cell membranes not only compartmentalize biological sys- 
tems, but also play a variety of functions in the life of the cell. Surfactant structures can be 
used as model systems to mimic both enzymes and membranes. A whole new field of mimetic 
(exhibiting mimicry) chemistry has grown around this concept, and colloidal structures 
formed by surfactants are at  the center of the entire subject. Surfactant aggregates known as 
liposomes are common in physiological systems, and the use of specially designed liposomes 
as drug-delivery vehicles was discussed in Chapter 1 in Vignette 1.3. Self-assembled structures 
such as micelles and reverse micelles also play an increasingly important role in separation 
processes in engineering and environmental science and technology; one such example is 
described in Vignette VIII. 

VIGNETTE Vlll SEPARATION PROCESSES BASED ON 
MICELLAR ENCAPSULATION: 
Micellar-Enhanced Ultrafiltration 

Removal of dissolved organics and polyvalent cations from contaminated groundwater, in- 
dustrial wastewater, and oil-field-produced water in a cost-effective manner is one of the 
most important engineering challenges of this decade. Hazardous waste sites contain ground- 
waters polluted by leaking underground organic storage tanks, and the leaching of the haz- 
ardous materials and accidental waste releases contribute further to the water pollution 
problems. The use of water in chemical industries in separation operations is common, and 
the water thus used picks up at least small amounts of dissolved organics and other hazardous 
chemicals. 

The current technologies popular for removing such wastes include adsorption on activated 
carbon, ion-exchange membranes, and bioremediation. Activated carbon adsorption is effective 
but expensive since regeneration of the carbon is often difficult and expensive. Ion-exchange 
membranes are restricted to specific ions. An alternative technology that is currently investigated 
relies on the ability of surfactants to self-assemble in water as micelles and trap hydrocarbon 
contaminants. We have already seen an example of encapsulation of chemical species by surfac- 
tant aggregates known as liposomes in Chapter 1 and have seen the use of surfactants in 
detergency in Chapter 7.  Micellar encapsulation works on similar principles and may turn out to 
be simultaneously effective for both dissolved organics and polyvalent ions since an ionic micelle 
with an appropriate head group can adsorb ionic contaminants. 

“Biologically friendly” ionic surfactants can be added to the wastewater at concentrations 
above the threshold value beyond which the surfactants self-assemble to form micelles. The 
resulting micelles can trap the hydrocarbon wastes since the hydrocarbon solutes prefer the 
hydrocarbon interior of the micelle over the aqueous environment outside. In addition, ionic 
wastes in the water adsorb to the polar heads of the surfactants (see Fig. 8.1). The resulting 
waste-laden micelles can then be removed more easily using ultrafiltration methods. Such a 
process, known as micellarenhanced ultrafiltration (MEUF), can be made continuous, scalable, 
cost effective, and environmentally friendly (through the use of biodegradable surfactants). 

Some of the topics we discuss in this chapter are essential for understanding processes 
such as MEUF. The same ideas can also be used for other separation processes (e.g., protein 
separation in reverse micelles) and in genetic engineering, as mentioned in Vignette 1.3 in 
Chapter 1. We also see in this chapter other applications such as using micelles as “microreac- 
tors,” i.e., using the unique environment inside micelles for catalysis and material synthesis. 

8.lc Focus of This Chapter 

As mentioned above, the bulk of this chapter is concerned with the simplest of the surfactant 
aggregates that form in solution, namely, micelles. There is plenty to focus on in this respect, 
and the material is already very complex. 
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FIG. 8.1 Use of micelles to trap hydrocarbon and ionic wastes. 

1. In Section 8.2 we are concerned with the threshold concentration of surfactants at 
which micellization occurs. This concentration, known as the critical micelle concentration 
(CMC for short), is one of the most important properties of surfactant solutions. We look at 
two different ways of modeling micellization and discuss briefly when they are appropriate. 

In Sections 8.3 and 8.4, we examine the structure of the different parts of a micelle 
and illustrate how the shape of the micelle is determined by the relative sizes of the head group 
and the tail of the surfactant. This relative measure provides a geometric rationale for the 
structures of aggregates that are possible, and is simple to use. 

Following this, the thermodynamic arguments needed for determining CMC are dis- 
cussed (Section 8.5). Here, we describe two approaches, namely, the mass action model (based 
on treating micellization as a “chemical reaction”) and the phase equilibrium model (which 
treats micellization as a phase separation phenomenon). The entropy change due to micelliza- 
tion and the concept of hydrophobic effect are also described, along with the definition of 
thermodynamic standard states. 

The next two sections focus on solubilization and catalysis in micelles, two important 
applications of micelles. 

An overview of other forms of micellar systems follows in the next three sections. 
Formation of reverse micelles, in nonaqueous media, is discussed briefly in Section 8.8. 
Sections 8.9 and 8.10 present an introduction to microemulsions (oil, or water, droplets 
stabilized in water or oil, respectively) and their applications. 

Finally, a discussion of surfactant self-assembly will not be complete without a men- 
tion of surfactant assemblies in biological systems. Although they are outside the scope of our 
book, we have already drawn attention to such biological applications of colloid science in 
Chapters 1 and 7 and above in this chapter. Some additional discussion is provided in the last 
section of this chapter (Section 8.11). 

2. 

3. 

4. 

5. 

6. 

8.2 SURFACTANTS IN SOLUTION: EXPERIMENTAL OBSERVATIONS 
AND MODELS 

8.2a Self-Assembly into Micelles: Representation as Reactions 

Curve 3 in Figure 7.14 was presented as a typical illustration of the way surface tension y 
varies with concentration for an amphipathic solute in aqueous solution. In discussing that 
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figure, we noted that the break in the curve marks the concentration above which these solute 
molecules aggregate to form clusters known as rnicelles. I f  we represent the amphipathic 
species by S ,  then this clustering process can be described by the reaction 

in which S,, is the micelle with a degree of aggregation n. Reaction (A) is the first of a series of 
reactions of increasing complexity we use to represent the micellization process. Note that 
Reaction (A) is reversible: Dilution shifts the equilibrium toward the monomeric surfactant. 
The surfactant species that undergo micellization are essentially the same amphipathic mole- 
cules with adsorption behavior that we discussed in the last chapter. They have the general 
formula R X ,  in which R is a hydrocarbon chain and X is a polar group. The hydrocarbon 
chains in R are ordinarily C, or greater, may be saturated or unsaturated, may be linear or 
branched, and may contain an aromatic ring. 

The polar X group in the amphipathic molecule may be nonionic or ionic. The nonionic 
X group most widely used in the study of surfactant structures is relatively short-chain poly- 
oxyethylene moieties, -(C2H40)1-, in which x ranges from 3 or 4 to 20 or more. Several 
commercial surfactants of this sort (Tween and Triton) are listed in Table 7.2. The polyoxye- 
thylene "heads" of these molecules are essentially short-chain polymers themselves and, as 
such, are generally polydisperse. The x values that characterize these preparations are average 
values, and a distribution of chain lengths around the average is typical of commercial non- 
ionic surfactants. 

Among numerous possible ionic groups, sulfate (-SO, -), sulfonate (-SO, -), and car- 
boxylate (-CO, - )  are the most common anionic groups; various quaternary ammonium 
groups (-NR, +)  are the most common X substituents in cationic surfactants. Zwitterionic 
surfactants, which combine both positively and negatively charged groups, have also been 
investigated. With ionic surfactants, the amphipathic ion is accompanied by a counterion. 
Although other possibilities exist, we consider only univalent counterions. In general, we write 
ionic surfactants as M ' S -  and assume these are 100% dissociated into M +  and S - .  A 
common surfactant of this type is sodium dodecyl sulfate, often written SDS, in which M +  = 
Na + and S - = C,,H,,SO, - . 

The clustering of low molecular weight anionic surfactant molecules to form micelles can 
also be represented by the following reaction: 

in which n is the degree of aggregation and the net charge z of the micelle is given by z = n - 
m. Note that the charge of the micelle can also be expressed as the fraction ionized, a = ( n  - 
m)/n.  This formalism is readily extended to micelles formed from cationic surfactants; for 
nonionics, m and z are zero. 

Reaction (B) is clearly an extension of Reaction (A), with the former admitting the 
possibility of counterion binding to the micelle. Additional refinements can be introduced into 
this reaction. The micelle still carries a net charge of - z ,  which means that zM+ ions must be 
present in solution to assure electroneutrality. This may be included in the representation of 
micellization by writing 

Unless noted otherwise, we use anionic micelles as prototypes; that is, we use Reaction (B) to 
represent the formation of micelles. 
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8.2b Critical Micelle Concentration 

The threshold concentration at which micellization begins is known as the critical rnicelle 
concentration. Surface tension is by no means the only property of the solution that displays a 
discontinuity in slope when plotted against increasing concentration. Figure 8.2 shows sche- 
matically how several different experimental quantities vary with concentration. The figure 
idealizes things somewhat since the various experimental quantities tend to  “see” slightly 
different thresholds for micellization. However, the differences in CMC values by various 
methods of determination are not so diverse as to invalidate the notion of a “critical concentra- 
tion.” Below the breaks in the curves in the figure, anionic surfactants behave as expected for 
strong electrolytes; above the CMC, however, the behavior observed is consistent with the 
presence of particles in the colloidal size range. That this is true for the curves shown in Figure 
8.2 is seen by the following arguments: 

In the case of variation of osmotic pressure T with concentration c, to a first approxi- 
mation we know that T / C  is proportional to l /M(Equation (3.34) ). This is roughly equivalent 
to saying that the slope of a plot of T versus c is proportional to 1/M, where M i s  the molecular 
weight. (Osmotic pressure measurements generally give the number-average molecular weight 
U ,  as illustrated in Chapter 3, Section 3 . 3 ~ .  However, as also noted there, in the case of 
micellar solutions, osmometry can lead to weight average molecular weight m,,; see Puvvada 
and Blankschtein 1989.) The decrease in the slope of the osmotic pressure plot at the CMC 
indicates an increase in the average molecular weight of the solute at this point. 

In the case of turbidity 7, to a first approximation (Hc/T)  is proportional to 1/M 
(Equation (5.39) ). This means that the slope of a plot of 7 versus c is roughly proportional to M. 
The break in the curve again corresponds to an increase in the molecular weight of the solute. 

The conductivity K of the solution decreases at  the CMC owing to the lower mobility 
of the larger micelles. Dividing by concentration to convert to equivalent conductivity A leads 
to a sharp reduction in the last quantity at the CMC. 

These data can be used quantitatively as well as qualitatively to determine the molecular 
weight of the micelle. For example, the colloidal particles may be analyzed by light scattering 
by modifying Equation (5.39) as follows: 

1. 

2 .  

3. 

Surfactant Concentr ‘1 t ’  i o n  

FIG. 8.2 Schematic illustration of variation of properties of a surfactant solution with surfactant 
concentration. Note the change in behavior at the critical micelle concentration (CMC). The shad- 
ing emphasizes the fact that the CMC is not necessarily sharply defined. 
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since the micelles form in a solution that already has a turbidity rCMC at the CMC. Turbidity 
data can then be plotted as in Figure 5.7 to give the molecular weight and the second virial 
coefficient of the micelles. The second virial coefficient can be analyzed further to give the net 
charge of the micelle if the amphipathic species are ionic as assumed. Most of the techniques 
we considered in Chapters 2-5, along with numerous other experimental procedures, have 
been used to charActerize micelles. Of particular interest to us at this point are the average 
molecular weight A4 and the net charge z .  Also of interest are the particle shape and hydration 
(available from sedimentation and diffusion measurements) and polydispersity (available by 
combining determinations of average M, and m,,,). For nonionic micelles the degree of associ- 
ation is given by the ratios of the molecular weights of the micelle and of the individual 
surfactant molecules. For ionic micelles the measured molecular weight includes the bound 
counterions, but n can be determined if z is known. 

Table 8.1 lists experimental CMC values for several ionic surfactants in water and aqueous 
NaCl solutions, as well as n and a values measured at the CMC. The data in Table 8.1, 
supplemented by numerous additional studies, allow us to make several generalizations about 
the state of aggregation and charge of micelles at  the CMC: 

All other things being equal, the aggregation number n increases as the length of the 
hydrocarbon chain increases. 
The aggregation number for sodium dodecyl sulfate increases with increasing 
amounts of the indifferent electrolyte NaCl. 
There is a general tendency for a to decrease owing to the addition of electrolyte. 
More extensive data show that a is generally in the range 0.1 to 0.4; a value of about 
0.25 is a good choice for an “average” fraction of ionization. 

TABLE 8.1 
Ionization for Several Surfactants With and Without Added Salt 

Critical Micelle Concentration, Degree of Aggregation, and Effective Fractional 

Surfactant 

~~~ ~ ~ ~~~ 

Critical micelle Ratio of charge 
concentration Aggregation to aggregation 

Solution (mole liter-’) number n number, z / n  

Sodium dodecyl 
sulfate 

Dodecy lamine 
hydrochloride 

Decyl trimethyl 

Dodecyl trimethyl 

Tetradecyl trimethyl 

ammonium bromide 

ammonium bromide 

ammonium bromide 

Water 
0.02 M NaCl 
0.03 M NaCl 
0.10 M NaCl 
0.20 M NaCl 
0.40 M NaCl 
Water 
0.0157 M NaCl 
0.0237 M NaCl 
0.0460 M NaCl 
Water 
0.013 M NaCl 
Water 
0.013 M NaCl 
Water 
0.013 M NaCl 

0.00810 
0.003 82 
0.00309 
0.001 39 
0.00083 
0.00052 
0.01310 
0.01040 
0.00925 
0.00723 
0.06800 
0.06340 
0.01530 
0.01 070 
0.00302 
0.00180 

80 
94 

100 
112 
118 
126 
56 
93 

101 
142 
36 
38 
50 
56 
75 
96 

0.18 
0.14 
0.13 
0.12 
0.14 
0.13 
0.14 
0.13 
0.12 
0.09 
0.25 
0.26 
0.21 
0.17 
0.14 
0.13 

~ ~~~ 

Source: J .  N. Phillips, Trans. Faraday Soc., 51, 561 (1955). 
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4. As a further refinement of the previous item, additional studies suggest that the order 
of ion binding to negative micelles is Cs' > Rb + :> Na ' > Li + and for positive 
micelles I - > Br - > Cl- ;  that is, larger ions that are more polarizable and that tend 
to be less hydrated bind more effectively. 
For nonionics, increasing the polyoxyethylene chain length for a constant R group 
decreases n. 
Those factors that increase n tend to lower the CMC. 
An assortment of additional evidence suggests that, at the CMC, many micelles are 
roughly spherical and relatively monodisperse. 

The explanations for some of these may be seen from the relation between surfactant 
packing and 1 he resulting shapes of the micelles described in Section 8.4. Here we merely note 
that the variables in terms of which micelles have been examined are by no means exhausted 
by this list. We encounter some additional experimental observations as we proceed. At this 
point, however, these results indicate that the tendency toward aggregation is increased by 
those variations that increase the hydrophobic character of the surfactant: increasing the 
hydrocarbon chain length, decreasing the polyoxyethylene chain length, or increasing counter- 
ion binding. 

5 .  

6. 
7. 

8 . 2 ~  Micellization: Chemical Reaction or Phase Equilibrium? 

The last point we consider in this section is the question of ,whether micellization should be 
viewed in terms of chemical reaction equilibrium or phase equilibrium. If we think of micelli- 
zation as a chemical reaction, then Reaction (A) should surely be written as a sequence of 
stepwise additions: 

S 

2 s 4 + s 2 ~ s 3 - s 4 " ~  ' .  " S ,  

The law of mass action implies that a continuous distribution of species - monomers, dimers, 
trimers, etc. -should be present. Increasing the surfactant concentration should shift the 
equilibria in Reaction (D) to the right, but the observed transition from monomers to n-mers 
with n > 50 is not expected. Experimentally, large micelles do form sharply at the CMC in 
aqueous solutions, and - to a good approximation - the concentration of monomeric surfac- 
tant in solution varies little above the CMC. This type of behavior is typical of phase equilib- 
ria; examples include the (constant) concentration of a satwated solution and the (constant) 
vapor pressure of a liquid. Energetically, some minimum value of n is apparently necessary 
before the exclusion of hydrophobic tails from the aqueous medium is effective. Once the 
solution is concentrated enough for aggregates with this crii:ical n value to be formed, any 
additional surfactant added to the solution goes into the micelle. 

We see in Section 8.8 that surfactants undergo aggregati'on in nonaqueous solvents also, 
but the degree of aggregation is very much less ( n  < lO) ,  and the threshold for aggregation is 
far less sharp than in water. The mass action model for micellization seems preferable for 
nonaqueous systems. 

In summary, whether a reaction equilibrium or a phase equilibrium approach is adopted 
depends on the size of the micelles formed. In aqueous systems the phase equilibrium model is 
generally used. In Section 8.5 we see that thermodynamic analyses based on either model 
merge as n increases. Since a degree of approximation is introduced by using the phase 
equilibrium model to describe micellization, micelles are sometimes called pseudophases. 

An illustration of how both the reaction equilibrium and phase equilibrium models can be 
applied to micellization is provided by Example 8.1. 

* * *  

EXAMPLE 8.1 Reaction Equilibrium and Phase Eguilibrium Models of Micellization. Research 
in which the CMC of an ionic surfactant M'S- is studied as a function of added salt, say M ' X - ,  
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shows that a plot of log CMC versus log ( [ M X ]  + CMC) yields a straight line of slope (CY - 1). 
Derive this relationship by considering Reaction (6) as describing both a chemical equilibrium 
and a phase equilibrium. 

Solution: As a chemical equilibrium, Reaction (6) is described by an equilibrium constant K,  
which may be written 

K = [micelle]/[S-]”[M+]” 

where the brackets signify molar concentrations of the indicated species, activity effects being 
neglected. Taking logarithms and rearranging gives 

n log [ S - ]  + m log [ M + ]  = log ([micelle]/K) 

As a phase equilibrium, the concentration of surfactant in equilibrium with the micellar 
pseudophase equals the CMC regardless of the apparent concentration as long as micelles are 
present. Indicating the CMC value by a subscript, we write 

log [ S -]CMC = (1 ln) log ([ micelle]lK) - (mln) log [ M + ] 

At the CMC the total cation concentration equals the CMC value plus the concentration of 
the added 1 : 1 electrolyte: [ M + ]  = [M’lsalt + [M+],,,. Since m/n = 1 - CY, these results can 
be combined to give 

log [S-]cMC = ( l l n )  log ([micelle]lK) - ( 1  - CY) log ([M+],,,, + [M+]CMC} 

which is the desired result. The picture of micellar charge as developed here is in reasonable 
agreement with that determined by other methods. 

* * *  

8.3 STRUCTURE OF MICELLES 

In considering the structure of micelles, we continue to base our discussion on aqueous, 
anionic surfactant solutions as prototypes of amphipathic systems. Cationic micelles are struc- 
tured no differently from anionics, and nonionics are described parenthetically at appropriate 
places in the discussion. We summarize present thinking about the structure of micelles at 
surfactant concentrations equal to or only slightly above the CMC. We see that in nonaqueous 
systems (Section 8.8) and in concentrated aqueous systems (Section 8.6), the surfactant mole- 
cules are organized quite differently from the structure we describe here. 

Although McBain suggested over 80 years ago that soap molecules form micellar struc- 
tures of lamellar and spherical shape (McBain 1913), most of the subsequent work focused on 
spherical micelles. The earliest concrete model for spherical micelles is attributed to Hartley 
(1936), whose picture of a liquidlike hydrocarbon core surrounded by a hydrophilic surface 
layer formed by the head groups, has been essentially verified by modern techniques, and the 
“Hartley model” still dominates our thinking. We present an overview of the structure of the 
micelle first and then go on to examine the details a little bit more closely. 

8.3a Internal Structure of Micelles: An Overview 

We saw in the last section that a t  the CMC surfactant molecules cluster into roughly spherical 
aggregates containing 50-100 amphipathic units. For purposes of orientation, let us take an 
imaginary journey radially outward from the center of a micelle into its aqueous surroundings, 
identifying some distinctly different regions for subsequent discussion. This first inventory is 
incomplete; we add refinements as we proceed. Moving outward from the center of the 
micelle, we find the following: 

The central core is predominantly hydrocarbon. The expulsion of the hydrophobic 
tails of the surfactant molecules from the polar medium is an important driving force behind 
micellization. The amphipathic molecules aggregate with their hydrocarbon tails pointing 
together toward the center of the sphere and their polar heads in the water at its surface. 

1. 
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For the surfactant this mode of organization competes with monolayer adsorption, which it 
somewhat resembles. 

In ionic micelles the hydrocarbon core is surrounded by a shell that more nearly 
resembles a concentrated electrolyte solution. This consists of ionic surfactant heads and 
bound counterions in a region called the Stern layer (see Chapter 11, Section 11.8). Water is 
also present in this region, both as free molecules and as water of hydration. 

In typical nonionic micelles the shell surrounding the hydrocarbon core also resembles 
a concentrated aqueous solution, this time a solution of polyoxyethylene. The ether oxygens 
in these chains are heavily hydrated, and the chains are jumbled into coils to the extent that 
their length and hydration allow. 

Beyond the Stern layer, the remaining z counterions exist in solution. These ions 
experience two kinds of force: an electrostatic attraction drawing them toward the micelle and 
thermal jostling, which tends to disperse them. The equilibrium resultant of these opposing 
forces is a diffuse ion atmosphere, the second half of a double layer of charge at the surface 
of the colloid. Chapter 11 provides a more detailed look at the diffuse part of the double layer. 

As the first step in refining our ideas about the various regions in and around micelles, it 
is important to realize that in reality these domains are very different from the static, well- 
delineated regions described. The various steps represented by Reaction (D) take place very 
rapidly, so the micelle exists in a state of dynamic equilibrium. Furthermore, by simple 
rotations around carbon-carbon bonds in the hydrocarbon chains, the spatial extension of 
that chain varies, either pulling the head deeper into the core or allowing it to protrude into 
the Stern layer. This, coupled with the comings and goings of ions and water molecules, makes 
the surface of the micelle quite turbulent at the molecular level. These considerations alone 
argue that the regions cited above are not sharply defined on a molecular scale. We see 
presently that uncertainties as to the extent of water penetration into the core also blur the 
distinction between these regions. 

2. 

3. 

4. 

8.3b Structure of Micelles: Some Additional Details 

Now let us retrace our way, in reverse order, through the various regions of the micelle 
enumerated above. 

8.3b.l 

The diffuse part of the double layer is of little concern to us at this point. Chapters 11 and 12 
explore in detail various models and phenomena associated with the ion atmosphere. At 
present it is sufficient for us to note that the extension in space of the ion atmosphere may be 
considerable, decreasing as the electrolyte content of the solu.tion increases. As micelles ap- 
proach one another in solution, the diffuse parts of their reslpective double layers make the 
first contact. This is the origin of part of the nonideality of the micellar dispersion and is 
reflected in the second virial coefficient B as measured by osmometry or light scattering. It is 
through this connection that z can be evaluated from experimeintal B values. 

Ionic micelles will migrate in an electric field, and the ion atmosphere of the colloidal 
particle is dragged along with it. Interpretation of micellar mobility (conductivity experiments) 
must take this into account. The same is true, however, of the mobility of simple ions, but the 
situation is more involved here since the micelle and the ion atmosphere have comparable 
dimensions. We see in Chapter 12 how particle and double-layer dimensions affect the inter- 
pretation of mobility experiments. 

In the second item above, the presence of bound and free water molecules was noted. 
Both bound ions and ionic surfactant groups are hydrated to about the same extent in the 
micelle as would be observed for the independent ions. The dehydration of these ionic species 
is an endothermic process, and this would contribute significaintly to the A H  of micellization 
if ion dehydration occurred. In the next section we discuss the thermodynamics of micelliza- 
tion, but it can be noted for now that there is no evidence of a dehydration contribution to the 
AH of micelle formation. The extent of micellar hydration can be estimated from viscosity 

The Exterior of the Micelle 
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data, assuming spherical particles. From this approach, sodium dodecyl sulfate micelles are 
estimated to be hydrated to about 39% by weight. For this system, 24 wt% hydration can be 
explained by assuming that sulfate groups and sodium ions are hydrated with 1 and 4 water 
molecules, respectively, at a = 0.3. Although charge solvation accounts for a considerable 
part of the hydration of a micelle, these estimates show that an additional 15 wt% hydration 
remains unaccounted. 

One important point to recognize about the Stern layer in ionic micelles is that the 
bound counterions help overcome the electrostatic repulsion between the charged heads of the 
surfactant molecules. For nonionics no such repulsion exists. It is incorrect to think that ionic 
micelles form and then adsorb counterions. The Stern layer is part of the micelle, and the 
energetics of its formation are part of the thermodynamics of micellization. 

8.3b.2 The Core 
Next let us return to the hydrocarbon core of the micelle. Of particular interest are the 
geometrical constraints imposed on the micellar structure by the length of the hydrocarbon 
tail and the location of the yet unexplained water of hydration. As a first approximation, the 
core of the micelle can be viewed as a drop of liquid hydrocarbon, the maximum radius of 
which equals the length of the fully extended hydrocarbon tail. To get an idea of the size of 
this region, let us consider a numerical example. 

* * *  

Example 8.2 Calculating the Geometric Parameters of the Core of a Micelle. Calculate the 
radius, volume, and surface area of the core of a micelle formed by the aggregation of dodecyl 
groups. The fully extended chain has a zigzag structure with angles of 109S0, and the carbon- 
carbon bond length is 0.154 nm. The van der Waals radius of the terminal methyl group equals 
0.21 nm, and 0.06 nm may be taken as half the length of the bond to the polar head. 

Solution: The radius of the spherical core equals the length of the fully extended hydrocarbon 
tail (see Example 8.3 below). The 12 carbon atoms are connected by 11 bonds, each of length 
0.154 nm. What must be added together, however, are the projections of these bond lengths 
along the direction of the chain. The distance between every other carbon in the fully extended 
chain-the base of a triangle opposite the tetrahedral angle-is given by the law of cosines: 

a = (b2 + c2 - 2bccos e)’I2 = [(2)(0.154)*(1 - COS 109.5~) ] ”~  
= 0.252nm 

Half of this is the projection of each bond along the chain length; the sum of these projections is 
(1 1)(0.252/2) = 1.39 nm. Adding the contributions of the two ends to this gives the radius of 
the sphere: 1.39 + 0.21 + 0.06 = 1.66 nm. (Compare this with the length obtained from Equa- 
tion (4) for a chain with 12 carbon atoms.) 

The volume and surface area of the core are now readily calculated: 

V = (4/3)~(1.66)~ = 19.1 nm3, 
A = 4 ~ ( 1 . 6 6 ) ~  = 34.5 nm2 

and 

* * *  

Dividing the surface area calculated in the example by typical aggregation numbers gives the 
area per head group at the surface of the core. Using n values of 50 and 100 gives 0.69 and 0.35 
nm2 per group, respectively, quite plausible numbers in view of the behavior of surfactants in 
monolayers. 

The alkyl tails of surfactant molecules are not lines without thickness that can radiate 
outward from a common center in unlimited number. Instead, the chains themselves occupy a 
certain volume, represented by the bars in Figure 8.3. In this figure the circles represent head 
groups and the shaded region is water. Figure 8.3a shows schematically that close packing of 
the head groups requires unacceptable overlapping of the chain ends if the radius of the core 
is equal to the length of the fully extended chain. Figure 8.3b continues to use bars for the 
radius of the sphere, but fans them out in such a way as to avoid overlapping. The hole in the 
center is an artifact of this pictorial representation, but the wedges that allow water to pene- 
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FIG. 8.3 A schematic representation of the structure of an aqueous micelle. Three possibilities are 
illustrated: (a) tails overlap at the center; (b) water penetrates core; and (c) chain protrusion and 
bending correct deficiencies of (a) and (b). 

trate deeply into the core are a real feature of this model. The representation in Figure 8 . 3 ~  
differs from the preceding models as fo!lows: 

Some surfactant molecules protrude from the surface of the core farther than others, 
thereby alleviating crowding at the center of the micelle. 
Chain flexibility is explicitly acknowledged, allowing some chains to twist and bend 
in such a way as to fill wedges that would otherwise contain water. 
These modifications, taken separately or combined, overcome objections to the hypo- 
thetical structures shown in Figure 8.3a and 8.3b, which incidentally are whimsically 
known as reef and fjord structures, respectively. 
Because of the protrusion of portions of the hydrocarbon chains into the Stern layer, 
the core acquires a rough surface. This model seems like a reasonable “snapshot” of 
what we have already described as a rapidly changing surface region. 

One consequence of roughness at the surface of the micellar core is an increased contact 
between water and hydrocarbon. Figure 8.3b seems unrealistic because the water-hydrocarbon 
contact is scarcely less than in the bulk solution, a situation that apparently undermines an im- 
portant part of the driving force for micellization. Figure 8 . 3 ~  minimizes this effect without 
eliminating it. At the same time it allows for some water entrapment, which accounts for that 
part of the micellar hydration that was unexplained by the hydration of ions and charged groups. 

8.3b.3 The Palisade Layer 
The rough water-hydrocarbon surface of the core introduced in Figure 8 . 3 ~  suggests that the 
core of the micelle should really be considered as two distinct regions: an inner core that is 
essentially water-free and a hydrated shell between the inner core and the polar heads. This 
partly aqueous shell is sometimes called the palisade layer. The extent to which the hydrocar- 
bon chains protrude into the water is problematic, but we can get an idea of the volume of the 
palisade layer as follows. 

Suppose a section of chain three methylenes long defines the thickness of the palisade 
layer. For a dodecyl chain this corresponds to the outer 3/12 of the radius, meaning that the 
radius of the inner, anhydrous core is only 3/4 of what we have been using. Cubing this 
fraction shows that (3/4)3 = 0.42 is the fraction of the original core that is anhydrous, while 

1. 

2. 

3. 

4. 
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Wavelength (nm) Index of Polarity 

FIG. 8.4 Determination of the microenvironment of a molecule: (a) a portion of the ultraviolet 
spectrum of benzene in (1) heptane, (2) water, and ( 3 )  0.4 M sodium dodecyl sulfate; and (b) ratio 
of the intensity of the solvent-induced peak to that of the major peak for benzene versus the index 
of solvent polarity. The relative dielectric constant is also shown versus the index of polarity. 
(Redrawn, with permission, from P. Mukerjee, J .  R. Cardinal, and N. R. Desai, In Micellization, 
Solubilization and Microemulsions, Vols. 1 and 2 (K.  L. Mittal, Ed.), Plenum, New York, 1976.) 

58% is hydrated. Other fractions can be calculated by assuming other extents of protrusion. 
What is significant about this calculation is the fact that hydration of a relatively small 
fraction of the chain results in the presence of water in a significantly larger fraction of the 
volume of the micelle. After these idealized calculations, we should ask: Is there any experi- 
mental evidence for the presence of water in micelles? 

We see below in this chapter that there is a great deal of interest in molecules that are 
“guests” in micelles. In the present context water molecules are the guests and their abundance 
and location have been and continue to be the basis for considerable research and controversy. 
We merely describe one set of pertinent experiments and their interpretation. 

Figure 8.4a shows a portion of the ultraviolet spectrum of benzene in three media: (1)  
heptane, (2) water, and (3) 0.4 M aqueous sodium dodecyl sulfate. It is not the prominent 
peaks in these spectra that interest us, but rather the small bands located 3.6 nm on the 
long-wavelength side of the major features. This band is absent in benzene vapor, but is 
present with variable intensity in solutions. Accordingly, it is described as a solvent-induced 
band with an intensity that depends on the polarity of the solvent. 

This intensity is shown in Figure 8.4b, in which the characteristics of spectra measured in 
different reference liquids and liquid mixtures are plotted. The abscissa in Figure 8.4b is an 
index of solvent polarity, specifically the molar concentration of -OH groups in the reference 
liquids relative to the concentration of such groups in water, namely, 55.5 mole liter -’. Thus 
abscissa values of 0.0 and 1 .O correspond to hydrocarbon and water, respectively, as solvents; 
intermediate values describe solvents of intermediate polarity. 

The ordinate in Figure 8.4b gives the ratio of the intensity of the solvent-induced band 
relative to the intensity of the major peak at  a 3.6-nm shorter wavelength. With this as a 
calibration curve, the behavior of the benzene in the sodium dodecyl sulfate micelles can be 
interpreted in terms of the micellar microenvironment of the benzene molecules. In this case 
the microenvironment is about 62% of the way between hydrocarbon and water. 

Figure 8.4b also shows the relative dielectric constant of the reference liquids plotted 
against the same polarity index. The spectrum of the benzene suggests that the benzene 
molecules are located in a microenvironment of relative dielectric constant 46 ( E ,  values for 
alkanes and water are about 2 and 78, respectively; E ,  = 43 for glycerol). 

This experiment introduces the use of a probe molecule to explore the microenvironment 
within a micelle. The results in this case show the environment to be quite “wet,” but this 
observation alone does not tell us where either the benzene or the water is. Any one of the 



COLLOIDAL STRUCTURES IN SURFACTANT SOLUTIONS 367 

models in Figure 8.3 has regions of water-hydrocarbon contact. We examine some additional 
data in Section 8.6 that support the palisade layer as the location of benzene in these micelles. 

8.4 MOLECULAR ARCHITECTURE OF SURFACTANTS, PACKING 
CONSIDERATIONS, AND SHAPES OF MICELLES 

Although one expects the details of the molecular architecture of a surfactant molecule to play 
a prominent role in the shapes and structures of association colloids the surfactant forms in 
solution, a remarkably useful picture of the shapes of the resulting aggregates can be obtained 
using packing considerations based on some of the crude, general geometric features of the 
surfactant. This is somewhat analogous to the simple van der Waals picture of gas-liquid 
phase transition in atomic and molecular fluids in which one uses two parameters (one for the 
“size” or “excluded-volume” effects of repulsion and another for attraction) to deduce the 
general features of phase transition. In the case of surfactant solutions, one can predict with a 
reasonable accuracy the shapes of the association colloids resulting from self-assembly using 
three effective geometric parameters of the surfactant: (a) the optimal head group area ah, (b) 
the volume v, of the tail, and (c) the critical chain length l,.,, of the tail (see Fig. 8.5). 

In addition to its simplicity, such a geometric argument can also be used to predict 
the changes in the structure of the aggregates as variables such as pH, charge, electrolyte 
concentration, and chain length of the tail are varied. The importance of the relative effects of 
the head group area and the size of the tails was first emphasized by Tatar (1955), and the 
details were developed subsequently by Tanford (1980) and others (see Wennerstrom and 

FIG. 8.5 
of the micelle. (Redrawn from Israelachvili 1991 .) 

Illustration of the geometric parameters for a surfactant and how they influence the size 
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Lindman 1979 and Chapter 17 of Israelachvili 1991). In what follows we restrict ourselves to 
the features essential for illustrating how packing considerations influence the resulting shapes 
of the surfactant aggregates and ignore the presence of water inside the Stern layer. 

We first define the basic geometric parameters of the surfactants and follow this up with 
an illustration and a discussion of packing considerations that allow us to predict the shapes 
of the aggregates. 

8.4a Optimal Head Group Area 

The surface area a taken up by the head group of each surfactant molecule on the surface of a 
micelle depends on a number of factors, some of which tend to increase the area per head 
group while others tend to decrease it. This idea of two mutually opposing forces, suggested 
by Tanford (1980), refers to (a) an attractive force caused by the hydrophobic attraction of 
the hydrocarbon chain units at the hydrocarbon-water interface, and (b) a repulsive force 
between adjacent head groups arising from hydrophilic, steric, and ionic (in the case of 
charged head groups) repulsion. These opposing forces together determine the optimal area 
occupied by the head group, as illustrated in Figure 8.5. 

The hydrophobic attraction is due to the preference of the hydrocarbon units near the 
surface to be close to its counterparts in the adjacent surfactant molecule. This attraction 
tends to decrease the effective area occupied by the head group. The attractive free energy 
contribution arising from this force is proportional to a and can be written as ya, where y is 
about 20-50 mJ mP2 .  The repulsive force mentioned in the previous paragraph is more 
complex and is not well understood presently. We know that this repulsion is caused by the 
tendency of the hydrophilic head groups to allow as many water molecules as possible in their 
neighborhood and by simple steric forces. Moreover, additional contributions to this repulsion 
may also come from electrostatic repulsion if the head groups carry charges. Although exact 
quantitative details of the repulsion are hard to formulate, the magnitude of the repulsion is 
expected to vary inversely with area a. The repulsion, of course, tends to increase the effective 
area occupied by each head group. 

The total contribution to the interfacial free energy G may therefore be written as 

G = ya + ( K / a )  (2 )  

where K is a constant that can be eliminated by writing it in terms of the optimal head group 
area ah i.e., the area that minimizes G (i.e., aG/aa = 0 at a = ah). The minimization of G in 
Equation (2) implies that K = yai ,  and the value of G at the minimum is therefore 2yah. One 
can now rewrite Equation (2) in terms of ah as 

(3) G = 2yah + (y /ah) (a  - ah)’ + term of the order of ( a  - ah)3 

using Taylor’s series expansion (see Appendix A). Equation (3) allows us to express G in terms 
of two measurable parameters. Although the above equations are approximate, they represent 
the interactions among the surfactants to a first approximation and illustrate the meaning of 
optimal in the term optimal head group area. The above arguments can be refined further to 
account for specific head group interactions (e.g., ionic interactions), effects of curvature, 
and so on, but these are not important for our purpose here. 

8.4b Volume and Critical Chain Length of the Hydrocarbon Tail 

We saw in Section 8.3b.2 that the core of the micelle is essentially a hydrocarbon liquid, and 
we may assume this to be incompressible. This in essence defines the volume v, of the hydro- 
carbon tail of the surfactant in the core; that is, v, is simply the volume of the hydrocarbon 
liquid per hydrocarbon molecule. The critical chain length f , ,  of the tail is the effective length 
of the hydrocarbon chain in the liquid state. This length sets a rough upper limit on the 
effective length of the chain, i.e., large extensions beyond this limit may prevent the collection 
of hydrocarbon chains from being considered a liquid. The chain length thus defined is a 
semiempirical parameter, although it is expected to be of the same order as the length of the 
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fully extended hydrocarbon molecule P,,,. Following arguments similar to Example 8.2, Tan- 
ford (1980) has given the following expressions for !,, (and I?,) for saturated hydrocarbon 
chains of n carbon atoms: 

(4) I , ,  5 Pmax = (0.154 + 0.1265 n )  nm 

v, = (27.4 + 26.9n) . 10-3 nm3 

and 

( 5 )  

Since both expressions are linear in n ,  for large values of n (in fact, even for n larger than 5), 
the ratio ( V , / P ( , ~ )  approaches 0.21 nm2, which defines the minimum cross-sectional area a 
hydrocarbon can have. 

Once the estimates for ah, v,, and P , ,  are available, one can determine the preferred 
shapes of the surfactant aggregates using geometric packing considerations, as discussed in the 
following subsection and illustrated in Example 8.3. 

8 . 4 ~  Packing Considerations and Shapes of Aggregates 

The basic packing considerations that restrict the shape of an aggregate are rather straightfor- 
ward and simply serve to reconcile the volume-to-surface-area ratio of an aggregate of any 
shape to the requirements imposed by the optimal head group area and the liquidlike structure 
of the core. The optimal head group area determines the number of surfactants that can be 
accommodated in an aggregate of any specified shape and, therefore, the volume of the 
corresponding hydrocarbon tails. The packing considerations demand that the shape and the 
size of the core of the aggregate for the volume of the tails thus obtained be such that the 
aggregate has a liquidlike hydrocarbon core. For instance, for a spherical micelle to have a 
liquidlike core, the ratio (R,/Pc,,), where R, is the radius of the micelle, has to be less than or 
equal to unity. For larger R,, the chains will extend further or will have more space than 
needed for a liquidlike core. This implies that the volume-to-surface-area ratio of the micelle 
specified by the radius R, must be consistent with the ratio of the volume of the chain of the 
surfactant in question to its optimal head group area; otherwise, aggregation into a spherical 
micelle is not possible for the given surfactant (see Example 8 . 3 ) .  

These considerations imply that a dimensionless group, known as the packing parameter 
6 given by 

6 = V,/(&fC,,)  (6)  

can be defined and used as an indicator of the shapes one can expect for the aggregate. We 
illustrate this using the example below and consider subsequently what this implies for predict- 
ing and controlling the aggregate shapes using variables such as pH, electrolyte concentration, 
and the like. 

* * *  

Example 8.3 Packing Parameter for Spherical Micelles. Show that the packing parameter 6 
of a surfactant has to be less than 113 for it to form spherical micelles. 

Solution: For a spherical micelle of radius R, and aggregation riumber n,, one has 

n, = [ ( 4 / 3 ) ~ R : ] / ~ r  = 4~R: /a , ,  

This implies that 

(vtlah) = W 3 )  

6 = vJ(a,Pc,r) = (Rs/fc,r)(1/3) 

that is, 

Since R, has to be less than or equal to Pc , t  for the core of the niicelle to be liquidlike, 6 has to 
be less than or equal to 113 for the micelle to be spherical. 

* * *  
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One can extend the above analysis to come up with the values of the packing parameter for 
which different shapes of aggregates are favored (Israelachvili 1991). These are summarized 
in Table 8.2. The results shown also serve as “rules of thumb” for what one can expect as one 
changes the chemical conditions of the solvent or the structure of the surfactant or for control- 
ling the shape or aggregation number. For example, 

One can change the optimal head group area by (a) decreasing or increasing the 
electrolyte concentration in the case of ionic surfactants or (b) changing the pH to 
effect an increase or decrease in the dissociation of the head group. Similarly, in the 
case of nonionic surfactants (such as polyoxyethylene surfactants), changing the 
degree of ethoxylation of the head group, or decreasing the temperature (which 
increases the extent of hydration), will increase the optimal head group area. 
One can also change the ratio (v,/P,,,) by increasing the number of alkyl chains, 
introducing branching in the tails, using unsaturated hydrocarbon chains, and so on. 

Some of the observations summarized at the end of Section 8.2b follow from the above. 
Although the above considerations provide some guidelines for predicting or controlling the 
aggregate structures based on the architecture of the surfactant molecules and the packing 
details, we must remember that the simplicity of the above development could be misleading. 
For example, the delineation points in the packing parameter do not indicate an abrupt change 
in the shape of the aggregates. For instance, a value of 6 = 0.35 does not imply that the 
micelle is cylindrical. It simply means that the surfactants cannot pack themselves “neatly” 
into spheres; the shapes are simply expected to be slightly nonspherical. Further, we have not 
accounted for a number of “second-order” considerations such as the effect of curvature on 
the interfacial energy, effects of specific head group interactions such as ion bridging, and so 
on. These and other factors may be found in advanced or more specialized books such as 
those by Israelachvili (1991) and Clint (1992). 

1 .  

2. 

Now we turn our attention to thermodynamic considerations of micellization. 

8.5 CRITICAL MICELLE CONCENTRATION AND THE THERMODYNAMICS 
OF MlCELLlZATlON 

In this section we consider the thermodynamics of micellization from two points of view: the 
law of mass action and phase equilibrium. This will reveal the equivalency of the two ap- 
proaches and the conditions under which this equivalence applies. In addition, we define the 
thermodynamic standard state, which must be understood if derived parameters are to be 
meaningful. 

8.5a Mass Action Model 

In the mass action approach we use Reaction (B) as a prototype for the process of micelliza- 
tion. The equilibrium constant for this reaction is given by 

K = amic/alai (7) 

in which the a’s are the activities of the indicated species. The well-known thermodynamic 
result AGO = -RTln  Kcan be applied to Equation (7) to give AGO for Reaction (B), that is, 
the AGO value for micelle formation: 

AGO = - RT(ln amlc - n In a, - m In a,) (8) 

Dividing both sides of Equation (8) by n expresses this free energy change per mole of 
surfactant; we shall label this AG:,.. At the CMC, aM =: a, = acMc, so per mole of surfactant, 
Equation (8) becomes 
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TABLE 8.2 Packing Parameter and Its Relation to Shapes of Aggregates 

Critical 
packing Critical 

Lipid parameter packing shape Structures formed 

Single-chained lipids (surfac- < 1/3 
tants) with large head group 
areas: SDS in low salt 

Single-chained lipids with 
small head group areas: 
SDS and CTAB in high salt, 
nonionic lipids 

1 /3- 1 /2 

Double-chained lipids with 
large head group areas, 
fluid chains: phosphatidyl 
choline (lecithin), phosphati- 
dyl serine, phosphatidyl 
glycerol, phosphatidyl inosi- 
tol, phosphatidic acid, 
sphingomyelin, DGDG," di- 
hexadecyl phosphate, dial- 
kyl dimethyl ammonium 
salts 

Double-chained lipids with 
small head group areas, an- 
ionic lipids in high salt, satu- 
rated frozen chains: phos- 
phatidyl ethanolamine 
phosphatidyl serine + Ca2+ 

small head group areas, non- 
ionic lipids, poly (cis) unsat- 
urated chains, high T: unsat- 
urated phosphatidyl 
ethanolamine, cardiolipin 
+ Ca2+ phosphatidic acid 
+ Ca2+ cholesterol, 

Double-chained lipids with > 1  

M G D G ~  

1/2-1 

- 1  

Source: Adapted with permission from Israelachvili 1991. 
"DGDG: digalactosyl diglyceride, diglucosyl diglyceride. 
bMGDG: monogalactosyl diglyceride, monoglucosyl diglyceride. 
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Since n is large, the second term on the right is smaller than the first at the CMC and can be 
neglected. Introducing this approximation yields 

Critical micelle concentrations occur in dilute solutions, so activity may be replaced by the 
concentration of the surfactant at the CMC: 

Equation (1 1) can be used to evaluate AC& from readily available CMC values. Note that 
setting m = 0 for ionic micelles is equivalent to reverting from Reaction (B) to (A) for a 
description of micellization. The AG2c value calculated in this case describes the contribution 
of the surfactant alone without including the contribution of counterion binding. Since m = 
0 for nonionics, the surfactant contribution alone is useful when comparisons between ionic 
and nonionic micelles are desired. 

8.5b Defining the Standard State: The Phase Equilibrium Approach 

It is apparent that CMC values can be expressed in a variety of different concentration units. 
The measured value of c,,, and hence of AG;, for a particular system depends on the units 
chosen, so some uniformity must be established. The issue is ultimately a question of defining 
the standard state to which the superscript on AG:c refers. When mole fractions are used for 
concentrations, Ac",, directly measures the free energy difference per mole between surfactant 
molecules in micelles and in water. T o  see how this comes about, it is instructive to examine 
Reaction (A) - this focuses attention on the surfactant and ignores bound counterions - from 
the point of view of a phase equilibrium. The thermodynamic criterion for a phase equilibrium 
is that the chemical potential of the surfactant (subscript S )  be the same in the micelle (super- 
script mic) and in water (superscript w): p? = p :. In general, pi = py + R T  In ai, in which 
py is the standard state for the chemical potential. We write the activity as the product of the 
mole fraction and an appropriate activity coefficientf,. We recognize that some of the surfac- 
tants are in the water and some are in the micelle and use the labels Wand mic to differentiate 
between the two. If x i s  the mole fraction of surfactant, then 

W p s  = p:*w + RTlnx ,  + RTlnf,  

In this equation the standard state corresponds to the state that results from lettingf, -+ 1 
and x, -+ 1, in which case p: = pipw. Lettingf, -+ 1 is equivalent to saying that the surfac- 
tant behaves ideally, and letting xw -+ 1 is equivalent to having "pure" surfactant possessing 
the kind of interactions it has when surrounded by water. Physically, this corresponds to an 
infinitely dilute solution of surfactant in water. Using the primed symbol to represent the 
chemical potential of surfactant in micelles per mole of micelles, we write 

+ RTln  - + RTlnf,, 

The mole fraction of micelles is given by xmic/n for particles of aggregation n. By the same 
logic as used above, (p:"")' describes the surfactant in a standard state of pure micelle. We 
can write Equation (13) per surfactant molecule by dividing it by n: 
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The condition for phase equilibrium is given by equating Equations ( 12) and (14): 

= p:w + RTlnx, + R'Tlnf, (15) n 

This last result is seen to be equivalent to Equation ( 11) with rn = 0 under the following 
conditions: 

Both activity coefficients are set equal to unity, causing the In f terms in Equation 
(15) to go to zero. 
For large n ,  r:) -g -1nx, RT 

n n 

so the smaller term can be neglected. 
Since the concentration of surfactant in water is essentially constant and roughly 
equal to the CMC value after micellization, xw = c,,,,. 
This shows that (p:miC - p:") is identical to AG;, since it describes the difference per 
mole between the free energy of surfactant in a micelle and in water. 

Although there are some aspects of micellization that we have not taken into account in 
this analysis- the fact that n actually has a distribution of values rather than a single value, for 
example - the above discussion shows that CMC values expressed as mole fractions provide an 
experimentally accessible way to determine the free energy change accompanying the aggrega- 
tion of surfactant molecules in water. For computational purposes, remember Equation 
(3.24), which states that x, = n,/nl  for dilute solutions. This means that CMC values ex- 
pressed in molarity units, [CMC], can be converted to mole fractions by dividing [CMC] by 
the molar concentration of the solvent, [solvent]: x, = [CMC]/[solvent]; for water, [solvent] 
= 55.5  mole liter -'. 

The Gib bs-Helmholtz equation provides another familiar thermodynamic relationship 
that is useful in the present context: 

Using Equation (1 1 ) as the expression for AGO, Equation (16) hecomes 

The first version of Equation (17) suggests that a plot of In c,,, versus l /Tis  a straight 
line of slope AH~, , / [R( l  + m/n)]  if AHiIc and m/n are independent of T. Backtracking to 
Equation (9) or (15) shows that n must also be constant with respect to temperature for this to 
be valid. In fact, n increases with temperature for polyoxyethylene nonionics; any temperature 
dependence of n is generally assumed to be absent in ionic systems. Even if the In cCMc versus 
1/T plot is nonlinear, the second form of Equation (17) allows a value of AHkc to be 
evaluated from the slope of a tangent to a plot of In ccMc versus T a t  a particular temperature. 
Once AG;,, and AH;,= are known, the entropy of micellization i s  readily obtained from AG = 
AH - TAS. Example 8.4 illustrates the use of these relationships. 

* * *  

Example 8.4 Gibbs Energy and Entropy Changes Due to Micellization. At 25OC the CMC for 
sodium dodecyl sulfate is 8.1 10 -3 M. An analysis of the temperature variation of the CMC 
according to Equation (17) (with rn = 0) gives AH%c = 2.51 kJ mole-'. Evaluate AG& and 
AS:, from these data. Omit counterion binding by taking rn = 0. 

Solution: Convert molarity to mole fraction concentration units: 

10 -3 mole liter -'/55.5 mole liter -' = 1.46 * 10 -" x = 8.1 
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Then AG;,, = (8.314)(298) In (1.46 1Op4) = -21.9 kJ mole-’; 

AS:, = (AHijC - AG:,)/T = 2.51 - (-21.9) = 81.9 J K - ’  mole-’ 

Note that the quantity (TAS:jc) represents about 90% of the value of AG:,. 
* * *  

Some values of AG:,,, AH:,,, and AS:,, as determined by this method are listed in Table 8.3. 
Several observations can be made concerning these results: 

1. By taking rn = 0, we have focused on the aggregation of surfactant only, making it 
easier to compare ionic and nonionic micelles. 

2. The AG:,, values are negative, indicating spontaneous micellization. 
3. The AH:,, values are both positive and negative. Values of AH:,, calculated by this 

method generally show poor agreement with those determined calorimetrically, at 
least for ionic surfactants. 
The AS:, values are positive and make a far larger contribution to AG:,, than AS:,,. 4. 

Despite controversies and uncertainties as t o  the best values for AH:,, there is no question 
that the principal driving force behind the aggregation of surfactant molecules is a large, 
positive value of AS:,. We return to this below. 

The variation of AG:,, with changing molecular parameters has been extensively investi- 
gated. It is an  experimental fact that In ccMc varies linearly with the number of carbon atoms 
in the alkyl chain of the surfactant molecules, the CMC decreasing with increasing chain 
length. This variation is readily explained by breaking AG;, into contributions from the 
terminal methyl group (subscript CH,), chain methylene groups (subscript CH,), and the 
polar head group (subscript PH): 

A@,, = AGcH3 + vAGCH, + A G p H  (18) 

In Equation (18), v is one less than the number of carbons in the alkyl chain. If we assume 
that neither AGCH3 nor AGCH2 is affected by the length of the tail, then Equation (18) can be 
combined with Equation (1 1) to give 

AGCH2 
lnccMC = - + constant 

RT 

which is the equation of a straight line (In c,,, versus v) and explains the observed behavior. 
The slope of such a plot for an  assortment of n-alkyl ionic surfactants averages about -0.69, 
which corresponds to a AGCH2 of - 1.72 kJ mole-’ at 25OC. Since 0.693 equals In 2, it follows 
that the addition of a methylene group to a hydrocarbon chain decreases the CMC of these 

TABLE 8.3 
Near 25OC for Various Surfactants 

Some Thermodynamic Properties for the Micellization Process at or 

Sur fact ant 
AGlk A W L  ASiic 

(kJ mole-’) (kJ mole-’) (J K - ’  mole-’) 

Dodecyl pyridinium bromide -21.0 - 4.06 + 56.9 
Sodium dodecyl sulfate“ -21.9 +2.51 +81.9 
N-Dodecyl-N,N-dimethyl glycine -25.6 -5.86 + 64.9 
Polyoxyethylene(6) decanol -27.3 + 15.1 + 142.0 
N,N-Dimethyl dodecyl amine oxide - 25.4 +7.11 + 109.0 

~~ ~~ 

Source: Data from J. H. Fendler and E. J. Fendler, Catalysis in Micellar andMacro- 
molecular Systems, Academic Press, New York, 1975. 
“Calculated in Example 8.4. 
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surfactants by almost exactly a factor of 2. In the presence of added indifferent electrolyte, 
AGCH2 = -2.9 kJ mole-’, the aggregation being facilitated by the additional ions. With this 
type of data, it. is possible to back-calculate the contribution to AG;,, of various polar head 
groups and, with these, to estimate the AGii ,  and CMC values of other surfactants as the sum 
of group contributions. Extensive tabulations of these contributions are available. 

8 . 5 ~  Entropy Change During Micellization and the Hydrophobic Effect 

We conclude this section with a brief discussion of the relatively large, positive values of AS:,,, 
which we have seen are primarily responsible for the spontaneous formation of micelles. At 
first glance it may be surprising that A S  for Reaction (A) is positive; after all, the number of 
independent kinetic units decreases in this representation of the micellization process. Since 
such a decrease results in a negative A S  value, it is apparent that Reaction (A) is incomplete as 
a description of micelle formation. What is not shown in Reaction (A) is the aqueous medium 
and what happens to the water as micelles form. The water must experience an increase in 
entropy to account for the observed positive values for AS:,,. 

The key to understanding this entropy increase is the extensive hydrogen bonding that 
occurs in water. To a first approximation, the water molecule has a tetrahedral shape with the 
oxygen atom at the center, hydrogen atoms at two of the apex positions, and two lone pairs of 
electrons at the remaining apex positions. Hydrogen bonds form between the hydrogen atoms 
on one molecule and the oxygen lone pairs on another, effectively building a loose network of 
tetrahedra bound at the corners. Because of thermal fluctuations, various parts of this network 
continuously break and reform in liquid water, but at equilibrium a high average level of 
hydrogen bonding prevails. Many properties of water are due to  this hydrogen bonding. 

Next suppose a hydrocarbon moiety such as the tail of a surfactant is embedded in the 
water. Since water forms no hydrogen bonds with the alkyl group, the alkyl group merely 
occupies a hole in the liquid water structure. Our first thought might be that such cavities 
require the breaking of hydrogen bonds, and that their formation should involve a positive 
enthalpy contribution. As we have seen, a positive AS:, is the dominant driving force behind 
surfactant clustering. We are therefore forced to conclude that water molecules a t  the surface 
of the cavity regenerate the hydrogen-bonded water network, as if the hydrocarbon chains 
were nucleation sites for network formation. As a result, vvater molecules become more 
ordered around the hydrocarbon with an attendant decrease in entropy. The standard state we 
have used means that the various A’s measure the difference between surfactant in micelles 
and surfactant in water. Removing the surfactant from the water and placing it in a micellar 
environment allows the cavity to revert to the structure of ‘pure liquid water. The highly 
organized cavity walls return to normal, hydrogen-bonded liquid with an increase in entropy. 
Incidentally, enhanced hydrogen bonding at the walls of the cavity largely compensates for the 
breaking of hydrogen bonds to form the cavity, so the enthalpy change is slight. 

This explanation for the entropy-dominated association 0.f surfactant molecules is called 
the hydrophobic effect or, less precisely, hydrophobic bonding. Note that relatively little is 
said of any direct “affinity” between the associating species. [t is more accurate to say that 
they are expelled from the water and-as far as the water is concerned-the effect is primarily 
entropic. The same hydrophobic effect is responsible for the adsorption behavior of amphi- 
pathic molecules and plays an important role in stabilizing a variety of other structures formed 
by surfactants in aqueous solutions. 

8.6 SOLUBlLlZATlON 

Above the CMC, a number of solutes that would normally be insoluble or only slightly soluble 
in water dissolve extensively in surfactant solutions. The process is called solubilization, the 
substance dissolved is called the solubilizate, and -in this context -the surfactant is called the 
solubilizer. The result is a thermodynamically stable, isotropic: solution in which the solubili- 
zate is somehow taken up by micelles since the enhancement of solubility begins at the CMC. 
This observation, in fact, provides one method for determining the CMC of a surfactant; it 
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must be used cautiously, however, since the solubilizate may change the CMC from what 
would be observed in its absence. There is an upper limit to the amount of material that can 
be solubilized in a given surfactant solution; beyond this limit the excess solubilizate displays 
normal phase separation. 

8.6a Location of the Solubilizate 

There is considerable interest in establishing the location within a micelle of the solubilized 
component, As we have seen, the environment changes from polar water to nonpolar hydro- 
carbon as we move radially toward the center of a micelle. While the detailed structure of the 
various zones is disputed, there is no doubt that this gradient of polarity exists. Accordingly, 
any experimental property that is sensitive to the molecular environment can be used to 
monitor the whereabouts of the solubilizate in the micelle. Spectroscopic measurements are 
ideally suited for determining the microenvironment of solubilizate molecules. This is the same 
principle used in Section 8.3,  in which the ultraviolet spectrum of solubilized benzene was used 
to explore the solvation of micelles. Here we take the hydration for granted and use similar 
methods to locate the solubilizate. 

In addition to ultraviolet spectroscopy, resonance methods - such as electron spin reso- 
nance and nuclear magnetic resonance (NMR) - have been widely used to  establish the site of 
solubilization. We briefly consider the use of proton NMR for such an investigation. Like the 
electron, the proton may have spin quantum numbers of f 1/2, resulting in two different 
nuclear quantum states. In a magnetic field these states differ in energy, the difference corre- 
sponding to the nuclear magnetic moment aligning with or against the magnetic field. If 
energy of the appropriate frequency is supplied, transitions from one state to the other are 
possible, and the radiation is absorbed. The absorbed frequency measures the separation of 
the two states by the familiar formula hE = hv, where h is Planck’s constant. The energy 
separation of the affected states depends on the strength of the applied magnetic field as 
modified by the local environment. Thus even protons in different parts of a molecule absorb 
at slightly different frequencies since the magnetic field each experiences is somewhat different 
from the applied field owing to the shielding effect of nearby electrons. Furthermore, neigh- 
boring protons cause a peak in an absorption spectrum to be split into a multiplet with 
characteristic relative intensities. This aids the identification of peaks in an NMR spectrum. 

In addition to  one part of a molecule influencing the NMR spectrum of another part, the 
medium in which the molecule is embedded also has an effect. Therefore the NMR spectrum 
of a solubilized molecule has the potential not only to reveal the location of a solubilized 
molecule in a micelle, but also to give information about its orientation. 

Figure 8.6 shows some data measured for benzene solubilized in hexadecyl pyridinium 
chloride. The abscissa in the figure shows the extent of solubilization expressed as moles of 
solubilizate per mole of surfactant. The ordinate values show shifts in the resonance frequen- 
cies from water taken as an internal standard. Shifts of peaks arising from protons in the 
pyridinium ring, in benzene, and in methylene groups in the alkyl tail are shown versus the 
extent of solubilization. 

The following points summarize these observations: 

1. 

2. 

All peaks are shifted toward higher fields because of the diamagnetic effect of the 
solubilized benzene. 
The slope of the shift versus extent of solubilization curve is much steeper for the 
protons on the benzene and pyridinium rings than for protons in methylenes in the 
tail. In fact, the first two increase in roughly parallel fashion. 
Since the charged pyridinium ring must be at the surface, the benzene that parallels it 
in chemical shift must have a similar location. 
The far less sensitive response of the chemical shift of the methylene protons to the 
extent of solubilization suggests that the core of the micelle is mainly composed of 
alkyl chains and is relatively unaffected by the benzene. 

3. 

4. 
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FIG. 8.6 Chemical shifts of protons in benzene, pyridium rings, and methylene groups versus the 
ratio of moles of solubilized benzene to moles of hexadecyl pyridinium chloride. (Redrawn, with 
permission, from J. C. Eriksson, Acta Chern. Scand., 17, 1478 (1963).) 

In another related study (using hexadecyltrimethyl ammonium bromide micelles), isopro- 
pyl benzene was solubilized, and the chemical shifts of aromatic and alkyl protons were 
observed. The results suggest that the isopropyl benzene molecules are oriented such that the 
isopropyl groups are buried more deeply in the core of the micelle, while the benzene ring is in 
the more hydrated palisade layer. This plus the conclusion of Item 3 is consistent with the 
description presented in Section 8.3,  which located the benzene in a relatively polar portion of 
the micelle . 

8.6b Extent of Solubilization and Its Relation to Location 
of the Solubilizate 

The extent of solubilization and the location of solubilizate in the micelle are related to one 
another. In the most hydrophobic inner core of the micelle, there simply is not as much room 
for the solubilizate compared to  the hydrated palisade layer. In the case of polyoxyethylene 
nonionics, the core is surrounded by a mantle of aqueous hydrophilic chains, and solubiliza- 
tion may occur in both the core and the mantle. The relative amount of solubilization in these 
two regions of the nonionic micelle depends on the polarity of the solubilizate. Nonionics 
appear relatively more hydrophobic at higher temperatures, presumably owing to an equilib- 
rium shift that favors dehydration of the ether oxygens. At some elevated temperature called 
the cloudpoint, solutions of these surfactants undergo phase separation. As the cloud point is 
approached, the solubilization of nonpolar solubilizates increases, probably because of an 
increase in the aggregation number of the micelles. For polar solubilizates, solubilization 
decreases owing to dehydration of the polyoxyethylene chains accompanied by their coiling 
more tightly. These observations demonstrate that nonpolar compounds are solubilized in the 
core of the micelle, while polar solubilizates are located in the mantle. Both of the temperature 
effects cited here are consistent with variations in the space available for the solubilized 
molecules in the micelle. 

We saw in the last section how the removal of a surfactant molecule from water into a 
micellar environment has a negative AGO value. Qualitatively, it is not surprising that other 
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organic solutes - the solubilizates - should decrease their free energy by entering micelles. Next 
we briefly consider how this general notion is quantified. 

8,6c Thermodynamics of Solu bi I izat ion 

Using the same logic as we applied to micellization in Section 8.3 ,  we can write the following 
for the solubilizate (component 3): 

Since solubility in water for many solubilizates is low, the aqueous phase may be treated as an 
ideal solution, that is, f 7 = 1. As we have seen, however, the micellar phase is neither ideal 
nor simple, with fl”‘ varying from place to place within the micelle. Aside from noting that 
solubilization occurs spontaneously, which makes Apo  negative, we shall not pursue this 
approach to solubilization any further. 

8.6d Micellar Phase Diagrams 

Until now we have taken a rather narrow view of solubilization, having considered only the 
uptake of solubilizate starting with aqueous solutions of surfactant. This three-component 
system can clearly take on a much wider range of proportions than we have discussed so far. 
A ternary phase diagram describes the full range of possibilities. For surfactant systems these 
diagrams can be quite complex, even though we shall limit ourselves to relatively simple cases. 
We begin with a brief review of the method for reading a ternary phase diagram: 

The apex points of an equilateral triangle are identified with the three pure compo- 
nents, say, A ,  B, and C. 

Each of the sides represents one of the possible binary combinations, say AB, BC, 
and CA. The fraction of the distance along the side of the triangular diagram measures the 
fractional composition of the binary mixture. 

3. The perpendicular distance from any point within the triangle to one of the bases is 
proportional to the amount in the mixture of the component opposite the base in question. 
Since the sum of the three perpendiculars from any point to the sides equals the height of the 
triangle, expressing these lengths as fractions of the height permits any point in the triangle to 
be described as being some fraction toward A ,  some fraction toward B ,  and some fraction 
toward C. These same fractions can be used to describe either the weight fraction or mole 
fraction compositions of a ternary mixture. 

Since ternary phase diagrams are drawn at constant temperature and pressure, the 
phase rule allows one, two, or three phases to be present. In two-phase regions, tie lines 
connect points having the compositions of the equilibrium phases. Three-phase regions have 
triangular shapes; the coordinates of the corners of the triangular zone give the compositions 
of the equilibrium phases. 

Readers desiring a more detailed review of ternary phase diagrams will find the topic 
discussed in most physical chemistry textbooks or  in the concise but comprehensive mono- 
graph on ternary equilibrium diagrams by West (1982). 

Figure 8.7 shows the ternary phase diagram for water, hexanoic acid, and sodium dodecyl 
sulfate at 25 O C .  Seven different areas are shown in the figure, which has been used to describe 
the solubilization of polar dirt by surfactant solutions in detergency applications. The follow- 
ing comments refer to these seven different regions and explain the labeling used in Figure 8.7: 

Two liquids: This is a two-phase region in which two liquid solutions - each contain- 
ing three components-are in equilibrium. The two solutions could exist as distinct layers 
(e.g., in a separatory funnel) or as an emulsion in which droplets of one phase are dispersed in 
the second. 

2. L ,  and L,: Each of these phases is a homogeneous, isotropic liquid solution containing 
three components. The sort of system we have focused on in this section is the L ,  region in 
which the acid is solubilized in aqueous micelles. In L2 the reverse is true: The acid is the 

1. 

2. 

4. 

1. 
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FIG. 8.7 Ternary phase diagram for water (W), hexanoic acid (A), sodium dodecyl sulfate (S) at 
25OC. See text for a description of the various regions. (Redrawn, with permission, from A. S. C. 
Lawrence, Chem. Ind., 44, 1764 (1961).) 

solvent, and water is solubilized in reverse micelles. We have inore to say about the solubiliza- 
tion of water in reverse micelles in Section 8.8. 

Liquid crystal: As the name implies, this is an ordered yet fluid phase in which water, 
surfactant, and solubilizate combine to form anisotropic, organized structures. These are 
called lyotropic mesomorphic phases, as opposed to thermofropic mesomorphs, which form 
when certain organic crystals are heated. 

L ,  or L2 plus liquid crystal: Each of these is a two-phase region in which the liquid 
crystalline phase exists in equilibrium with one of the isotropic liquid phases. Tie lines must be 
determined experimentally to give the precise compositions of the phases in equilibrium. 

5.  Solid: Eventually the system becomes saturated with surfactant and solid sodium 
dodecyl sulfate precipitates out, 

The phase diagram shown in Figure 8.7 is simpler than many other ternary phase diagrams 
inasmuch as only one liquid crystal phase exists, and there are no three-phase triangles. By 
contrast, the water-decanol-sodium-caprylate phase diagram at 2OoC shows 5 different liquid 
crystal phases and 10 triangular regions, in each of which 3 different sets of phases are in 
equilibrium. 

3.  

4. 

8.6e Liquid-Crystalline Phases 

Liquid crystals are a fascinating topic of study in their own right, but we limit our discussion 
to a brief description of the ordering in some of the possible structures. In all cases the 
amphipathic molecules are oriented in such a way as to minimize the contact between water 
and the alkyl chains. Whether the polar head points outward or not depends on which compo- 
nent dominates the continuous phase; the minor component is solubilized inside the micellar 
structures. 

At relatively low concentrations of surfactant, the mic’elles are essentially the spherical 
structures we discussed above in this chapter. As the amount of surfactant and the extent of 
solubilization increase, these spheres become distorted into prolate or oblate ellipsoids and, 
eventually, into cylindrical rods or lamellar disks. Figure 8.8 schematically shows (a) spherical, 
(b)  cylindrical, and (c) lamellar micelle structures. The structures shown in the three parts of 
the figure are called (a) the viscous isotropic phase, (b) the middle phase, and (c) the neat 
phase. Again, we emphasize that the orientation of the amplhipathic molecules in these struc- 
tures depends on the nature of the continuous and the solubillized components. 

The “crystallinity” of liquid crystal phases refers to the large assortment of ways these 
micellar structures can be organized within a bulk phase. For example, spherical micelles of 
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FIG. 8.8 Schematic representations of surfactant structures in (a) viscous isotropic, (b) middle, 
and (c) neat liquid crystal phases. 

either type can form an ordered bulk phase by arranging themselves into either face-centered 
or body-centered cubic arrangements. Likewise, rodlike micelles of either type can be arranged 
into square or hexagonal packing. When all of the shape and packing possibilities are taken 
into account, it is no wonder that surfactant phase diagrams are complicated! 

8.7 CATALYSIS BY MICELLES 

For about four decades- between 1920 and 1960-the study of micelles was conducted mostly 
by researchers who would be classified as colloid scientists. Since about 1960 there has been an 
immense upswing of interest in micelles, with biochemists, organic chemists, inorganic chem- 
ists, and even physicists joining the ranks of those engaged in micellar research. The discovery 
that micellar media can affect the rates of chemical reactions has triggered this surge of interest 
in other branches of chemistry, and the notion that micelles might serve as models for enzymes 
has further stimulated research in this area. Studies have been conducted with a variety of 
objectives, including elucidation of reaction mechanisms, clarification of enzyme catalysis, 
investigations of micelles themselves, and applications to synthetic chemistry. 

8.7a An Example: Enzyme Catalysis 

Enzymes and micelles resemble each other with respect t o  both structure (e.g., globular pro- 
teins and spherical aggregates) and catalytic activity. Probably the most common form of 
enzyme catalysis follows the mechanism known in biochemistry as Michaelis-Menton kinetics. 
In this the rate of the reaction increases with increasing substrate concentration, eventually 
leveling off. According to this mechanism, enzyme E and substrate A first react reversibly to 
form a complex E A ,  which then dissociates t o  form product P and regenerate the enzyme: 

k l  k ,  

E + A * EA -+ P + E 
k -  I 

(E) 

The various k's are the rate constants for the specific reactions shown. Standard kinetic 
analysis of this mechanism predicts that the rate of product formation is given by 

in which [El0 is the total concentration of enzyme, and KM = (k2 + k- , ) /k ,  is called the 
Michaelis constant. Note that as [ A ]  increases, KM can be neglected in the denominator, 
allowing cancellation of [ A ]  and explaining the plateau in rate. The Michaelis constant in- 
versely measures the affinity between enzyme and substrate: A small value of KM means the 
enzyme binds the substrate tightly. 
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Figure 8.9 illustrates that micellar catalysts product similar effects. The chemical 
under investigation in the figure is that between the crystal violet carbonium ion 
hydroxide ion to form the corresponding alcohol: 

N(C1 U 1  
I 

N(C14)* 

381 

reaction 
and the 

In Figure 8.9 pseudo-first-order rate constants at 3OoC for the rate of this reaction in 
0.003 M NaOH are plotted versus the concentration of various alkyl trimethyl ammonium 
bromides. Several things should be noted about these data: 

The catalytic role of the surfactant begins more or less sharply at the CMC. The C,, 
and C,, surfactants also show catalytic activity above their respective CMCs at higher 
concentrations. 
The enhancement of rate qualitatively follows Michaelis-Menton kinetics, with both 
the initial slope and the final plateau increasing with increasing length of the alkyl 
tails of the surfactant. 
The initial (starting at the CMC) slope of these curves is inversely proportional to K,,, 
and increases with increasing binding effectiveness between the micelle and the sub- 
strate (since KM itself inversely measures affinity). 

These results can be rationalized by picturing the crystal violet carbonium ion as solubi- 
lized and oriented in the micelle, followed by attack by the aqueous hydroxide ion. The 
catalytic effect of the micellar solution has a twofold origin: a concentration effect and an 
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FIG. 8.9 Experimental rate constants for Reaction (F) versus concentration for alkyl trimethyl 
ammonium bromides with the indicated chain length. (Redrawn, with permission, from J .  Albriz- 
zio, J .  Archila, T. Rodulfo, and E. H. Cordes, J. Org. Chern., 37, 871 (1972).) 
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effect on the transition state of the reaction. For the system shown in Figure 8.9 the micelles 
are positively charged, and the O H -  reactant is concentrated in the Stern layer of such 
micelles. In addition, the cationic crystal violet should be less stable in the cationic micelles 
than the zwitterionic transition state. Thus the transition state is electrostatically favored in 
the micelle compared to a nonsolubilized species. That electrostatic as well as hydrophobic 
effects are involved in the enhancement of the rate of Reaction (F) is evident from the fact 
that the relative rates with and without surfactant are 241/17 for cationic micelles and 1/17 
for anionic micelles. It has also been observed that other anions inhibit the catalysis of 
Reaction (F), presumably by competing with OH- for adsorption sites in the Stern layer. 

8.7b Quantitative Analysis of Micellar Catalysis 

Having looked at an example of micellar catalysis, let us next consider how such results are 
analyzed quantitatively. By analogy with Reaction (E), we visualize the micelle M and the 
substrate A entering a solubilization equilibrium characterized by an equilibrium constant K: 

K knl 
M + A = M A - P  

The solubilized substrate MA is the analog of the complex ES in Reaction (E), and the product 
P is formed in the micelle with the rate constant k,,,. The product can also form from the 
substrate without involving the micelle; k, is the rate constant for the last process. The experi- 
mental (subscript exp) rate constant for Reaction (G) is then a weighted sum of the two 
constants k ,  and k,: 

kexp = foko + f m k m  = foko + ( 1  - f0)km (22) 

where f ,  and f, are the fractions of substrate in the bulk solution and solubilized in the 
micelles, respectively. The second version of Equation (22) arises from the recognition that f, 
+ f, = 1. The equilibrium constant in Reaction (G) can be written as 

where [ A ] ,  is the total substrate concentration. Solving Equation (23) for f o  = (1 + K[M) 
and substituting into Equation (22) gives 

Subtracting k, from both sides of Equation (24) yields 

which, on inversion, gives 

1 1 + (26) 

Finally, the concentration of micelles can be eliminated from Equation (26) by noting that 
[w is given by the number of moles of surfactant in excess of the CMC value divided by the 
degree of aggregation of the micelle, or 

(27) 

where c is the total concentration of surfactant. Substituting Equation (27) into Equation (26) 
gives 

- - 1 

kexp - ko krn - ko (km - ko)K[Ml 

[M = ( c  - ~c,c)/n 
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Recall that kexp and k,, are rate constants with and without surfactant, respectively, for the 
reaction in question, and that c and c,, are surfactant conceintrations in the reaction mixture 
and at the CMC, respectively. Therefore k,, k,,, c, and ccMc are experimentally accessible. 
Equation (28) predicts that a plot of (kexp - k,) -’ versus ( c  -. c,,,) - ’  is a straight line with a 
slope and intercept that have the following significance: 

Intercept = l/(km - ko) (29) 
Slope = n/[K(km - k,)]  (30) 

Slope/in tercept = n/K (31) 

Since k, is known, Equation (29) allows km to be evaluated. Likewise, the equilibrium 
constant for the binding of the substrate to the micelle can be evaluated from Equation (31)  if 
n is known from a separate experiment. This method of analysis of catalyzed reactions is 
called a Lineweaver-Burke plot after the corresponding technique in biochemistry. Example 
8.5  illustrates the use of these relationships. 

Example 8.5 Estimation of Equilibrium and Rate Constants if7 Micellar Catalysis. Using ko = 
0.050 min-’ and cCMC = 1.0 - 1OP3 M, estimate k, and K1n for the CI6 data in Figure 8.9. 
Because of the scatter in the data, take points at regular intervals from the drawn curve in the 
figure as the basis for this estimate. 

Solution: The following points are read from the C,, curve in Figure 8.9: 

kexp(min-’) 0.25 0.40 0.52 0.66 0.80 0.90 1.0 1.1 1.1 1.1 

Calculate (c  - ccuc)-’ and (kexp -ko) -I  using ccuc = 1 .O - 10 - 3  M and ko = 0.05 min - l :  

c * 103(M) 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0 

(C  - ccuc) (kexp - fo) (C - cCMC1-l (kexp - kO)-’ 
103 (M) (min - ) (liter mole -I) (min) 

0.5 
1 .o 
1.5 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 

0.20 
0.35 
0.47 
0.61 
0.75 
0.85 
0.95 
1.05 
1.05 
1.05 

2000 
1000 
670 
500 
330 
250 
200 
170 
140 
130 

5.00 
2.90 
2.10 
1.60 
1.30 
1.20 
1.10 
0.95 
0.95 
0.95 

These data produce a reasonably linear Lineweaver-Burke plot of slope 2.2 . 10 - 3  rnin mole 
liter and intercept 0.62 min. 

According to Equation (29), k, - k, = intercept-’ = 110.62 = 1.61; therefore k, = 1.7 
min -‘, a value 34 times larger than the estimated ko value. 

According to Equation (31), K1n = intercept1slope = 0.6:212.2 - 10 - 3  = 280 liter mole -’. 
U 

* * *  

The derivation of Equation (24) involves a number of assumptions, some of which are ques- 
tionable in many cases. For example, in the above derivation, we assume the following: 

1. The association between substrate and micelle shown in Reaction (G) follows 1 : 1 
stoichiometry; that is, only one substrate molecule is taken up per micelle. If this is 
not the case, n is not the actual aggregation number of the micelle, but rather the 
number of surfactant molecules per solubilizate molecule. 
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2. 

3. 

The substrate does not complex with monomeric surfactant, and rate enhancement 
begins sharply at the CMC. Reactant molecules, like other solubilizates, may change 
the CMC of a surfactant, and premicellar clusters could influence the rate. 
There are no competitive processes that inhibit the reaction. 

8 . 7 ~  Electrolyte Inhibition in Micellar Catalysis 

In discussing Reaction (F), we remarked that other anions are observed to compete with OH - 
in the Stern layer. This sort of electrolyte inhibition is widely observed, and the dependence of 
the inhibition on both the size and charge of the ions generally corresponds to expectations. 
For example, in the base-catalyzed hydrolysis of carboxylic esters in the cationic micelles, 
anions inhibit the reaction in the order NO,- > Br - > C1- > F -. For acid-catalyzed ester 
hydrolysis in anionic micelles, the cation of added salt inhibits the reaction in the order R,N + 

> Cs+  > Rb' > Na' > Li'. 
Inhibition may be incorporated into the mechanism of micellar catalysis in the same way 

it is handled in enzyme kinetics. Representing the inhibitor by I ,  we can revise Reaction (G) as 
follows: 

K km 
M + A MA- P 
+ I \,A 

where KI is the binding constant for the inhibitor. Assuming that solubilization of one inhibi- 
tor molecule into the micelle blocks the addition of substrate leads to 

which reduces to Equation (24) when [q or K,equals zero. Equation (32) is also an oversimpli- 
fication, but nevertheless it satisfactorily accounts for many observations. 

Figure 8.10a is an example of some data in which the effect of added salt is more than a 
competitive ion-binding phenomenon. The reaction involved is the decarboxylation of 6- 
nitrobenzisoxazole-3-carboxylate, catalyzed by hexadecyl trimethyl ammonium bromide mi- 
celles: 

CO,- 

In the presence of sodium tosylate (NaTos), both the rate constant kexp and the viscosity 
of the solution show maxima at the same electrolyte concentration. The dramatic variation in 
7 shown in Figure 8.10a suggests that the sodium tosylate alters the shape of the micelles, first 
producing rodlike structures that subsequently break up into more compact structures. The 
complicated phase diagrams of surfactants make this a plausible explanation. Effects such as 
this clearly complicate the picture not only of inhibition, but also of micellar catalysis in 
general. 

Equilibrium constants for the binding between substrates and micelles - Reaction (G) - 
generally range from 103 to 106 for hydrophobic organic substrates. Furthermore, they are 
expected to increase as the hydrophobic character of the substrate increases. Figure 8.10b 
shows that this effect sometimes overshoots optimum solubilization. The figure shows, on a 
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FIG. 8.10 Micellar cataljsis: (a) the micelle catalyzed rate constant for Reaction (I) versus the 
concentration of sodium tosylate. The viscosity of the system versus sodium tosylate concentration 
is also shown (redrawn, with permission, from C .  A. Bunton, I n  Reaction Kinetics in Micelles (E. 
H. Cordes, Ed.), Plenum, New York, 1973)); (b) ratio of k,  to ko for Reaction (J )  versus the 
number of carbon atoms in the acyl group (redrawn, with permission, from A. K. Yatsimirski, K. 
Martinek, and I .  V. Berezin, Tetrahedron, 27, 2855 (1971) ). 

logarithmic scale, the ratio k,/ko versus the number of carbon atoms in acyl groups for the 
following reaction: 

O=C-R H-C=N-O-$-R 
I I 

H-C = M-OH OH 

Br 
NO* NO2 

The reaction is catalyzed by anionic micelles. In this case increasing the carbon content of 
the acyl group inhibits the reaction. Apparently, increasingly hydrophobic substrates are 
buried more and more deeply in the micelle such that they are inaccessible to the aqueous 
aldoxime anion. 

8.7d Micellar and Enzyme Catalysis: Differences 

Exploring the parallel between catalysis by enzymes and by micelles has been beneficial to 
both areas of research, but has also revealed two major differences between the two systems. 
First, the effectiveness of micelles in enhancing the rates of reactions is generally less than that 
of enzymes; for micelles, the effect rarely exceeds 100-fold. Second, micellar catalysts are less 
specific than enzymes. The lock-and-key model for enzyme activity implies specific binding 
sites in a protein molecule with a configuration maintained by covalent bonds. The corre- 
sponding features in micelles are zones of a particular polarity in rapidly changing equilibrium 
structures. Although the parallels between enzymes and micellar catalysts will undoubtedly 
continue to be profitably explored, it seems likely that future developments of micellar cata- 
lysts will probably emphasize synthetic chemistry. 
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8.8 REVERSE MICELLES 

Examination of Figure 8.7 -taken as a prototype of ternary phase diagrams involving surfac- 
tants-shows L ,  and L,  phases occupying roughly symmetrical regions in the aqueous and 
organic corners of the diagram, although the sizes and shapes of these two areas are very 
different. The interpretation offered in Section 8.6 for these regions is that the minor compo- 
nent is solubilized in surfactant micelles dispersed in the major component as a solvent. Until 
now we have focused attention on aqueous micelles, emphasizing their relatively nonpolar 
cores - where nonpolar molecules are solubilized -and their polar surfaces. In the L, region 
of Figure 8.7, solubilized micelles are also present, but with the orientation of the surfactant 
molecules reversed. In nonaqueous media, amphipathic molecules cluster with their polar 
heads together in the micellar core and their tails in the organic continuous phase. Water is 
solubilized in the core of these structures, which are known as reverse micelles, terminology 
that emphasizes their difference from aqueous micelles. 

Far more work has been done on aqueous than on nonaqueous micelles, partly because 
the number of amphipathic species that dissolve in nonpolar solvents is considerably fewer 
than in water-soluble surfactants. Aerosol OT, Triton X-100, and various Spans - the struc- 
tures of which are given in Table 7.2-are examples of substances that have been widely used 
in the study of reverse micelles. Fundamental understanding of these structures is most likely 
to come from research involving pure, well-defined chemicals. Commercial products - petro- 
leum sulfonates and the like-are widely studied from an applications point of view, but the 
interpretation of such experiments is often clouded by the uncertain effect of impurities. Even 
though we have approached this discussion from the perspective of water-containing systems, 
the behavior of anhydrous systems is obviously of interest. Through solvation of polar groups 
and hydrogen bonding, water can promote aggregation in nonpolar media; complete removal 
of water as an impurity in both the solvent and the surfactant can be very difficult. Since 
two-component systems are simpler than those with three components, let us consider some 
anhydrous solutions of surfactant in nonaqueous solvents. 

8.8a Surfactant Aggregation in Nonaqueous Media 

Surfactant aggregation in an anhydrous, nonpolar medium differs in several important re- 
spects from aggregation in water. The most apparent of these differences is that the hydropho- 
bic effect plays no role in the formation of reverse micelles. The amphipathic species are 
relatively passive in aqueous micellization, being squeezed out of solution by the water. In 
contrast, surfactant molecules play an active role in the formation of reverse micelles, which 
are held together by specific interactions between head groups in the micellar core. 

The differences in the solubility parameters (Chapter 3,  Section 3.4b) of the hydrocarbon 
tail of the surfactant and the solvent have also been examined as contributing to reverse 
micelle formation. It is interesting to note that for the micellization of potassium benzene 
sulfonate in heptane, AH = -79.5 kJ mole-’ and AS = -62.8 J K - ‘  mole-’. In contrast to 
aqueous systems, spontaneous micellization is largely due to a large negative enthalpy change 
with an unfavorable entropy change opposing micellization. 

Another striking difference between aqueous and anhydrous, nonaqueous systems is the 
size of the aggregates that are first formed. As we have seen, n is about 50 or larger for 
aqueous micelles, while for many reverse micelles n is about 10 or smaller. A corollary of the 
small size of nonaqueous micelles and closely related to the matter of size is the blurring of the 
CMC and the breakdown of the phase model for micellization. Instead, the stepwise buildup 
of small clusters as suggested by Reaction (D) is probably a better way of describing micelliza- 
tion in anhydrous systems. When the clusters are extremely small, the whole picture of a polar 
core shielded from a nonaqueous medium by a mantle of tail groups breaks down. 

It is sometimes argued that the “reverse micelle” terminology is an inappropriate compari- 
son to aqueous micelles. Since water can be solubilized by these micelles, causing an  increase 
in n,  the reverse micelle model and vocabulary do  seem useful for ternary systems. 

Proton NMR has been used to measure both the onset of micellization and the tendency 
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toward solubilization in nonaqueous surfactant solutions. In an NMR spectrum the observed 
displacement of a resonance frequency -the chemical shift 6- depends on the environment of 
the molecule. Also, protons in the methylene groups of surfactants absorb at a different point 
in the spectrum than, say aromatic protons, so a surfactant can be readily monitored in, say, 
a benzene solution. If 6 for a proton in a surfactant molecule is plotted against the concentra- 
tion of the amphipathic species, a graph showing two linear regions of different slope results. 
In contrast to the properties of aqueous systems (Fig. 8.2). the transition between the two 
linear regions is gradual, but extrapolation to their point of intersection defines the CMC. If a 
solubilized molecule has an identifiable feature in an NMR spectrum, then solubilization can 
also be monitored by NMR. Example 8.6 explores this further. 

Example 8.6 A Nuclear Magnetic Resonance Study of Solubilization in a Reverse Micelle. Let 
6 be the chemical shift produced by the proton of a solubilized molecule and differentiate 
between the experimental shift (subscript exp) and the 6's produced by molecules in bulk 
(subscript 0) or micellar (subscript m) environments. Arguing by analogy with the derivation of 
Equation (24) shows that 

where K is the binding constant for the interaction of the solubilizate and the micelle. Suggest 
how experimental NMR data can be interpreted to give a quantitative value for K. 

Solution: Incorporation of solubilizate B into micelle M can be represented as 

. * *  

6,, = (6, + ~mw1)/ (1 + WI) 

U 

B + M * M B  

for which K is the equilibrium constant. Define f, and f,,, as the fraction of the solubilitate in the 
bulk solution and in the micelle, respectively. It follows by analogy with Equation (22) that S,, 
= f&, + f , , ,  = f06, + (1 - f,,)6, since f,,, + f, = 1. 

By analogy with Equation (23), 
K = f,,,[B]o/[M]f..[B]o = (1 - f,)/tdM] 

with [BJ, = total solubilizate concentration. 
Finally, 

6,,, - - (a, + u W I ) 4 1  + K[MI) 
with [M]  = (c - c,)ln by analogy with Equation (27). 

This can be rearranged by analogy with Equation (28) to give 

1l(he,, - 6,) = 1/(6,,, - 6,) + [n/K(6, + 6,)][1l(c - c,)] 
If 6 is measured for different concentrations of surfactant and 6, and cWc are known, then 

this result can be plotted in a linear form and Kln evaluated from the interceptlslope ratio 
(compare Equation (31) ). 

* * *  

8.8b Some Uses of Reverse Micelles 
Some of the amphipathic species that have been used in the investigation of reverse micelles are 
capable of dissociation under suitable conditions. Metal carboxylates, alkyl aryl sulfonates, 
sulfosuccinates, and alkyl ammonium salts are examples of compounds with a high degree of 
ionic character. Coulomb's law describes the force between two charges q, and q2 separated by 
a distance r in a medium of relative dielectric constant c, 

Electrolyte dissociation is expected to decrease as this force increases. This dissociation - 
as measured by pK for the dissociation process-should be inversely proportional to E, when a 
given electrolyte is studied in a series of solvents of various polarities. Since r in Equation (33) 
is the sum of anion and cation radii, the above statement is true only if the stale of solvation 
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of the ions remains the same as the solvent varies. Alkali metal salts of dinonyl naphthalene 
sulfonic acid show decreasing dissociation as the solvent changes from ethanol ( E ,  = 24.3) to 
acetone ( E ,  = 20.7) to ethyl acetate ( E ,  = 6.02). The quantitative magnitude of the difference 
between solvents is not the same for all cations, however, indicating that solvation of the 
cation also enters the picture. In solvents of very low polarity-like hydrocarbons ( E ,  = 2- 
3)  - dissociation is negligible. 

The situation with respect to dissociation makes the small core of the reverse micelle a 
unique microenvironment, approaching the properties of ionic crystals, but at the same time 
readily accessible to solubilizates and reactants. This is why the interior of the reverse micelle 
is so effective in solubilizing water and explains why anhydrous systems are so difficult to 
obtain. Under nearly anhydrous conditions, as few as one solubilized water molecule per 
reverse micelle might be obtained. This degree of solubilization corresponds to 10 moles 
of solute per 0.018 kg water, or about 550 molal-an intriguing microenvironment for the 
investigation of catalytic effects! In addition, for amphipathic molecules with, say, weakly 
basic polar groups like sulfonates, cations with various strengths as Lewis acids, can be used 
as counterions. 

One investigation of the catalytic activity of such a system used the reverse micelles 
formed in decane by sulfosuccinates with various cations. This medium was used to study the 
reaction 

in which the benzylchloroformate reactant is basic and should therefore react strongly with 
acidic cations. The results were qualitatively similar to those shown in Figure 8.9 and could be 
analyzed similarly. The rate constants were evaluated at different temperatures, and activation 
energies were determined by a standard Arrhenius plot of In k versus l/T. Table 8.4 shows the 
kinetic parameters so determined when the cations in the reverse micelle were N a + ,  A13+, 
Ce3', and Zn2+. Since the slope in this kind of plot is proportional to the activation energy 
and since the activation energy is very different for various cations, the lines in the Arrhenius 
plots can cross at accessible temperatures. This makes the relative effectiveness of the various 
cations in catalyzing Reaction (K) a matter of temperature. 

TABLE 8.4 Activation Energies and 
Arrhenius Preexponential Factors for 
Reaction (K) Catalyzed by Reverse 
Micelles Containing the Indicated Cation 

Cation E, (kJ mole-') In A 

Na' 129 25.3 
A I ~ +  148 32.2 
ce3  + 84 11.7 
Zn2 + 267 71.4 

Source: F. M. Fowkes, D. Z. Becher, M. 
Marmo, C. Silebi, and C. C. Chao, In Mi- 
cellization, Solubilization and Microem ul- 
sions, Vols. 1 and 2, (K. L. Mittal, Ed.), 
Plenum, New York, 1976. 
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Use of reverse micelles in synthetic chemistry to improve the rate and the yield of reactions 
seems likely to be a fruitful area of research in the future. In addition to catalysis, several 
other applications of reverse micelles can be cited. Just as nonpolar dirt is solubilized in 
aqueous micelles, so, too, polar dirt that would be unaffected by nonpolar solvents may be 
solubilized into reverse micelles. This plays an important role in the dry cleaning of clothing. 
Motor oils are also formulated to contain reverse micelles to solubilize oxidation products in 
the oil that might be corrosive to engine parts. 

8.9 EMULSIONS AND MICROEMULSIONS 

The term microemulsion was coined in 1958 to describe a fairly specific class of colloidal 
systems. Before we discuss these, a brief discussion of the blroader term emulsion seems in 
order. If two immiscible liquids are shaken together, they will ordinarily separate rapidly into 
two distinct layers that can be divided in, say, a separatory funnel. Although any immiscible 
liquids might be considered, in this discussion we refer to the two as oil (abbreviation 0) and 
water (abbreviation W). Next, instead of merely shaking the two liquids together, suppose we 
add a surfactant - often called an emulsifying agent in this context -and then vigorously mix 
the components in a blender or homogenizer of some sort. The milling together of the constit- 
uents causes one to be dispersed (the inner phase) in the other (the continuous phase): An 
emulsion is produced. There can be many variations in this procedure-in the nature of the 
components, their proportions, the milling process, the temperature, and so on; however, a 
few broad generalizations are possible. 

The dispersed particles are spheres of great polydispersity. As noted in Appendix C 
(Section C.3b), this is generally the case in dispersions prepared by comminution such as this. 

The average particle size is at the upper end of the c,olloidal size range (on the order 
of micrometers), and the particles are usually visible in a light microscope. We shall describe 
these as coarse emulsions when we want to emphasize their size range. Because the particles 
are relatively large and polydisperse, coarse emulsions look white when examined visually. 

Emulsions are two-phase systems and - because of the free energy associated with the 
oil-water interface - are thermodynamically unstable with respect to separation into oil and 
water layers. 

Oil may be the dispersed phase and water the continuous phase- designated an O/W 
emulsion-or water may be dispersed in oil (W/O). The form obtained depends on the 
specifics of the system, including the temperature. Compatibility with either oil or water on 
dilution is an easy way of establishing which phase is continuous. 

The surfactant is adsorbed at the oil-water interface .in the oriented fashion of mono- 
layers. Judging from monolayer studies at the air-water interface, saturating the surface with 
surfactant lowers the surface tension y by 25-50 mN m - '  (Fig. 7.6). 

If the surfactant is ionic and imparts a charge to the interface, then the dispersed 
particle will be surrounded by an ion atmosphere. We see in Chapters 11 and 13 how an ion 
atmosphere surrounding a particle may slow down the rate at which such particles come 
together. This is one of the ways by which an emulsion may achieve some degree of kinetic 
stability. 

Many of these concepts were introduced in Chapter 1 and seem fairly straightforward as 
abstract propositions. Things are not always so clear in concrete instances, however. The 
situation of microemulsions is a case in point. 

1. 

2. 

3. 

4. 

5 .  

6. 

8.9a Microemulsions 

Historically, the term microemulsion was applied to systems .prepared by emulsifying an oil in 
aqueous surfactant and then adding a fourth component, called a cosurfactant, generally an 
alcohol of intermediate chain length. Benzene, water, potassium oleate, and hexanol might be 
the components of a typical microemulsion formulation. What is observed experimentally is 
that the usual milky emulsion becomes transparent on addition of the alcohol. Light scattering 
and an assortment of other techniques reveal that the resulting system consists of either O/W 
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or W/O dispersions with particles having diameters in the 10- to 100-nm size range. Whether 
oil or water is continuous, the extent of uptake of the other component may be appreciable. 
In summary, the following differences between microemulsions and coarse emulsions should 
be noted: 

1. 

2. 
3. 

4. 

Microemulsions contain particles at least an order of magnitude smaller than those in 
coarse emulsions. 
Microemulsions are clear, and coarse emulsions are cloudy. 
Microemulsions form spontaneously; coarse emulsions ordinarily require vigorous 
stirring. 
Microemulsions are stable with respect to separation into their components; coarse 
emulsions may have a degree of kinetic stability, but ultimately separate. 

The term microemulsion seems quite firmly established as the name for the sort of system 
described above. Still, there has been and continues to be a great deal of controversy as to the 
exact nature of these systems and the suitability of this vocabulary. The word emulsion implies 
the presence of two phases with an interfacial free energy associated with the phase boundary. 
Their small size makes the specific area large for microemulsions with a large free energy 
contribution from y. Both the spontaneous formation of microemulsions and their stability 
with respect to separation are hard to reconcile with these considerations. It has even been 
suggested that the mixed film of surfactant and cosurfactant make the interfacial free energy 
negative. Alternatively, the increase in overall free energy with decreasing particle size may be 
offset by a favorable and hence negative TAS term in which AS describes the entropy of mixing 
the microemulsion particles with molecules of the dispersion medium. Since the number of 
microemulsion particles increases with decreasing particle size, the TAS term becomes more 
favorable with decreasing size. This idea is hard to apply quantitatively because of uncertainty 
as to the value - or meaning - of y in these systems. 

8.9b Microemulsions Viewed As “Swollen Micelles” 

A totally different way of looking at microemulsions-and one that connects this topic with 
previous sections of the chapter -is to view them as complicated examples of micellar solubili- 
zation. From this perspective, there is no problem with spontaneous formation or stability 
with respect to separation. Furthermore, ordinary and reverse micelles provide the basis for 
both O/W and W/O microemulsions. From the micellar point of view, it is the phase diagram 
for the four-component system rather than y that holds the key to understanding microemul- 
sions. 

The difference in perspective between the emulsion and micellar points of view is sug- 
gested by Figure 8.11. The small aggregate on the left represents a micelle with little or no 
solubilization. From left to right, the “particles” increase in size owing to increasing solubiliza- 
tion. The circle on the right represents an emulsion particle: an oil drop with a monolayer of 
surfactant on the surface. An actual continuum of states such as that suggested in Figure 

FIG. 8.11 
degrees of solubilization, including microemulsions, lie between the two extremes. 

Schematic progression from micelle (at left) to emulsion droplet (at right). Various 
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8.1 1 is not physically attainable - most emulsions are prepared by comminution rather than 
condensation - but microemulsions do lie between the extremes. The conflicting schools of 
thought concerning microemulsions arise from the difference in perspective: One side looks 
from the emulsion point of view, and the other from the miceliar point of view. Swollen 
rnicelles is another term for microemulsions; this terminology clearly reflects the different 
perspective of its originators. 

8 . 9 ~  Phase Diagrams for Microemulsions 

We saw in Section 8.6 that phase diagrams are an effective way of representing the complex 
behavior of surfactant systems. Let us take a look at microemulsions in terms of phase 
diagrams. It turns out that nonionic surfactants form microemulsions at certain temperatures 
without requiring cosurfactants. Since only three components are present, these have some- 
what simpler phase diagrams; this kind of system offers a convenient place to begin. 

Figure 8.12 is a composite of both experimental and schematic, interpretive portions. The 
rectangular diagram shows the experimental behavior of the system water-cyclohexane- 
polyoxyethylene-( 8.6)-nonyl phenol ether. All systems studied contained 5 C7o surfactant with 
variable proportions of cyclohexane and water. Temperature was the experimental variable, 
and the nature of the phases present was recorded as the temperature was changed. The 
presence of different equilibrium phases is represented by different areas on the rectangular 
diagram, which is divided diagonally by a pair of lines that trace a ribbonlike pattern. This 
pair of lines cross twice, so the ribbon is divided into three areas. These, plus the regions 

FIG. 8.1 2 Rectangular figure shows the phase diagram for water-cyclohexane (at 5 %  surfactant) 
versus temperature. Superimposed ternary phase diagrams offer an interpretation of the phases 
present. (Redrawn, with permission, from M. L. Robbins, In Solution Chemistry of Surfactants, 
Vols. 1 and 2 (K. L .  Mittal, Ed.), Plenum, New York, 1979.) 



392 HIEMENZ AND RAJAGOPALAN 

above and below the ribbon, define five different phase situations encountered at various 
temperatures and compositions. 

The idealized ternary phase diagrams that have been superimposed on the experimental 
plot in Figure 8.12 help us understand the five different regions of the rectangular diagram. 
The stacked triangles represent the oil-water-surfactant (abbreviation S) phase diagrams at 
different (constant) temperatures. Since the experimental data were collected at 5% surfac- 
tant, the rectangular plot slices through the triangles 5% of the distance toward S from the 
0 - W  base of the triangle. Example 8.7 offers practice in reading triangular phase diagrams 
and helps identify the phases present in the five different regions of the rectangular composi- 
tion-temperature diagram. 

* * *  

Example 8.7 lnterpreting Phase Diagrams of Microemulsions. At each of the three tempera- 
tures for which a ternary phase diagram is provided, describe the phases present when the 
diagram is crossed from the W-S side to the 0-S side in the slice at 5% S. Describe the 
homogeneous phases in terms of the apparent solubilization. 

Solution: Recall that on ternary diagrams the radial lines are tie lines representing two-phase 
regions. The triangular regions are three-phase regions, and the remaining area toward the S 
apex of the triangles is a homogeneous phase. 

At 2OoC, moving from left to right, we cross from a one-phase region (homogeneous 
micellar, O M )  into a two-phase region (oil plus homogeneous micellar, O N ) .  

At 55OC, moving from left to right, we cross from a two-phase region (water plus homoge- 
neous micellar, O N )  into a three-phase region (oil plus water plus homogeneous micellar). 
Next we enter a different two-phase region (oil plus homogeneous micellar, W/O). 

At 8OoC, moving from left to right, we cross from a two-phase region (water plus homoge- 
neous micellar, WlO) to a one-phase region (homogeneous micellar, W/O). 

* * *  

Since the micellar phase changes from water-continuous to oil-continuous with increasing 
temperature, it is an intriguing question how to describe the micelles in the three-phase region 
that exists at intermediate temperatures. 

In this study it is the homogeneous micellar phases that comprise the microemulsions. For 
this 5 %  surfactant system it is only over a relatively narrow range of temperatures that it is 
possible to have fairly extensive solubilization of either oil or water in the micellar solutions. 

It could be argued that the system described in Figure 8.12 is so different from those to 
which the name microemulsion was first applied as to make the figure irrelevant to the present 
discussion. However, one of the ways to represent a four-component phase diagram (p and T 
constant) is to use a trigonal prism in which one of the components-rather than T-varies 
along the rectangular faces. Figure 8.13a is a partial phase diagram for the system water- 
benzene-potassium oleate-pentanol. In this figure homogeneous micellar solutions are repre- 
sented by unshaded areas in the individual triangles. These micellar systems are equivalent to 
the homogeneous areas in the ternary phase diagrams in Figure 8.12. At equilibrium, up to 50 
wt% benzene can be incorporated into the system with only minor variations in the maximum 
water uptake. The resulting four-component microemulsion is the same as that produced by 
first emulsifying the oil and water with potassium oleate and then adding pentanol. This is 
true because we are considering equilibrium phase diagrams. As with all thermodynamic 
conclusions, the diagram tells nothing about the rate at which equilibrium is achieved. 

Figure 8.13b shows the same data as Figure 8.13a, replotted with the variables inter- 
changed. Note how the homogeneous area expands in size with increasing potassium oleate 
concentration up to 0.44 mole kg-* .  At still higher concentrations of potassium oleate the 
homogeneous area shrinks as other surfactant phases compete for the components. 

8.1 0 SOME APPLICATIONS OF MICROEMULSIONS 
Systems in which one liquid phase is finely dispersed in another under the stabilizing influence 
of one or more additional components find applications in countless areas. As consumers, we 
encounter many of these every day. Floor waxes, shaving lotions, beverage concentrates, 
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FIG. 8.13 Two representations of a portion of the phase diagram for the water-benzene- 
potassium oleate-pentanol system. The unshaded regions represent homogenous solutions. (a) Re- 
drawn, with permission, from S. Friberg and I .  Burasczeska, Prog. Colloid Polym. Sci., 63, 1 
(1978). (b) Redrawn, with permission, from C. U. Herrmann, U. Wurz, and M. Kahlweit, In 
Solution Chemistry of Surfactants, Vols. 1 and 2 (K. L. Mittal, Ed.), Plenum, New York, 1979. 

pesticide preparations, cold creams, and pharmaceutical products are a few of the more 
common examples. In recent years a great deal of research in this area has been directed 
toward the problem of tertiary oil recovery. 

8.1 Oa Tertiary Oil Recovery 

First, the recovery of oil from natural reservoirs occurs in three stages. During the primary 
recovery stage the pressure of natural gases in the reservoir pushes the oil out. When the gas 
pressure is no longer adequate, water is pumped into the reservoir to force the oil out. This is 
called water flooding and represents the second stage of oil recovery. Primary and secondary 
oil recovery leave about 70% of the total oil in place, much of it trapped in the pore structure 
of the reservoir by capillary and viscous forces. It is estimated that in U.S. oil fields alone 300 
billion barrels of oil are not recoverable by primary or secondary processes, and that of this 25 
billion to 60 billion barrels are potentially recoverable through some tertiary process. 

Numerous methods have been explored to recover at least some of this vast resource. 
Injection of oil-miscible fluids, gases under high pressure, and steam - either separately or in 
combination - have all been tried with various degrees of success. This is where microemul- 
sions enter the picture. Under optimum conditions an aqueous surfactant solution - which 
may also contain cosurfactants, electrolytes, polymers, and so on -injected into an oil reser- 
voir has the potential to solubilize the oil, effectively dispersing it as a microemulsion. 

Any attempt to represent the trapped oil by a manageable model is bound to be an  
oversimplification. To see qualitatively, however, how capillary forces trap the oil and how 
surfactant solutions offer a potential for freeing it, imagine a cylindrical pore containing a 
slug of oil. Furthermore, assume the oil is in contact with water and that the interface is 
hemispherical. This assumption about the shape of the interface makes the water-oil-rock 
contact angle zero and is equivalent to neglecting 8 (cos 0 = 1 .O). Although a primitive picture 
of oil in a rocky reservoir, this model can be described by a single size parameter r ,  the radius 
of the pore and the radius of curvature of the interface. The Laplace equation (Equation 
(6.29) ) may then be used to describe the pressure across the oil-water interface, a pressure 
that must be exceeded to displace the oil. According to the Laplace equation, Ap oc y / r  and, 
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since r is small, Ap will be large unless r is offset by a small value of y. Using r values that are 
sensible for geological structures, it has been estimated that Ap = 500 psi per foot if y is on 
the order of 10 mN m - I .  This kind of pressure drop is unattainable under field conditions. 
Working backward and taking Ap as an attainable 1-2 psi per foot, the Laplace equation 
shows that y must be less than about 0.1 mN m-I, preferably closer to 10-3 mN m- l  for 
effective oil displacement. 

Any surfactant adsorption will lower the oil-water interfacial tension, but these calcula- 
tions show that effective oil recovery depends on virtually eliminating y . That microemulsion 
formulations are pertinent to this may be seen by reexamining Figure 8.11. Whether we look at 
microemulsions from the emulsion or the micellar perspective, we conclude that the oil-water 
interfacial free energy must be very low in these systems. From the emulsion perspective, we 
are led to this conclusion from the spontaneous formation and stability of microemulsions. 
From a micellar point of view, a “pseudophase” is close to an embryo phase and, as such, has 
no meaningful y value. 

It is apparent that extrapolating laboratory studies on microemulsions to oil recovery is a 
formidable task. While laboratory research is conducted with pure solutes, distilled water, and 
at constant temperature, these are meaningless in the field, where the following applies: 

1 .  
2. 

3. 

The oil itself is a complex mixture containing surface-active components. 
Commercial petroleum sulfonates, a mixture of compounds, are the most widely used 
surfactants. 
Groundwater contains dissolved minerals, and, in practice, brine is used as the aque- 
ous component. 

In addition, viscosity considerations may be as important or more important than capillarity; 
fortunately, microemulsions also have relatively low viscosities! 

Despite the obvious difficulty of the tertiary oil recovery problem, this is a major area of 
surfactant research since the potential rewards for success are very great. 

8.1 Ob Polymer Synthesis 

Another area of microemulsion application is in the synthesis of certain polymers. The process 
is called emulsion polymerization, a misnomer since micelles rather than emulsion drops are 
the site of the polymerization reaction. Because of the commercial importance of polymers, 
this process has been extensively researched and is quite well understood. We only consider 
some highlights of the process. 

Emulsion polymerization is applicable only to monomers that are relatively insoluble in 
water, such as styrene. A coarse emulsion of monomer in aqueous surfactant is prepared with 
a water-soluble initiator, say, H,O, in the solution. The surfactant concentration is above the 
CMC, so surfactant molecules are present as monomers, micelles, and emulsifiers at the 
oil-water interface. Even an insoluble liquid like styrene dissolves in water to some extent. 
Therefore the monomer is present in coarse emulsion drops, solubilized in micelles, and as 
dissolved molecules in water. A schematic illustration of the distribution of surfactant, mono- 
mer, and polymer in an emulsion polymerization process is shown in Figure 8.14. 

The H,O, molecules undergo thermal decomposition to form hydroxyl free radicals * OH 
that initiate the polymerization. The overall reaction for the polymerization of styrene can be 
represented as 

C = C +  - O H  -HO-C-C* - 
I I 
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FIG. 8.14 Schematic representation of the distribution of surfactant and monomer in an emulsion 
polymerization. (Redrawn, with permission, from J .  W. Vanderhoff, E. B. Bradford, H. L .  Tar- 
kowski, J .  B. Shaffer, and R.  M .  Wiley, Adv.  Chern., 34, 32 (1962).) 

When x is large, the uniqueness of the end group(s) can be ignored; familiar polystyrene is the 
product. 

In emulsion polymerization the first step in Reaction (L) takes place in water between 
dissolved monomer and initiator fragments. The resulting free radical is solubilized in micelles, 
in which it quickly reacts with solubilized monomer to form polymer. The low concentration 
of monomer in the aqueous phase prevents this from occurring to any appreciable extent in 
the water, although, by diffusion, there continues to be a flux of monomer from emulsion 
drops into micelles. Likewise, any polymerization that occurs in the coarse emulsion drops 
themselves is insignificant because of the much greater numerical abundance of micelles than 
the emulsified styrene droplets. The polymer chains grow in micelles until the process is 
terminated by reaction with another radical. Thus polymer growth is either propagating or 
terminating in micelles at any time; therefore half the micelles in a reaction mixture contain 
growing chains under stationary-state conditions. Both the rate of polymerization and the 
average molecular weight of the polymer depend on the surfactant concentration - via the 
concentration of micelles - in emulsion polymerization, while this has no effect on polymeriza- 
tions conducted in nonmicellar solutions. 

The aqueous polymer dispersion that results from emulsion polymerization is called a 
latex. In applications, the polymer may be separated, or the latex may be used directly as in 
paints and floor coatings. 

As the conversion to polymer proceeds, the micelles become progressively more and 
more swollen by the polymer-monomer mixture. As with other microemulsions, it eventually 
becomes problematic as to whether the resulting dispersed particles should be called micelles 
or swollen polymer particles with adsorbed surfactant. 

8.1 1 BIOLOGICAL MEMBRANES 

I t  is neither feasible nor appropriate in a book like this to give a detailed p-esentation of 
biological membranes, which compartmentalize living matter and perform numerous cell func- 
tions as well. However, because of the impetus to the study of surfactants that the membrane- 
mitnetic properties of surfactant structures have provided, it would be a mistake to exclude 
some mention of membranes in this chapter. We have already noted in connection with Figure 
7.7 that a monolayer may collapse into a bilayer that leaves the surfactant in a tail-to-tail 
configuration. This is exactly the arrangement of molecules in the lipid portion of a cell 
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membrane. Protein molecules are arrayed in or on this lipid bilayer. Vignette 1.2 presented in 
Chapter 1 discusses this briefly. More details may be found in Bergethon and Simons (1990) 
and Goodsell ( 1993). 

Figure 8.15 is a sketch of one possible relationship between the lipid bilayer and the 
membrane proteins. Molecules are free to move laterally in these membranes; hence the 
structure pictured in Figure 8.15 is called thefluid mosaic model of a cell membrane. 

Cell membrane lipids are natural surfactants and display most of the properties of syn- 
thetic surfactants. The principal difference between these molecules and the surfactants that 
we discussed above in the chapter is that lipids contain two hydrocarbon tails per molecule. 
Table 8.5 shows the general structural formula of these cell membrane lipids and the names 
and formulas for some specific polar head substituents. The alkyl groups in these molecules 
are usually in the C,,-C,, size range and may be either saturated or unsaturated. 

Much of our understanding of the chemical aspects of cell membranes has been derived 
from model systems based on surfactants, especially membrane lipids. In this section we are 
primarily concerned with the use of monolayers, bilayers, and especially black lipid mem- 
branes and vesicles as cell membrane models. 

Fundamental membrane research has benefited greatly from the study of monolayers. 
One of the most important discoveries from this sort of research is the very existence of 
two-dimensional phases and  phase transitions. Generally, studies of the sort that can be 
carried out with monolayers and bilayers cannot be directly extended to living cells, but some 
exceptional cases have shown that the extrapolation is valid. For example, it is known from 
monolayer studies that the presence of unsaturated hydrocarbon chains in lipid monolayers 
prevents some phase transitions from occurring as the temperature is lowered. Certain mutants 
of Escherichia coli are unable to synthesize fatty acids and hence can be manipulated through 
the compounds they are provided as nutrients. Abnormal levels of saturated hydrocarbon can 

FIG. 8.15 Schematic representation of a biological membrane. The amphipathic phospholipid 
molecules form a bilayer with protein molecules embedded in it. (Redrawn, with permission, from 
S. J .  Singer and G. L. Nicolson, Science, 175,720 (1972).) 
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TABLE 8.5 
Phospholipid Surfactants 

Names and Structures of Some Typical 

R-C-0-CH 
0 1  /I 

0 
I II 

I 
CH,-0-P-X 

0- 

Name X 

Phosphatidic acid -OH 

+ 
Phosphatidylcholine -0CH2CH2N(CH3), 

Phosphatidylethanolamine OCH2CH2NH2 

Phosphatidylserine -OCH2CCHNH2 
I 
COOH 

Phosphatidylthreonine -0CH -CH -NH2 
I 

CH,COOH 

Phosphatidylglycerol -OCH2CHCH20H 
I 
OH 

thereby be introduced into the cell membranes of these organisms. Under appropriate conditions 
the same phase transitions occur in cell membranes as in model monolayers; still, the organisms 
survive. This is probably because patches of different two-dimensional phases segregate on the 
cell walls, with the unchanged regions carrying out normal biological functions. 

Studies with monolayers and bilayers as models show that modifications of chain confor- 
mation can alter the effective thickness of the hydrocarbon portion of a bilayer; this, in turn, 
can have profound effects on its permeability. Suppose, for example, that a two-dimensional 
phase transition involved cooperatively inducing just one kink per molecule in otherwise fully 
extended chains. Such a kink shortens the extension of the chain by 0.127 nm, or thins a 
bilayer by 0.25 nm. We saw in Example 8.2 that this distance is about the length projected by 
two carbon-carbon bonds in the direction of the chain. Therefore, cooperative induction of 
such kinks has the same effect on the thickness of the hydrocarbon part of the bilayer as 
removing two carbon atoms from the tail groups. 

Even closer to cell membranes than monolayers and bilayers are organized surfactant 
structures called black lipid membranes (BLMs). Their formation is very much like that of an 
ordinary soap bubble, except that different phases are involved. In a bubble, a thin film of 
water - stabilized by surfactants -separates two air masses. In BLMs an organic solution of 
lipid forms a thin film between two portions of aqueous solution. As the film drains and thins, 
it first shows interference colors but eventually appears black when it reaches bilayer thickness. 
The actual thickness of the BLM can be monitored optically its a function of experimental 
conditions. Since these films are relatively unstable, they are ge:nerally small in area and may 
be formed by simply brushing the lipid solution across a pinhole in a partition separating two 
portions of aqueous solution. 
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Because they are binary lipid films sandwiched in water, BLMs are excellent models for 
membranes in terms of electrical and permeability properties. Membrane potential, conductiv- 
ity, and capacitance measurements have all been made on BLMs, and the effects on these 
quantities of electrolytes, proteins, and organic additives have all been studied. For example, 
2,4-dinitrophenol, a known hydrogen ion carrier, has been observed to decrease the resistance 
significantly between electrodes on opposite sides of a BLM. Similarly, high applied voltages 
thin the BLM, with a simultaneous reversible increase in its permeability and conductance. 
The rate of permeation of water through BLMs is greater than that of nonpolar compounds; 
however, ions permeate BLMs more slowly than biological membranes. 

The final surfactant structures we consider as models for biological membranes are vesi- 
cles. These are spherical or ellipsoidal particles formed by enclosing a volume of aqueous 
solution in a surfactant bilayer. When phospholipids are the surfactant, these are also known 
as liposomes, as we have already seen in Vignette 1.3 in Chapter 1. Vesicles may be formed 
from synthetic surfactants as well. Depending on the conditions of preparation, vesicle diame- 
ters may range from 20 nm to 10 pm, and they may contain one or more enclosed compart- 
ments. A multicompartment vesicle has an onionlike structure with concentric bilayer surfaces 
enclosing smaller vesicles in larger aqueous compartments. 

Phospholipid vesicles form spontaneously when distilled water is swirled with dried phos- 
pholipids. This method of preparation results in a highly polydisperse array of multicompart- 
ment vesicles of various shapes. Extrusion through polymeric membranes decreases both the 
size and polydispersity of the vesicles. Ultrasonic agitation is the most widely used method for 
converting the lipid dispersion into single-compartment vesicles of small size. 

Phase transitions, electrical properties, and permeability have all been investigated for 
vesicle bilayers. Especially important are the molecular dynamics of transverse motion through 
the bilayer. Use of isotopic labels shows that lipid molecules can flip-flop from one surface to 
another in the bilayer. Techniques have been developed for incorporating protein and other 
molecules into liposomes, and it has been observed that proteins facilitate lipid flip-flop in the 
bilayer. Liposomes shrink and swell osmotically as the activity of water in the surrounding 
aqueous phase is changed by additives. Depending on the surface phase state, the addition of 
cholesterol to the liposome may decrease the water permeability of the bilayer in vesicles. 
Transport of ions through the vesicle walls is thought to occur either through channels or via 
carriers. Since these surfaces are orders of magnitude more permeable to H +  and OH-  
compared to other univalent ions, transmission through the vesicle wall by a hydrogen-bonded 
network of water molecules is proposed just as the high mobility of these ions in water is 
explained. 

Only a few of the observed properties of vesicles have been enumerated here. The exam- 
ples cited are sufficient, however, to illustrate how these “synthetic cells” are ideally suited as 
models for research into the structure and functioning of cell membranes. 

REVIEW QUESTIONS 

1. 
2. 
3. 
4. 

5 .  

6. 

7 .  
8 .  

9. 

Explain why surfactant aggregates form in solution. 
What is the critical micelle concentration (CMC), and how is it measured? 
Do different types of measurements of CMC lead to the same value for CMC? Explain. 
In aqueous systems, the enthalpy change due to micellization is usually positive, and micelliza- 
tion is driven by entropy change. Explain the reason for the positive entropy change. 
What is meant by the optimal head group area of a surfactant? What is the packing parameter 
6? Explain how packing considerations can be used to determine the possible shapes of the 
micellar aggregates. 
Consider a spherical micelle with charged head groups. What changes in shape would you 
expect as you increase the concentration of added electrolytes? 
Describe the details of the structure of a micelle. 
What is a palisade layer? How does one determine if there is water penetration in a micelle 
and, if there is any, where the water molecules are? 
Under what conditions can the formation of micelles be described in terms of reaction- 
equilibrium formalism? When is the phase equilibrium model appropriate? 
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10. What does solubilization in a micelle mean? 
11. Draw a typical phase diagram for an oil-water-surfactant system and identify at least some of 

the phases that can be found. 
12. Why is catalysis using micelles as “microreactors” advantageous sometimes? When is it advan- 

t ageous ? 
13. What are reverse micelles? When would you expect them? 
14. What are rnicroemulsions? How do they differ from coarse ennulsions? 
15. What is a swollen micelle? 
16. Give some examples of lipids that form biological membranes. 
17. Why do biological membranes and bilayers usually consist of double-tailed surfactants? 
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PROBLEMS 
1. Use the data for sodium dodecyl sulfate in Table 8.1 to test the equation developed in Example 

8.1 and to evaluate a for these micelles. Criticize or defend the following proposition: The a 
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values in the table are more accurate than that evaluated here because they are based on 
individual light scattering experiments and reflect the variation of a with changing salt concen- 
tration; by contrast, the a value calculated here is an average value based on the assumption 
that d n  , and hence a, is independent of salt concentration. 

Shinoda* examined the variation of the CMC of various potassium alkyl malonates, 
RCH(COOK),, with the addition of univalent salts. For R = C,, C,,, CI4,  and CI6, the log- 
log plots of CMC verus counterion concentration produce parallel straight lines of slope 
- 1.12. Criticize or defend the following proposition: According to the analysis presented in 
Example 8.1 ,  the slope of this type of plot equals - ( 1  - a) ,  meaning that a = -0.12; this 
negative function apparently means that the micelle binds an excess of counterions and has 
the opposite charge from that expected. 

The spectra of substituted pyridinium iodides are characterized by charge transfer bands 
involving the interaction of pyridinium and iodide ions. Mukerjee and Ray? showed that this 
band is shifted about 90 nm toward the red for dodecyl pyridinium iodide, which forms 
micelles, compared to methyl pyridinium iodide, which does not. They measured A,,,, for the 
micelles in mixed solvents of variable relative dielectric constant and obtained the following 
results: 

L a x  (nm) 281 284 288 298 
E,  43 38 33 34 

Estimate the effective dielectric constant at the surface of the micelle from the fact that A,,,, 
occurs at 286 nm for dodecyl pyridinium iodide micelles in water. In light of the value 
estimated in Section 8.3  for the dielectric constant in the vicinity of solubilized benzene, does 
it seem likely that the value of E, for bulk water applies in the Stern layer? 

Ionescu et al.$ measured the CMC of hexadecyl trimethyl ammonium bromide in water- 
dimethyl sulfoxide (DMSO) mixtures at 25 and 4 O O C :  

CMC x 103 (mole liter-') 
Mole fraction 
of DMSO T = 25OC T = 4OoC 

0.000 
0.027 
0.060 
0.098 
0.144 
0.201 
0.275 
0.366 

0.92 
1.48 
2.24 
3.60 
5.62 
8.91 

14.00 
None 

1 .oo 
1.51 
2.51 
3.98 
6.30 

10.00 
22.00 
None 

Use these data to evaluate AG;, for hexadecyl trimethyl ammonium bromide and to estimate 
(remember, only two temperatures were measured) A@,, and AS",,. Discuss the values ob- 
tained in light of infrared and NMR experiments, which indicate formation of the stoichiomet- 
ric compound DMSO-2H20 at xDMso = 0.33. 

Both adsorption from solution and micellization occur as a result of the hydrophobic effect. 
To test the correspondence between these two effects. Roseng assembled AGO values for 
adsorption at the air-water interface and for micellization of a number of linear and branched 
surfactants. The following is a selection of these data: 

*Shinoda, K., J .  Phys. Chem., 59, 432(1955). 
TMukerjee, P., and Ray, A., J. Phys. Chem., 70, 2144 (1966). 
SIonescu, L. G., Tokuhiro, T., Czerniawski, B. J., and Smith, E. S., In Micellization, Solubiliza- 
tion and Microemulsions, Vols. 1 and 2 (K. Mittal, Ed.), Plenum, New York, 1979. 
SRosen, M. J . ,  In Micellization, Solubilization and Microemulsions, Vols. 1 and 2 (K. Mittal, Ed.), 
Plenum, New York, 1979. 
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AGO (kJ mole-') 
Temperature 

Compound ( "C) Adsorption Micellization 

n-C,SO,Na 
n-C,,SO,Na 
p-n-C,+SO,Na 
p-n-C,,@O,Na 
n-C,,SO,Na 
n-C,,SO,Na 
p-n-C ,,+SO,Na 
p-C,CHCH,+SO,Na 

I 

25 
25 
70 
70 
50" 
50" 
75 
75 

- 22.4 
- 30.0 
-27.7 
-38 .5  
-27.8 
- 38.6 
- 35.6 
- 34.8 

- 17.3 
-25.2 
-23.4 
- 34.1 
- 19.8 
- 30.4 
- 32.4 
-28.7 

e4 

p-(C - C--),+SO,Na 75 - 34.4 - 27.5 

L 
"Measured at the hexane-water inferface. 

Use these data to criticize or defend the following propositions: (a) The CMC is a good 
indicator of a surfactant's adsorption effectiveness since the A@ values for adsorption and 
micellization both show parallel changes with increasing chain length. (b) The dodecyl benzene 
sulfonates have some of the most favorable AGO values among; the data shown; this shows that 
branching has no adverse effect on either adsorption or micellization. 

Danbrow and Rhodes* used potentiometric titration data to determine the distribution of 
benzoic acid (HB) between water and nonionic micelles. The commercial surfactant used has 
the average formula C,6(OC2H4)24. They obtained the following results in 4% surfactant 
solutions: 

[HB], (mmole liter - '1 4.055 8.804 13.63 18.18 24.30 28.21 
HB,,, (mmole) 0.1859 0.3497 0.5067 0.6660 0.7790 0.9460 

These authors consider two postulates: (a) If the benzoic acid is solubilized in the micellar 
core, then dimerization should occur, in which case HB,J[HBI2 = const. (b) If the solubiliza- 
tion occurs at the micellar surface, then surface saturation analogous to Langmuir adsorption 
should occur. Test each postulate with the data provided and decide which gives the better fit. 

Tokiwa and Aigamit used proton NMR to study the solubilization of benzyl alcohol, 2-phenyl 
ethanol, and 3-phenyl propanol in sodium dodecyl sulfate micelles. The upfield chemical shift 
of the aromatic protons in the micelle from their location in water was measured as a function 
of solubilization; it tends to increase with solubilization much like the results in Fig. 8.6. The 
following are some of the results obtained: 

Chemical shift at 0.05 
mole of solubilizate 

(100 g surfactant (alcohol),,,/ mole alcohol/ 
Compound solution)-' (cps) (alcohol), mole surfactant 

~ 

+CH20H 3 .O 2.28 4.48 
+CH,CH,OH 8.5  4.35 4.08 
+CH2CH,CH20H 17.0 11.80 2.81 

Criticize or defend the following proposition: The more carbon atoms there are in the alco- 
hols, the more hydrophobic these compounds become and the more enriched the micelles 
become relative to the aqueous phase; the magnitude of the chemical shift increases as the 
extent of solubiliation in the micelles increases owing to the diamagnetic effect of the phenyl 
groups. 

*Danbrow, M., and Rhodes, C. T., J. Chern. Soc., Supplement I1 and Indexes 6166 (1964). 
TTokiwa, F., and Aigami, K., Kolloid 2. 2. Polyrn., 246, 688 (1 97 1). 
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9. 

10. 

11. 
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Duynstee and Grunwald* present some experimental data for Reaction (F) in the presence of 
hexadecyl trimethyl ammonium bromide (CTABr, C = cetyl) and sodium dodecyl sulfate 
(NaLS, L = lauryl). Sodium hydroxide was the source of OH- in all cases. A pseudo-first- 
order rate constant of 2.40 x 10-2 s-'  is observed for kCTABr. Use the following absorbance 
data to evaluate kNaLS for this reaction: 

t (min) 0 4 7 10 13 17 25 35 41 51 
Absorbance 0.734 0.652 0.618 0.577 0.537 0.489 0.408 0.327 0.293 0.244 

60 68 85 124 * - * 

0.211 0.189 0.160 0.129 0.155 

Recall that for first-order kinetics a plot of In (fraction unreacted) versus time has a slope - k .  
Also note that the reaction reaches an equilibrium characterized by an absorbance 0.115; the 
data must be corrected for this. For both the anionic and cationic micelles, qualitatively 
sketch, emphasizing the charge state, the micelle, the solubilized substrate, and the approach- 
ing OH- reactant. Indicate how these pictures are consistent with the experimental rate 
constants. 

In the same research described in Problem 8, the authors also examined the rate of Reaction 
(F) in pure water and in NaCl solution to guarantee that the ionic surfactants were not 
displaying an electrolyte activity effect as is ordinarily observed with ion combination reac- 
tions. For lOP5 M crystal violet and 0.01 M NaOH, they observed the following: 

Solution Pure water 0.01 M NaCl 0.01 M CTABr 
k x 104((s-') 17.1 16.4 240 

Use these data and the Debye-Huckel theory of electrolyte nonideality to criticize or defend 
the following proposition: Indifferent electrolytes always inhibit the rates of ion combination 
reactions because the activity coefficients are fractions. The data for CTABr show an enhance- 
ment of rate so this cannot be due to an activity effect. In these data, the k's for pure water 
and aqueous NaCl are essentially identical, so no activity effects operate in the absence of 
micelles either. 

Bunton and Robinson? studied the effect of sodium dodecyl sulfate micelles on the rate of the 
reaction between OH - and 2,4-dinitrochlorobenzene. These negative micelles have an inhibit- 
ing effect on the reaction, yet the kinetic data can be analyzed according to Equation (24). Use 
the following data and the authors' CMC value of 0.0064 M to estimate K / n ,  where K is the 
binding constant between the dodecyl sulfate micelles and the 2,4-nitrochlorobenzene: 

CNaC,2S0, 102(M) 0.0 1.41 1.85 2.80 3.90 5.60 

k x 105 (liter mole-' s-') 14.2 9.40 7.70 6.20 5.10 3.10 

From the increased solubility of 2,4-dinitrochlorobenzene in sodium dodecyl sulfate solutions 
(without NaOH), the authors of this research estimate a K / n  of 44. Criticize or defend the 
following proposition: The presence of OH- could change the n value for sodium dodecyl 
sulfate micelles, so exact agreement between K / n  values determined by the two methods is not 
necessarily expected. 

The reaction of Problem 10 was studied at two different temperatures, and, from the tempera- 
ture dependence of the rate constants, the authors7 determined AH$ and AS$, the enthalpy 
and entropy of activation, respectively. The following values of these parameters were ob- 
tained in pure water and in 0.01 M sodium dodecyl sulfate (NaLS) and 0.01 M hexadecyl 
trimethyl ammonium bromide (CTABr): 

#Duynstee, E. F. J . ,  and Grunwald, E.,  J. Am. Chem. Soc., 81, 4542 (1959). 
?Bunton, C. A., and Robinson, L., J. Am. Chem. Soc., 90, 5972 (1968). 
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12. 

13. 

Solvent AHS (kcal mole-') AS$ (cal K- '  mole-') 

Water 
CTABr 
NaLS 

21.3 
16.4 
21.3 

- 5.2 
- 13.4 
- 5.6 

Use these values to criticize or defend the following proposition: The smaller endothermic 
value for AHS in CTABr means the product molecules must be more readily expelled from 
these micelles, making the enthalpy contribution more favorable to the reaction in this case. 
The solubilized substrate has a higher entropy, so the decrease in entropy for the micellar 
reaction is larger. The last problem shows that the reaction occurs about twice as fast in water 
as in 0.01 M NaLS. The rate in water determines the kinetic parameters in the last case. 

Chemistry students are certainly familiar with the regular tetrahedron (methane, sp3 hybrids, 
etc.), but may not have considered this geometry as the basis for a quaternary phase diagram. 
McCarthy# discusses these as extensions of triangular phase diagrams: Each of the four faces 
of a regular tetrahedron is the ternary phase diagram that results as the concentration of 
component X in a system goes to zero. The opposite apex represents pure component X ,  and 
planes slicing through the tetrahedron parallel to any face have a constant percentage of X ,  
the magnitude of which depends on their placement. Resketch one of the versions of Figure 
8.13 using this kind of tetrahedral representation. This sould be done qualitatively and on a 
large enough scale to separate the various slices. Criticize or defend the following proposition: 
Both the tetrahedral and prismatic quaternary diagrams show essentially the same thing; in 
the tetrahedral diagram the advantage of having all four ternary diagrams contained therein is 
offset by the shrinking size of the slices as an apex is approached. 

Proteins are polyamids formed from amino acids having the formula H,N -CHR-COOH; 
therefore different R groups occur along the polymer backbone according to the amino acid 
sequence in the protein. Write structural formulas for the A? groups in the following amino 
acids: 

Alanine ( Ala)* Glycine (Gly) Serine (Ser)* 
Arginine (Arg) Isoleucine (Ile)* Threonine (Thr) 
Asparagine (Asn) Leucine (Leu)* Tyrosine (Tyr)* 
Aspartic acid (Asp) Lysine (Lys) Valine (Val)* 
Glutamine (Gln) P henylalanine (Phe)* 

Kaiser and Kezdyt have suggested that helical structures for certain amino acid sequences in 
proteins may be stabilized by a hydrophobic interaction with cell membrane lipids. In the list 
above, R groups marked with an asterisk may be considered hydrophobic. Construct a model 
for residues 1-22 of human growth hormone releasing factor in the following way. Roll a 
piece of paper into a cylinder and sketch a helix on the surface. Evenly space the names of five 
consecutive amino acids along each turn of the helix. On a second cylinder, mark off portions 
of helix two turns long and carefully enter seven amino acids; along each two-turn length. The 
models with 5 and 3.5 amino acid residues per turn are approximations of the 7c and cy helical 
structures shown in protein crystals. Which of the two appears more effective in concentrating 
hydrophobic groups along one edge of the helix? The first 22 amino acids in this protein occur 
in the following order: 

1. Tyr 9. Ser 16. Gln 
2. Ala 10. Tyr 17. Leu 
3. Asp 11. Arg 18. Ser 
4. Ala 12. Lys 19. Ala 
5. Ile 13. Val 20. Arg 

7.  Thr 15. Gly 22. Leu 
8. Asn 

6. Phe 14. Leu 21. Lys 

#McCarthy, P. ,  J. Chern. Educ., 60, 922 (1983). 
?Kaiser, E. T., and Kezdy, F. J., Science, 223, 249 (1984). 
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14. On the basis of the model produced in Problem 13, criticize or defend the following proposi- 
tion: A roughly 20-residue a-helix has a length approximately equal to the thickness of a 
membrane bilayer. A bundle of three, four, or more of these helices-with hydrophobic and 
hydrophilic sides-could orient themselves in such a way as to form a hydrophilic channel 
through the membrane (see Vignette 1.2 and Figure 1.2). While the individual helices may be 
stable, their aggregation into this sort of channel involves bringing several membrane proteins 
together and is therefore entropically unfavorable. 



Adsorption at Gas-Solid Interfaces 

When I cut through your plane as I am now doing, I make your plane a section which 
you, very rightly, call a Circle. For even a sphere- which is my proper name in my own 
country-- i f  he manifest himself at all to an inhabitant of Flatland- must needs manifest 
himself as a Circle. 

From Abbott’s Flatland 

9.1 INTRODUCTION 

9.la Physisorption and Chemisorption 

Adsorption at the solid-gas interface is traditionally subdivided into two broad classes: chemi- 
sorption and physisorption (i.e., physical adsorption). 

As the name implies, chemisorption comes very close to the formation of chemical 
bonds between the adsorbent (e.g., the solid) and the adsorbate (gas). In this case 
electron exchange between the adsorbent and the adsorbate occurs. Two consequences 
of this are that the associated heat effects are comparable to those that accompany 
ordinary chemical reactions and that the process is not always reversible. It is possible, 
for example, to adsorb (chemisorb) oxygen on carbon and desorb CO or CO,. 
In physical adsorption, on the other hand, the energy effects are comparable to those 
that accompany physical changes such as liquefaction and are completely reversible 
for nonporous solids. In contrast to chemisorption, the adsorbent and the adsorbate 
in this case interact relatively weakly through van der Waals forces (see Chapter 10). 
Physical adsorption is the easier of the two types of adsorption and provides much 
background needed for an understanding of chemisorption. 

A major portion of this chapter is concerned with physical adsorption, particularly from 
a global thermodynamic point of view. This is followed by a molecular-scale examination of 
crystalline surfaces and a brief discussion of chemisorption and its relevance to heterogeneous 
catalysis. 

9.1 b Focus of This Chapter 

As should be evident from the discussions in Chapters 6 and 7 ,  adsorption phenomena play a 
major role in colloid and surface chemistry. We also come across other examples in Chapters 
11 and 13. Adsorption, especially at solid-gas interfaces, is very important in heterogeneous 
catalysis, as highlighted in Vignette IX. In this chapter, the focus is the introduction of 
quantitative measurement and the description of adsorption at solid-gas interfaces. 

405 
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9. I b. I Physisorption 
There are several different ways in which the topics pertaining to physical adsorption can be 
subdivided. We are primarily concerned with nonporous solids, briefly discussing porous 
materials only in Section 9.7. 

It is convenient to divide the extent of adsorption into three categories: submono- 
layer, monolayer, and multilayer. We discuss them in this order. The thermodynamics of 
adsorption may be developed around experimental isotherms or around calorimetric data. We 
begin with the definition of adsorption isotherms and how they are determined experimentally 
(Section 9.2). 

Adsorption isotherms may be derived from a consideration of two-dimensional equa- 
tions of state, from partition functions by statistical thermodynamics, or from kinetic argu- 
ments. Even though these methods are not fundamentally different, they differ in ease of 
visualization. We consider examples of each method in Sections 9.3 and 9.4. 

Multilayer adsorption and the popular Brunauer-Emmett-Teller (BET) method of 
analysis are described in Section 9.5. This section also describes the determination of specific 
areas by gas adsorption. Low-temperature N, adsorption and the BET method of analysis are 
so widely used for this purpose that these topics will receive special attention. 

1. 

2. 

3. 

4. A brief description of calorimetric analysis of adsorption follows in Section 9.6. 
5. Adsorption in porous solids, an important topic in catalysis and other areas, is pre- 

sented in Section 9.7, in which the adsorption hysteresis and capillary condensation are intro- 
duced. 

9. I b.2 Chemisorption 
The global thermodynamic approach used in the above sections is insensitive to details at the 
atomic level and can only yield a gross characterization of the surface. Properties such as the 
specific surface area and the presence or absence of pores can be determined using the above 
approach since only the average surface - not atomic details -is involved. The existence of a 
distribution of surface energy sites can also be inferred from adsorption data, but the method 
falls short when it comes to specifics about this distribution. Observations on an atomic scale 
are needed to learn more about the details of the surface structure. Such observations comprise 
the subject matter of the last two sections of the chapter. 

A great assortment of high-technology (and high-cost!) methods exist for examining 
surfaces on a fine scale, and new methods are being developed continually, as we saw in 
Vignette 1.8. The techniques available permit us to characterize solid surfaces in a variety of 
ways: pictorially, chemically, and crystallographically. Rather than attempt to catalog all of 
these and say a few things about each, it seems preferable to single out one example and 
develop it in a bit more detail. Accordingly, in Section 9.8 we discuss one such method- 
low-energy electron diffraction (LEED) - for studying surfaces. 

There are numerous other techniques that we shall not discuss but that also tend to be 
known by their initials, as evident from Vignette 1.8 on STM (scanning tunneling microscopy), 
SPM (scanning probe microscopy), and AFM (atomic force microscopy) and related discus- 
sions in Chapter 1 .  The literature on this subject contains what Adamson (1990) calls “a 
veritable alphabet soup of designations, many of which are contrived acronyms.’’ Table 8.1 of 
Adamson (1990) (which is eight pages long) provides an excellent summary of the numerous 
techniques that are currently available for surface analysis. These include a wide variety of 
spectroscopic methods for analyzing the composition of a surface both qualitatively and 
quantitatively. An example is Auger electron spectroscopy (AES). What makes AES so suit- 
able for chemical analysis of surfaces is the shallow escape depth of Auger electrons from 
solid surfaces. Only those electrons originating within two or three atomic layers of the surface 
are able to escape without suffering the sort of inelastic interactions that obscures the features 
of the spectrum. Several additional techniques, including the ones based on the scanning probe 
method highlighted in Vignette 1.8, are described in Hubbard (1995). 

Just as an assortment of experimental techniques exists, so too are there numerous 

1. 

2. 

3. 
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types of solid surfaces that might be examined. Not all methods can be used for all surfaces, 
and the techniques we consider are particularly well suited for the study of metal surfaces. 
Therefore we also limit our examples to  metal surfaces (Section 9.9). Although this obviously 
excludes a number of interesting and important solid surfaces, it also includes some topics of 
great significance, including friction and corrosion in engineering materials, semiconductors 
for electronic devices, and catalytic surfaces for many chemical reactions. 

VIGNETTE IX HETEROGENEOUS CATALYSIS AND CHEMICAL 
VAPOR DEPOSITION: Adsorption-Setting the 
Stage for Catalysis and Thin-Film Growth 

Adsorption of gases at a solid surface can be a bother or a boon! It is a nuisance when one 
needs a very clean surface, devoid of any adsorbed species, for research or chemical analysis 
of a solid. On the other hand, it is a convenient tool in vacuum technology for pumping gases 
out of vacuum chambers (as in cryogenic pumping; see Section 9.8a.2). And, adsorption can 
be a vehicle for molecular engineering - as in the case of catalysis or in layer-by-layer fabrica- 
tion of ordered films on surfaces! Perhaps more striking is the role of adsorption in the last 
context, and we highlight this in this vignette. 

We have already noted in Vignette 1.9 that selectivity of a catalyst is of extreme impor- 
tance in practice. But, how does the surface of a solid serve as a catalyst? How does adsorp- 
tion enter the picture? What issues are of interest in this context? We already touched on the 
answers to the first two questions in Vignette 1.9. A further elaboration of these is presented 
schematically in Figure 9.1. The adsorption of a molecule on a surface contributes to the 
disassembly of the molecule and allows the molecule to react with the other reactants in the 
vicinity. Adsorption can either promote or hinder a reaction or may contribute to “side” 
reactions that generate undesirable products. This is the reason selectivity of a surface is of 
utmost importance. Depending on the strength of the adsorbate-adsorbent bond, an adsorbed 
molecule (or a disassembled part of it) may become free to wander along the surface and to 
participate in chemical reactions and in the nucleation and growth of islands of two- 
dimensional surface phases. Therefore, quantifying the energetics of adsorption, the amount 
of adsorbed material, the chemical nature of products (if any), and their relation to the 
atomic-level structure of the surface itself become issues of paramount importance not only 
in catalysis, but also in the technology of thin-film growth on surfaces. These issues serve as 
the motivation for the types of theoretical and experimental procedures we develop in this 
chapter and for the interest in tools such as scanning probe microscopy and spectroscopy 
highlighted in Vignette 1.8. 

As is evident from the above comments, adsorption is also the embryonic event that 
precedes nucleation and growth of oriented films - epitaxialfi,lms -on surfaces (if the condi- 
tions are right; see Figure 9.2). Chemisorption is again the stage-setter in this case (as is often 
the case in heterogeneous catalysis). Epitaxial growth (which is not restricted to gas-solid 
systems) has significant industrial importance and depends on, among other things, interac- 
tions among adsorbed molecules, adsorbent/adsorbed-molecule interactions, structure of 
the surface (also known as the substrate), temperature, and surface diffusion of adsorbed 
molecules. 

Many of the issues relevant to the above examples of adsorption (and the attendant) 
processes are beyond the scope of the present chapter. The topics we cover - such as adsorp- 
tion isotherms, relating bulk phase conditions to the extent of adsorption and surface phases, 
and low-energy electron diffraction (LEED) for studying surface structure - are the essential 
first steps in understanding the problems and the prospects engendered by adsorption phe- 
nomena. 
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FIG. 9.1 A schematic illustration of the role of a substrate on adsorption and catalysis. Sketch 
(i), on chemisorption of ethylene on platinum, shows the breaking of C = C  double bond so that 
the carbon atoms can form bonds to the surface. Sketch (ii) shows how iron substrate disassembles 
carbon monoxide into carbon and oxygen atoms. Breaking these bonds in gaseous phases requires 
a considerable amount of energy, whereas a catalytic surface allows these under moderate condi- 
tions. The broken fragments then may wander on the surface and react with other fragments or 
molecules in the gas. (Adapted and redrawn with permission from Ball 1994.) 

FIG. 9.2 A schematic representation of three topologically different epitaxial growth modes for 
crystallization on surfaces through adsorption. Sketch (i) illustrates layer-by-layer growth, known 
as I;rank- Van der Merwe growth. Sketch (iii) illustrates just the opposite: Crystallites nucleate and 
grow on immediate contact between the substrate and the adsorbate. This is known as Volmer- 
Weber growth. Sketch (ii), known as Stranski-Krastanov growth, is an intermediate mode. 
(Adapted from A. Zangwill, Physics at Surfaces, Cambridge University Press, Cambridge, Eng- 
land, 1988.) 
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9.2 EXPERIMENTAL AND THEORETICAL TREATMENTS OF 
ADSORPTION: AN OVERVIEW 

9.2a Adsorption Isotherms 

Adsorption experiments are conducted at constant temperature, and an empirical or theoreti- 
cal representation of the amount adsorbed as a function of the equilibrium gas pressure is 
called an adsorption isotherm. Adsorption isotherms are studied for a variety of reasons, some 
of which focus on the adsorbate while others are more concerned with the solid adsorbent. In 
Chapter 7 we saw that adsorbed molecules can be described as existing in an assortment of 
two-dimensional states. Although the discussion in that chapter was concerned with adsorp- 
tion at liquid surfaces, there is no reason to doubt that similar two-dimensional states describe 
adsorption at solid surfaces also. Adsorption also provides some information about solid 
surfaces. The total area accessible to adsorption for a unit rnass of solid - the specific area 
A,--is the most widely encountered result determined from adsorption studies. The energy of 
adsorbate-adsorbent interaction is also of considerable interest, as we see below. 

9.2b Adsorption: Some Experimental Considerations 

We saw in Chapter 6, Section 6.7, that solid surfaces are notoriously heterogeneous, particu- 
larly with respect to roughness and chemical composition. From the point of view of specific 
area determination, roughness is not too troublesome since the adsorbed gas molecules can 
generally cover the hills and valleys of the surface with ease. Pores with very small dimensions 
pose more of a problem. For now, we assume that such pores are absent; we take up the 
question of adsorption on porous solids in Section 9.7. Chemical heterogeneity affects the 
energetics of adsorption. For simplicity, we often assume that the surface is characterized by a 
single adsorption energy. Actually, a distribution of surface sites with differing adsorption 
energies may be present, and some indication of this may be extracted from adsorption data. 
As an approach to surface characterization, adsorption studies are indirect and give average 
rather than specific descriptions. We have already seen in Vignette 1.8 that solid surfaces can 
be probed more directly for information on a molecular scale using scanning probe spectros- 
copy; we see below in this chapter (Section 9.8)  how low-energy electron diffraction can be 
used to study the structure of surfaces on a molecular scale. For solids with high specific area, 
however, gas adsorption is the method of choice for quantifying this feature; we have more to 
say about it in Section 9.5. 

9.2b. I 
Adsorption studies for the experimental determination of adsorption isotherms are conducted 
in a vacuum apparatus from which all gases can be removed prior to the addition of the 
adsorbate being studied. After the solid is introduced into the sample tube and the tube is 
attached to the vacuum line, it is generally pretreated by sorne sort of degassing procedure. 
This is a combination of heating and pumping to ensure the removal of physically adsorbed 
contaminants. Consideration must be given to the possibility of changing the solid when the 
temperature of degassing is selected. A heat treatment that is too vigorous may result in 
changes in any chemisorbed layer, which-from our point of view at least-amounts to a 
change in the adsorbent itself. If extensive enough, such changes may alter the surface area of 
a solid. Even less drastic changes are sufficient to alter the adsorption energy of a surface. 

The range of pressures over which adsorption studies may be conducted is - in principle - 
from zero to po,  the saturation pressure or the normal vapoi- pressure of the material at the 
temperature of the experiment. At the low-pressure end of this range adsorption will be slight, 
so the determination of the isotherm involves measuring small differences in pressure at low 
pressures. This is not easy to do experimentally, although relatively modern low-pressure 
techniques have greatly extended this region. As the pressure approaches pa, adsorption often 
increases rapidly as if anticipating phase separation at the surface (resulting from multilayer 
adsorption in which most of the adsorbed molecules behave as if they were in the bulk liquid 

Experimental Determination of Adsorption Isotherms 
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state). As a matter of fact, if the solid is porous, the vapor may actually condense in the small 
pores at p < po (see Section 9.7). 

Figure 9.3 is a sketch of an apparatus that can be used to determine the equilibrium extent 
of gas adsorption as a function of pressure. We outline how such an experiment is conducted 
at ambient temperature, even though adsorption studies are frequently conducted at low 
temperatures, particularly when determination of A ,  is the objective of the experiment. A 
known mass of adsorbent is introduced into the sample tube and degassed as described above. 
Then the following set of pressure-volume readings are made, described here in terms of 
Figure 9.3. 

1.  The sample tube and gas burette are evacuated and then a nonadsorbing gas - fre- 
quently helium-is introduced into the gas burette. The burette is graduated with 
respect to volume and also serves as one leg of a manometer so that both the volume 
and pressure of gas in the burette can be measured. Ambient temperature is assumed 
to apply throughout. 
The three-way stopcock is opened to connect the gas burette with the sample tube. 
The new pressure and volume are read. From this, the volume of the dead space- 
the volume beyond the three-way stopcock that is not occupied by sample-can be 
determined (see Example 9.1). 
The nonadsorbed gas is pumped out and replaced by the adsorbate. Its volume, 
pressure, and temperature are measured, and from these the number of moles of gas 
introduced (initially) into the apparatus can be determined. 
The three-way stopcock is opened to connect the burette and sample tube, and volume 
and pressure are measured again. Since the dead space is known, the (final) number 
of moles of gas can be calculated. The difference between the initial and final number 
of moles gives the number of moles adsorbed. 
This amount of adsorbed gas is in equilibrium with bulk gas at the pressure read in 
Step 4. 

2 .  

3. 

4. 

5 .  

FIG. 9.3 Schematic illustration of a gas adsorption apparatus. 
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These steps describe the determination of a single point on an adsorption isotherm. By 
adjusting the mercury level, we can increase the pressure of the equilibrium gas with more 
adsorption occurring. Steps 3 and 4 are thus repeated until the full isotherm is mapped. 
Example 9.1 illustrates numerically how a point on the isotherm is established. 

* * *  

EXAMPLE 9.1 Construction of Adsorption lsotherms: The following pressure-volume (p-v) 
data were collected at a temperature of 22OC. The V‘s are volumes in the gas burette, and the 
numerical subscripts refer to the steps itemized above. 

With helium, p, = 21.71 torr, V, = 12.90 cm3, p2 = 16.50 torr, V, = 10.90 cm3. With ad- 
sorbate, p3 = 12.85 torr, V3 = 13.70 cm3, p4 = 3.24 torr, V, = 5.00 cm3. What is the volume of 
the dead space? How many moles are adsorbed at the final equilibrium pressure, 3.24 torr? 

Solution: Successive applications of the ideal gas law allow us to calculate the desired quanti- 
ties. 

The total volume to which the gas has access after the stopcock is opened is the sum of the 
burettevolumeand thedead space V,. Therefore v d  + V2 = p,V, /p2 = (21.71)(12.9)/(16.50) = 
16.97, or v d  = 6.07cm3. I t  is convenient to use R = 62,360 cm3 torr K - ’  mole -’ as the value of 
the gas constant in these calculations. The initial moles of adsorbate are given by n, = p3V3/RT 
= (1 2.85)( 13.70)/(62360 )(295) = 9.57 10 -6 .  After adsorption equilibrium is established, n, 
= (3.24)(5.00 + 6.07)/(62360)(295) = 1.95 - 10-6. The difference n, - n, = (9.57 - 1.95) - 
1OP6 = 7.62 . 10 - 6  mole gives the amount adsorbed at an equilibrium pressure of 3.24 torr. 

* * *  

If the adsorption isotherm is to be determined at some temperature other than room tempera- 
ture - liquid nitrogen temperature, for example - the sample tube is placed in a suitable ther- 
mostat. This is indicated by the dotted line in Figure 9.3. In this case two sets of readings are 
made with the nonadsorbed gas, one at room temperature arid one with the thermostat in 
place. In this way the partitioning of the dead space between the two temperature regions can 
be determined. Several additional considerations should be cited that are important in actual 
practice: 

1. 
2. 

3.  

4. 

9.2b.2 

The gases used for adsorption must be of high purity. 
The gas burette should itself be thermostated unless the laboratory has very good 
temperature control. 
The nonideality for the adsorbate at low temperatures must be taken into account 
unless the volume of the low-temperature dead space is minimized. 
Sufficient time must be allowed for equilibrium to be established. A way of checking 
this experimentally is to lower the pressure and observe that desorption follows the 
same curve as adsorption. 

Classification of Adsorption Isotherms 
Experimental gas adsorption isotherms are traditionally classi Fied into one of the five types 
shown in Figure 9.4. 

The Type I isotherm is reminiscent of Figure 7.16, the Langmuir isotherm. The plateau 
is interpreted as indicating monolayer coverage. We see that this type of behavior 
implies a sufficiently specific interaction between adsorbate and adsorbent to be more 
typical of chemisorption than physical adsorption. 
Type 11 adsorption, by contrast, is widely observed with physical adsorption and is 
interpreted to mean multilayer adsorption. 
We see in Section 9.5b (Example 9.5) that Type I11 behavior occurs when the heat of 
liquefaction is more than the heat of adsorption. 
Types IV and V are analogs of Types I1 and 111, except for the leveling off that occurs 
at pressures below po. These cases are associated with porous solids in which the 
adsorbate condenses in the small pores at p < po. 
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FIG. 9.4 Qualitative shapes of the five general types of gas adsorption isotherms. (See text for a 
discussion of their physical significance.) 

If the specific area of the solid is the information sought, it is the amount of adsorption 
at monolayer coverage that must be measured. This is readily available in Type I adsorption, 
but requires considerable interpretation when multilayer adsorption takes place. Once deter- 
mined, however, the number of molecules required to saturate a surface times the area occu- 
pied per molecule gives the surface area of a sample. This divided by the mass of the sample 
gives A,. In addition, once the adsorption at monolayer coverage is identified, all other 
extents of adsorption can be expressed as fractions or multiples of the monolayer. 

9 . 2 ~  Adsorption Isotherms: Theoretical Considerations 

This makes a convenient point of contact with theory since models for adsorption inevitably 
subdivide the surface into an array of adsorption sites that gradually fill as the pressure 
increases. If 8 is defined as the fraction of sites filled, then 0 = 1 corresponds to monolayer 
coverage, with 8 < 1 or 8 > 1 to submonolayer and multilayer coverages, respectively. Theo- 
retical isotherms predict how 8 varies with p in terms of some particular model for adsorption. 
It turns out that a set of experimental points can often be fitted by more than one theoretical 
isotherm, at least over part of the range of the data; that is, theoretical isotherms are not 
highly sensitive to the model on which they are based. A comparison between theory and 
experiment with respect to the temperature dependence of adsorption is somewhat more 
discriminating than the isotherms themselves. 

Since it is relatively easy to fit experimental adsorption data to a theoretical equation, 
there is some controversy as to what constitutes a satisfactory description of adsorption. From 
a practical point of view, any theory that permits the amount of material adsorbed to be 
related to the specific surface area of the adsorbent and that correctly predicts how this 
adsorption varies with temperature may be regarded as a success. From a theoretical point of 
view, what is desired is to describe adsorption in terms of molecular properties, particularly in 
terms of an equation of state for the adsorbed material, where the latter is regarded as a 
two-dimensional state of matter. 

As we see in the course of the chapter, these two approaches frequently clash. The 
adsorption isotherm of Brunauer, Emmett, and Teller (BET), which is discussed in Section 
9.5, is an excellent example of this. The model on which the BET isotherm is based has been 
criticized by many theoreticians. At the same time, the isotherm itself has become virtually 
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the standard equation for determining specific areas from gas adsorption data. Ross (1971) 
summarizes the situation effectively by comparing it to a master chef who concocts a palatable 
dish out of an  old shoe. For some, the end result is what matters: a palatable dish. For others, 
the starting material dominates their opinions: the old shoe. T o  present a relatively accurate 
picture of the current state of affairs in this area, it is necessary to present both of these 
viewpoints. We attempt not to take too one-sided a position, but to give some indication of 
each side. 

9.3 THERMODYNAMICS OF ADSORPTION: 
PHENOMENOLOGICAL PERSPECTIVE 

9.3a Relating Equations of State to Isotherms 

To see how the equation of state of two-dimensional matter and the adsorption isotherm are 
related, we return to the Gibbs equation (Equation (7.46) ): 

-dy = I'2dp2 (1) 

Since we are concerned here with adsorption from the gas phase, the chemical potential 

(2) 

where f is the activity coefficient (see Equations (7.47) and (7.48) ). In this discussion we 
assume that the gas behaves ideally, although in analyzing experimental results it may be 
necessary to include the correction required by the nonideality of the gas. Combining Equa- 
tions (1) and (2) leads to 

may be related to the pressure of the gas by 

P2 = Pzo + RTlnCfp) 

-dy = RTI ' ,d lnp  (3) 

In the present context it is convenient to use Equation (7.43) to eliminate r2 from Equa- 
tion (3)  and express the surface excess as the number of moles adsorbed per unit area: 

n R T  
A 

-dy = --dlnp (4) 

Next we substitute the product of sample weight times specific area for A in this equation to 
obtain 

For a given adsorbent and an isothermal experiment, T and A,,  are constants. The ratio n / w  
is the equilibrium amount adsorbed that will be a function of p'. Therefore Equation (5) may 
be integrated as follows: 

I, n 

- dY = - d l n p  

The constant of integration may be evaluated by recognizing that n / w  goes to zero as p 
approaches zero. Under these circumstances y -+ yo; therefore Equation (6) becomes 

R T  n 
yo - y = 7r = - j r  - d l n p  

A, O w 
(7) 

If the experimental isotherm ( n / w  as a function of p )  is known, then Equation (7) may be 
integrated either analytically or graphically to give the two-dimensional pressure as a function 
of coverage. This relationship therefore establishes the connecti.on between the two-and three- 
dimensional pressures that characterize the surface and bulk phases. This is how adsorption 
data could be used to determine the film pressure in equilibrium with a drop of bulk liquid on 
a solid surface as discussed in Section 6.6b. 



41 4 HIEMENZ AND RAJAGOPALAN 

9.3b Ideal Behavior: The Henry Law Limit 

As an illustration of the kind of information obtainable from Equation (7),  suppose we 
consider the situation in which the equilibrium adsorption of a gas is described by the isotherm 

n / w  =mp (8) 

where m is a constant. Equations (7) and (8) may be combined to give 

Since the quantity (A,w/nN,) equals 0, area per molecule, Equation (9) may be written 

T O  = k,T (10) 

the two-dimensional ideal gas law for the surface phase! 
The adsorption isotherm - Equation (8) -associated with this surface equation of state is 

called the Henry law limit, in analogy with the equation that describes the vapor pressure of 
dilute solutions. The constant m, then, is the adsorption equivalent of the Henry law constant. 
When adsorption is described by the Henry law limit, the adsorbed state behaves like a 
two-dimensional ideal gas. 

9.3~ Deviations from ldeality 

Equation (8) may also be written as 

8 = m’p (11) 

if the specific area of the adsorbent and the cross-sectional area of the adsorbate are known 
(Equation (7.71) ). We see, therefore, that compliance with Henry’s law implies that a log-log 
plot of 8 versus p yields a straight line of unit slope. Figure 9.5 shows some experimental 
results for adsorption at 77.4K plotted in this way for pressures down to 10 -l0  torr. Note that 
even at these low pressures the Henry law limit is not yet reached (it would give a 4 5 O  line in 
Fig. 9.5), although argon on Pyrex appears to be approaching this limiting behavior. Note, 
further, that any errors introduced in evaluating 8 would vertically shift the curves but would 
not change their slopes. We may conclude, therefore, that - just as with monolayers on aque- 
ous substrates-the compliance of an adsorbed layer with the ideal gas law is a form of 
behavior that is extremely difficult to observe. The implication of this is that significant 
departures from two-dimensional ideality already set in at very low surface coverage. 

9 .3~ .  I Adsorbent-Adsorbate Interactions 
In general, there are two different types of interactions in which adsorbed molecules may 
participate. They are the interaction between the adsorbed molecules and the adsorbent and 
the interaction between the adsorbed molecules themselves. In the Henry law region, we have 
seen that the adsorbed layer behaves ideally. This is to be expected in view of the low surface 
concentration (% very small) of adsorbate. The adsorbed molecules definitely do  interact with 
the adsorbent, however, and at very low coverage the interaction energy might be very sensitive 
to  surface heterogeneity. Any “hot spots” on the surface would adsorb first, less energetic 
patches next, then the normal surface sites. In Sections 9.4b and 9.6 we see how isotherms 
measured at several different temperatures may be interpreted to yield information on the 
energy of adsorption. 

9.3c.2 Adsorbate-Adsorbate Interactions 
The second type of interaction possible for adsorbed molecules is direct adsorbate-adsorbate 
interaction. Interactions of this sort are expected to lead to deviations from ideality in the 
two-dimensional phase just as they lead to deviations from ideal behavior for bulk gases. In 
this case surface equations of state, which are analogous to those applied to nonideal bulk 
gases, are suggested for the adsorbed molecules. The simplest of these allows for an excluded 
area correction (see Equation (7.23) ): 
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FIG. 9.5 A log-log plot of 8 versusp for xenon, krypton, and argon on zirconium and nitrogen 
and argon on Pyrex. (Redrawn with permission from J .  P.  Hobson, “Physical Adsorption at 
Extremely Low Pressures.” In The Solid-Gas Interface, Vol. 1 (E. A. Flood, Ed.), Marcel Dekker, 
New York, 1967.) 

~ ( a  - a’) = k,T (12) 

The use of the above equation of state to construct the corresponding adsorption isotherm is 
illustrated in Example 9.2. 

* * *  

EXAMPLE 9.2 Evaluating Isotherms from Equations of State: Finite-Size Effects of Adsorbates. 
Use Equation (12) along with Equation (7) to derive an adsorption isotherm that accounts for 
excluded-area adsorbate-adsorbate interactions. 

Solution: According to Equation (7), dn = -dy. We now recall that 

A w  a = x  
n NA 

Therefore Equation (5) may be written as 

a dn 
- = d l n p  
kBT 

From Equation (72), dn is given by 

dn = -kBT(a - 0’) - 2  do 

Combining the above two equations we get 

a da 
= dlnp -~ 

( a  - go)’ 

which on integration leads to 
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where 

d o o  = 1 I8 

Next we evaluate the integration constant C. We know that 8 -+ 0 as p + 0. Therefore, at 
first glance, we are tempted to equate C to zero. It must be remembered, however, that Henry’s 
law must apply as p -, 0. This condition is met i f  we let C = In rn ’ ,  with rn’ defined by Equation 
(11): 

8 
In( A) + = l n p  + Inm’ 

This may be readily verified by examining the limit of the above equation as 8 -+ 0. This equation 
may also be written 

m ’ p  = (-)exp(-) 8 8 
1 - 8  1 - 8  

by taking the antilog of both sides of the equation. This is the equation for the adsorption 
isotherm we want. Two observations concerning this isotherm are worth noting here: 

It is interesting to look at this form of the isotherm in the limit of small values of 8 
but still above Henry’s limit. In this case the exponential term approaches unity, 
and the isotherm becomes 

m ’ p  = (0/[1 - 01) 

or 

m ’ P  
1 + m ’ p  

e =  

which is identical in form to the Langmuir equation (see Equation (7.67) ). 
The isotherm also reveals that for m ’ p  %- 1, 0 approaches unity as an upper limit. 
Thus at both the upper and lower limits, the isotherm gives the same results as the 
Langmuir equation. At intermediate values the two functions differ slightly, but it 
would probably be difficult to distinguish between them in fitting experimental 
data. H 

* * *  

9.3c.2~ This approach can be extended to 
other forms of two-dimensional equations of state. For example, still greater nonideality in 
the two-dimensional equation of state might be represented by the van der Waals analog: 

Van der Waals Isotherm and Surface Phases. 

( T  + ;) (0 - b )  = kgT (13) 

in which the van der Waals factor b and 0’ from Equation (12) are identical in principle. Table 
9.1 shows the isotherm resulting from this equation; the table also lists the result of Example 
9.2 and one other example that leads to what is known as the Harkins-Jura isotherm. We 
return to the Harkins-Jura isotherm below in this section. 

What makes the two-dimensional van der Waals equation of state especially interesting is 
the fact that there exists a temperature above which there is only one real root to Equation 
(13) and below which some values of 7r correspond to three values of 8. This situation is shown 
schematically in Figure 9.6a. With bulk gases and also insoluble monolayers on  water, the 
three-root region is identified with a region of two-phase equilibrium. Is there any evidence 
for this type of phase equilibrium in the two-dimensional layer of adsorbed gas on a solid 
substrate? Figure 9.6b shows several data for the adsorption of krypton on specially treated 
graphite over a range of temperatures from about 77 to 91K. These plots are adsorption 
isotherms, not T versus o diagrams, but nevertheless there is quite clear evidence of a two- 
phase region. A few additional assumptions lead to the prediction that the two-dimensional 
critical temperature should be one-half the value of the three-dimensional critical temperature 
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TABLE 9.1 
State 

Examples of Adsorption Isotherms Based on Some Two-Dimensional Equations of 

Two-dimensional 
equation of state I sot herm Comments 

~ ( a  - a’) = k,T 1. 

2. 

3 .  

( a  - b )  = k,T m‘p = -expi- 8 8 - --) 2 a 8  1. 
1 - 8  1 - 8  b k g T  

2. 

T = -C,a + c, 

2. 

The equation of state 
accounts for only the 
excluded-area in- 
teraction. 
Reduces to Equation 
(11) as 8 -+ 0. 
Reduces to the Lang- 
muir equation for 
low 8’s above the 
Henry limit. 
The coefficients a 
and b are two- 
dimensional analogs 
of the three- 
dimensional van der 
Waals coefficients. 
Reduces to the above 
case when a = 0. 
Surface behaves like 
an incompressible 
bulk phase. 
Known as the Har- 
kins- Jura Isotherm. 

according to this model. The two T, values for Kr are 86K and 210K, and the corresponding 
values for argon are 65 and 151K. 

There is another feature in Figure 9.6b that deserves additional comment. It is the exis- 
tence of a second set of vertical segments in the isotherms at values of 8 in the range of 
0.65-0.78. This suggests a second phase equilibrium in the two-dimensional matter, perhaps 
something analogous to the transition between the LE and LC states of monolayers on water 
(see Chapter 7) or to a liquid-solid transition. Indeed, beyond the second two-phase region, 
the slope of the isotherm changes sharply in a way that corresponds to a much less compres- 
sible surface state. 

Before exploring the consequences of this feature, it is first necessary to make certain that 
the result is riot just an artifact arising from surface heterogeneities. We noted that the 
graphite substrate for which the data of Figure 9.6b were collected was “specially treated.” A 
few details of this treatment should be mentioned. Graphite and anhydrous FeCl, are intro- 
duced into opposite ends of a Pyrex tube; the evacuated tube is then sealed and brought to 
about 300OC. A slight temperature gradient is maintained between opposite ends of the tube 
so the FeC1, distills to the graphite, where it reacts to forrn an interlamellar compound. 
Rapidly heating this compound to 9oO°C or higher results in the expulsion of the FeCl, and 
the attendant delamination of the graphite. The specific surface area of the final product- 
known as exfoliated graphite-is roughly two orders of magnitude greater than that of the 
initial graphite sample. The newly exposed graphite planes constitute a remarkably uniform 
solid adsorbent if all traces of FeCl, are removed. There is some evidence that the same vertical 
segments are observed in isotherms measured on the parent graphite as are observed in the 
exfoliated graphite. This argues that these features are not artifacts of the delamination 
process. 
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FIG. 9.6 Adsorption isotherms and surface phases. (a) schematic illustration of T versus o iso- 
therms in the vicinity of a two-dimensional critical temperature. (b) experimental data for the 
adsorption of krypton on exfoliated graphite showing similar features. (Data from A. Thorny and 
X. Duval, J.  Chem. Phys., 67, 1101 (1970).) 

9.3c.2b Harkins-Jura Isotherm. The Harkins-Jura equation (see Table 9.1) suggests 
that a plot of l n p  versus ( n / w )  -’ should be a straight line with a slope that is proportional to 
the square of the specific area. In experiments with solids of known area the linearity predicted 
by the Harkins-Jura equation has been observed. Furthermore, the proportionality constant 
relating the observed slopes to A,’ is independent of the nature of the adsorbent to a first 
approximation. Thus solids for which A ,  is known may be used to “calibrate” this method for 
a particular adsorbed species; then the specific area of an unknown may be determined 
using the same adsorbate. The Harkins- Jura isotherm therefore introduces the possibility of 
determining specific areas by gas adsorption studies, although it is only one of many isotherms 
that permit the evaluation of A,. 

Although it may give satisfactory values for A,, the Harkins-Jura equation leaves some- 
thing to be desired at the molecular level. For example, the linear 7r versus CJ equation of 
state - the starting point of the derivation of the Harkins-Jura isotherm - represents the rela- 
tively incompressible state of the surface phase (i.e., 0 = 0.7 in Fig. 9.6b). (This equation is 
obtained in analogy with the approximately linear 7r versus o equation for insoluble mono- 
layers discussed in Chapter 7 . )  However, in most instances of physical adsorption, no satura- 
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tion limit of adsorption appears. A s p  -+ po  the amount of material adsorbed increases asymp- 
totically. Multilayer adsorption is the only reasonable model for this observation. Except for 
special cases, the neighborhood of 0 = 1 is obscured by the onset of multilayer adsorption. In 
other words, there is a mismatch between the situation described by the Harkins-Jura model 
and that suggested by macroscopic observations. We noted above that many isotherms are 
insensitive to the assumptions of their derivation. In line with that observation is the fact that 
the Harkins-Jura equation does fit a fairly wide range of experimental data and gives reason- 
able values of specific surfaces despite these objections. This is one example of an “old 
shoemaster chef” situation; we see presently that it is only one of several such cases. 

9.3d Summary of Observations 
Several points might be noted in summarizing the results of Section 9.3: 

In principle, it is possible to correlate an  adsorption isotherm and a two-dimensional 
equation of state by working from either direction; that is, we may start with an experimental 
isotherm and develop the associated equation of state (as in going from Equation (8) to 
Equation (10) ), or we may proceed from the equation of state to the isotherm (as illustrated 
in Example 9.2). 

Relatively small increases in complexity for the equation of state result in considerably 
more complex equations for the adsorption isotherms. The gross features of the more complex 
isotherms are also given by simpler isotherms. This means that it is very difficult to choose 
among various isotherms in terms of the goodness of fit to ex:perimental data. Therefore it is 
difficult to conclude from an experimental isotherm what the two-dimensional surface phases 
are like. 

Two-dimensional equations of state are a useful source of isotherms, however, even 
though the test of the isotherm must be made in terms of some criterion other than an ability 
to describe adsorption. For example, the ability of an isotherm to predict the temperature 
dependence of adsorption or the specific area of an adsorbent is a more sensitive test of an 
isotherm than merely describing the way n / w  increases with p .  

Our approach until now has been to discuss adsorption isotherms on the basis of the 
equation of state of the corresponding two-dimensional matter. This procedure is easy to 
visualize and establishes a parallel with adsorption on liquid surfaces (Chapter 7); however, it 
is not the only way to proceed. In the following section we consider the use of statistical 
thermodynamics in the derivation of adsorption isotherms and examine some other ap- 
proaches in subsequent sections. 

1. 

2. 

3.  

9.4 THERMODYNAMICS OF ADSORPTION: 

The partition function is the central feature of statistical thermodynamics. From the partition 
function the various thermodynamic variables such as entropy, enthalpy, and free energy may 
be evaluated. It is also possible, in principle, to deduce the equation of state for a system from 
the partition function. 

It should be apparent-since an adsorption isotherm can be derived from a two- 
dimensional equation of state- that an isotherm can also be derived from the partition func- 
tion since the equation of state is implicitly contained in the partition function. The use of 
partition functions is very general, but it is also rather abstract, and the mathematical difficul- 
ties are often formidable (note the cautious “in principle” in the preceding paragraph). We 
shall not attempt any comprehensive discussion of the adsorption isotherms that have been 
derived by the methods of statistical thermodynamics; instead, we derive only the Langmuir 
equation for adsorption from the gas phase by this method. The interested reader will find 
other examples of this approach discussed by Broeckhoff and van Dongen (1970). 

A STATISTICAL PERSPECTIVE 

9.4a Preliminaries: Statistical Thermodynamics of Bulk Gases 
A brief review of the statistical thermodynamics of ideal (bulk) gases will help us get started. 
In addition to reviewing some relevant physical chemistry, it will supply us with some expres- 
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sions that may be useful since the two-dimensional ideal gas law applies to adsorbed molecules 
as a limiting case. 

The partition function Q is defined by the equation 

in which gj and ci represent the degeneracy and the energy, respectively, of the ith state. An 
important property of a partition function is its factorability into contributions arising from 
translation and internal degrees of freedom: 

Q = QtransQint 

For N indistinguishable molecules that do not interact with each other, the total partition 
function QN is given by ( l / N ! )  times the Nth power of (QtransQin,), where we take the Q's 
without the subscript N as the partition functions for individual molecules. The translational 
portion of the partition function is relatively easy to evaluate for ideal gases (see, for example, 
Atkins 1994). Substituting its value into Equation (15) gives 

for N molecules of mass m in a volume V at temperature T.  (The expression (e/N)N on the 
right-hand-side of Equation (16) comes from the use of Stirling's approximation for In N! for 
large N, i.e., lnN!  = N l n N  - N, orN!  = NNe-" = (N/e) ".) 

The easiest quantity to evaluate from this expression is the Helmholtz free energy F 

F =  -kBTlnQN (17) 
A variety of other thermodynamic functions may be evaluated from this. For example, the 
chemical potential - the quantity equalized in equilibrium calculations - of species i in a multi- 
component system is given by 

Also, to calculate the equation of state, we recall 

P = -(E) (19) 

If we apply Equations (17) and (19) to Equation (16)' for example, we get the ideal gas law: 

9.4b Statistical Thermodynamics of Adsorption 

The statistical thermodynamic approach to the derivation of an adsorption isotherm goes as 
follows. First, suitable partition functions describing the bulk and surface phases are devised. 
The bulk phase is usually assumed to be that of an ideal gas. From the surface phase, the 
equation of state of the two-dimensional matter may be determined if desired, although this 
quantity ceases to be essential. The relationships just given are used to evaluate the chemical 
potential of the adsorbate in both the bulk and the surface. Equating the surface and bulk 
chemical potentials provides the equilibrium isotherm. 

We apply this method to the derivation of the Langmuir isotherm both to illustrate the 
method and to see the assumed nature of the surface energy states on which it is based. 

9.4b. I 
The Langmuir isotherm is based on the assumption of localized adsorption. This means that 
an adsorbed molecule has such a high statistical preference for a certain surface site as to 
possess a negligible translational entropy in the adsorbed state. Localized adsorption is thus 

Localized, Monolayer Adsorption: The Langmuir Isotherm 
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seen to be very plausible for chemisorption, in which the adsorbed molecules and the adsor- 
bent interact quite specifically. For nonspecific physical adsorption a nonlocalized or mobile 
layer seems to be a more plausible picture. We have already discussed the Henry law type of 
isotherm and the ideal gas equation of state that are associated with the simplest type of 
mobile adsorption. 

The adsorption sites on the surface are assumed to be uniform and to bind the adsorbate 
with an energy E per molecule or E per mole; that is, the potential energy of a molecule in the 
gaseous state is zero, and in the adsorbed state it is -E.  Note that this adsorption energy is a 
characteristic of the interaction between the adsorbed moleculles and the adsorbent. As such, 
it is the same not only for all parts of the surface but also for all degrees of surface coverage. 
This is equivalent to saying that the adsorbed molecules do not interact with each other. 

The surface is assumed to consist of M adsorption sites. Suppose we consider the case in 
which N of the sites are occupied; that is, N molecules are adsorbed. To write the partition 
function Q for the surface molecules, we must ask how these molecules differ from those in 
the gas phase (superscript g ) .  Some of the internal degrees of freedom may be modified by the 
adsorption (pin,), but the most notable difference will be in the translational degrees of 
freedom. Frorn three equivalent translational degrees of freedolm, the adsorbed molecule goes 
to two highly restrained translational degrees of freedom (remember the adsorption is local- 
ized) and one vibrational degree of freedom normal to the surf,ace(s): 

@runs. 3d G r a n s .  2d a r b  (21) 

With these ideas in mind, we may assemble the partition function of the surface molecules as 
follows: 

In this expression, the degeneracy factor gN represents the number of ways the N molecules 
may be placed on M sites, and is given by the combinatorial f’ormula (see Equation (3.52) in 
Section 3.4a.2 or Equation (2.46) in Section 2.6a): 

M! 
E ( M  - N)! gN = 

Combining Equations (22) and (23) gives the following expression for the partition function 
of the adsorbed molecules: 

M! 
( G r a n s .  2d E i b  e f n r  exp ( ) @ = N! ( M  - N)! kBT 

Application of Equation (17) to Equation (24) gives the Helmholtz free energy of the adsorbed 
molecules: 

Since N a n d  A4 are large, the factorials may be expanded by Sterling’s approximation (In x! = 
x In x - x) to give 

N E  + - M l n M  - N l n N  - ( M  - N ) l n  (A4 - N) 
kBT 

+ In ( G r a n s . 2 d  g i b  e f n r  )) (26) 

The chemical potential of the adsorbed molecules is given, according to Equation (18), by the 
derivative of F” with respect to N: 
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The condition of equilibrium between the adsorbed 
requires that the chemical potential for the adsorbed 
and the adsorbed state: 

p s  = pg 

molecules and molecules in the gas state 
species be the same in both the gas phase 

Applying Equations (17) and (18) to Equation (16) shows the chemical potential for an 
ideal gas to be 

since V = RT/p. 
Equating Equations (27) and (29) gives 

We may group the following terms together to define a new quantity K: 

in terms of which Equation (30) becomes 

= K p  
N 

M - N  

Now if we divide both the numerator and denominator of the left-hand side by M and 
recognize that N/M = 8, we obtain 

or 

l j=----  K P  
1 + K p  

(34) 

two forms of the Langmuir adsorption isotherm (see Equation (7.67) ). 
The quantity K defined by Equation (31) may easily be expanded somewhat further. 

First, we write the two-dimensional partition function by analogy with its three-dimensional 
counterpart, Equation (16). To do this, replace V by the area accessible to the adsorbed 
molecule U and the exponent by 2/2 (= 1) in place of 312 since two rather than three degrees 
of freedom are involved. Therefore we obtain 

If the energy separating the vibrational quantum states is small relative to the thermal energy, 
the partition function for vibration is approximately given by 

For physical adsorption the approximation involved here is expected to be valid. Finally, the 
energy of vibration may be replaced by hv, where v is the frequency with which the adsorbed 
molecules vibrate against the adsorbent: 

Gib = kBT/hv (37) 
Combining Equations (35) and (37) with Equation (31) gives 
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It should be noted that this quantity has the units length2 force-', reciprocal pressure units, as 
required by Equation (34). 

We saw from Equation (7.75) how to rearrange the Langinuir equation into a form that 
permits graphical evaluation of the parameters. For the adsorption of gases this becomes 

(3 9) p / ( n / w )  = mp +- b 

Slope = rn = N,a/A, 

and predicts a straight line when Lp/(n/w)] is plotted versusp, with 

(40) 

and 
SlopeAntercept = m/b = K 

Figure 9.7 shows some data for the adsorption of ethyl chloride on charcoal. Since these data 
were collected at different temperatures, the ratio p / p o  is used as the independent variable in 
fitting the data to Equation (39). That is, to compare the adsorption at different temperatures, 
the pressure is expressed as a fraction of the equilibrium vapor pressure at that temperature. 
The data for each of the three temperatures in Figure 9.7 give quite good straight lines 
when plotted according to the linear form of the Langmuir equation (Equation (39) ); the 
interpretation of this analysis is discussed in Example 9.3. 

* * *  

EXAMPLE 9.3 Analysis of Adsorption Data Using the Langmuir lsotherm. Slope and intercept 
values for the linearized plots of the data in Figure 9.7 are as follows: 

Temperature (OC) Slope (g g -') Intercept (g g -') 
- 15.3 1.9 0.040 

0.0 2.0 0.047 
20.0 2.0 0.088 

Note that since p/po is used in the linearization, the abscissa is dimensionless and the slope 
and intercept have the same units. Figure 9.7 suggests that the data at -15.3 and O.O°C 
converge to a common saturation value, but this is less clear for the data at 2OOC. Do the linear 
plots clarify this situation? From the temperature dependence of the K's for these data, estimate 
the adsorption energy in this system. 
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FIG. 9.7 Plot showing how the amount of ethyl chloride adsorbed on charcoal (in g g - ' )  varies 
with pressure at - 15.3, 0, and 2OOC. (Data from F. Goldman, and M. Polanyi, Z. Phys. Chem., 
132, 321 (1928).) 
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Solution: The slopes of these lines are identical (within experimental error), and the combina- 
tion of Equations (40) and (7.72) shows that the reciprocal of the slope gives the adsorption at 
saturation. We conclude, therefore, that all three isotherms converge to the same saturation 
level of adsorption, namely, (2.0) -' = 0.50 g g -'. 

The ratio of the slope to intercept values gives K for the adsorption at the three tempera- 
tures: i.e., K = 48, 43, and 23 at -15.3, 0.0, and 2O.O0C, respectively. Multiplying Equation 
(38) through by 7"2 and taking logarithms gives In (7"2K) = (dk,)(llT) + const. = (€/R)(l/T) 
+ const. While the quality of the data and the number of points scarcely justify the interpreta- 
tion, a value for EIR of about 1700 can be estimated, suggesting an apparent value for E of 
about 14 kJ mole -'. The word apparent is included until the effect of using p/p, instead of p in 

H the linearization of the Langmuir equation is clarified. 
* * *  

As noted above, the ability to predict correctly the temperature dependence of adsorption is a 
more stringent test of an isotherm than mere correlation of adsorption data. For this reason 
an independent measure of the energy of adsorption is clearly desirable. We return to this in 
Section 9.6. 

Until now, we have focused OUT attention on those adsorption isotherms that show a 
saturation limit, an effect usually associated with monolayer coverage. We have seen two ways 
of arriving at equations that describe such adsorption: from the two-dimensional equation of 
state via the Gibbs equation or from the partition function via statistical thermodynamics. 
Before we turn our attention to multilayer adsorption, we introduce a third method for the 
derivation of isotherms, a kinetic approach, since this is the approach adopted in the deriva- 
tion of the multilayer, BET adsorption isotherm discussed in Section 9.5. We introduce this 
approach using the Langmuir isotherm as this would be useful in appreciating the common 
features of (and the differences between) the Langmuir and BET isotherms. 

9.4b.2 Langmuir Isotherm from Kinetic Theory 
Suppose we consider a surface consisting of a total of A4 adsorption sites, Ml of which are 
filled with adsorbed molecules to a depth of one molecule. Thus the number of bare sites MO 
is (A4 - M I ) .  This situation is defined to be in equilibrium when the rate at which molecules 
attach to bare spots is the same as the rate at which they escape from monolayer regions. The 
rate of the adsorption process R, is proportional to both the pressure and the number of 
available sites: 

The rate of desorption Rd is proportional to the number of sites occupied: 

The subscript 1 for Rd and kd in Equation (43) reminds us that these refer to layer 1 only 
(monolayer). At equilibrium the rates given by Equation (42) and (43) are equal: 

Ra kaPMO (42) 

Rd,l = kd,lM1 (43) 

kaPMO = kd,lMl (44) 
When adsorption is restricted to a monolayer, one has 

MO 4- A4, = M (45 1 
a result that may be substituted into Equation (44) to give the Langmuir equation: 

It is worthwhile to examine the expected form of the two rate constants ka and kd,,. The rate 
constant for desorption consists of a frequency factor and a Boltzmann factor. The former 
may be assumed to be proportional to a frequency v, and the energy in the Boltzmann factor 
may be identified with the energy of interaction between the adsorbate and the adsorbent: 

From kinetic theory of gases (see Atkins 1994), the number of collisions per unit area per unit 
time 2 between gas molecules and a wall equals 
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Z = (27ru~k,T)-"~p (48) 
If this is multiplied by a surface area 0, the result is the rate of surface collisions. Then by 
analogy with Equation (42), we may take k, as 

k, cc (27rrnkET) -"20 (49) 
The ratio k,/kd,, may be set equal to the Langmuir coefficient K .  Therefore, from Equations 
(49) and (47) we get 

a result that is identical to Equation (38) as far as translational factors are concerned. 
This kinetic-theory-based view of the Langmuir result provides no new information, but 

it does draw attention to the common starting assumptions of t'he Langmuir derivation and the 
BET derivation (Section 9.5a). This kinetic derivation of the Langmuir equation is especially 
convenient for obtaining an isotherm for the adsorption of two gases. This is illustrated in 
Example 9.4. 

* * *  

EXAMPLE 9.4 Kinetic-Theory-Based Description of Binary Adsorption. Assume that two 
gases A and B individually follow the Langmuir isotherm in their adsorption on a particular solid. 
Use the logic that results in Equation (46) to derive an expression for the fraction of surface 
sites covered by one of the species when a mixture of the two gases is allowed to come to 
adsorption equilibrium with that solid. 

Solution: The rate of desorption of A is given by Equation (43) as R,A = k,AMA and the rate of 
adsorption of A by Equation (42). Allowing for the fact that both A and B occupy surface sites, 
we have R , ,  = ka,ApAMo = ka,#A(M - MA - M,). In this expression pA is the partial pressure 
of A. At equilibrium the rates of adsorption and desorption are equal; therefore kd,AMA = ka,A 
pA(M - MA - M,). Defining Oi = M,/M and Ki = k,,i/kd,i, we can write this last result as 8 A  = 

1 - 8 A  -- 8,). A similar expression can be written for 8, : OI3 = K&( 1 - 8 A  - 8,). 
Next the ratio of OA/OB can be used to eliminate one of the 8's from the above expressions. 

Since BA/BB = KflA/KB p,, 0, = (KEJoB/KA~A ) 8 A .  Using this to eliminate 8,, we obtain K A ~ A  = 8 A ( 1  
+ K f l A  + Ksp,), which rearranges to 8 A  = KflA/( l  + KflA + ,KBpB). 

A similar expression is obtained for 8, : 8, = &pS/( 1 + KdlA + K,p,). 
The fraction of surface sites covered by one gas or the other is given by 8 A  + 8, = (K+,pA + 

K,PB)/(l + KAPA + K,P,,). Note that the expressions for 8 A ,  O,, and 8 A  + 0, all reduce to simple 
Langmuir expressions when one of the p or K values is zero. 

* * *  

9.5 MULTILAYER ADSORPTION: 
THE BRUNAUER-EMMETT-TELLER EQUATION 

9.5a Derivation of the Brunauer-Emmett-Teller lsot herm 

As noted above, the range of pressures over which gas adsorption studies are conducted 
extends from zero to the normal vapor pressure of the adsorbed species po. An adsorbed layer 
on a small particle may readily be seen as a potential nucleation center for phase separation at 
po. Thus at the upper limit of the pressure range, adsorption and liquefaction appear to 
converge. At very low pressures it is plausible to restrict the adsorbed molecules to a mono- 
layer. At the upper limit, however, the imminence of liquefaction suggests that the adsorbed 
molecules may be more than one layer thick. There is a good deal of evidence supporting the 
idea that multilayer adsorption is a very common form of physical adsorption on nonporous 
solids. In this section we are primarily concerned with an adsorption isotherm derived by 
Brunauer, Emmett, and Teller in 1938; the theory and final equation are invariably known by 
the initials of the authors: BET. 

The BET isotherm has subsequently been derived by a variety of methods, but, as men- 
tioned in the previous section, we follow the approach of the original derivation, namely, a 
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kinetic description of the equilibrium state. Like the Langmuir isotherm, the BET theory 
begins with the assumption of localized adsorption. There is no limitation as to the number of 
layers of molecules that may be adsorbed, however; hence there is no saturation of the surface 
with increasing pressure. In general, the derivation assumes that the rates of adsorption and 
desorption from each layer are equal at equilibrium and that adsorption or desorption can 
occur from a particular layer only if that layer is exposed, that is, provided no additional 
adsorbed layers are stacked on top of it. 

If we allow the possibility that a surface site may be covered to a depth of more than one 
molecule, then the following modifications to the derivation presented in Section 9.4b.2 are 
required. First, we define M, to be the number of sites covered to a depth of i molecules. 
Second, Equation (45) is modified to 

n 

M = MO + M 1  + M2 + . . . + M,  = x M i  
i = O  

where the summation includes all thicknesses of coverage from zero to n,  the maximum. 
Now let us consider the composition of the second layer (i = 2). By analogy with Equa- 

tion (42), the rate at which molecules adsorb to form layer 2 is proportional to p and M , .  For 
simplicity, the proportionality constant is assumed to be the same as that for adsorption on 
the bare surface. Therefore we write 

In a similar fashion, we assume the rate of desorption from the second layer to be proportional 
to M2: 

The constant kd,2 is assumed to be of the same form as that given by Equation (47) for the first 
layer, with one important modification. While desorption from the first layer involves detach- 
ing a molecule from the adsorbent as a substrate, desorption from the second layer involves 
detachment from another adsorbed molecule of the same kind. The adsorption energy E was 
used in the Boltzmann factor in the first case; the energy of vaporization E,  is a more appro- 
priate value to use for the analogous quantity in the second case. We shall assume the fre- 
quency factor to be unchanged and write 

At equilibrium, the rate of adsorption and the rate of desorption from the second layer are 
also equal; therefore 

As a matter of fact, the same expression also applies to the third, fourth, . . . , ith levels. As a 
first approximation, the “activation energy” for desorption is the same for all layers after the 
first. This leads to the generalization 

kaMi- ,p  = kd,iMi 

fo r2  I i < n. 
Equation ( 5 6 )  enables us to relate M, to Ml-l  just as Equation (44) relates Ml to MO. 

Moreover, through repeated application of Equation (56)  we may relate M, to M1 or MO as 
follows: 

1- 1 i - l  i- 1 

(57) 

Since k, is assumed to be the same for each layer and kd,i differs from kd only in the value of 
the energy in the Boltzmann factor, this may be written 



ADSORPTION AT GAS-SOLID INTERFACES 427 

ka' pi  MO 
v'[exp ( - E,/k,T)]'-' exp ( - E/k,T) M; = - (58)  

Multiplying the numerator and denominator of the right-hand side by exp ( - e,/k,T) we get 

ka'p' MO exp ( - E,/k,T) 
[V exp ( - e,/k,T)]' exp ( - e/k,T) 

Mi = - 

which may be written 

M; = xicMo 

with c and x defined as follows: 

ka P x = -  
v exp ( - E,/k,T) 

and 

c = exp( eT) E - E ,  

(59) 

Further, Equation (60) may now be substituted into Equation (Sl) to give 
n 

M = MO 4- M, + M2 + . . . + M" = MO + C X ' C M o  (63) 

Under some circumstances there may be a reason to restrict adsorption to a finite number of 
layers, that is, assign some specific value to n. In general, however, n -+ 00 as p -+ po is 
usually taken as the upper limit for this summation. 

At this point we may define two other quantities in terms of the variables involved in 
Equation (59): the total volume of gas adsorbed and the volume adsorbed at monolayer 
coverage, V and V,, respectively. The total volume is obviously the sum of the volume held in 
each type of site V,, which is proportional to iMf: 

' = I  

n n 

v = C v i  a C i M ,  
;= 1 i= 1 

The volume adsorbed at monolayer coverage is simply propoirtional to the total number of 
sites irrespective of the depth to which they are covered: 

n 

V , a M - M , +  E M ;  
i =  1 

that is, V, equals the volume of gas that would be adsorbed if a monolayer were formed. 
However, note that in writing Equation (65) it is not assumed that the monolayer is completely 
filled before other layers are formed. On the contrary, the picture allows for the coexistence 
of all types of patches, with adsorbed molecules stacked to various depths on each. There is 
no implication that a filled monolayer is required for multilayer formation. 

Taking the ratio of Equation (64) to Equation (65) eliminates the unspecified proportion- 
ality constant and gives 

Ci iMj  - c E; ix' - - V - - -- 
v, MO + EM; 1 + c c ; x '  

The ratio V/ V, may be identified with 8, which may have values greater than unity in the case 
of multilayer adsorption. All that remains to be done to complete the BET derivation is to 
evaluate the summations in Equation (66). 

To assist in the evaluation of the summations, suppose we consider the quantity 
[x( 1 - x )  - ' I .  The factor in parentheses may be expanded as a power series (see Appendix A) 
to give 
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n 

x ( l  - x)-I = x ( l  + x + 2 + . . . ) = C x i  (67) 

Next we consider the quantity (x(d/dx)(Cixi)}. Carrying out the indicated differentiation 
gives 

i =  1 

Equation (67) may now be used as a substitution for Cix’ in Equation ( 6 8 )  to yield 

(69) 
d X 

C i x i  = x - [x (1  - x ) - l ]  = 
I dx ( 1  - x ) 2  

Substituting Equations (67) and ( 6 9 )  into Equation (66)  gives 

- c x ( 1  - x ) - 2  - V - 
v, 1 + cx (1  - x)-I 

This last result may be simplified further to become 

c x  - - - V 

v, ( 1  - x )  [ I  + ( c  - l ) x ]  

Equation (71) is the result generally defined as the Brunauer-Emmett-Teller (BET) equation. 

the definition of x given by Equation ( 6 1 )  and that V -+ 00 a s p  -+ po permits us to write 
The condition that V -+ M is seen to correspond to x = 1 by Equation (71). Recalling 

PO (72) I = -  kL? 
kd,l 2 2 

Therefore Equation ( 6 1 )  becomes 

(73) 
P 
PO 

x = -  

Thus the independent variable in the BET theory is the pressure relative to the saturation 
pressure. Therefore the BET equation describes the volume of gas adsorbed at different values 
of p/po in terms of two parameters V, and c. Furthermore, the model supplies a physical 
interpretation to these two parameters. 

9.5b Testing the Brunauer-Emmett-Teller Theory 

Basically there are three criteria against which the success of the BET theory may be evaluated: 
its ability to “fit” adsorption data, correct prediction of the temperature dependence of adsorp- 
tion, and correct evaluation of specific area. We discuss these three issues in this section. 

9.5b. I 
The easiest way to evaluate the BET constants is to rearrange Equation (71) into the following 
linear form: 

Evaluation of Brunauer-Ernrnett- Teller Constants 

1 x  c - 1  1 

V l  - x  c v ,  c Vm 
x + -  --=- (74) 

This form suggests that a plot of (11 V)[x/( 1 - x ) ]  against x should yield a straight line, with 

(75) 
c - 1  

Slope = rn = - 
c v, 

and 

Intercept = b = l/cVm (76) 
Equations (75) and (76) may be solved to supply values of V, and c from the experimental 
results: 
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1 v, = ~ 

m + b  

and 

m 
c = - + l  

b 

(77) 

In the following few paragraphs we first examine some of the general features of gas adsorp- 
tion as predicted by the BET theory. Next we consider how well the theory actually fits 
experimental data. The use of experimental V, values in the evaluation of A ,  is taken up in 
the following section. 

9.5b.2 Predictions of Brunauer-Emmett- Teller Theory: Success in Fitting Experiments 
Figure 9.8 enables us to observe some of the general features of the BET isotherm. The most 
apparent aspect concerning all the curves in this figure is their rapid increase as p / p o  + 1 .  It is 
also apparent, however, that the shape of the curve is sensitive to  the value of c, especially for 
low values of c. Note particularly that the BET equation encompasses both Type I1 and Type 
I11 isotherms (Fig. 9.4). For values of c equal to 2 or less, the curves show no inflection point, 
whereas the inflection becomes increasingly pronounced as c increases above 2. In view of the 
wide diversity of curve shapes that are consistent with the BET equation and the relative 
insensitivity of adsorption data to  the model underlying a particular equation, we might expect 
that the BET equation will fit experimental data rather successfully. 

Figure 9.9a is a plot of some actual experimental data showing the volume of N,- 

FIG. 9.8 
the BET theory by Equation (7 1). 

Plots of V/ V, versus p / p o  for several values of the parameter c, calculated according to 
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FIG. 9.9 Nitrogen adsorption on nonporous silica at 77K. (a) volume per gram (in cm3 per gram 
at STP) versus p/po; and (b) according to the linear form of the Brunauer-Emmett-Teller equation 
(Equation (74) ). (Data from D. H. Everett, G. D. Parfitt, K. S. W. Sing, and R. Wilson, J .  Appl. 
Chem. Biotechnol., 24, 199 (1974).) 

expressed as cubic centimeters at STP per gram - adsorbed by a sample of nonporous silica at  
77K. Figure 9.9b shows these same results plotted according to the linear form of the BET 
equation, given by Equation (74). The BET equation is seen to fit the adsorption data in the 
range 0.05 < p/po < 0.30. From the values of the slope (0.0257 g cm - 3  at STP) and intercept 
(2.85 - 10-4 g cm-3 at STP), Equations (77) and (78) may be used to evaluate V, and c for 
this system: 

1 
1 

V, = = 38.5 cm3 g-' at STP 
(257 + 2.85) * 10-4 

257 - 1 0 - ~  
2.85 - 1 0 - ~  

c =  + 1 = 91.2 

(79) 

The range of pressures over which the linear form of the BET equation fits the experimen- 
tal data in Figure 9.9 is fairly typical for a variety of gases and adsorbents. At relative 
pressures below the range of fit, the BET equation underestimates the actual adsorption, 
whereas above p/po  = 0.35, the equation overestimates it. This range of p/po values encom- 
passes the region in which V = V, for 2 < c < 500. This is an important range for applying 
the BET equation to surface area determination. 

9.5b.3 Brunauer-Emmett- Teller Theory and Temperature Dependence of Adsorption 
The parameter c describes the temperature dependence of adsorption. In the derivation already 
presented, certain simplifying assumptions were made as to the constancy of k, and vi in each 
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of the layers. Various modifications of this assumption might be made, but they would involve 
minor temperature effects at best. To a first approximation, then, one should be able to 
evaluate ( e  - c,) from a knowledge of experimental c values, or vice versa. Proceeding in the 
first manner leads to values of ( E  - E , )  that are too low, perhaps half their expected value. When 
we consider the region of fit on which the evaluation of c is based, it is not difficult to see why 
values of c are too low. The data are not fitted to the earliest stages of adsorption that are associ- 
ated with larger values of E ;  hence c is underestimated. The definition of c allows us to conclude 
some unfinished business pertaining to Example 9.3. This is examined in Example 9.5. 

* * *  

EXAMPLE 9.5 Calculating the Adsorption Energy from the Briinauer-Emmett-Teller lsotherm. 
The BET analysis uses p/po rather than p as a variable just as we used this pressure ratio to 
compare Langmuir adsorption at different temperatures in Exa.mple 9.3. What corrections, if 
any, are needed in the “apparent adsorption energy” of about 14 kJ mole-’ as calculated in 
Example 9.3? 

Solution: The answer to this is obtained by comparing Equations (31) and (62). When p/po is 
used instead of p, we obtain c, not K,  from the linearized Langmuir equation via Equation (41). 
The exponential energy term evaluated from the analysis of In K versus 1 /T  is seen by Equation 
(62) to be the difference between the adsorption energy and the energy of vaporization of the 
adsorbate. For ethyl chloride E, = 23 kJ mole - l ;  therefore E = 23 + 14 = 37 kJ mole -l; this is 
the actual adsorption energy for the ethyl chloride-charcoal systern discussed in Example 9.3. 

Note also that small values of c-which account for Type Ill adsorption isotherms-result 
when e, > e in Equation (62). This was anticipated in our remarks about Figure 9.4. 

* * *  

9.5b. 4 Brunauer-Emmett- Teller Theory and Specific Surface Area 
The final criterion for judging the success of a theoretical isotherm is its ability to measure 
specific surface areas. Since the BET equation has become a standard in this regard, we devote 
this subsection to the discussion of this topic. 

With monolayer adsorption, we saw how the saturation limit could be related to the 
specific surface area of the adsorbent. The BET equation permits us to extract from multilayer 
adsorption data (by means of Equation (77) ) the volume of adsorbed gas that would saturate 
the surface if the adsorption were limited to a monolayer. Therefore V, may be interpreted in 
the same manner that the limiting value of the ordinate is handled in the case of monolayer 
adsorption. Since it is traditional to express both V and V, in cubic centimeters at STP per 
gram, we write (see Equation (7.72) ) 

A ,  (22,414) V, = ( t, ) (22,414 cm3 mole-’) = 
sat NA U’ 

Note that it is assumed that V, has been expressed on a “per gram” basis in writing Equation 
(81). If this is not the case, the area of the actual sample rather than its specific area is given 
by Equation (81). If the area occupied per molecule on the surface is known, the specific 
surface may be evaluated from Equation (81): 

This last quantity is something that may be determined by independent methods; therefore the 
BET theory may be tested at this point. 

It is clear that the same value of A, must be obtained for a particular adsorbent regardless 
of the nature of the adsorbate used. Studies of this sort lead to quite consistent values of A,, 
provided the adsorbed species all have access to the same surface. On a porous surface, for 
example, large adsorbate molecules may not be able to enter small cavities that are accessible 
to smaller molecules. 

In the preceding discussion, it has been assumed that a value of ao is known unambigu- 
ously. This quantity is obviously the “yardstick” by which moles of adsorbed gas are converted 
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to areas. Any error in this quantity will invalidate the determination of A,. What is generally 
done is to assume the adsorbed material has the same density on the surface that it has in the 
bulk liquid at the same temperature and to assume the molecules are close packed on the 
surface. In view of the earlier discussion of surface phases, this is seen to be a somewhat risky 
procedure. The safest way to proceed would be to evaluate co for a particular adsorbate from 
independent measurements of V, and A,. 

In view of the difficulty in translating measured gas adsorption into absolute specific 
surface areas, it is not surprisingothat self-consistency is often normative in this matter. In this 
sense, at least, an area of 16.2 A' for nitrogen has become something of a standard. Values 
for other common adsorbed species may be found in the works of Adamson (1990), Broeck- 
hoff and van Dongen (1970), and Kantro et al. (1967). It is probably not surprising that polar 
molecules such as water display values of oo that are sensitive to the nature of the substrate. 
Using nitrogen adsorption to evaluatt A ,  and then using the latter to evaluate oo for water has 
led to values of 12.5, 10.4, and 11.4 A 2  for amorphous silica, calcium hydroxide, and calcium 
silicate hydrate, respectively. 

In spite of a variety of objections to the BET theory, V,  values from N, adsorption studies 
have become a very common means for determining specific surface areas. As a matter of 
fact, an IUPAC commission was organized in 1969 to study N2 adsorption with the objective 
of preparing reference standards for surface area determinations. In this project four silicas 
and four carbon blacks of different particle size were investigated independently in 13 different 
laboratories. Nitrogen adsorption data were analyzed by th? BET method over the best fit 
region, and values of V, were converted to A ,  using 16.2 A2 as the value of 0'. Table 9.2 
shows the values of A ,  and c obtained in the 10 laboratories that studied the silica of Figure 
9.9. The average value of the specific surface from these determinations is 163.4 (+66%) m2 
g- ' .  This value agrees with our analysis of Figure 9.9 obtained by combining Equations (79) 
and (82): 

(38 .5 )  (6.02 - 1023) (16.2 * 1OP2O) 
22,400 

= 168m2g-' A ,  = (83) 

Samples of this material as well as others investigated are now available for calibration pur- 
poses as gas adsorption standards. Details may be found in the reference cited for the data of 
Table 9.2. 

TABLE 9.2 Values of A ,  and c as Determined in 10 
Different Laboratories by the Brunauer-Emmett-Teller Method for 
the Same Silica Sample Shown in Figure 9.9 

Laboratory C 

66.4 
62.8 
74.0 
48.5 
73.5 
66.0 
67.9 
43.6 

I 169.5 

92 
01 
00 
66 
70 
98 
91 
13 
62 

J 161.7 122 
Average 163.4 102 
Standard deviation 10.0 (6010) 29 (28%) 

Source: D. H. Everett, G. D. Parfitt, K. S. W.  Sing, and R. Wil- 
son, J. Appl. Chem. Biotechnol., 24, 199 (1974). 
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At first glance, it may seem surprising that the BET method is as successful as it is in the 
evaluation of Asp. After all, the values of c are not in particularly good agreement with 
expected values, nor, conversely, are ( E  - E , )  values calculated from experimental c’s in good 
agreement with expectations. Probably a significant part of the discrepancy between theory 
and experiment with respect to c arises from the heterogeneity of the surface. The BET 
equation-like the Langmuir equation to which it reduces in certain limits-assumes that a 
single adsorption energy applies to all surface sites. As we saw in Chapter 6, Section 6.7, a 
distribution of surface energy states is not uncommon with solids. In this regard, both the 
Langmuir and BET models are unrealistic. However, sites with high adsorption energies are 
apt to be covered by adsorbate molecules first. If these represent a relatively small fraction of 
the surface sites, this effect gets masked fairly quickly as the first layer fills. In addition, 
lateral interactions between adsorbed molecules start at zero and increase as the surface begins 
to fill. Even these interactions tend to level off after a certain degree of coverage is achieved. 
Therefore, even though a single adsorption energy is unreal.istic, there are compensating 
effects that tend to minimize the variation. 

Although we have often mentioned the adsorption energy in this chapter, we have not yet 
discussed any procedure by which this can be measured quantitatively except as some sort of 
an average quantity. Since most solid surfaces are heterogeneous, it is desirable to be able to 
examine adsorption energy in a more discriminating way, for example, as a function of 
coverage or pretreatment. In the following section we see how tlhis can be done. 

9.6 ENERGETICS OF ADSORPTION 

As we have seen, an adsorption isotherm is one way of describing the thermodynamics of gas 
adsorption. However, it is by no means the only way. Calorimetric measurements can be made 
for the process of adsorption, and thermodynamic parameters may be evaluated from the 
results. To  discuss all of these in detail would require another chapter. Rather than develop all 
the theoretical and experimental aspects of this subject, therefore, it seems preferable to 
continue focusing on adsorption isotherms, extracting as much thermodynamic insight from 
this topic as possible. Within this context, results from adsorption calorimetry may be cited 
for comparison without a full development of this latter topic. 

9.6a Definitions of Heat of Adsorption 

The approach we follow is essentially that used to derive the Clapeyron equation (Atkins 
1994). Suppose we consider an infinitesimal temperature change for a system in which ad- 
sorbed gas and unadsorbed gas are in equilibrium. The criterion for equilibrium is that the 
free energy of both the adsorbed (subscript s) and unadsorbed (subscript g )  gas change in the 
same way: 

dGs = dGg (84) 

The following equations may be written for these two quantities if the temperature change 
is assumed to cause no change in the amount of adsorbed material: 

dG, = -S,dT + V&p 

and 

Substituting Equations (85) and (86) into Equation (84) and rearranging gives 
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In writing this last result, it has been explicitly noted that the number of moles of adsorbed 
gas n, is constant. If the process under consideration is carried out reversibly, Sg - S, may be 
replaced by q,/T, where qS1 is known as the isosteric (the same coverage) heat of adsorption: 

(88) Sg - S, = q,,/T 

Combining Equations (87) and (88) leads to the result 

Equation (89) may be integrated if the following assumptions are made: (a) Vg % V,, so that 
V, may be neglected, (b) the gas behaves ideally so that the substitution Vg = RT/p may be 
used, and (c) q,, is independent of T. With these assumptions, Equation (89) integrates to 

Equation (90) shows that the isosteric heat of adsorption is evaluated by comparing the 
equilibrium pressure at different temperatures for samples showing the same amount of sur- 
face coverage. The data of Figure 9.7 may be used as an example to see how this relationship 
is applied. 

For an arbitrarily chosen extent of adsorption, a horizontal line such as the dashed line in 
Figure 9.7 may be drawn that cuts the various isotherms at different pressures. The pressure 
coordinates of these intersections can be read off the plot. According to Equation (90), a 
graph of In p versus 1/T should be linear with a slope of ( -qst/R). From Figure 9.7, for 
example, when the adsorption is 0.10 g ethyl chloride (g charcoal) - ' (which corresponds to 8 
= 0.2), the equilibrium pressures are 0.20, 0.63, and 2.40 torr at -15.3, 0, and 2OoC, 
respectively. When plotted in the manner just described, these data yield a line of slope - 5330 
K. Multiplication by R gives qsr = 44.3 kJ mole-' as the isosteric heat of adsorption for this 
system at 8 = 0.2. Table 9.3 lists values of q,, for different 8 values as calculated from the 
data in Figure 9.7. 

9.6b Comparison of Adsorption Energies Measured 
Using Different Methods 

Table 9.3 is based on the same data that were analyzed according to the Langmuir equation in 
Section 9.4b.l. Examples 9.3 and 9.5 show that these data are consistent with an adsorption 
energy of about 37 kJ mole - '  according to the Langmuir interpretation. 

TABLE 9.3 Values of the Isosteric Heat 
of Adsorption at Different Values of 8 for 
the Data Shown in Figure 9.7 as Evaluated 
by Equation (90) 

e qg (kJ mole-') 

0.06 
0.08 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 

56.9 
47.3 
46.4 
44.3 
41.4 
40.2 
40.2 
41 .O 
38.1 
37.2 



ADSORPTION AT GAS-SOLID INTERFACES 435 

In presenting this result initially, the remark was made that an independent determination 
of the adsorption energy would be desirable. Although the present reinterpretation of the same 
data is not exactly an “independent” determination, it does extract an energy quantity from 
the experimental results that is free of any assumed model for the mode of adsorption. 
Accordingly, it is informative to compare the two interpretations. The Langmuir model as- 
sumes that a single energy applies to all adsorption sites. Therefore any data analyzed accord- 
ing to this model cannot yield more than one energy. The isosteric heat of adsorption, on the 
other hand, is evaluated at different degrees of surface coverage. The data in Table 9.3 show 
that this quantity definitely varies with coverage, tending to level off as 8 + 1 .  This is consis- 
tent with the picture of the more active “hot spots” being covered first. The average energy 
that the Langmuir analysis yields is approximately the same as the energy toward which qs, 
converges. 

There are several additional thermal quantities besides qft and E that may be generically 
called “heats of adsorption.” One of these is the integral heat of adsorption Qn, which is 
related to the isosteric heat of adsorption as follows: 

Qn = i’ q,rdn (91) 

It applies to the process in which n moles of adsorbate are transferred from the bulk gas to the 
surface, starting from a bare surface. The integral heat of adsorption is determined from data 
such as those contained in Table 9.3 by graphical integration. 

In addition, there are a number of different calorimetric methods to determine heats of 
adsorption. For example, we may distinguish between isothermal and adiabatic heats depend- 
ing on the type of calorimeter involved. Of course, thermodynamic relationships exist among 
these various quantities. We shall not pursue these topics, but one should be aware of the 
differences and seek precise definitions if the need arises. 

The data shown in Figure 9.10 indicate both the kind of data that may be obtained by 
direct calorimetric study of gas adsorption and some evidence of the effect of preheating on 
the properties of surfaces. The figure shows the calorimetric heat of adsorption of argon on 
carbon black. The broken line indicates the behavior of the untreated black, and the solid line 
is the “same” adsorbent after heating at 20OO0C in an inert atmosphere, a process known as 
graphitization. The horizontal line indicates the heat of vaporization of argon. 

There are several interesting aspects of this figure that are quite generally observed. 
1 .  The untreated carbon black shows the effect of surface heterogeneity, an effect that 

becomes smeared out as the coverage increases. The surface of the untreated black contains a 
certain amount of oxygen in a variety of functional groups (e.g., ether, carbonyl, hydroxyl, 
and carboxyl). Graphitization results in both the reduction of these oxygen-containing groups 
and the sharpening of both the basal and prismatic crystallographic planes. Electron micro- 
graphs of carbon black before and after graphitization are shown in Figure 1.9. 

After graphitization, the most notable feature is the sharp discontinuity at monolayer 
coverage. Beyond the monolayer the heat of adsorption is close to the heat of vaporization (as 
required by the BET theory) but does show some influence of the surface as well. At coverage 
below V/V, == 1 the heat of adsorption increases with increasing coverage, probably due to 
lateral interactions between the adsorbed molecules. 

Figure 9.10 is an extreme example of the effect of heating on the properties of an adsor- 
bent. Degassing prior to measuring an isotherm is done under far less severe conditions; 
nevertheless, these conditions should always be reported when adsorption studies are con- 
ducted because of the possibility of surface modification on heat treatment. 

Another calorimetric technique for measuring the heat of adsorption consists of compar- 
ing the heat of immersion (see Chapter 6, Section 6 . 6 ~ )  of bare solid with that of a solid 
preequilibrated with vapor to some level of coverage. Table 9.4 summarizes some results of 
this sort. The experiment consisted of measuring the heats of immersion of anatase (TiO,) in 
benzene with the indicated amount of water vapor preadsorbed on the solid. Small quantities 
of adsorbed water increase the heat of immersion more than threefold so that it approaches 
the value for water itself. Most laboratory samples will be contaminated with adsorbed water. 

2. 
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FIG. 9.10 Calorimetric heats of adsorption as a function of coverage for argon on carbon bk 
at 78K. The dashed line represents untreated black; the solid line is after graphitization at 2000' 
The horizontal line is the heat of vaporization of argon. (Redrawn with permission from R. 
Beebe and D. M. Young, J. Phys. Chem., 58, 93 (1954).) 

Unless the material has been carefully pretreated, the actual nature of the surface may be qu 
different from what would be expected nominally. 

9.7 ADSORPTION IN POROUS SOLIDS 

High-specific-area solids of the type studied by gas adsorption consist of small particles f 
which the radius of an  equivalent sphere is given by Equation (1.2). This figure may be a fail 
reasonable measure of a characteristic linear dimension even of irregularly shaped particlt 

TABLE 9.4 Effect of Traces of Adsorbed Water 
on the Heat of Immersion of TiOz in Benzene 

Amount of water 
adsorbed (mmol kg -') 

Heat of Immersion 
(mJ m-2) 

0.0 
2.0 
4.0 

10.0 
17.0 
Pure H,O 

150 
250 
3 20 
450 
506 
5 20 

Source: G. E. Boyd, and W. D. Harkins, J.  Am.  
Chem. Soc., 64, 1195 (1942). 
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provided the gas adsorption is restricted to the exterior surface of the particles. Any cracks or 
pores in the solid particles will expose additional adsorbing surfaces and increase the total 
specific area of the material. Because of this complication, we have specified nonporous solids 
at several places in this chapter. The particles of high-specific-area solids are small at the 
beginning, so it follows immediately that any pores in these solids will necessarily have very 
small dimensions. 

In Chapter 6, Section 6.9, we discussed the pressure required to force a liquid-most 
commonly mercury-into the pores of a solid. Our emphasis in that section was on the pores 
between powder particles when the particles are tightly pressed into a plug. In this section we 
are not concerned with these interstitial pores since powders are not densely packed in adsorp- 
tion studies; instead, our interest is in the pores within the particles themselves. The difference 
is a matter of emphasis, however, and both liquid intrusion and gas adsorption complement 
one another for the study of porous solids. 

9.7a Adsorption Hysteresis and Capillary Condensation 

We restrict our attention to only one aspect of the adsorption behavior of porous solids: the 
hysteresis they display in their adsorption isotherms. A schematic illustration of the phenome- 
non is shown in Figure 9.11. Although the region enclosed by the hysteresis loop may have a 
variety of shapes, in all cases there are two quantities of adsorbed material for each equilib- 
rium pressure in the hysteresis range. That branch of the loop that corresponds to adsorption 
(increasing pressure) inevitably displays less adsorption at any given pressure than the desorp- 
tion branch (decreasing pressure). In many cases hysteresis loops such as this are reproducible, 
although they are not reversible in the thermodynamic sense. Since irreversible processes are 
involved, the substitution of q , /T  for AS in the derivation of Equation (90) is not valid. One 
can go through the motions of evaluating ap/aT for a system that displays hysteresis, but the 
“apparent qXt values” so obtained (one for each branch) are not easily related to calorimetric 
adsorption energies. 

Adsorption hysteresis is often associated with porous solids, so we must examine porosity 
for an understanding of the origin of this effect. As a first approximation, we may imagine a 
pore to be a cylindrical capillary of radius r.  As just noted, r will be very small. The surface of 
any liquid condensed in this capillary will be described by a radius of curvature related to r .  
According to the Laplace equation (Equation (6.29) ), the pressure difference across a curved 
interface increases as the radius of curvature decreases. This means that vapor will condense 

FIG. 9.1 1 
of an experimental isotherm. 

A schematic illustration of hysteresis between the adsorption and desorption branches 
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in small capillaries at  pressures less than the normal vapor pressure po, which is defined for 
flat surfaces. The condensation of vapors in small capillaries is an equilibrium phenomenon, 
however, so capillary condensation in itself does not account for hysteresis. It does point out 
the fact that a liquid-vapor surface is also involved in the adsorption on porous solids for p < 
po.  In fact, the leveling off of the adsorption in Type IV and Type V isotherms before po is 
reached is the result of liquid condensation in small pores at  these pressures. 

For simplicity, let us assume that the liquid condensed in a pore has a surface that is part 
of a sphere of radius R,, with R, > r .  For a spherical surface we may use the Kelvin equation 
(Equation (6.40) ) to calculatep/p, 

A minus sign has been introduced in the Kelvin equation because the radius is measured 
outside the liquid in this application, whereas it was inside the liquid in the derivation of 
Chapter 6. In hysteresis, adsorption occurs at  relative pressures that are higher than those for 
desorption. According to Equation (92), it is as if adsorption-condensation took place in 
larger pores than desorption-evaporation. Since the pore dimensions are presumably constant, 
we must seek some mechanism consistent with this observation to explain hysteresis. 

9.7b Some Models of Capillary Condensation 

Figure 9.12 contains sketches for several different models of pores that will be useful in our 
discussion of capillary condensation. Figure 9.12a is the simplest, attributing the entire effect 
just described to variations in pore radius with the depth of the pore. That is, when liquid first 
begins to condense in the pore, the larger radius R, determines the pressure at which the 
adsorption-condensation occurs. Once the pore has been filled and the desorption-evaporation 
branch is being studied, the smaller radius Rd determines the equilibrium pressure. Although 
bottlenecked pores of this sort may exist in some cases, this model seems far too specialized to 
account for the widespread occurrence of hysteresis. 

FIG. 9.12 Five models for capillary condensation. The radius of the pore equals r ,  the radius of 
curvature of the spherical meniscus is R,, and t is the thickness of the adsorbed layer. The subscripts 
a and d refer to adsorption and desorption. 
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Figures 9.12b and 12c represent another model, based on (contact angle hysteresis. These 
sketches represent the surface of liquid in a capillary during the adsorption and desorption 
stages of hysteresis, respectively. In Figure 9.12b the capillary is filling; in Figure 9 . 1 2 ~  it is 
emptying. Accordingly, the advancing and receding values of the contact angle apply to 
adsorption and desorption, respectively. The radius R, of the spherical surface and the radius 
r of the capillary are related through the contact angle 8 and its complementary angle 4 (see 
Fig. 9.12): 

(93) r = R,sin 4 = R , C O S ~  

Substituting Equation (93) into Equation (92) gives 

l P  2 M y  cos 8 

\ PO P r  
N,k,Tln( - )  = - (94) 

For a pore of constant radius the equilibrium pressure decreases as cos 8 increases or as 8 
decreases. It will be recalled from Chapter 6 that advancing contact angles are larger than 
receding ones. Therefore this model is consistent with the observation that desorption- 
evaporation occurs at lower relative pressures than adsorption-condensation. The only objec- 
tion to this explanation of adsorption hysteresis is that it makes no reference whatsoever to 
adsorption! 

Figures 9.12d and 12e illustrate another model for adsorption hysteresis that considers 
multilayer adsorption explicitly. During adsorption the capillary is viewed as a cylinder of 
radius ( r  - t ) ,  with t the thickness of the adsorbed layer at that pressure. This is represented 
by Figure 9.12,d. For such a surface the Kelvin equation becomes 

since one of the radii of curvature is infinite. As multilayer adsorption proceeds, however, the 
thickness of the adsorbed layer equals r. Once the pore is thus filled, its surface becomes a 
meniscus that may be treated by Equation (94) as a portion of a sphere, as shown in Figure 
9.12e. In the event that 8 = 0, Equation (92) applies with R, -= r .  Comparison of adsorption 
and desorption in this situation is particularly easy if t 4 r in Equation (95). In that case, the 
right-hand side of Equation (95) is proportional to l /r ,  and comparison with Equation (92) 
reveals that 

i$ == if). 
Since both of these ratios are less than unity, p,  > pd .  This nnodel is qualitatively consistent 
with the observed hysteresis but is difficult to apply quantitatively because it neglects differ- 
ences between the adsorbed material on the surface and that in the bulk liquid. 

Gas adsorption data may be analyzed for the distribution of pore sizes. What is generally 
done is to interpret one branch of the isotherm and use an appropriate equation to calculate 
the effective pore radius at a given pressure. The amount of material adsorbed or desorbed for 
each increment or decrement in pressure measures the volume of pores with that effective 
radius. 

9.8 ADSORPTION ON CRYSTAL SURFACES 

Until now, our treatment in this chapter of the solid-gas interface has been very one-sided, 
focusing almost entirely on the adsorbed layer(s). To  be sure, we have extracted some informa- 
tion about the solid, e.g., the specific surface area and the presence or absence of pores. In 
addition, we have extracted values for the energy of interaction between the solid adsorbent 
and the adsorbate molecules but, other than this, the influence of the solid has been ignored. 
Likewise, the solids we have considered have been high-surface-area powders, presenting 
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either a multitude of crystal faces or amorphous surfaces to the adsorbing gas molecules. 
Because of this approach, we have not asked whether the order of a crystalline surface carries 
over to monolayer or submonolayer adsorption. As a matter of fact, the notion that there may 
be order in a layer of adsorbed molecules actually contradicts the models on which the 
isotherm presented above were based. 

In this section we discuss the adsorption on crystal surfaces. First, we begin with low- 
energy electron diffraction (LEED) - an experimental method for examining crystal sur- 
faces - and introduce some basic crystallographic concepts needed to interpret the experimen- 
tal measurements. Then we look at the implication of the adsorbate structure to adsorption 
and the structure of adsorbed layers using LEED measurements. 

9.8a Low-Energy Electron Diffraction 

Diffractometry provides an excellent tool for examining structure so we turn now to low- 
energy electron diffraction to study the order at a specific face of a single crystal, with and 
without adsorbed molecules. For the remainder of the chapter, we focus attention on the faces 
of the metal crystals. There are several reasons for this choice: 

Many metals crystallize in the relatively simple cubic (either primitive, face-centered, 
or body-centered) structures. 
Metal surfaces have been studied extensively by LEED in the context of a number of 
practical applications such as corrosion, friction, and semiconductor devices. 
Metal surfaces are important as catalysts, and this discussion of LEED enables us to 
introduce some ideas about chemisorption and catalysis. 

1. 

2. 

3. 

9.8a. I Basic Principle 
In LEED a beam of low-energy electrons rather than x-rays is used to form the diffraction 
pattern, but otherwise many of the concepts, relationships, and vocabulary are based on x-ray 
diffraction (Van Hove and Tong 1979). Accordingly, our discussion of LEED includes a 
review of pertinent aspects of this topic. Since diffractometry can get quite involved, we tailor 
our review to those subjects most helpful in getting us started and leave more advanced 
concepts for further study. 

The de Broglie concept of wave-particle duality enables us to calculate the wavelength of 
an electron. According to the de Broglie equation, 

in which h is Planck's constant, and the momentum of the electron, p = [2rn(KE)] "2, can be 
calculated in terms of its mass and the accelerating voltage that accounts for its kinetic energy. 
A straightforward application of this formula enables us to calculate that a voltage of 150 V 
gives electrons a wavelength of 0.1 nm, the order of magnitude of interatomic spacings in 
crystals: 

X = 6 . 6 3 ~ 1 0 - ~ ~  J ~/[2(9.11.10-~ '  kg)(1.6.10-'9C)(150V)J'/2 = 10-''m = 0.10nm 

Thus the electrons used in LEED are usually in the range 10 to 300 eV, lower in energy by one 
to two orders of magnitude than those used in scanning electron microscopy (SEM; Chapter 
1) and Auger electron spectroscopy (AES; see Section 9.1b.2). Davisson (Nobel Prize, 1937), 
working with a series of collaborators, is generally credited with the first application of 
electrons to diffraction studies. 

What makes LEED of particular interest in the study of surfaces is the fact that low- 
energy electrons such as these are only able to penetrate and reemerge by diffraction from a 
few atomic thicknesses of the target material. Even at that, the diffracted beam acquires a 
background of secondary electrons picked up through inelastic interactions with the solid. 
Figure 9.13 is a schematic of a LEED apparatus. Note that several grids are interposed 
between the specimen and the viewing screen. One of these is adjusted in potential so that only 
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FIG. 9.1 3 
drawn with permission from Atkins 1994.) 

Schematic illustration of a low-energy electron diffraction (LEED) apparatus. (Re- 

electrons of the original energy - those elastically diffracted - are allowed to pass; secondary 
electrons of lower energy are blocked. The diffracted beam is accelerated by a final, positively 
charged grid to produce an  image on the fluorescent screen. 

We saw in connection with the discussion of Figure 9.5 that measurable gas adsorption 
occurs even at gas pressures as low as 10-lo torr. As a matter of fact, the two-dimensional 
density of the adsorbed molecules is not low enough to conform to the two-dimensional ideal 
gas law even when the pressure is on the order of 10-” torr. A question of considerable 
practical importance, then, is how low the pressure must be for an initially clean surface to 
remain that way for a reasonable period of time. The above reference to adsorption cites 
equilibrium data that are not useful for answering questions of rate. 

Instead, we must turn to the kinetic molecular theory of gases for an estimate of the 
frequency with which molecules collide with a solid surface. We shall not be misled, however, 
if we anticipate that this pressure is low. Example 9.6 is a numerical examination of gas 
collisions with walls. 

* * *  

EXAMPLE 9.6 Rate of Atomic Collisions as a Function of Pressure. Assuming 10 l9 atoms per 
square meter as a reasonable estimate of the density of atoms at a solid surface, estimate the 
time that elapses between collisions of gas molecules at 10 - 6  torr and 25OC with surface atoms. 
Use the kinetic molecular theory result that relates collision frequency to gas pressure through 
the relationship Z = 114 VNIV, for which the mean velocity of the molecules V = ( ~ R T I T M ) ” ~  
and NIV is the number density of molecules in the gas phase and equals pN,IRT. Repeat the 
calculation at 10 

Solution: If 101’ collisions occurred per square meter per second, each surface atom would be 
hit an average of once each second. Therefore we must divide 10’’ by Z at the required 
pressures to obtain the elapsed time. Assuming a molecular weight of 28 g mole -’ for the gas, 
we obtain 

and 10 -” torr. 
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(~RT/TM)”~ = [8(8.314 J K-’ mole-’)(298) / ~(0.028 kg m ~ l e - ’ ) ] ” ~  
= 475ms-’ 

Converting the gas pressure to SI units gives, for p = 10 -6 torr, 

p = [10-6 torr - 1.013 - 105 N m-2] / 760 torr 

and 

= 1.33 - 10-4 N m-2 

(1.33 . 10-4 Nm-2)(6.02 - 1023 molecules mole-’) 
(8.314 J K- ’  mole-’)(298 K) 

N/V = 

= 3.24 - 10l6 molecules mW3 

Therefore 

and 

Since NIV and Z are directly proportional to p and the elapsed time is inversely proportional to 
p, the values of these quantities at other pressures can be written by inspection. At p = 10-8 
torr, NIV = 3.24 - l O I 4  molecules m -21  Z = 3.85 . 10l6 m -2 s -I, and time = 260 s = 4.3 min; 

Z = (1/4) VN = (475)(3.24 . 10l6)/4 = 3.85 - 10 l8 collisions m -2 s -’ 

Elapsed time = 101913.85 - 10” = 2.60 s 

at p = 10 -Io torr, time = 2.6 - 104 s = 7.2 hr. 
* * *  

9.8a.2 Ultrahigh Vacuum Requirement 
The calculation in Example 9.6 shows that until gas pressure is lowered below, say, 10 - 8  torr, 
the rate of surface bombardment is too great for the surface to remain clean long enough for 
an experiment t o  be carried out. Pressures on the order of 10T6 torr are achieved in ordinary 
vacuum lines with diffusion and mechanical pumping. Any pressure below this is considered 
ultrahigh vacuum (UHV); today devices are commercially available that routinely achieve 
pressures in the range 10 -9  to 10-l2 torr. 

An assortment of different pumping arrangements is employed to achieve UHV, including 
ion pumps, cryopumps, and getter pumps. With each of these the pumped gas is stored within 
the system rather than being removed, as is the case with diffusion pumps. This means that 
caution must be exercised so that the stored gas is not re-released into the system during the 
course of an experiment. Ion pumping is achieved by ionizing with electrons the gas to be 
removed and then collecting these ions at a metallic cathode, where they remain adsorbed. 
Getter pumps selectively adsorb or dissolve the gas without using ionization t o  collect the 
molecules, and cryopumps use low temperatures to promote adsorption. These three modes of 
pumping are thus the highly specific reverse of outgassing procedures: Adsorption at a specific 
site (the pump) is promoted to lower the pressure. 

It is not enough merely to reach a low pressure; it must also be possible to measure it. 
Ionization gauges are almost always used for this purpose. In these the residual gas is ionized, 
collected at an  electrode, and the resulting current measured. The current varies linearly with 
the gas pressure down to  about 10-” torr. If the ions are separated by mass-making the 
gauge a mass spectrometer - then the partial pressures of various gases in the vacuum chamber 
can be determined. 

Next let us consider the preparation of the sample itself. Above we referred to the desir- 
ability of keeping a surface clean; nothing was said about the problem of obtaining such a 
surface in the first place. 

9.8a.3 Sample Preparation 
Two preferred methods for preparing clean surfaces consist of generating the surfaces under 
high vacuum at the beginning. Using remote control manipulators to crush a sample under 
vacuum exposes fresh surface to an environment in which adsorption equilibrium is very slow. 
This technique produces a heterogeneous array of crystal faces, however. Far more suitable 
for the specific and localized examination that diffraction methods offer is crystal cleavage 
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under vacuum. Again by use of remote manipulators, a sample may be cleaved along a 
predetermined crystal plane to expose a fresh surface of known character. Surface repair 
through annealing may be necessary after this relatively violent procedure. The need for 
annealing also means that UHV chambers must possess the capability for heating samples in a 
controIled and measurable way. Sample preparation by cleava.ge plus annealing gives the best 
defined surfaces for subsequent examination. 

Prior to a discussion of the use of LEED for structural measurements, a review of a few 
concepts from crystallography is needed for interpreting data from LEED. 

9.8b Some Basic Concepts from Crystallography 

A crystal is an orderly array of atoms or molecules but, rather than focusing attention on 
these material units, it is helpful to consider some geometrical constructs that characterize its 
structure. It is possible to describe the geometry of a crystal in terms of what is called a unit 
cell: a parallelepiped of some characteristic shape that generates the crystal structure when a 
three-dimensional array of these cells is considered. We then speak of the lattice defined by 
the intersections of the unit cells on translation through space. Since we are interested in 
crystal surfaces, we need to consider only the two-dimensional faces of these solids. In two 
dimensions the equivalent of a unit cell is called a unit mesh, and a net is the two-dimensional 
equivalent of a lattice. Only four different two-dimensional unit meshes are possible. 

Figure 9.14 shows a set of points in one plane of a cubic structure. Much of our discussion 
in this section is based on cubic unit cells for simplicity, but the results are quite general. It 
also turns out that many metals crystallize with cubic unit cells. We may regard this as 
representing the surface net of a cubic lattice. Several sets of parallel lines connecting various 
points in the net have been drawn in the figure. These rows of atoms-like lines etched on a 
diffraction grating - are the origin of the LEED diffraction. 

The lines in Figure 9.14 are, of course, the edges of crystallographic planes that slice 
through the crystal and are identified by the so-called Miller indices just as the lines themselves 
are. Since we are working in two dimensions, only two indices are needed to characterize 
them. The sets of numbers labeling the lines in Figure 9.14 are called the Miller indices- 
represented as hk- for that line. The easiest way to remember the significance of these indices 
is to note that h and k count the number of lines (of type hk)  crossed in moving from one net 
point to the next in the x and y directions, respectively, for cubic cells. Thus the 11 line in 
Figure 9.14 cuts across the surface in such a way that one of these lines is crossed in moving 
from one net point to the next in the x direction and one is crossed in moving from point to 
point in they  direction. 

Before we leave Figure 9.14, there are two additional points to be made concerning the 
spacing and atom density of the various lines. The first thing to note for the simple array of 
points in Figure 9.14 is that the actual spacing of the net points is exactly the same in all 
directions, the edge length of the unit cell (a cube) 6. Each of the various sets of lines that can 
be drawn through this net has its own characteristic spacing, say, dhk for the hk line. What 
makes this significant is that in LEED studies electrons are reflected off the various crystallo- 
graphic planes and constructive interference occurs when the spacing between the diffracting 
surfaces dhk and the angle of incidence satisfy the Bragg equation (see Equation (1.21) ), 

(98) nh = 2dhk sin 8 

where h is the wavelength of the electrons and n ( =  1, 2, 3, . . . ) is the order of the 
diffraction. The Bragg equation is discussed in connection with microscopy in Chapter 1, 
Section 1.6. 'The point here is this: First-order ( n  = 1) diffraction results in reinforcement at 
different angles for different reflecting planes, even when the actual net is characterized by a 
single distance 6. Our interest is in the relationship between 6 and the spacing dhk for planes 
with those indices. It is possible to show that there are only three area-filling, two-dimensional 
shapes: square, rectangular, and oblique parallelogram. Table 9.5 shows how the inter-row 
spacing dhk is related to the Miller indices and the side lengths a and b for these different 
shapes of two-dimensional unit cells. 
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FIG. 9.1 4 Some crystallographic planes through a simple cubic lattice in which the atomic spacing 
is 6. The numbers in parentheses are the Miller indices of (a) planes and (b) lines defined by the 
edges of planes. 

A second result that is evident from an inspection of Figure 9.14 is the fact that planes 
with lower Miller indices have higher atomic densities. Those planes characterized by high 
Miller indices strike out across the lattice at acute angles and cross several planes of atoms 
before actually intercepting an  atom. This makes the average distance between atoms greater 
in planes that have high Miller indices. The surface tension is less in planes of low Miller index 
than in planes of higher index, in which the interatomic spacing is larger. If it were possible to 
deform the former surface into the latter, work would have to  be done against the attractive 
forces between atoms to increase this separation. We may think of this work as an increment 
in surface free energy in the planes of high index that is not present when the Miller indices are 
lower. Surfaces of lower y and hence lower Miller index are thermodynamically more stable. 
Surface studies conducted on the specific face of a crystal generally involve the 100, 110, or 
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TABLE 9.5 
Two-Dimensional Unit Cells of Square, Rectangular, and Oblique Parallelogram Nets 

Relationship Between the Spacing dhk and the Side Lengths 6 and 6 ’ in the 

Geometry Relationship 

Square (6 = 6’)  
Rectangle (6 # 6’)  
Oblique, general (6 f 6’;  

Oblique, hexagonal 

d;‘ = (h’ + k Z ) / S 2  
dG2 = (h/6)’ + (k/6’)2 
d&’ = (h2/6’ sin’ a )  + (k?/6” sin2 a )  - (2hk cos a/66’ sin’ a )  

di: = 4(h2 + hk + 2) /3a2  
a # 90’)” 

(6 = 6‘;  a = 1200)” 

”The angle between sides is a in the oblique case and equals 120° for the hexagonal element. 

11 1 plane for this reason. (Remember, three indices are necessary to describe the planar face 
of a crystal.) 

9 . 8 ~  interpretation of Low-Energy Electron Diffraction Patterns 

Generally, LEED experiments are conducted on specified faces of single crystals. When this is 
done, the diffraction pattern produced consists of a series of spots with a location, shape, and 
intensity that can be interpreted in terms of the surface structure. We focus attention on  what 
can be learned from the location and shape of the spots since the study of intensity is beyond 
the scope of this book. It is generally assumed that the surface examined by LEED is an  
extension of an already-known bulk crystal structure. The correctness of this assumption can 
be tested, and results are often expressed in terms of modifications of the three-dimensional 
structure at the surface. Before we turn to the LEED patterns below, we must first figure out 
how they are read. 

Figure 9.15a follows the path of the diffracted electron beam from the edge of the 
planes - separated by the distance dilk- to the photographic surface where the LEED pattern 
is observed. The diffracting planes are shown in greatly exaggerated size in this version, and 
the angle of incidence is purposely drawn to be exceptionally small. Small angles like these are 
not typical of LEED, but the argument that follows will help index the LEED pattern. 

FIG. 9.15 Path of a diffracted electron beam in low-energy electron diffraction (LEED), and 
indexing of points in reciprocal space. (a) interaction of a diffracted beam with a photographic 
plate for small angles of incidence; and (b) illustration of the indexing of points in reciprocal space 
relative to the primary beam, labeled 00. 
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In Figure 9.15a the diffracted beam produces a spot on the photographic plate a distance 
A from the point a t  which the primary beam strikes. From trigonometry, it is evident that 
tan 28 = A / L .  For the small angles considered here tan x = x;  therefore 28 = A / L ,  or 8 = 
A / 2 L .  For small angles, sin x = x also; therefore sin 8 = A / 2 L  for the situation shown in the 
figure. Combining this small-angle approximation with the Bragg condition for first-order 
diffraction, 

2 d h k  sin 8 = h (99) 

we obtain 

A 
h = d h k  

Since d h k  and L are constant, Equation (100) predicts that A is inversely proportional to d h k ,  

with A the distance of the diffraction spot from the spot produced by the primary. Figure 9.14 
shows that d h k  is largest for planes of low Miller indices; since A varies inversely with d h k ,  it 
follows that spots nearest the primary spot are due to low Miller index planes. Likewise, more 
distant spots are due to planes of higher index. There is a reciprocal relationship between the 
location of the spot on the photographic plate and the separation of the planes responsible for 
the spot. 

Since every point in an LEED photograph is associated with a set of rows across a net, it 
is standard t o  identify the points by the same index numbers as their originating lines. Figure 
9.15b shows how the points in a photograph are identified by a pair of indices hk. The primary 
beam is labeled 00, and the distance A in the approximation described above is measured 
outward from 00. 

Now that the theory and vocabulary of LEED are established, let us look at some simple 
LEED patterns and see what they tell us about solid surfaces. 

9.8d Low-Energy Electron Diffraction Applied to Metal Surfaces 

Figure 9.16 is a set of photographs of LEED patterns on clean metal surfaces and surfaces 
with adsorbed gases. Several variables are in effect to produce the LEED patterns shown: 

1. 

2 .  
3. 

4. 

5 .  

6. 

Parts (a) and (d) of Fig. 9.16 are the 100 surface of tungsten and the I1 1 surface of 
platinum, respectively. The symmetry of these patterns characterizes the cubic and 
hexagonal packing of the crystal faces. 
LEED patterns could be used to distinguish among different crystal faces. 
Parts (a) and (d) of Fig. 9.16 are clean surfaces, while parts (b) and (c) of the figure 
are surfaces with adsorbed species present. 
LEED patterns could be used to distinguish between clean surfaces and those with 
adsorption, at least in some cases. 
Part (b) of Fig. 9.16 is the tungsten 100 face with adsorbed oxygen, while part (c) of 
the figure is the same surface with adsorbed hydrogen. 
LEED patterns could be used to distinguish among adsorbed species, at least in some 
cases. 

In most instances there are much simpler ways to determine the orientation of a crystal 
and the presence or absence of adsorbate molecules and their nature than to use LEED. The 
unique power of LEED is its ability to measure order at a surface. Therefore we may state the 
following: 

1. LEED enables us to determine the structure of the solid surface and to compare this 
with the bulk structure. 
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FIG. 9.1 6 Low-energy electron diffraction (LEED) patterns for clean metal surfaces and surfaces 
with adsorption: (a) clean W( 100) surface; (b)  W( 100) with adsorbed oxygen; (c) W( 100) with 
adsorbed hydrogen; and (d) clean Pt( 11 1). (Figs. 19.16a-19.16~ reprinted with permission from P. 
J .  Estrup, In Modern Diffraction and Imaging Techniques in Materials Science (S. Amelincks, R. 
Gevers, G. Remaut, and J .  Van Landuyt, Eds.), North Holland, Amsterdam, Netherlands, 1970; 
Fig. 9.16d reprinted with permission of Somorjai 1981 .) 

2 .  LEED allows us to  observe and measure the order that exists in some adsorbed 
monolayers. 

Item 2 in this last list is discussed somewhat further in Example 9.7 
* * *  

EXAMPLE 9.7 Comparison Between Bulk and Surface Structures Using Low-Energy Electron 
Diffraction Patterns. If we accept that an LEED pattern has the same symmetry as the net of 
surface atoms responsible for its formation, what additional information is needed to complete 
the comparison between bulk and surface structures for the tungsten surface shown in Figure 
9.16a? 

Solution: We assume the crystal structure of the bulk metal, including the dimensions of the 
unit cell, are known. Comparison, then, depends on determining this quantity for the surface. 

1. Taking photographic magnification into account, measure the distance of the diffrac- 
tion spots from the origin, the spot produced by the primary beam. 

2. These distances are multiples of the crystallographic spacing dhk. The spacing may be 
calculated by evaluating a magnification factor from the experimental geometry in the 
manner suggested by Figure 9.15a. 
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3. The dhk values so calculated are expressed in units of A, so the wavelength of the 
electrons must be known to obtain absolute values for these spacings. 

4. To convert dhk values to the dimensions of the two-dimensional unit cell by a formula 
from Table 9.5, the spots in the LEED pattern must be indexed. 

5. Since the pattern is a simple square in Figure 9.16a and since the spots nearest the 
origin have the lowest indices, the pattern can be indexed just as rectilinear graph 
paper might be marked off. Negative indices are possible; these are written above the 
number affected. Figure 9.1 7a shows how the points in Figure 9.1 6a are indexed. 

From the index numbers and the experimental parameters, the dimensions of the two- 
U dimensional unit cell can be determined. 

* * *  

e e e e e o e a  
0 .............................................. Q 0, * 

* j *  e i a  a D i o r  

‘8 @ a 

............................ 

a q e / e  

e a 9’ a ; .  0 ; .  

e i e  e e a e e e a  
............................ 

0 0 0 
e i e  

(-3 .............................................. 0 
a a a 0 

FIG. 9.17 Illustrations of LEED spots and coherent structures formed by adsorbed species. (a) 
indexing of the LEED spots of W( 100) pattern in Figure 9.16a as described in Example 9.7; (b) side 
view of coherent structures formed by adsorbed (open circles) species on metal surface; (c) unit 
mesh for W(100) with adsorbed oxygen (open circles); (d) unit mesh for W(100) with adsorbed 
hydrogen (open circles). 
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For the 100 face of tungsten, written W(lOO), it has been found that the characteristic 
dimension of the unit cell in the two-dimensional lattice is 6970 less at  the surface than in the 
bulk crystal, although the packing geometry remains the same in both. The change in separa- 
tion without a change in symmetry for surface atoms is called relaxation and is widely ob- 
served, particularly in crystal faces with relatively low packing efficiency. For example, the 
contraction of the Al( 110) and MO( 100) surfaces are 5-15% and 11-12070, respectively. By 
contrast, the high atomic density 11 1 surfaces of silver and platinum show no contraction, and 
the Fe( 11 1) surface contracts by 1.5%. This phenomenon may be explained as an attempt by 
surface atoms to compensate for their lower coordination number by pulling closer to their 
neighbors for more effective bonding. In some instances, it is observed that clean surfaces 
have totally different structures from what would be expected on the basis of bulk structures; 
this is called surface reconstruction. 

Although UHV is required for LEED measurement, there is considerable interest in 
applying this technique to surfaces that carry adsorbed species. In view of our discussion of 
adsorption equilibrium above in the chapter, there is a difficulty here since adsorbed molecules 
imply an equilibrium gas phase. One way around this problem is to study surfaces at a 
sufficiently low coverage that the equilibrium gas pressure is compatible with the LEED 
technique. When higher pressures are desired, the surface is first equilibrated, then the excess 
gas is pumped out, and the surfaces before and after adsorption are compared through LEED. 
Chemisorption is better suited for study by this method than physical adsorption because the 
adsorbed layer remains intact when the equilibrium gas is removed. 

Figures 9.16b and c are examples of this, and we discuss this figure in detail. First, let us 
consider the circumstances in which we might expect LEED to be sensitive to adsorbed species. 
From the perspective of approaching gas molecules, the surface of a single crystal presents an 
ordered array of adsorption sites (see, for example, Fig. 1.22 in Vignette 1.8). We might antici- 
pate that this order is carried over into the adsorbed layer, at least at low coverage, in which 
crowding and lateral interactions are not complications. Note also that this implies highly spe- 
cific adsorption; this is another reason why LEED is especially valuable in the study of chemi- 
sorption. Since LEED responds to surface order, randomly adsorbed molecules such as those 
held by weak physical adsorption might go undetected. It was suggested at the beginning of this 
section that the LEED pattern of a clean surface might be taken as evidence that no adsorption 
had occurred. Actually, it may only indicate the absence of order in an adsor bed layer. A supple- 
mentary chemical analysis is a more definitive proof of surface cleanliness. 

Figure 9.17b schematically represents a cross-sectional view of the surface of a solid and 
represents the topmost layer of atoms by shaded circles. The open circles represent molecules 
in an ordered pattern on the solid substrate. Since the adsorbed molecules are ordered, their 
structure on the surface is characterized by what is called a supernet. Suppose we define 6, as 
the characteristic spacing of the substrate and 6, the equivalent quantity for the supernet. Then 
the two arrangements in Figure 9.17b are described by the ratios 6J6, = 4/1 and 6,/6, = 4/3. 
Building on the notion of reciprocal distances as developed in the discussion of Figure 9.15, it 
follows that the adsorbed layer with 6J6, = 4/1 should produce spots with a separation that 
is 1/4 that of the substrate. Likewise, for the case when 6J6, = 4/3, a pattern of spots with a 
separation that is 3/4 that of the substrate is predicted. Thus, if the substrate produces spots 
at, say, 0 and 1, extra spots would be expected at 1/4, 2/4, and 3/4 for the 6,/6, = 4 case, and 
at 3/4, 6/4, and 9/4 when 6J6, = 4/3. The cases illustrated here are called coincident struc- 
tures since the two patterns coincide periodically. When there is no correlation between two 
structures, they are said to  be incoherent. 

With this background we are now in a position to make sense of the LEED pattern shown 
in Figure 9.16b. The substrate is the same W( 100) surface shown in Figure 9.16a, but in Figure 
9.16b the surface carries adsorbed oxygen. In the LEED pattern additional spots appear 
midway between the spots produced by the clean tungsten. The extra spot at the 1/2 position 
means that 6,/6, = 2 for the oxygen in this experiment; that is, the dimension of the oxygen 
unit mesh is twice that of the unit mesh of the substrate. Figure 9 . 1 7 ~  is a schematic illustration 
of a possible supernet that is consistent with this description. It should be pointed out that 
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spot location alone does not tell us where in the unit mesh of the supernet the adsorbed 
oxygens are located, only that they display a periodic structure with two times the repeat 
distance of the solid. The relative positions of the adsorbate and substrate atoms within their 
respective nets may be calculated from intensity data. 

This example of a supernet makes it evident that an  assortment of these supernets is 
possible with different values of 6,J6@ This suggests that a system of designation is needed to 
distinguish among the various possibilities. One such system uses the notation p(n x rn) in 
which the letter p (for primitive) indicates that the adsorbed net has the same primitive unit 
mesh as the substrate. In this system of notation n and rn are integers, not necessarily the 
same, that express the expansion of the supermesh dimensions relative to the substrate along 
the mesh axes. Since LEED patterns of this type portray specific crystal faces under definite 
adsorption conditions, they are labeled to identify both the solid and adsorbate structures. 
Thus Figure 9.16b is a photograph of the W( 100)-p(2 x 2)-oxygen LEED pattern. This 
system of labeling is known as the Wood notation. 

Figure 9 . 1 6 ~  is another example of an LEED pattern of the W( 100) surface carrying an 
adsorbate, this time hydrogen. By their greater brightness, the spots originating from the 
substrate can be identified, and it is seen that the extra spots caused by the adsorbate once 
again lie midway between the tungsten spots, but this time with a different orientation from 
the array produced by the substrate. The midpoint positioning of these extra spots suggests 
that this adsorbate also shows a 2 x 2 supernet, but one that is rotated by 45' compared to 
the substrate net. A schematic illustration of the two nets is shown in Figure 9.17d, in which 
the substrate atoms are represented by filled circles and the adsorbed species by open circles. 
The dashed square in the figure shows the unit mesh of the supernet and emphasizes its 45O 
orientation relative to the substrate. The unit mesh dimensions in the dashed square are the 
same as those of the substrate, so the distances seem to be wrong even though the symmetry is 
correct. The solid square in the figure shows that there is a second way of looking at the 
identical supernet: as a 2 x 2 enlargement of the substrate net but possessing a centered rather 
than primitive packing. This is a preferable way of describing the supernet since it accounts 
for both the symmetry and the separation of the unit mesh. These two descriptions do not 
involve different supernets, but merely different ways of looking at the same net. 

Since the version represented by the solid square in Figure 9.17d best characterizes the 
adsorption, it is described as a c(2 x 2) net, the c reminding us that this is a centered structure. 
The full description of the LEED pattern in Figure 9 . 1 6 ~  in the Wood notation is therefore 
written W( 100)-c(2 x 2)-hydrogen. 

The solid squares in Figures 9 . 1 7 ~  and 9.17d represent the unit mesh of the adsorbed 
layers of oxygen and hydrogen, respectively, on the W( 100) surface. Both are seen to have the 
square symmetry of the underlying tungsten surface, but with oxygen showing a primitive net 
and hydrogen a centered structure. An additional detail about the surface with the adsorbed 
hydrogen is that the c(2 x 2) structure shown in Figures 9 . 1 6 ~  and 9.17d persists until the 
surface coverage is half a monolayer. This seems too neat for an accidental circumstance. On 
the other hand, if we assume the H2 is dissociated and the adsorbed species are hydrogen 
atoms, the same amount of adsorbed material is enough to form a monolayer. The chemi- 
sorbed hydrogen atoms form a surface layer characterized by a square, centered unit mesh. In 
Wood notation the surface layer is W(lOO)-c(2 x 2)-H, indicating the fact that atomic 
hydrogen rather than Hz is the adsorbate. Oxygen is also adsorbed in the monatomic state on 
the W( 100) surface. 

In the adsorption studies we have discussed, the expansion of the unit mesh is the same in 
both directions, but this need not be the case. Examples in which the expansion along different 
axes of the mesh varies arep(4 x 2)-0  for the adsorption of 0, on Mo(l1 l ) ,  p(3 x 15)-0 
for 0, on P t ( l l l ) ,  c(4 x 2)-S for H2S on Au(100), and c(9 x 5)-CO for CO on W(110). 
Somorjai (1981, 1994) has assembled extensive tables of this sort of information. Note that 
many but not all adsorbates are dissociated on the metal surfaces. Finally, it is not necessary 
for the supernet and the substrate to show the same angles between sides of their respective 
meshes. The Wood notation does not apply in these cases, but an alternative notation exists 



ADSORPTION AT GAS-SOLID INTERFACES 451 

that we shall not pursue. Example 9.8 deals with a surface at which the adsorbate and the 
substrate display different nets. 

EXAMPLE 9.8 An Example of the Lattice Structures of the Adsorbate and Adsorbed Layers 
The unit mesh of the Pt(l11) surface is a parallelogram with 6 = 6’ = 0.277 nm and having 
angles of 60° and 120°. This surface adsorbs n-butane with a unit mesh that is a parallelogram 
having 6 = 0.480 nm and 6’ = 0.733 nm and angles of 71° and logo. Show that these two 
nets come into periodic register if the short side of the supermesh coincides with the diagonal 
of the substrate mesh. 

Solution: Use the law of cosines to determine the length of the two diagonals of the substrate 
unit mesh: 

L2 = a 2  -t 612 - 266’ COS60° = 2(0.277)2 - 2(0.277)2(0.500) 
L = 0.277nm 
L’ = [2(0.277)2 - 2(0.277)2( -0.500)]”2 = 0.480 nm 

Since the short side of the supernet mesh has 6 = 0.480 nm, this mesh registers with the 
substrate along the diagonal of the latter. Since the long diagonal of the substrate and the short 
side of the super mesh register, this common line makes a convenient reference line to test the 
register in the perpendicular direction. Half the length of the short diagonal, 0.277/2 = 0.139 
nm, measures the perpendicular distance from this base to the corner atom. Also, the long side 
of the supernet mesh makes an angle of 71° with the base. Therefore the long side of the 
supernet mesh projects a length (0.733 sin 71) = 0.693 nm onto the short diagonal of the 
substrate. The ratio 0.693/0.139 = 5.00 shows that the edge of the supermesh and the diagonal 
of the substrate net will coincide again at the fifth row of atorris perpendicular to the diagonal 
that serves as the base for this calculation. Even though the two parallelograms have different 

II side lengths, angles, and orientations, they do become coincident at periodic intervals. 
* * *  

Next, we see some additional examples of LEED applied to the study of metallic catalysts. 

9.9 METAL SURFACES AND HETEROGENEOUS CATALYSIS 

The topic of heterogeneous catalysis is the point at which the study of surfaces and the study 
of catalysts meet, as we have illustrated in Vignette IX (see also Somorjai 1994). It has been 
recognized for a long time that heterogeneous catalysts owe their activity to the properties of 
their surfaces. Until fairly recently, however, catalyst particle size and hence specific area were 
the major surface parameters that could be varied and monitored in the study of the surface 
effects. Much of the interest in characterizing high-surface-area solids through physical ad- 
sorption that we discussed at the beginning of this chapter originates from this application. 
With the advent of LEED and various types of surface spectroscopy, the role of surface 
science in the study of these catalysts is greatly expanded. 

A wide variety of solid surfaces is used as catalysts in an even wider assortment of 
industrial processes (see, for example, Richardson 1989 and Somorjai 1994); we limit our 
discussion to metal catalysts. While these represent only a fraction of all catalytic systems, 
they do include a number of industrially important examples. Table 9.6 lists some metals used 
as commercial catalysts and indicates briefly the types of reactions for which they are em- 
ployed. In this section we emphasize the effect on catalytic activity of the chemical and 
crystallographic properties of metal surfaces. 

It should be emphasized here that there is a vast difference between the microenvironment 
of the catalyst surface as examined by the type of analytical techniques mentioned in Section 
9.1 and the overall surface that influences commercial processes. Until the modern techniques 
became available, however, catalyst preparation was mostly a matter of trial and error; we 
have now entered an era in which science has a chance to catch up with technology. It seems 
fairly safe to predict that a greatly increased understanding of heterogeneous catalysis will 
emerge as modern surface chemistry matures. 
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TABLE 9.6 Examples of Some Metal Catalysts and the Reactions They Catalyze 

Metal Reaction 

Cobalt Fischer-Tropsch synthesis of hydrocarbons 

Iron 
Platinum Hydrogenation of vegetable oils 
Platinum-palladium 

Platinum-rhenium and platinum-tin 
Platinum-rhodium 

from CO and H, 
Haber synthesis of ammonia from N2 and H2 

Oxidation of hydrocarbons and CO and reduc- 

Reforming alkanes to aromatic hydrocarbon 
Oxidation of NH3 to H N 0 3  

tion of NO, in automobile exhaust 

9.9a Catalysis at Surfaces 

In our discussion of micellar catalysts in Chapter 8, we noted that effective catalysts have two 
features: the ability to accelerate the rate of a reaction and the ability to do so selectively. 
Chemistry students are familiar with the general notion that catalysts modify the mechanistic 
path of a reaction in such a way as to lower the activation energy and make the conversion of 
reactants to products more probable. One of the easiest places to see this is in reactions of 
diatomic gas molecules. In the gas phase the mechanism for the reaction of hydrogen and 
oxygen to form water involves the following steps, among others: 

H, + 0, -+ HO; + H' 

H, + HO; -+ HO' + H,O 
(B) 

H, + HO' -+ H' + H,O 
(C) 

(4 

How much simpler things would be if these were monatomic gases and there was no need for 
all the juggling between intermediate species to dispose of unused molecular fragments! We 
saw in our discussion of LEED that molecules of this sort are chemisorbed at metal surfaces 
in the dissociated state. The combination of chemisorbed hydrogen and oxygen atoms to form 
water clearly follows a different mechanism than in the gas phase. The fact that the reaction 
occurs rapidly in the presence of platinum and not at all when the reactants are mixed without 
the metal shows that the activation energy has been lowered tremendously by this modifica- 
tion. 

A similar reaction of great commercial importance is the synthesis of ammonia from the 
diatomic elements. The catalysts that are used commercially in this reaction are mixtures of 
iron and iron oxide with the oxides of potassium and aluminum. Indicating the adsorbed 
species by the subscript (a), the mechanism for the surface-catalyzed synthesis of ammonia is 
thought to involve the steps 

Nag) * N2W 

(D) 

H2k) * H2W 

(E) 
N2(u) * 2N,,, 

(F) 
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The reaction between chemisorbed atoms dispenses with the problem of disrupting the triply 
bonded N2 molecule in the gas phase, but Reaction (F) may also be more complicated than 
what is shown here. 

The above are equilibrium reactions, and their successful exploitation requires that they 
be carried out under conditions in which the equilibrium favors the product. Specifically, this 
requires that the adsorbed species in Reactions (D)-(I) not be held so tightly on the catalyst 
surfaces as to inhibit the reaction. On the other hand, strong interaction between adsorbate 
and catalyst is important to break the bonds in the reactant species. Optimization involves 
finding a compromise between scission and residence time on the surface. Although we are 
especially interested in metal surfaces, those constituents known as promoters in catalyst 
mixtures are also important. It is known, for example, that the potassium in the catalyst used 
for the ammonia synthesis shifts Equilibrium (F) to the right and also increases the rate of 
Reaction (D) by lowering its activation energy from 12.5 kJ mole - I  t o  about zero. 

In addition to affecting reaction energetics, other atoms at metal surfaces also influence 
the selectivity of the catalyst. Platinum catalysts are excellent examples of this since the 
platinum surface is capable of catalyzing a number of hydrocarbon reactions, including hydro- 
genation, dehydrogenation, isomerization, ring opening, and dehydrocyclization. Which of 
these processes is most favored by a particular catalyst is sensitive to the presence of foreign 
atoms at the platinum surface. Auger electron spectroscopy and other surface spectroscopies 
are clearly important techniques for the study of these effects. It is known, for example, 
that a partial monolayer of oxygen on platinum enhances reactions involving scission of the 
carbon-carbon bond and inhibits dehydrogenation reactions. Conversely, gold on platinum 
blocks C-C scission without affecting dehydrogenation or isomerization. Sulfur, which often 
poisons catalysts, increases the selectivity of Pt-Re catalysts. 

At low pressures hydrocarbon reactions on Pt are controlled by the clean metal surface. 
At higher pressures a carbonaceous layer controls the selectivity of the catalyst. Since the 
second condition describes how catalysts are generally used, the carbonaceous layer becomes 
an intrinsic part of the catalyst. At low temperatures hydrocarbons are physically adsorbed on 
Pt surfaces; at high temperatures a graphitic coating poisons the catalyst. Under intermediate 
conditions of temperature, various hydrocarbon fragments are present on the surface that 
determine its reactivity. It is noteworthy that the hydrogen atoms in these surface fragments 
are readily available for reaction, as evidenced by isotope exchange studies with deuterium. 
Carbonaceous matter, oxygen, and other atoms are thought to affect catalyst activity in 
several ways. For example, the electronic structure of the metal may be altered, surface 
restructuring may occur, and specific surface sites may be blocked. 

9.9b Crystallographic Structure of Catalysts and Catalytic Behavior 

The crystallographic character of surfaces has been shown to be of great importance in 
determining their catalytic behavior. Particularly interesting are those surfaces designed with 
well-characterized “roughness.” To  see how this is accomplished, consider slicing through a 
face-centered cubic platinum crystal at a small angle relative to, say, the 11 1 plane. This would 
result in a surface of high Miller index, low atomic density, and high surface free energy. Such 
a slice can be stabilized, however, by forming terraces of 11 1 planes separated by steps of, say, 
100 planes. If the angle of the cut is small relative to the 11 1 plane, the steps are only one atom 
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high; the width of the terrace depends on the angle of the cut, with narrower terraces resulting 
from steeper cuts. Application of crystallographic concepts shows that a slice through a 
face-centered cubic crystal along a plane with Miller indices 7,5,5 is equivalent to a series of 
11 1 terraces five atoms wide separated by 100 steps one atom high. 

The slice through a bulk crystal can differ from both the 111 plane and the 100 plane by 
small angles. This produces a kink in the face of the step. By an extension of the analysis that 
leads to step characterization, these kinks can also be characterized. For example, a plane with 
Miller indices 10,8,7 has 11 1 terraces seven atoms wide, 110 steps one atom high, and kinks of 
100 orientation every two atoms. Because of the greater thermodynamic stability of the planes 
of low Miller index, these surfaces of ordered roughness are stable and can be prepared and 
studied. Since it is sensitive to periodicity over a domain about 20 nm in diameter, LEED 
“sees” the pattern associated with terraces of various widths and may be used to characterize 
these surfaces. Satisfactory LEED patterns d o  not require absolute uniformity of terrace width 
but may be obtained with experimental surfaces that display a distribution of widths. 

The idea that catalyst surfaces possess a distribution of sites of different energies has been 
around since the 1920s, but it has not been possible until fairly recently to show that adsorp- 
tion sites on terraces, steps, and kinks differ in energy. For example, hydrogen shows stronger 
bonding to steps and kinks on platinum than on the 111 terraces. In addition, the activation 
energy for H, dissociation is about zero on the step face and about 8.4 kJ mole-’ on the 
terrace plane. In addition, carbon monoxide is adsorbed with dissociation on the kinks of Pt,  
but in the molecular form on the steps and terraces. 

The behavior of catalyst surfaces with respect to selectivity and poisoning by foreign 
atoms is now known to depend on the location of these atoms with respect to the terrace, step, 
and kink structure of the surface. By using the well-characterized faces of single crystals as 
catalytic surfaces, the effects of these variables have been examined for some reactions. Figure 
9.18 is an  example of the results of such a study. The hydrogenation of cyclohexene to 
cyclohexane is the reaction involved, and the figure shows how the ordered roughness and 
oxygen content of the platinum surface affect this reaction at 15OOC.  In Figure 9.18 the 
ordinate gives the number of molecules converted to product per second per Pt atom - the 
turnover number of the catalyst - and the abscissa gives the oxygen content of the surface as 
measured by Auger spectroscopy . 

The three different lines in the figure correspond to platinum surfaces of different Miller 

1 I I I  I I I I  I 
n 
4 

Auger O/Pt Peak Ratio 

FIG. 9.1 8 Number of molecules of cyclohexene converted to cyclohexane per second per Pt atom 
versus oxygen content of platinum surface. The oxygen content is expressed as the ratio of 0 to Pt 
Auger peak heights. The data shown are for kinked (circles), stepped (squares), and terraced 
(triangles) platinum surfaces. (Redrawn with permission from Somorjai 1981 .) 
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indices, corresponding to different degrees of ordered roughness. The data points marked by 
circles were measured on an  11,9,8 surface that consisted of terraces, steps, and kinks; the 
squares on a 7,5,5 surface that had terraces and steps; and the triangles on 111, which 
corresponds to terrace sites only. 

The experiments described in Figure 9.18 were conducted under low-pressure conditions 
so the following generalizations apply: 

1. 
2. 

In the absence of oxygen all three surfaces show undetectable catalytic activity. 
The P t ( l l 1 )  surface continues to  show undetectable activity as the oxygen content 
increases, although the activity passes through a maximum for both the stepped and 
kinked surfaces with increasing oxygen content. 
Compared at  their respective maxima, the kinked surface is more active than the 
stepped surface. 
The oxygen content at  the maximum is slightly higher for the stepped surface than for 
the kinked surface. 

These observations suggest that maximum catalytic activity for this reaction occurs at  a kinked 
surface with about one-third of the surface covered by oxygen. For a competitive reaction, the 
dehydrogenation of cyclohexene to  benzene, the kinked surface is also the most active. In this 
case, however, the optimum oxygen content is at  a coverage o f  about one-half compared to  
one-third for the hydrogenation reaction on  which Figure 9.18 is based. Differences such as 
these show that the selectivity of various catalysts is traceable to the chemical and physical 
nature of the surface. Even though the reasons for this behavior are not yet understood, these 
types of data hold out the promise that catalysts may someday be custom designed for maxi- 
mum effectiveness. Polymer and pharmaceutical chemistry offer many examples of molecules 
that are designed with a specific function in mind. The methods and results of this chapter, 
augmented by some of the methods described in Chapter 1, suggest that this may become 
possible for catalysts in the not too distant future. Many of the modern developments in the 
area of heterogeneous catalysis may be found in Somorjai (1994). 

3. 

4. 

REVIEW QUESTIONS 

1. 
2. 
3. 
4. 

5. 

6. 

7. 

8. 
9. 

10. 

11. 
12. 
13. 
14. 

15. 
16. 
17. 
18. 

What is the difference between chemisorption and physisorption? 
What is an adsorption isotherm? 
Describe an experimental procedure for determining adsorption isotherms. 
Describe the various types of isotherms observed in experiments. Describe the significance of 
the different forms of the isotherm. 
How is an equation of state related to an adsorption isotherm? What is the basic thermody- 
namic principle that governs the equilibrium between the surface phase and bulk phase? 
Discuss the implication of the van der Waals equation of state for a two-dimensional phase to 
the corresponding adsorption isotherm and to the analysis of adsorption data. 
How is statistical thermodynamics used for deriving adsorption isotherms? What are the 
similarities and differences between this procedure and the one based on phenomenological 
thermodynamics? How is the kinetic theory of gases used for deriving adsorption isotherms? 
What are the assumptions implicit in the Langmuir adsorption isotherm? 
What is meant by the Henry law limit in the case of an adsorption isotherm? 
What is the Harkins-Jura isotherm? What assumption does it make concerning the nature of 
the surface phase? Is the assumption consistent with the experimental observations? 
What is the BET isotherm? How does it differ from the Langmuir isotherm? 
How is the BET isotherm used to determine the surface area of powders? 
What is meant by calorimetric analysis of adsorption? 
What is isosteric heat of adsorption? How is it related to the pressure-versus-temperature 
relationship at constant surface coverage? 
What is adsorption hysteresis? 
What is capillary condensation? Describe some models of capillary condensation? 
Describe the basic principles of operation of low-energy electron diffraction (LEED). 
Why are very low pressures needed for LEED experiments? 
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19. Describe how LEED patterns are interpreted. 
20. What is meant by heterogeneous catalysis? 
21. What is meant by selectivity of a catalyst? 
22. Describe how adsorption assists in catalysis. 
23. List a few examples of metal catalysts and what reactions they catalyze. 
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PROBLEMS 

1. Consider the following linear equation of state appropriate for a relatively incompressible 
surface state (e.g., above 0 = 0.70 in Fig. 9.6b) 

7r = -C,a + c, 
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where C1 and C, are known constants. Derive the corresponding adsorption isotherm, known 
as the Harkins-Jura isotherm (see Table 9. l), 

-2  c* l n p =  -- 
2N,RTA" (s) i- '' 

(where C, is a constant of integration) for this linear equation of state. 

2. An isotherm that is not too difficult to derive by the methods of statistical mechanics assumes 
an adsorbed layer that obeys the two-dimensional analog of the van der Waals equation. The 
result of such a derivation is the equation (see Table 9.1) 

2a % + 1nK 
0 

where a,  by and K are constants, the first two being the two-dimensional van der Waals 
constants. Like its three-dimensional counterpart, this equation predicts that at  the critical 
point for the two-dimensional matter 

= 0 and ($)Tc = 0 
Tc 

From the second of these derivatives, evaluate 8, as predicted by this model. Use this value of 
8, and the first of these derivatives to evaluate the relationship between T, and the two- 
dimensional a and b constants. How does this result compare with the three-dimensional case? 
The van der Waals constant b is four times the volume of a hard-sphere molecule. What is the 
relationship between the two dimensional b value and the area of a hard-disk molecule? 

3. Use the linear form of the Langmuir equation to evaluate (n/w)xQ, and K for the adsorption of 
pentane on carbon black from the higher pressure values in the following data. Use the ratio 
p/po rather than p only to normalize pressures relative to the equilibrium vapor pressure of 
pentane at different temperatures.* (All pressures are in torr..) 

T( "C) -63.7 0 5.24 20.5 

PO 3.48 187.5 235.6 445.1 
-- 

P gc5g-I  P gc5g- l  P gc'5g-1 P g c5 g-I 

0.024 
0.028 
0.067 
0.103 
0.233 
0.288 
0.671 
1.460 

0.2827 0.0533 
0.2904 0.1405 
0.3162 0.203 
0.3276 0.89 
0.3459 2.5 
0.3507 5.0 
0.3581 14.6 
0.3647 29.2 

45.4 
80.7 

161 .O 

0.1062 
0.1322 
0.1427 
0.1908 
0.2305 
0.2506 
0.2964 
0.3184 
0.3272 
0.3353 
0.3433 

3.8 
7.2 

19.6 
36.7 
53.6 
88.5 

199.0 

0.2299 0.284 
0.2535 0.675 
0.2939 0.95 
0.:3147 3.62 
0.:323 1 9.7 
0.133 13 15.9 
0.3418 62.9 

90.4 
155.2 
328.7 
428.7 

0.1061 
0.1317 
0.1421 
0.1884 
0.2262 
0.2469 
0.3002 
0.3107 
0.3204 
0.3321 
0.3372 

*Polanyi, M., and Goldmann, F., 2. Phys. Chem., 132, 321 (1928). 
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4. Examine the temperature variation of K values from the preceding problem by means of the 
procedure given in Example 9.3. (To decrease computational effort, various members of the 
class may be assigned different temperatures to analyze in Problem 3. The K values may then 
be pooled for this problem.) 

The accompanying data* give the volume of N, at STP adsorbed on colloidal silica at the 
temperature of liquid nitrogen as a function of the ratio p /po .  Plot these results according to 
the linear form of the BET equation. Evaluate c, V,, and A ,  from these results, using 16.2 A2 
as the value for U'. 

5. 

Vat STP (cm3 g-I) p / p o  Vat STP (cm3 g-') p / p o  

44 
52 
57 
61 
64 
65 
70 
77 
78 
85 
90 
96 

100 
109 

0.008 
0.025 
0.034 
0.067 
0.075 
0.083 
0.142 
0.183 
0.208 
0.275 
0.333 
0.375 
0.425 
0.505 

117 
122 
130 
148 
165 
194 
204 
248 
296 

0.558 
0.592 
0.633 
0.692 
0.733 
0.775 
0.792 
0.825 
0.850 

6. The following data give the volume at STP of nitrogen and argon adsorbed on the same 
nonporous silica at - 196OC:t 

Vat STP (cm3 g-') 

P/Po Nitrogen Argon 

0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.60 
0.70 
0.80 
0.90 

34 
38 
43 
46 
48 
51 
54 
58 
58 
61 
68 
77 
89 

118 

23 
29 
32 
38 
41 
43 
45 
50 
54 
55 
62 
69 
79 
93 

Using 16.2 A' as the N, cross section, calculate A, for the silica by the BET method. What 
value of U' is required to give the same BET area for the argon data? 

*Everett, D. H., Parfitt, G. D., Sing, K. S. W., and Wilson, R., J.  Appl. Chem. Biotechnol., 24, 
199 (1974). 
"yayne, D. A., Sing, K. S. W., and Turk, D. H., J.  Colloid Interface Sci., 43,287 (1973). 
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7. Use the accompanying data* to criticize or defend the following proposition: Self-consistent 
A, values for nonporoys solids are obtained at 77 and 90K by using values of a' for N2 
equaling 16.2 and 17.0 A', respectively. These are consistent with the density of liquid N2 at 
these two temperatures. For the same self-consistency in A, using O2 as the adsorbate, a' 
values of 14.3 and 15.4 A' must be used at these two temperatures. This suggests that O2 is 
somewhat more loosely packed on the surface than in the liquid state at 90K compared to 
77K. 

77 0.808 1.238 1.204 0.831 
90 0.75 1 1.332 1.140 0.877 

8 .  Use the data from Problem 3 to estimate the isosteric heat of adsorption of pentane on carbon 
black at 8 2: 0.3, 0.6, and 0.9. Under what conditions would greater variation of qSr be 
expected? What prevents these conditions from being examined in this problem? How does qsr 
compare with the energy of adsorption for this system as determined in Problem 4? How does 
the difference between qs, and Eads compare with AH" for pentane? 

9. Colloidal carbon was formed by the slow pyroloysis of polyvinylidene chloride. Surface 
oxidation occurs during subsequent storage in air. By heating at elevated temperatures, the 
following gases are evolved? (heats of immersion were also measured after the different 
thermal pretreatments): 

Cumulative amount desorbed 
(mmol g-') 

Heat of immersion 
T ("C) CO CO2 H2 (cal g- '1 

100 
200 
300 
400 
500 
600 
700 
800 
900 

1000 

0.03 
0.05 
0.15 
0.35 
0.63 
0.95 
1.300 
1.580 
1.800 
1.823 

0.02 
0.14 
0.33 
0.44 
0.5 1 
0.55 
0.55 
0 .55  
0.55 
0.556 

- 11.0 
- 9.8 
- 9.2 
- 8.7 
- 8.2 
- 7.7 
- 7.0 
- 6.2 

0.03 6.0 
0.269 5.9 

Using 7.9 and 9.1 A2 as the areas of oxide desorbing as CO and COz, respectively, estimate the 
area (in m2 g-') occupied by each of these oxide types. If the specific area of the carbon is 
1100 m2 g-', what percentage of the surface is covered with oxide? Discuss the variation of 
the heat of immersion with the removal of the surface oxides. 

"Hanna, K. M., Odler, I . ,  Brunauer, S., Hagymassy, T., and Bodor, E. E., J. Colloid Interface 
Sci., 45, 27 (1973); Also see Osipow, L. I . ,  in Ross, S., Monolayer Adsorption on Crystalline 
Surfaces, in Progress in Surface and Membrane Science, (Danell, T. E., Rosenberg, M.D. and 
Cadenhead, D. A., Eds.), Academic Press, New York, 1971. 
?*Barton, S. S. ,  Evans, M. J. B., and Harrison, B. H., J.  Colloid Interface Sci., 45, 542 (1973). 
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10. Samples of rutile TiO, were outgassed at elevated temperatures; in some instances this was 
followed by subsequent exposure to 0, at 15OOC. The following results were obtained by the 
BET analysis of N, adsorption after various preliminary treatments: * 

Pretreatment A, (m2 8 - I )  C 

15OOC + 0, 11.0 200 
21OOC + 0, 11.7 100 
2OO0C, no O2 11.9 520 
24OoC, no 0, 11.3 370 
47OOC + 0, 11.7 450 
56OOC + 0, 11.9 1210 

Criticize or defend the following proposition: After the initial removal of physically adsorbed 
water, partial dehydroxylation of the surface occurs with increasing temperature. In the 
absence of O,, Ti3+ cations are present that interact with N, in pretty much the same way as 
the isolated hydroxyl groups on the surface. At still higher temperatures surface diffusion 
permits the hydroxyl groups to migrate into patches, which show stronger interactions with 
N,. The specific surface is not essentially changed throughout treatment. 

11. Low-energy electron diffraction diagrams reveal that O2 adsorbs on a Pd( 1 10) surface through 
a series of ordered structures that interchange reversibly with increasing surface coverage 
obtained by varying the pressure and temperature: 

Clean Pd(ll0) S (1 x 3) @ (1 x 2) * c(2 x 4) S c(2 x 6) 

The equilibrium pressure-temperature coordinates of the transitions between one LEED pat- 
tern and another were measured by Ertl and Raut and were found to obey the two- 
dimensional Clausius-Clapeyron equation. When loglo p is plotted versus T- ' ,  straight lines 
of slope - 1.75 x 104, - 1.68 x 104, - 1.35 x 104, and - 1.05 x 104 K,  respectively, are 
obtained for the four transitions above. Use these data to evaluate AH for each of the phase 
transitions of the adsorbed oxygen layer. Criticize or defend the following proposition: Since 
the only difference between these structures is the extent of oxygen coverage, the values of AH 
may be viewed as isosteric heats of adsorption for the surface at their respective degrees of 
coverage. 

12. The object of this problem is to demonstrate that only certain shapes are possible for the unit 
mesh of a surface net. The following steps outline the proof: (a) Draw two parallel lines; one 
is the x axis, the other is at y = const. (b) Draw a transverse cutting across the two lines and 
making an angle 8 with the x axis. (c) Cutting the x axis at another location, draw another 
transverse, this time making an angle -8 with the axis. The two transverse lines should be 
mirror reflections of each other. (d) Imagine a surface atom at each of the four intersections 
of these lines. If  the unit mesh is to be a regular polygon, then three of the lines must be equal 
to each other and equal to the interatomic spacing d. Make any necessary adjustments in the 
drawing so that the three shorter lengths - say, the base and the two transverses - are equal. 
(e) The longer side of the drawing has a length d + 2d cos 8 since each of the transverse lines 
project a length d cos 8 in the x direction. For this array of atoms to come into periodic 
register, the ratio (d + 2d cos 8)/d must be an integer. What values of n and 8 satisfy this 
condition, and what shapes do the corresponding meshes possess? 

13. Firment and Somorjait showed that the C4-Cs n-alkanes adsorb on the Pt(ll1) surface in 
ordered monolayers for which the unit mesh is a parallelogram with the following dimensions: 

"Parfitt, G. D., Urwin, D., and Wiseman, T. J., J.  Colloid Interface Sci., 36, 217 (1971). 
TErtl, G., and Rau, P., Surface Sci., 15, 443 (1969). 
SFirment, L. E., and Somorjai, G. A., J. Chern. Phys., 66, 2901 (1977). 
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Hydrocarbon 6 ( A )  6’ (A) Degree 
~~ ~ ~ 

n-Butane 4.80 7.33 71.0 
n-Pentane 4.80 16.79 74.0 
n-Hexane 4.80 9.99 75.6 
n-Heptane 4.80 22.29 78.0 
n-Octane 4.80 12.69 79.5 
Pt( 11 1) 2.77 2.77 60.0 

Look up the formula for the area of a parallelogram and calculate the area per mole, assuming 
one molecule per unit mesh. Compare this area with the F’t(ll1) unit mesh for which the 
dimensions are also given. Do the data make any more sense if it is assumed that some of 
these alkanes form surface structures with two molecules per unit mesh? Prepare a plot of the 
area per molecule versus the number of carbon atoms in the chain. Criticize or defend the 
following proposition: The amount of free area per unit mesh in these packings is equivalent 
to one Pt mesh. 

The authors of the research cited in Problem 13 point out that the width of the alkane 
molecule in the bulk crystals is 4.79, 4.78, and 4.70 A for n-octane, n-heptane, and n-hexane, 
respectively. This corresponds almost exactly to one of the dimensions of the unit mesh 
of these molecules on the Pt(ll1) surface. The data tabulated in Problem 13 show that the 
longer dimensions of these cells tend to increase with the chain length. To establish whether 
this is a quantitative correlation, plot 6’ versus the number O F  methylenes N in the alkane and 
determine the slope and intercept of the resulting graph. This gives an equation of the type 
6‘  = mNCH2 + b, where rn is the length contribution per methylene and b/2 is the length 
contribution per terminal methyl group. Compare these lengths with the dimensions of a fully 
extended hydrocarbon chain as presented in Example 8.2. ’What does this reveal about the 
configuration of these molecules on the Pt(ll1) surface? 

14. 



10 
van der Waals Forces 

Already the difficulties of avoiding a collision in a crowd are enough to  tax the sagacity 
of even a well-educated Square; but if no one could calculate the Regularity of a single 
figure . . . all would be chaos and confusion, and the slightest panic would cause serious 
injuries. 

From Abbott’s Flatland 

10.1 INTRODUCTION 

10.la What Are van der Waals Forces? 

This chapter is concerned with one of the most important forces in surface and colloid 
chemistry, namely, van der Waals forces between atoms, molecules, or particles. These forces 
have their origin in the dipole or induced-dipole interactions at the atomic level and are 
therefore of extreme importance in almost all aspects of the study of materials. The strength 
of van der Waals forces increases in the case of interaction between macroscopic objects such 
as colloidal particles since typically each particle has a large number of atoms or molecules. 
We see in this chapter that there are three major types of van der Waals forces, and that one 
of these, known as the dispersion force, is always present (like the gravitational force). This 
fact implies that it is not always possible to ignore van der Waals forces in colloid science, 
although, as we see in Chapter 13 on colloid stability, there are methods one can use to 
minimize or override the influence of these forces in order to promote the stability of colloids 
against coagulation. For example, in Chapter 1 1 we see how ionic atmospheres near charged 
surfaces can override van der Waals attraction and prevent coagulation. This is discussed 
further in Chapter 13, in which we also see how polymer layers adsorbed (or grafted) on 
particles are often used to “mask out” the influence of van der Waals attraction. 

Our objectives in this chapter are to look into the origin of van der Waals forces, see how 
they affect macroscopic behavior and properties of materials, and establish relations for 
scaling up the molecular-level forces to forces between macroscopic bodies. 

10.1 b Why Are van der Waals Forces Important? 

One of the most important things to bear in mind in studying van der Waals forces is that this 
topic has ramifications that extend far beyond our discussion here. Van der Waals interac- 
tions, for example, contribute to the nonideality of gases and, closer to home, gas adsorption. 
We also see how these forces are related to surface tension, thereby connecting this material 
with the contents of Chapter 6 (see Vignette X below). These connections also imply that 
certain macroscopic properties and measurements can be used to determine the strength of 
van der Waals forces between macroscopic objects. We elaborate on these ideas through 
illustrative examples in this chapter. 

462 
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VIGNETTE X WETTING AND SPREADING OF LIQUIDS: 
Stability of Thin Liquid Films 

Why does a drop of pentane spread into a thin film when placed on a water surface, whereas 
a larger hydrocarbon such as dodecane breaks up into smaller droplets? This is not an 
academic question, as should be evident from the importance of wetting and contact angle 
phenomena that we discussed in Chapter 6. Why is it that we can produce relatively stable 
bubbles with a soap solution but not with pure water? Water droplets on an oily surface, 
dewdrops on a blade of grass, and soap bubbles or foams arc: so common in our daily life 
that they rarely engage our attention, but to a scientist they are a constant reminder of the 
ubiquitous van der Waals forces! 

The very fact that the vapor phase of many substances can condense to form a liquid is a 
consequence of the existence of attractive van der Waals forces between atoms or molecules. 
An attractive intermolecular force is not needed for a gas to condense into a solid; solidifica- 
tion can occur purely as a result of “excluded-volume” interactions among the molecules at 
sufficiently large densities. The pressure in a fluid, the cohesion between materials, and the 
existence of surface energy or surface tension all result, partially or wholly, from van der 
Waals forces. 

Let us return to the differing behavior of pentane and dodecane on water. The energy of 
a film (of thickness d) of substance 1 spread between a planar interface of materials 2 and 3 
can be traced to the energies of interaction between 2 and 3 through 1 .  In macroscopic terms, 
under certain conditions (see Section 10.6a), this energy is proportional to ( - A / (  127d)  ), 
where the proportionality constant is a material property known as the Hamaker constant, 
which, in this case, depends on certain physical properties of all the three materials. This 
energy is the macroscopic van der Waals energy and results from the cumulative effects of 
individual, intermolecular van der Waals energies summed over all the molecules of the 
macroscopic objects. It turns out that in the case of pentane, A can become negative (i.e., the 
van der Waals energy is positive and the force is repulsive) so that pentane spreads on the 
water’s surface thereby separating the air (material 3 )  from water (material 2) to the extent 
permitted by other forces such as gravity. In the case of dodecane, however, the Hamaker 
constant is positive, the van der Waals force is attractive, and the film continues to thin and 
breaks up into small, lens-shaped droplets. The reason for the lens shape is discussed in 
Chapter 6. 

Now we can understand what happens in the case of soap bubbles. As discussed in 
Chapter 7 ,  the soap molecules spread on both air-water interfaces enclosing a film of water 
and provide the repulsion necessary to maintain a water film, similar to the case we discuss in 
Example 11.3. In the absence of soap molecules, the (attractive) air-air van der Waals forces 
through the water film rupture the film so that the bubbles are unstable. 

Phenomena such as the ones described above are usually (and conveniently) described in 
terms of macroscopic properties such as surface tension, contact angle, and so on. This is 
what was done in Chapters 6 and 7 .  In the present chapter, we: probe the molecular origin of 
van der Waals forces, go into some of the details of how they scale up in the case of 
macroscopic bodies, and illustrate their importance in molecular as well as macroscopic 
phenomena. 

10.1 c Focus of This Chapter 

The focus of this chapter is to present a fairly comprehensive introduction to the van der 
Waals forces. In addition to giving an introduction to the origin of these forces, we also 
illustrate the prevalence of these forces through examples of their role in some of the common 
macroscopic phenomena that are not necessarily directly related to colloidal problems. 

However, we begin with a classical example of van der Waals forces in colloid science, 
namely, their role in coagulation and colloid stability, in Section 10.2. This discussion also sets 
the stage for a more detailed discussion of colloid stability in Chapter 13. 

Following this, we review briefly the so-called power law molecular interaction forces 
in Section 10.3 and develop the details of the different kinds of van der Waals forces in Section 

1. 

2. 
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10.4. Two illustrations of the implications of these forces to macroscopic behavior of materials 
are also provided here. 

The van der Waals forces scale up from atomic distances to colloidal distances undi- 
minished. How the molecular forces scale up in the case of large objects, expressions for such 
forces, definition of the Hamaker constant, and theories based on bulk material properties 
follow in Sections 10.5-10.7. 

More often than not one deals with colloidal objects immersed in a liquid or other 
such media, and therefore interactions between similar or dissimilar materials in an arbitrary 
medium are of importance in colloid science. Moreover, it is very useful to relate such dissimi- 
lar interactions to those between identical particles in vacuum. In the last section (Section 
10.8) we present what are known as “combining relations” for accomplishing this. The van der 
Waals forces between macroscopic objects are usually attractive, but under certain circum- 
stances they (and, as a consequence, the Hamaker constant) can be negative, as noted in 
Vignette X. A brief discussion of this completes Section 10.8. 

3. 

4. 

10.2 VAN DER WAALS FORCES AND THEIR IMPORTANCE IN 
COLLOID AND SURFACE CHEMISTRY 

Almost all interfacial phenomena are influenced to various extents by forces that have their 
origin in atomic- and molecular-level interactions due to the induced or permanent polarities 
created in molecules by the electric fields of neighboring molecules or due to the instantaneous 
dipoles caused by the “positions” of the electrons around the nuclei. These forces consist of 
three major categories known as Keesom interactions (permanent dipole/permanent dipole 
interactions), Debye interactions (permanent dipole/induced dipole interactions), and London 
interactions (induced dipole/induced dipole interactions). The three are known collectively as 
the van der Waals interactions and play a major role in determining material properties and 
behavior important in colloid and surface chemistry. The purpose of the present chapter is to 
outline the basic ideas and equations behind these forces and to illustrate how they affect some 
of the material properties of interest to us. 

Of the three forces mentioned above, the London force is always present (like the gravita- 
tional force) because it does not require the existence of permanent polarity or charge-induced 
polarity in the molecules. Even neutral atoms or molecules such as helium or hydrocarbons 
give rise to the London interaction. As a consequence, the London interaction plays a special 
role in colloid and surface chemistry. As mentioned above, it influences physical adsorption 
and surface tension; in addition, it is important in adhesion, wetting phenomena, structure of 
macromolecules such as proteins and other biological and nonbiological polymer molecules, 
and stability of foams and thin films. It also plays a very important part in determining the 
strengths of solids, properties of gases and liquids, heat of melting and vaporization of solids, 
and the like. We illustrate some of these using simple examples in subsequent sections. 

Before we proceed to a molecular-level description of the van der Waals forces, it is useful 
to note a few other important points of information: 

1. The van der Waals forces are always attractive (although, as we see in Section 10.8b, 
the London forces between two macroscopic bodies immersed in a medium can be 
repulsive, depending on the material properties). 
They are relatively long ranged compared to other atomic- or molecular-level forces 
and can have an interval of influence ranging from about 0.2 nm to over 10 nm. 
The London force is also often called the dispersion force. The word dispersion here 
has nothing to do with the role of the London force in colloidal dispersions, but is the 
result of the role this type of interaction force plays in the dispersion of light in the 
visible and ultraviolet wavelengths. 
The dispersion force between two atoms, molecules, or large bodies is influenced by 
the presence of other nearby particles. Nevertheless, we consistently add pairwise 
interactions between the atoms in separate bodies as our procedure for scaling up 

2.  

3. 

4. 
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the interactions. This must be viewed as an approximation since perturbations by 
neighboring atoms limit the additivity of these forces. 

More detailed and advanced information on these forces can be found in the book by 
Israelachvili ( I  991), which is devoted completely to intermolecular and surface forces. Here, 
we focus on the essential basic information and examples. Before we proceed to a physical 
explanation of these forces and the necessary equations, it is useful to explore the role played 
by the van der Waals forces in colloid stability since this theme reappears in our discussions of 
electrical double-layer forces in Chapter 11 and polymer-induced forces in Chapter 13. 

10.2a Colloid Stability, van der Waals Attraction, and 
Potential Energy Curves 

Colloid stability serves as a convenient example to illustrate i:he importance of the strength 
and range of van der Waals attraction between macroscopic bodies in a practical context and 
to introduce the idea of potential energy curves. 

We introduced the concept of coagulation in Chapter 1, Section 1.4a, as that process by 
which two (or more) dispersed particles (primary or otherwisle) cluster together to form an 
aggregate in which the individual units retain their identity but lose their kinetic independence. 
The fact that the primary particles are held together in these aggregates is evidence of the 
existence of attractive forces between the particles. The fact that some dispersions are stable 
with respect to the coagulation process is evidence that other forces that compete against 
attraction are also operative. In any specific system it is the relative magnitude of the attractive 
and repulsive forces between the particles that governs the coagulation behavior of the system. 

Figure 10.la is a schematic illustration of the kinds of interactions described above. The 
figure shows the potential energy of the interacting particles its a function of the distance of 
separation between them. It turns out that potential energy is a more useful quantity to deal 
with than force, although the force is given by the negative local slope of one of the curves in 
an illustration like Figure 10.la. The figure shows two potential energy curves, one corre- 
sponding to attraction and the other to repulsion. By convention, the potential energy associ- 
ated with repulsion is defined as positive, while the attraction is negative. The combination of 
repulsion and attraction allows us to speak of the “height” of energy “barriers” and the “depth” 
of energy minima. 

An important aspect of Figure 10. l a  is the fact that both the attraction and repulsion vary 
with the distance of separation between the bodies involved. Regardless of the specific shapes 
of the curves, both modes of interaction become weaker as the separation becomes larger. At 
sufficiently large distances the particles exert no influence on each other. The curves are 
deliberately interrupted at very small separations in view of the possibility of highly specific 
interactions at small separations. Our interest is in interactions of a more general type. In the 
schematic illustration shown, the two components vary in roughly the same way with distance, 
but this effective cancellation is only one of an assortment cif possible attraction-repulsion 
combinations, One of our objectives in this section is to consider some of the combinations 
that are of interest. 

The attractions of interest in colloid stability usually arise from the van der Waals forces, 
and we see below that they are scaled-up versions of the same intermolecular attractions 
discussed in the following section and that contribute to the nonideality and ultimately lique- 
faction of gases. In view of Figure lO.la, we are interested in both the magnitude and the 
distance dependence of these attractive forces. 

Our discussion of the repulsion between particles requires a more drawn out development. 
In Chapter 11 we consider the effects of ion atmosphere as the origin of repulsion. In Chapter 
13, we discuss polymer-induced repulsive forces, which are often used to screen out the van 
der Waals forces. In these cases also, we are interested in both the magnitude and the distance 
dependence of these interactions. 

Whether what we are discussing is attraction or repulsion, it is important to realize 
that the interaction between a pair of colloidal particles involves some fundamental physical 
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FIG. 10.1 Potential energy curves for the interaction of two colloidal particles, each of radius R,. 
Negative values correspond to attraction and positive values to repulsion: (a) definition of vari- 
ables; (b)  repulsion less than attraction in magnitude and/or range; (c) repulsion and attraction 
comparable in magnitude and range; and (d) attraction less than repulsion. 

phenomena and some geometrical considerations. The precise shapes of the curves in a plot 
like Figure 10. la depend on both. For the quantitative interpretation of experimental results, 
it is important that both the physics and the geometry of the theory accurately (or a t  least 
approximately) describe the experimental system. From the point of view of pedagogy, how- 
ever, we are more interested in physical phenomena than in particle geometry. For this reason 
we idealize dispersed particles as spheres and often discuss interactions between facing planar 
surfaces of bulk specimens of matter. 

The axis representing the distance of separation in Figure 10.la is defined in terms of the 
geometry of the interacting bodies. For spherical particles we define r as the variable that 
describes the separation of their centers. For spheres of (equal) radius R, the separation of 
their surfaces along the line of centers is given by ( r  - 2RJ,  which we define as s. These are 
illustrated in Figure 1O.la. We define the distance of surface separation of two blocks of 
material by the symbol d. 

The attraction and repulsion curves that describe the interaction of a pair of colloidal 
particles are usually not as evenly matched as those shown in Figure 10. la .  Next let us consider 
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some other possible combinations of interest. In Figures 10.1b-10. Id the individual attraction 
and repulsion curves are shown as dashed or dotted lines, and the resultant of the WO is indicated by a 
solid line. It is the net interaction that governs the behavior, and the components have been 
adjusted to span an assortment of possible behaviors. 

In Figure 10.lb the attraction is much stronger than the repulsion at large distances of 
separation. I t  is easy to imagine this occurring as a result of two different situations with 
respect to the repulsion component. The repulsion might be relatively small at all distances, as 
indicated by line 1 in Figure lO.lb, or it may drop off over ia much shorter range of distance 
than the attraction, as shown by line 2. In either case the attraction dominates at the larger 
separations, and the particles can achieve a lower state of energy by maintaining the distance 
of separation corresponding to the potential energy minimum. Stated somewhat differently, it 
would take an energy corresponding to the depth of the minimum to disrupt an aggregate that 
had formed as a result of the particles adopting this equilibrium separation. If we identify the 
potential energy axis with free energy, it is apparent that the initial dispersed state is unstable 
with respect to the final aggregated state in this case. 

In Figure 10.ld the relative magnitudes of attraction and repulsion are just the opposite 
of those in Figure 10.lb. In Figure 10.ld the repulsion dominates. In this case the separated 
particles are lower in energy than the aggregate, and stability with respect to coagulation is 
indicated. 

Figure 1 0 . 1 ~  is an intermediate situation in which attraction and repulsion each have 
regions of dominance. In this case there is a shallow minimum at large separations, a maxi- 
mum at somewhat smaller separations, and a deep minimum at small separations. These 
minima are known as the secondary and primary minima, respectively, in the order cited. The 
actual depths of the minima and height of the maximum depend on the particulars of the 
components. Except for admitting the possibility of its existence, we shall not consider the 
secondary minimum any further. What is of particular interest to us is the fact that a minimum 
in energy results from coagulation in the primary minimum; however, access to that minimum 
first requires that an energy barrier be overcome. Such a system may be viewed as metastable, 
possessing a degree of kinetic stability even though it lacks thermodynamic stability. That is, 
coagulation is predicted, but it is expected to occur slowly. In this sense the barrier serves as 
an obstacle along the path to coagulation; its height is analogous to the activation energy in 
ordinary reaction chemistry. This last observation suggests that the kinetics of coagulation 
may offer some clue as to the height of the maximum in this intermediate situation. 

Potential energy curves of the type shown in Figure 10.1 are thus seen to be useful 
constructs for understanding and describing coagulation phenomena. They also illustrate the 
role of the attractive van der Waals forces on the stability of colloids. 

In the next section we consider the molecular origins of attractions between colloidal 
particles. 

10.3 Molecular Interactions and Power Laws 

To understand the origin of the attraction between colloidal particles, it is necessary to back 
off a bit and consider the interactions between individual inolecules. Macroscopic interac- 
tions - as we shall call the interactions between colloids since these particles are large compared 
to atomic dimensions -are the summation of the pairwise interactions of the constituent 
molecules in the individual particles. Therefore we begin by examining the interactions be- 
tween a pair of isolated molecules. 

Our primary interest in this section is to discuss the functional form that relates potential 
energy to the distance of separation x for various types of interactions. For many interactions 
an inverse power dependence on the separation describes the potential energy. Several exam- 
ples of this are shown in Table 10.1. The main point to be observed now is that the value of 
the exponent in the inverse power dependence on the separation differs widely for the various 
types of interactions. An immediate consequence of this is thqat the range of the interactions is 
quite different also. 



TABLE 10.1 
the Potential Energy Versus Separation, Along with Appropriate Proportionality Constants 

Partial List of Interactions Between Pairs of Isolated Ions and/or Molecules, with a Listing of Functions That Describe 

Description 
Attributed Value of n in 

Definitions and restrictions* to (9ax-" 

Ion 1-ion 2 

Ion 1-permanent dipole 2 

Permanent dipole 1- 
permanent dipole 2 

Permanent dipole 1- 
induced dipole 2 

Permanent dipole 1- 
permanent dipole 2 

Induced dipole 1-induced 
dipole 2 

Induced dipole 1-induced 
dipole 2 (retarded) 

Repulsion 

4 7 r d  

23 QO,lQO,2 - 7 h c -  
87r (47r&0)~x' 

4 +- 
XI2 

z = valence, e = electron charge under 
vacuum - otherwise er in denominator (sign 
depends on the z value) 

p = dipole moment, 8 = angle between line 
of centers and axis of dipole; length of 
dipole small compared to x (sign depends 
on z and orientation) 

Numerical constant (including sign) depends 
on orientation: const. = JZ for average 
overall orientations; const. = + 2 for 
parallel and - 2 for antiparallel alignment 

a0 = polarizability (always negative) 

Free rotation of dipoles (always negative) 

U = characteristic vibrational frequency of 

h = Planck's constant, c = speed of light; 

Exponent in range 9 to 15; 12 mathematically 

electrons (always negative) 

applies if x > c/u (always negative) 

convenient (always positive) 

Coulomb 1 

Coulomb 2 

Coulomb 3 

Debye 6 

Keesom 6 

London 6 

Casimir and 7 
Po lder 

12 

*The signs indicated are for the sign of (9. 
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It is those functions with an inverse sixth-power dependence on the separation that are 
our main concern in this chapter. Those power laws with exponents greater or less than 6 are 
included in Table 10.1 mainly to emphasize the point that many types of interactions exist and 
that these are governed by different relationships. The interactions listed are by no means 
complete: Interactions of quadrupoles, octapoles, and so on might also be included, as well as 
those due to magnetic moments; however, all of these are less important than the interactions 
listed. Let us now examine Table 10.1 in greater detail. 

The first three entries in Table 10.1 include Coulomb’s law and two results that follow 
directly from it by treating stationary dipoles as a pair of charges and adding all pairwise 
interactions. What is important to note about these results is that the sign may be positive or 
negative- corresponding to repulsion or attraction - depending on the charge of ions, the 
orientation of the dipoles, or both. 

By contrast, those results that involve an inverse sixth-power law are always negative; that 
is, attraction always results from interactions of the following types: 

1. 
2. 
3. 

Permanent dipole/induced dipole interaction (Debye equation) 
Permanent dipole/permanent dipole interaction (Keesom equation) 
Induced dipole/induced dipole interaction (London equation) 

The inverse seventh-power law is a special case of the induced dipole/induced dipole 
interaction that applies to the case of large separations; this is discussed in more detail in 
Section 10.5. As mentioned above, the three attractive interact ions listed above are collectively 
known as van der Waals attraction. In Section 10.4 we discuss in greater detail the significance 
and the origin of the van der Waals attractions listed in Table 10.1. In the present section we 
are interested in only the exponent in the power law. 

The last entry in Table 10.1 is the least well defined of those listed. This is of little 
importance to us, however, since our interest is in attraction, ;and the final entry in Table 10.1 
always corresponds to repulsion. The reader may recall that so-called hard-sphere models for 
molecules involve a potential energy of repulsion that sets in and rises vertically when the 
distance of closest approach of the centers equals the diameter of the spheres. A more realistic 
potential energy function would have a finite (though steep) slope. An inverse power law 
with an exponent in the range 9 to 15 meets this requirement. For reasons of mathematical 
convenience, an inverse 12th-power dependence on the separa.tion is frequently postulated for 
the repulsion between molecules. 

In general, the combined effects of van der Waals attraction and interparticle repulsion at 
the molecular level may be represented by the equation 

in which the constant f l  has been used to represent the various constants in the Debye, Keesom, 
and London equations. Since the two terms on the right-hand side of Equation (1) correspond 
to opposing tendencies, the total potential energy function will. display a minimum, the coordi- 
nates of which will describe an equilibrium situation. By differentiating Equation (1) with 
respect to x and setting the result equal to zero, the coord,inates of the minimum can be 
evaluated. These are readily found to be 

x, = (24/@) (2)  

and 

am = - ( P / 2 ) x i 6  = - [ x i ”  

where the subscript reminds us that these are values at the minimum. 
Equation ( 3 )  can be used to eliminate and ( from Equation (1) to obtain 

(3) 

cp = -cp,[(x/x,) - 1 2  - 2(x/xm) -7 (4) 
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Equations (1) and (4) or other variations of the 12-6 power law are often called the Lennard- 
Jones potential. The numerical values of the constants in the Lennard-Jones potential may be 
obtained from studies of the compressibility of condensed phases, the virial coefficients of 
gases, and by other methods. A summary of these methods and other expressions for the 
molecular interaction energy can be found in the book by Moelwyn-Hughes (1964). 

Figure 10.2 is a plot of the Lennard-Jones function for methane, for which 4 = 6.2 * 

Curves of this sort occur in many places in physical chemistry, and it is important to 
realize that they are the result of two contributions: a very short-range repulsion and a 
relatively long-range attraction. It is the latter with which we are primarily concerned, so we 
turn next to an examination of the origins of these inverse sixth-power attractions. 

J mI2 and ,O = 2.3 - 1 O P 7 ’  J m 6  (x,,, = 0.42 nm and am = 2.1 - 1 O P 2 l  J). 

FIG. 10.2 Potential energy versus distance of separation for two methane molecules. 
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10.4 MOLECULAR ORIGINS AND THE MACROSCOPIC IMPLICATIONS 
OF VAN DER WAALS FORCES 

In this section we outline the molecular origins of the Debye, Keesom, and London forces and 
discuss the strengths of these forces relative to each other. In addition, we also outline how 
macroscopic properties and behavior (such as the heat of vaporization of materials, nonideal- 
ity of equations of state, and condensation of gases) can be traced to the influence of the 
above van der Waals forces and illustrate these through specific examples. Another example 
of the van der Waals forces, namely, the reIation between the surface tension (or surface 
energy) of materials and the London force, is discussed in Section 10.7. 

10.4a Molecular Origins of van der Waals Attractions 

In Table 10.1 we saw that all random dipole-dipole interactions follow the inverse sixth-power 
law except the so-called retarded van der Waals attraction, which varies with the inverse 
seventh power of the separation. In this section we examiine briefly the physical basis of 
the three different inverse sixth-power laws that describe intermolecular attractions. Space 
limitations prevent us from deriving the Debye, Keesom, and London expressions in detail. 
More complete derivations may be found in many physical chemistry textbooks, such as that 
by Moelwyn-Hughes (1964). The abbreviated discussion we present should be sufficient, 
however, to indicate the connection between these attractions and molecular parameters. 

Interactions between dipoles, whether permanent or induced, are the result of the electric 
field produced by one dipole (subscript 1) acting on the second dipole (subscript 2). Therefore 
the first factor to consider in discussing such interactions is ithe field E produced by a dipole 
and measured a distance x from the dipole, with x large compared to the length of the dipole. 
Since we are dealing with the forces between charges, we must be attentive to the matter of 
units, as was the case in the similar discussion in Chapter 5, S’ection 5.2. The field has as units 
charge length - 2 ,  but in SI this requires that we divide the charge by 4m0 = 1.112 - 10 - I o  J - I  

C 2  m - I ,  in which case the field has the units N C (i.e., force per unit charge) or V rn - I  (i.e., 
potential gradient). The factor 4m0  is not required when cgs units are used; and, since the 
factor 47r may cancel, some of these relationships look different when written for other 
systems of units. 

The field is a vector quantity and may be resolved into components as shown in Figure 
10.3. We define 8 to be the angle between the axis of the dipole and the line that connects the 
point under consideration with the center of the dipole and along which x is measured. The 
field may be resolved into the following components: 

1. Parallel to the line of centers: 

E,, = - (2p1/4T&o)x - 3  COS 8 

E ,  = - ( ~ , / ~ x E ~ ) x - ~  sin 8 

( 5 )  

2. Perpendicular to the line of centers: 

(6) 

The total field is the square root of the sum of the squares of Equations (5) and (6), or 

E = - (pl/4~&,,)x-3 (sin2 8 + 4 cos2 e)”*  
= - (p l /4~&, , )X-3 (  1 + 3 COS’ e)1’2 (7) 

10.4a. I Debye Interaction 
Now let us consider the effect of such a field on a particle with no permanent dipole of its 
own. The field will induce a dipole in the second molecule; the magnitude of the induced 
dipole moment p 2  is proportional to the field with the polarizability of the second molecule a 2  
the proportionality constant (see Equation (5.11) ): 

p2 = a,E (8) 
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FIG. 10.3 
parallel and perpendicular to the line of centers along which x is measured. 

The electric field a distance x from a dipole. The field is resolved into components 

The potential energy of the second dipole due to this field is given by - p2E or - a2E2. To this 
must be added the energy necessary to induce the dipole ( 1/2)a,E2 since the second is not a 
permanent dipole. Therefore the total potential energy @ of the second dipole is 

@2 = - ( 1/2)a2E2 

Substituting Equation ( 7 )  into this expression and averaging over all orientations yields 

(9) 

The second dipole acts on the original dipole in a similar fashion, giving a second contribution 
to the interaction energy that is identical to Equation (10) except that the subscripts are 
interchanged. The total potential energy of attraction is the sum of these two contributions: 

This i s  the Debye equation (subscript D )  in Table 10.1 that describes the attraction between a 
permanent dipole and an induced dipole. 

10.4a.2 Keesom Interaction 
If this argument is applied to two permanent dipoles, the polarizability may be regarded as the 
sum of two contributions: one that is independent of the presence of the permanent dipole aO 
and a second that is the average effect of the rotation of the molecules in the electric field. The 
molar polarization P of a substance is given by 

P = (NA/3C())[CY, + (p2/3k,T)] 

The second term inside the brackets thus gives the average value of the orientation contribu- 
tion to the polarizability. Note that the magnitude of the permanent dipole contribution is 
expressed relative to thermal energy (k, is the Boltzmann constant) since increased thermal 
jostling tends to scramble the permanent dipoles. It is the second term in the brackets that is 
used in Equation (1 1) for the interaction of two permanent dipoles: 

This is the Keesom equation (subscript K )  from Table 10.1; it applies to the interaction of two 
permanent dipoles. 
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10.4a.3 London (Dispersion) Interaction 
Finally, we turn our attention to the third contribution to van der Waals attraction, London 
(or dispersion) forces between a pair of induced dipoles. It will be noted that (at least) one 
permanent dipole is needed for the preceding sources of attraction to be operative. No such 
restriction is present for the London component. Therefore this latter quantity is present 
between molecules of all substances, whether or not they have a permanent dipole. These are 
the same forces that we considered in Chapter 6 when we discussed the Girifalco-Good-Fowkes 
equation. 

The London equation for the attraction between a pair of induced dipoles is a quantum 
mechanical result that represents one of the contributions to  the "bond" between a pair of 
particles. Like other quantum mechanical results, the interaction energy emerges as part of the 
solution to the Schrodinger equation. We dispense with a rigorous examination of the situation 
and consider only the physical model and the final results. 

Figure 10.4 represents the situation we wish to consider. It represents two dipoles with 
length !, that is negligible compared to the distance between their centers. The dipoles are 
formed by the symmetrical vibration of electrons in the two particles. According to Table 
10.1, the potential energy of two dipoles in this arrangement is f 2 , ~ ~ ( 4 ' r r & , ) ~ ' x - ~  or 
f2(eP,)(eP,)(4-ir~~)-'x-~ since p, = ef, .  In addition, each of the vibrating dipoles may be 
regarded as a harmonic oscillator for which the potential energy is given by 

aj = (1/2)Keg (14) 

K = (e*/a,) (1 5 )  

in which 

Combining these various energy contributions gives the following expression to be used as the 
potential energy of this system: 

(16) 

When this net potential energy function is substituted into the one-dimensional Schrodinger 
equation and the suitable mathematical operations are carried out, the allowed energies E are 
found to be 

a j T  = (1 /2 )~P :  f 2(eP,)(eP,)(4~~,)- 'x-~ + ( 1 / 2 ) ~ P t  

E = [n,  + (1/2)]hv, + [n, + (1/2)]hv, (17) 

in which 
vi = v{ 1 - [2a , / (4~&$~) ]}  1'2 

and 

v, = v{ 1 + [2a,,,/(4-ir&fi3)] ] 1'2 (19) 

FIG. 10.4 A linear arrangement of two dipoles used to define the potential energy in the Schrod- 
inger equation for the London interaction energy. 
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and the ni and nj are integers. Note that the terms in Equation (17) are formally identical to 
the energy of quantized harmonic oscillators of frequency U, and vj. In addition, we observe 
that vi and vj approach v as x -, 00. Thus v is identified as the frequency of vibration for the 
system in the case in which the electrons vibrate independently. 

The lowest energy for the two coupled oscillators is the situation in which ni = nj = 0, in 
which case Equation (17) becomes 

E = (1/2)h(v, + vj) (20) 

E = 2[(1/2)hv] (21) 

On the other hand, the energy of two independent oscillators in their ground state is given by 

The difference between Equations (20) and (21) gives the contribution of the interaction to 
the potential energy: 

aL = (1/2)h[(vi + U,) - 2 ~ ]  (22) 

If the expressions for vi and U, given by Equations (18) and (19) are substituted into 
This is one way of writing the London (subscript L )  attraction between two induced dipoles. 

Equation (22), the following result is obtained: 

Expanding the square roots by the binomial expansion (see Appendix A )  and retaining no  
terms higher than second order yields 

Several modifications of Equation (24) are also important: 

When the molecules are capable of vibration in all three dimensions, the numerical 
constant in Equation (24) becomes 4 rather than 2: 

3 h v a i  
cp = -  X-6 

4 (47reOy 

When unlike molecules are involved, their individual frequencies and polarizabilities 
are involved, and the expression equivalent to Equation (24) is 

which is the result shown in Table 10.1. Note that this result becomes identical to the 
three-dimensional version of Equation (24) when the atoms are identical. 
The quantity hv in Equation (25) may be regarded as some energy that characterizes 
the system and is sometimes approximated by the ionization energy I 

The frequency of a harmonic oscillator, the model for the two dipoles, equals 
(1/27r)(K/m,)”2, where rn, is the mass of the electron. Substituting the value of K 
given by Equation (15)  yields 

for two identical molecules, since 
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Equations (25)-(28) are widely encountered expressions for the London attraction 
between two molecules. 

In examining the Debye, Keesom, and London equations we see that (a) they share as a 
common feature an inverse sixth-power dependence on the separation and (b) the molecular 
parameters that describe the polarization of a molecule, polarizability and dipole moment, 
serve as proportionality factors in these expressions. For a full discussion of the experimental 
determination of cyO and p ,  a textbook of physical chemistry should be consulted (Atkins 
1994). For our purposes, it is sufficient to note that the molar polarization of a substance can 
be related to its relative dielectric constant E ,  by 

where M a n d  p are the molecular weight and density, respectively (Atkins 1994, Chapter 22). 
Combining Equations (12) and (30) gives the general result 

Thus studies of E,  as a function of T may be analyzed to yield values of both a0 and ,U. For 
substances with no permanent dipole moment, p = 0 and E, == n 2 ,  where n is the refractive 
index at long wavelengths. For such a system Equation (31) beccomes 

To use Equation (32) it is necessary to extrapolate to infinite wavelength (or zero fre- 
quency) to obtain the unperturbed polarizability since the electric field of the light also alters 
the molecule. Failure to carry out such an extrapolation introduces far less error, however, 
than is introduced by an approximation such as Equation (27). 

10.4a.4 Relative Magnitudes of the Individual Contributions 1'0 

van der Waals Interaction 
In general, we may think of any molecule as possessing a dipole moment and a polarizability. 
This means that each of the three types of interaction may operate between any pair of 
molecules. Of course, in nonpolar molecules for which p = 0, two of the three sources of 
attraction make no contribution. 

As we have already noted, all molecules display the dispersion component of attraction 
since all are polarizable and that is the only requirement for the London interaction. Not only 
is the dispersion component the most ubiquitous of the attractions, but it is also the most 
important in almost all cases. Only in the case of highly polar molecules such as water is the 
dipole-dipole interaction greater than the dispersion component. Likewise, the mixed interac- 
tion described by the Debye equation is generally the smallest of the three. 

For a pair of identical molecules, Equations (1 l ) ,  (13), and1 (25) may be combined to give 
the net van der WaaIs attraction (subscript A )  CP,: 

The interaction parameter PI1  is defined 

where the subscript 1 1  has been added to P as a reminder that this result applies to a pair of 
identical molecules. 

We have gone through a rather complicated list of equations without looking at the 
magnitude of the various energy contributions. This is the subject of Example 10.1. 
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* * *  

EXAMPLE 10.1 Relative Magnitudes of van der Waals Forces and Relation to Heat of Vaporiza- 
tion. The parameter pll  must have units energy length6 in order to satisfy Equation (33). Verify 
these units as well as the dimensional consistenc of each of the three terms in Equation (34). 
Taking p = 1.0 debye and CY = 1OP3’ C2 m2 J - , calculate the amount of energy needed to 
separate a pair of molecules from 0.3 nm to 0 0 .  Scaled up by Avogadro’s number, how does 
this energy compare with typical enthalpies of vaporization? 

Solution: First, we examine the units of each of the terms in Equation (34). Example 5.1 makes 
it easy to analyze the units of terms containing CY. That example shows that (CY/4T&o) has units 
length3. Polarizabilities are often tabulated as ( d 4 a ~ ) ,  thereby having volume units. 

The dipole moment has units of charge length, or C m in SI. The square of these units 
divided by the units of ( 4 ~ ~ 0 )  therefore has units C2 m2/(C2 J 

The first term in Equation (34) involves the product of CY and p2,  each expressed in multiples 
of ( ~ T Q ) ,  and therefore has units J m as required. 

Since k,T has units of energy, the second term in Equation (34) is seen to have units 
(J m3)2/J = J m6. 

Since hv has units of energy, the third term has units J (m3)2 = J m6. The debye is widely 
used as a unit of dipole moment. It is equal to 10-l8 esu cm. To convert this to SI we write 

1 debye = 10-18esu cm.(l m/100 cm)~(1.60~10-19C/4.80~10-’0esu) 

Y 

m -’) or J m3. 

= 3.336. 10-30 C m 

In Equation (34) the Debye term is given by 

[ 2 ~ ~ p ~ / ( 4 a & ~ ) ~ ]  = [2*(10-39)(3.34-10-30)2]/(l .1 1 -10-’o)2 
= 1 . 8 1 ~ 1 O - ~ ~ J  m6 

and the Keesom term by 

[(2/3)p‘/k,T(4~~)~] = [2(3.34* 10-30)4]/[3(1 .38*10--23)(293)(1 .ll 10-10)2] 

= 1.67.10-78J m6 

To evaluate the London term we need the characteristic frequency V. Using Equation (29), 
we obtain for this frequency 

v = (1/2a)[(1.60*10-19)2/(10-39)(9.1 1 *10-31)]1‘2 
= 8.44-10l4 

in terms of which the London energy is given by 

[(3/4)hv~~~/(4a&,)~] = [3(6.63* 1 0-34)(8.44. 1 O’‘)(l 0-3g)2]/[4(1 .11 - 10-10)2] 
= 3.41 . 10-77 J m6 

The sum of these three contributions gives the pll value for this system P l l  = 3.76 10-77 
J m6. 

10-9)6 
= 5.16 - 1OP2O J. When the distance of separation is infinity, the interaction energy is zero. 
Therefore scaling up 5.16 - 10-20 J by Avogadro’s number gives an estimate of the energy 
required to separate a mole of these molecules from a separation typical of a liquid to one that 
represents a gas: (5.16 . 10-20)(6.02 - 1023) = 31,000 J. This final result is of the correct order 

When the separation of the molecules is 0.3 nm, the energy is 3.76 - 10-77/(0.3 

of magnitude of heats of vaporization. 
* * *  

Dividing Equation (34) through by p,, gives the fractional contribution made to the total 
attraction by the Debye (D), Keesom ( K ) ,  and London ( L )  components of potential energy: 

(35) 
Table 10.2 shows these fractions calculated for a variety of molecules. In virtually all 

cases except the highly polar water molecule, the London or dispersion component is the 
largest of the contributions to attraction. In the case of water, hydrogen bonding is also 
possible and contributes an additional strong interaction, so the role of dispersion is even less 
than shown in Table 10.2. 

Before continuing with our development of van der Waals attraction, we examine how 

fD + f K  + f L  = 1 
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TABLE 10.2 
Attraction Between Various Molecules 

Percentage of the Debye, Keesom, and London Contributions to the van der Waals 

Percentage contribution of 

Keesom Debye London 
CL 47% 0 x 1077 (permanent- (permanent- (induced- 

Compound (debye) (m3> (J m6) permanent) induced) induced) 

- x 1030 
a 

CCl, 
Ethanol 
Thiophene 
t-Butanol 
Ethyl ether 
Benzene 
Chlorobenzene 
Fluorobenzene 
Phenol 
Aniline 
Toluene 
Anisole 
Diphenylamine 
Water 

0.00 
1.73 
0.51 
1.67 
1.30 
0.00 
1.58 
1.35 
1.55 
1.56 
0.43 
1.25 
1.08 
1.82 

10.70 
5.49 
9.76 
9.46 
9.57 

10.50 
13 .OO 
10.30 
11.60 
12.40 
11.80 
13.70 
22.60 

1.44 

4.41 
3.40 
3.90 
5.46 
4.5 1 
4.29 
7.57 
5.09 
6.48 
7.06 
5.16 
7.22 

14.25 
2.10 

0.0 
42.6 
0..3 

23.1 
10..2 
0.0 

13 .3  
10.16 
14.5 
13.16 
0.1 
5 . 5  
1 . 5  

84.8 

0.0 
9.7 
1.3 
9.7 
7 .1  
0.0 
8.6 
7 .5  
8.6 
8 .5  
0.9 
6.0 
3.7 
4.5 

100.0 
47.6 
98.5 
67.2 
82.7 

100.0 
78.1 
81.9 
76.9 
77.9 
99.0 
88.5 
94.7 
10.5 

Source: Dipole moments and polarizibilities from A. L. McClellari, Tables of Experimental Dipole 
Moments, W. H. Freeman, San Francisco, CA, 1963. 

van der Waals forces at the atomic or molecular level influence the macroscopic properties of 
materials. 

10.4b Macroscopic Implications 

We have already seen from Example 10.1 that van der Waals forces play a major role in the 
heat of vaporization of liquids, and it is not surprising, in view of our discussion in Section 
10.2 about colloid stability, that they also play a significant part in (or at  least influence) a 
number of macroscopic phenomena such as adhesion, cohesion, self-assembly of surfactants, 
conformation of biological macromolecules, and formation of biological cells. We see below 
in this chapter (Section 10.7) some additional examples of the relation between van der 
Waals forces and macroscopic properties of materials and investigate how, as a consequence, 
measurements of macroscopic properties could be used to determine the Hamaker constant, a 
material property that represents the strength of van der Waals attraction (or repulsion; see 
Section 10.8b) between macroscopic bodies. In this section, we present one illustration of the 
macroscopic implications of van der Waals forces in thermodynamics, namely, the relation 
between the interaction forces discussed in the previous section and the van der Waals equation 
of state. In particular, our objective is to relate the molecular van der Waals parameter (e.g., 

in Equation (33)  ) to the parameter a that appears in the van der Waals equation of state: 

(36) 

where p is the pressure and v is the molar volume of the gas. Incidentally, van der Waals’s 
proposal of the above equation, presented as part of his doctoral dissertation, pre-dates the 
development of what are now known as van der Waals forces. Interested readers may wish to 
consult his dissertation, which is now available as a book (van der Waals 1988). 

Let us begin with a collection of N atoms of diameter I.J i:n a volume V .  We shall assume 
that the atoms are spherical and mutually impenetrable, that the interparticle energy of attrac- 
tion between any two particles is given by ( -p , l  r P 6 )  for r :> 0, with r the center-to-center 

[P + (a / v2 ) l ( v  - b)  = RT 
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distance of separation between the two particles, and that the density (N/  V )  is sufficiently low 
that we can consider the total interatomic interaction energy as a sum of pair interactions (i.e., 
sum of interactions taken two atoms at a time). Given this information, our goal is to relate 
the parameters a, PI1 ,  N ,  and V t o  the van der Waals parameters a and b. 

We first look into the “excluded-volume” effect, represented by the parameter b. Since 
the atoms are impenetrable, no atom can get closer than a distance a from another. (Note that 
the location of each atom is represented by the location of the center of that atom.) This 
implies that each atom has a volume of (4/3)7ra3 around its center that is not accessible to the 
center of any other atom; this volume is the excluded volume associated with each atom. 
(Figure 13.9 is an illustration of this situation for two colloidal particles of different radii.) 
The actual excluded volume per atom, b’ ( b ,  the excluded volume per mole, is equal to NAb’, 
with NA the Avogadro’s number) is, however, smaller than (4/3)7ra3 since the excluded volume 
of an atom as calculated above may overlap with that of other atoms. Therefore, to obtain an 
expression for 6 ,  we need to multiply the above value by N (since there are N atoms in the 
volume), take half of it since otherwise we will be “double counting” the excluded volumes, 
and divide by N to get excluded volume per atom, that is, 

(37) b’ = (4/3)7ra3 * (N/2)  * ( l / N )  = (2/3)na3 

Therefore, it follows that 

b = (2/3)ra3NA 

Now, we examine the effect of attraction. Each atom is surrounded by ( N  - 1 )  atoms in 
the volume V. The number of atoms in a spherical shell of thickness dr at a distance r from 
any atom is 4w2(N/V)dr.  Therefore, the interaction energy U experienced by any atom is 
given by 

where S is the radius of the container. The above equation can be integrated easily, and since 
S is usually very much larger than a, the integration leads to 

The total energy U for all the N atoms is then 

where we have again multiplied U by (N /2 )  for the same reason as in the case of the expression 
for b. 

Since pressure is equal to -(dU/dV),  and the deviation in pressure from ideality (i.e., 
from pv = R T )  arising from the attractive forces in the van der Waals equation is equal to 
( -a/v2) ,  we have 

a N 2 a  

which we can combine with Equation (41) for U to obtain 

The above derivation shows that one can determine the van der Waals parameters a and b 
if CJ (a measure of the size of the atom or molecules) and the van der Waals interaction energy 
parameter PI1 are known. Alternatively, one can estimate P I I  from known values of a and b. 
This is illustrated in Example 10.2. 
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* * *  

EXAMPLE 10.2 The Dispersion Force and Nonideality of Gases. The nonideality of gases 
arises from the repulsive and attractive forces between atoms. As a consequence, the deviation 
of the properties of a gas from ideal gas behavior can be traced to the interatomic or intermolec- 
ular forces. Assume that methane follows the van der Waals equation of state at sufficiently low 
densities. It is known from experiments that (see lsraelachvili 19!31) 

a = 2.28. 10- ‘m3Jmol -2  and b = 4.28 - 10-5m3mol- ’  

Assume that the intermolecular attraction in this case is dorninated by the London interac- 
tion, that is, aL = -Cr-6,  for which C is the London parameter (Equation (25) ). Estimate the 
London constant from the equation-of-state data and compare it with the coefficient from Equa- 
tion (25). The polarizability [cro/(4m,,)] for CH, is 2.6 - 10-30 m3. The ionization energy / is 
2.0185 - 10-’* J (Israelachvili 1991, Chapter 6 and Table 6.1). 

Solution: One can eliminate the molecular diameter U from the equation for the parameter a 
using the equation for b to get C in terms of a and b: 

Using NA = 6.022 - 1023 mol-’ and the given values of a and b, we get for C 

From Equation (27) for identical molecules, one has 

C = 1.018 - 10-77 J m6 (from the experimental PVdata) 

Therefore, the London constant C is given by 

From the given values of polarizability and ionization potential for CH,, we have 

The two values agree remarkably well, showing the relation between the London force and the 
nonideality of the gas. 

This example illustrates how equation-of-state data may be used to estimate the strength 
of van der Waals forces or vice versa. rn 

C = (3/4)[ cro/(4r~)]  2/ 

C = 1.02 . 10 -77 J m6 (from the polarizability data) 

* * *  

In this section we have examined the three major contributions to what is generally called the 
van der Waals attraction between molecules. All three originate in dipole-dipole interactions 
of one sort or another. There are two consequences of this: (a) all show the same functional 
dependence on the intermolecular separation, and (b) all depend on the same family of 
molecular parameters, especially dipole moment and polarizability, which are fairly readily 
available for many simple substances. Many of the materials we encounter in colloid science 
are not simple, however. Hence we must be on the lookout for other measurable quantities 
that depend on van der Waals interactions. Example 10.2 introduces one such possibility. We 
see in Section 10.7 that some other difficulties arise with condensed systems that do not apply 
to gases. 

In the next section we take a preliminary look at the way van der Waals attractions scale 
up for macroscopic (i.e., colloidal) bodies. This will leave us in a better position to look for 
other measurements from which to estimate the van der Waals parameters. 

10.5 VAN DER WAALS FORCES BETWEEN LARGE PARTICLES AND 
OVER LARGE DISTANCES 

The interaction between individual molecules obviously plays an important role in determin- 
ing, for example, the nonideality of gas, as illustrated in Example 10.2. It is less clear how to 
apply this insight to dispersed particles in the colloidal size range. If atomic interactions are 
assumed to be additive, however, then the extension to macroscopic particles is not particu- 
larly difficult. Moreover, when dealing with objects larger than atomic dimensions, we also 
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have to consider interactions over appropriately large distances. In the case of the London 
attraction, forces over large distances show a more rapid decay than indicated by the inverse 
sixth-power equations derived in Section 10.4. This is known as (electromagnetic) retardation. 
We discuss these two important issues in this section before developing the equations for 
interactions between macroscopic bodies in Section 10.6. 

10.5a Scaling van der Waals Interactions for Large Bodies 

We begin by considering two spherical particles of the same composition and the same radius 
R,. As Figure 10.5 shows, we consider two situations. In case (a) we consider spheres of radius 
R, and in case (b) spheres of radius R,. The two radii are related as follows: 

RLJ = fR, (44) 

where f is a factor greater than unity. 
Let us first focus on Figure 10.5a. Assume that every atom in sphere 1 attracts every atom 

in sphere 2 with an energy given by Equation (33). If (pNA/M) is the number of atoms per 
cubic centimeter in the material, then there are (pNA/M)dV, ,  atoms in a volume element of 
sphere 1 and (pNA/M)dV2, atoms in a volume element of sphere 2. The number of pairwise 
interactions between the two volume elements is (1/2) ( p N A / M ) 2  dV,,dV,. The factor ( l i 2 )  
enters since each pair is counted twice. This number times the interaction per pair gives the 
increment in potential energy for the two interacting volume elements in case (a): 

(45) 

By including additional geometrical considerations, the volume elements and their separation 
may be expressed in a common set of variables, and Equation (45) can be integrated over the 
volume of both spheres. Rather than complicate the issue by specific mathematical substitu- 
tions at this time, we indicate this procedure as follows: 

Now let us turn our attention to Figure 10.5b. In this case the spheres are larger by a 
factorfas just noted. In addition to this, the distance between their centers is also assumed to 

FIG. 10.5 
Rh and rb)  are larger than those in (a) by a constant factor-f. 

Two spheres of equal radii separated by a distance r.  All linear dimensions in (b) (i.e., 
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be larger than that in case (a) by the factor f. If we let the separation of centers be represented 
by r ,  then 

rb = f r a  (47) 

Following the same procedure as used for case (a), we can evaluate the total interaction 
potential in case (b). It is given by 

Since the linear scale in case (b) is larger by the factorfthan that in case (a), Equation (48) 
can also be written 

Note that the factorfcancels out of this expression entirely, so that 

‘9, = @b (50) 

That is, the potential energy of attraction is identical in the two cases. This is an important 
result as far as the extension of molecular interactions to macroscopic spherical bodies is 
concerned. What it says is that two molecules, say, 0.3 nm in diameter and 1.0 nm apart, 
interact with exactly the same energy as two spheres of the same material that are 30.0 nm in 
diameter and 100 nm apart. Furthermore, an inspection of Equation (49) reveals that this is a 
direct consequence of the inverse sixth-power dependence of the energy on the separation. 
Therefore the conclusion applies equally t o  all three contributions to the van der Waals 
attraction. Precisely the same forces that are responsible for the association of individual gas 
molecules to form a condensed phase operate - over a suitably enlarged range - between col- 
loidal particles and are responsible for their coagulation. 

The analogy between the condensation of a gas and the coagulation of a dispersion is 
important. It points out that under certain circumstances the aggregation of the separated 
units is inevitable. However, there are also conditions under which the dispersed state is stable. 
We know from kinetic molecular theory that thermal energy- measured by k,T per molecule 
or RT per mole- supplies a reference level against which all energies are judged to  be large or 
small. 

* * *  

EXAMPLE 10.3 The Strength of van der Waals Forces and the Structure of Materials. It is 
interesting to ask why some substances such as very small, nonpolar argon and methane are 
gaseous at room temperature while substances made up of larger molecules (e.g., high molecu- 
lar weight hydrocarbons) are liquids or solids. Consider argon as an example and show that 
the typical attractive energy of two argon atoms separated by a distance of about 0.38 nm is of 
the order of thermal energy (i.e., about k,T) at room temperature. Discuss the implication of this 
order-of-magnitude estimation to the structure of a substance at room temperature. The quan- 
tity [,c$(~?TE~)] for argon is about 1.6 - 10-30 m3. The ionization energy I for Ar is roughly 2.5 
10- J. 

Solution: Using Equation (27), with lI = l2 = I, one observes that for two argon atoms 
separated by the given (typical) distance of separation the dispersion energy is approximately 
equal to 

+L = - (3/4)[~~0/(4~%)]~ I X - 6  

= - 0.75.2.56- 1 0-60*2.5. 10-’**(0.38* 1 O-’)pJ 
= -1.6*10-21 J 

Since k, = 1.381 - 10 -23 J K -’, at room temperature (say, T = 290 K), one has 

+L = -1.6 * 1OP2l -0.4kBT 

The above result implies that at room temperatures the attraction between two argon atoms 
is sufficiently weak relative to thermal energy (k,T) that argon will remain as a gas rather than in 
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a condensed state (liquid or solid). In contrast, in the case of larger molecules, the attractive 
energies can be sufficiently high to make the material condense into a liquid or solid. Although 
the above estimate is crude, it explains the role of van der Waals forces on condensation. 

This example illustrates how the London forces influence whether a material exists as a 
gas, a liquid, or a solid at a given temperature. 

* * *  

Thus, as illustrated in Example 10.3, a gas will condense if the energy of attraction between 
molecules is large compared to k,T. Conversely, it remains dispersed if k,Tis larger. The same 
is true for colloidal particles also, at least if they are not too large. For larger particles 
externally applied energy- such as mechanical stirring - joins thermal energy in establishing a 
reference level of energy. In general, however, the height of the barriers or the depth of the 
minima in the potential energy curves we discussed in Section 10.2 are considered large or 
small relative to k,T. The argument leading to Equation (50) shows that van der Waals 
attraction is as important for colloidal particles as it is for individual molecules. 

In reaching this conclusion we have assumed that no time lag affects the field that estab- 
lishes the attraction between the particles. We have also considered particles under vacuum so 
no intervening medium enters the picture. Each of these simplifying approximations has the 
effect of overestimating the van der Waals attraction between particles at large separations 
from one another and embedded in a medium. We consider presently the effect of a time lapse 
between the interaction of a field with two different particles; the effect of the medium is 
discussed in Section 10.8. 

10.5b Electromagnetic Retardation of the London Force 

The electric field responsible for the London attraction between molecules propagates itself 
with the speed of light between the particles. Thus, if a pair of molecules is widely separated, 
a time lag or a phase difference develops between vibrations at the two locations. The situation 
is analogous in many ways to the scattering of light by particles with dimensions that are large 
compared to the wavelength of the light (see Section 5 . 5 ) .  In the present situation we find that 
the importance of this time lag or retardation increases as the separation becomes comparable 
to the wavelength of the propagating field. 

Equation (29) provides us with an expression for the frequency of the interaction. There- 
fore its wavelength is given by 

where n is the refractive index. For typical values of n and a0, h is about 200 nm. As was the 
case with light scattering, separations less than about 1/20 of this distance may be considered 
“small compared to the wavelength.” This means that at separations of about 10 nm or so the 
effects of retardation begin to enter the picture. Our reason for interest in this is the fact that 
the comparison of attraction and repulsion between colloidal particles is made at this distance 
in some cases. 

We shall not present the detailed analysis of this complication. In essence, it involves the 
time-dependent Schrodinger equation rather than the time-independent equation that resulted 
in Equation (22). Casimir and Polder have investigated this situation. They found that for 
values of r + A, the potential energy of attraction according to the modified London treat- 
ment is given by 

This is the one entry in Table 10.1 that has not yet been discussed. Direct measurement of the 
force of attraction between macroscopic bodies reveals a crossover from an inverse sixth- 
power to an inverse seventh-power law at separations in the range 10 to 100 nm. 

Equation (49) is particularly convenient to show the effects of retardation on the attrac- 
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tion between spherical particles at large separations. On correcting the potential function for 
retardation according to Equation ( 5 2 ) ,  Equation (49) becomes 

at large separations. This result shows that the scale factor f does not drop out of the expres- 
sion in the case of the retarded van der Waals forces. Therefore the potential energy of the 
attraction decreases as the scale increases (i.e., asfincreases). 

In subsequent discussions we shall not consider the effect of retardation any further. 
Additional details are given by Israelachvili (1991), Israelachvili and Tabor (1973), and Sonn- 
tag and Strenge (1964). 

The development that led to Equation (50) was conducted without any actual integrations 
being performed. In order to generate exact expressions for the van der Waals attraction 
between bodies of specific geometry, it is necessary to carry out these operations. This is 
discussed in the next section. 

10.6 CALCULATING VAN DER WAALS FORCES BETWEEN 
MACROSCOPIC BODIES 

The strategy for scaling up the van der Waals attraction to macroscopic bodies requires that 
all pairwise combinations of intermolecular attraction between the two bodies be summed. 
This has been done for several different geometries by Ha:maker. We consider only one 
example of the calculations involved, namely, the case of blocks of material with planar 
surfaces. This example serves to illustrate the method and also provides a foundation for 
connecting van der Waals forces with surface tension, the subject of the next section. 

10.6a Attraction Between Two Semi-Infinite Blocks 

Figure 10.6a represents a molecule at 0 located a normal distance z from the surface of a bulk 
sample of the same material. The bulk portion is assumed to have a planar face but otherwise 
is of infinite extension. The molecule is located a distance x from all the molecules in the 
ring-shaped volume element shown in the figure. The volume of this ring is given by dV = 
2 ~ y  dy d{. Therefore the increment of interaction between the molecule and the block due to 
the molecules a distance x from the point 0 is given by 

(54) 

( 5 5 )  

(56) 

Equation (56) is now integrated over the volume of the block, that is, for 0 < y < 03 and 0 
< { <  00.  

d 9  = - (pNA/M)P(27ry/x6)dy d{ 

x 2  = ( 2  -t {)2 + y 2  

d 9  = -(pNA/M) 6 ~ T [ ( z  + {)2 + y 2 ]  -'y dy d{ 

We assume the ring is located a distance { inside the surface of the block; then 

Combining Equations (54) and (55) gives 

Integration over y yields 

YdY du 1 
(57) 

and integration over yields 
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FIG. 10.6 Schematic illustration of interactions: (a) interaction between a molecule and a block 
of material; and (b) interaction between two blocks of material. (Redrawn with permission from P. 
C. Hiemenz, J.  Chem. Educ., 49, 164 (1972). 

Therefore the integration of Equation (56) over the block gives 

@ = - (pN,/M)P7r/(6z3) (59) 

Now suppose point 0 is located inside a second block of material as shown in Figure 
10.6b. We recognize that all atoms in a slice of the second block a distance z from the first 
block will be attracted toward the second with an energy given by Equation (59). If we position 
a volume element of thickness dz at this location in the second block, we realize that it contains 
(pN,,/M) molecules per unit area. This is (pN,/M)dz molecules; therefore the increment of 
attraction per unit area due to this slice is 

(60) 

Equation (60) may now be integrated over values of z between the distance of closest approach 
d and infinity. The result of this integration gives the potential energy of attraction per unit 
area between two blocks of infinite extension: 

d@ = - (pNA/M)’(P7r/6)z -3dz 

@, = -(pN,/M)2(P7r/12)d-2 (61) 

where the subscript A has been appended to @ to emphasize the fact that this energy is always 
attractive. 

It is traditional to designate the cluster of constants (pN,/M)’7r2P as the Harnaker con- 
stan t A : 

A = ( p N / , ~ / M ) ~ f l  

With this change of notation. Equation ( 6 1 )  becomes 

@, = - ( A / 1 2 ~ ) d - ~  (63) 

The Hamaker constant has energy units since has the units energy length6 and the term in 
parentheses in Equation (62) has the units (volume - I ) ’ .  The potential energy of attraction 
between blocks as calculated by Equation (63) is expressed per unit area of the facing surfaces. 
Note also that this attraction grows weaker as the distance increases. This is different from the 
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conclusion drawn for spheres in Equation (50). The scaling up of van der Waals forces, 
therefore, depends on the geometry of the bodies involved. 

10.6b Magnitudes of Hamaker Constants 

Although we have considered numerical values of ,f3 before, we have not encountered the 
Hamaker constant previously and hence have no feel for its magnitude. A particularly conve- 
nient form for an order of magnitude estimation of A is obtained by making the following 
stipulations: 

1 .  Assume that the dispersion component is the dominant contributor to the attraction; 
therefore ,f3 = (3/4)h~((r/47re,)~. 

2. Recognize that (pN,/M) is the reciprocal of the volume per molecule, and that 
(a/47re,) is typically about 10% the magnitude of atomic volume; therefore A = 
( 3/4)n2hv(0. 1)2. 
The quantity hv is the same order of magnitude as the ionization potential, typically 
about J. 

3. 

Combining these results leads us to estimate the Hamaker constant to lie in the range 
10-20 to lO-") J. If we take the midpoint value of 5 10-20 J for A ,  Equation (63) predicts 
that 9, equals 1.33 and 1.33 * 10 - 2  mJ m - 2  when d equals 1 .O and 10 nm, respectively. Table 
10.3 presents Hamaker constants for some materials of practical interest. Values for many 
other materials and reviews of methods of calculating Hamaker constants are available in 
Gregory ( 1969) and Visser ( 1972). 

1 0 . 6 ~  van der Waals Interaction Energies for Other Geometries 

The interaction of two infinite blocks separated at the surface by a distance d is one of the 
easiest possible situations to consider and therefore was chosen as the example to develop in 
detail. Bodies of different geometries have also been analyzed in much the same way that we 
have the blocks. The results of several such derivations are shown in Table 10.4. The expres- 
sions for 9, become more complicated for more complex geometrical situations, but consider- 
able simplification results for spheres in which the separation is much less than the radius. The 
feature described by Equation (50) for interacting spheres is also evident in the results given in 
Table 10.4. It is most readily seen by examining the case of equal spheres separated by small 
distances. Note that both R, and d can be multiplied by any common factor without changing 

TABLE 10.3 Hamaker Constants for Selected Materials 
_ _ _ _ _ _ _ _ _ ~  

Material A x 102' Joules Source 

Acetone 
Alumina 
Gold 
Magnesia 
Metals 
Natural rubber 
Polystyrene 
Silver 
Toluene 
Water 

4.2 
15.4 
45.3 
10.5 
16-45 
8.58 

7.8-9.8 
39.8 
5.4 
4.35 

Croucher and Hair 
Bargeman and van Voorst Vader 
Bargeman and van Voorst Vader 
Bargeman and van Voors t Vader 
Visser 
Croucher and Hair 
Croucher and Hair ; Croucher 
Bargeman and van Voors t Vader 
Croucher and Hair 
Bargeman and van Voors t Vader 

Sources: D. Bargeman and F. van Voorst Vader, J .  Electroanal. C'hem. Inter- 
facial Electrochem., 37, 45 (1972); Croucher and Hair 1977; \ h e r  1972; 
Croucher (1981). 
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TABLE 10.4 Potential Energy of Attraction Between Two Particles with the Indicated Geometries 

Particles 
Definitions/ 
Limitations 

Two spheres 

Two spheres of 
equal radius 

Two spheres 
with equal 
radius 

Two spheres of 
unequal 
radius 

Two plates of 
equal thick- 
ness 

Identical 
blocks 

f l ( R l , R 2 , d )  = d’ + 2Rld + 2R2d 

f2(RIYR2,d) = d’ + 2Rld + 2R2d + 4RlR2 

fi ( R , , d )  = d’ + 4 R 4 ;  f2 (Rs ,d )  = d2 + 4 R 4  + 4R: 

-- ARS 
12d 

- --(- A l +  1 
127r d2 ( d  + 26)2 ( d  + 6)’ 

A 
1 27rd2 

-- 

R , , R ,  = radii; d = 
separation of sur- 
faces along line 
of centers 

R I  = R2 = R, 

R , > >  d 

R I  and R2 > > d 

6 = thickness of 
the plates; d = 
surface-to- 
surface distance 

6 - r m  

the magnitude of the interaction energy. The expression for interacting plates of thickness 6 in 
Table 10.4 is also seen to reduce to Equation (63) as 6 -+ 00.  

10.7 THEORIES OF VAN DER WAALS FORCES 
BASED ON BULK PROPERTIES 

Adding together molecular interactions to account for macroscopic attractions is undoubtedly 
an oversimplification. There are several things that this procedure overlooks that limit its 
validity. For example, even for two bodies under vacuum, those molecules nearer the surface 
screen the interactions of molecules buried more deeply in the material. Because of the inverse 
power dependence of the attraction, those molecules nearest the faces of the blocks make the 
predominant contribution to the interaction. If these molecules have permanent dipoles, they 
may experience orientation effects under the influence of the surface that are not described by 
the Debye and Keesom models. From a practical point of view, dipole moments and polariz- 
abilities may not always be available for all substances of interest, as noted in Section 10.4. 
The possibility of surface heterogeneity confuses the choice of polarization parameters even 
further. Although we continue (for now) to assume a vacuum separates the bodies under 
consideration, the presence of an intervening medium can only aggravate all of the preceding 
points. 

1 0.7a Dzyalos hins kii-Lif s hitz-Pi taevski i Theory 

For the above reasons a theory based entirely on measurable bulk properties rather than 
molecular parameters is a more powerful way of dealing with the interaction of macroscopic 
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bodies. Dzyaloshinskii, Lifshitz, and Pitaevskii (DLP) have developed such a macroscopic 
theory in a very general form from quantum field theory. Bulk; dielectric properties of matter 
are the basis for this theory, so screening effects are built into the solution. Unfortunately, in 
its general form, the DLP theory is complicated and difficult to apply. An indication of this is 
found in the following expression for the Hamaker constant A,,,-as it would be used in 
Equation (63)-for the interaction of blocks of material 2 and material 3 when the two are 
separated by material 1 : 

In this expression &(it) is the dielectric “constant”-it is a function of frequency-along the 
imaginary frequency axis it; it is measurable as the dissipative part of the spectrum of dielec- 
tric constant for any material. The latter is an experimental1.y determined function of fre- 
quency for each of the three components, and the complicated expression in Equation (64) is 
integrated over all frequencies. 

Although very general. the difficulty in applying the DLP theory has limited its use and 
encouraged the development of various approximations and :special cases. The only use we 
make of the DLP theory is to point out that the differences between the &(it)  values for the 
blocks and the medium appear in the numerator of Equation (64). If these dissipative compo- 
nents of dielectric constant matched at all frequencies for substances 1, 2, and 3, then the 
Hamaker constant would equal zero according to Equation (64). Although an exact match 
seems unlikely, this is the first indication we have had that an intervening medium might have 
a compensating effect on van der Waals attraction. This idea will be developed more fully in 
Section 10.8. 

10.7b Semiclassical Approaches Based on Bulk Properties 
Such as Surface Tension 

Because of the complexity of the DLP theory, several semiclassical treatments have been 
developed to simplify and extend its findings. One such extension is applicable to blocks of 
nonpolar materials at small separations and is of interest to 11s because of the possibility it 
offers for relating surface tension to intermolecular forces. 

For now we consider the interaction of two identical b1ock:s of material separated by their 
own equilibrium vapor. From the point of view of modifying the force of attraction, the vapor 
is assumed to have a negligible effect, behaving essentially like a vacuum. The facing planes 
become equilibrium surfaces characterized by an interfacial free energy y. 

Our starting point in this discussion is the resemblance between Figure 6.8a and Figure 
10.6b. The former illustrates the work of cohesion and the latter the interaction between two 
blocks of material. Suppose we identify by do the equilibrium spacing between molecules of a 
bulk sample of the material under consideration. Then the cohesion process represented by 
Figure 6.8a can be viewed as one in which two blocks of material are separated from d = do 
to d = 00 .  In terms of Equation (63), 

A 9  = am - 9, = (A/127r)dc2 

2 y = (AI127r) di2 

(65) 

Equating this with the work of cohesion given by Equation (6.5;6), we obtain 

(66) 

or 

A = 24.rrydi (67) 

A system for which this model is apt to work best is a nonpolar material such as an alkane for 
which y = 25 mJ m-2  as seen from Table 6.1. Using 0.2 nm for do, we calculate A = 
24~(0.025)(0.2 - 10-9)2 = 7.5 - 1Op2O J ,  which is very close to the value predicted for this 
quantity from molecular parameters in the last section. 



400 HIEMENZ AND RAJAGOPALAN 

The same logic that we used to obtain the Girifalco-Good-Fowkes equation in Section 
6.10 suggests that the dispersion component of the surface tension yd may be better to use 
than y itself when additional interactions besides London forces operate between the mole- 
cules. Also, it has been suggested that intermolecular spacing should be explicitly considered 
within the bulk phases, especially when the interaction at d = do is evaluated. The Hamaker 
approach, after all, treats matter as continuous, and at  small separations the graininess of 
matter can make a difference in the attraction. The latter has been incorporated into one 
model, which results in the expression 

A = ( 4 d 1  .2)yddi (68) 

where do is the intermolecular spacing in the bulk material. The contention is that this is more 
suitable than Equation (67) for relating the Hamaker constant to surface tension for materials 
with interactions other than London forces. In addition to only a fraction of the full value of 
y being used, the numerical coefficient in Equation (68)  is only about one-seventh that in 
Equation (67). Both of these considerations reinforce the idea that Equation (67)  gives an 
upper limit for A.  

Equations (67)  and (68)  provide alternatives to Equations (34) and (62 )  for the evaluation 
of the Hamaker constant. Although the last approach uses macroscopic properties and hence 
avoids some of the objections cited at  the beginning of the section, the practical problem of 
computation is not solved by substituting one set of inaccessible parameters ( y d  and do) for 
another (a and p ) .  

The primary objective of the present discussion is to show the intrinsic connection between 
surface tension and the van der Waals energy of attraction between macroscopic bodies. The 
connection not only provides computational options but also -and more importantly - unites 
two apparently separate phenomena and strengthens our confidence in the correctness of our 
understanding. 

Table 10.5 shows a few numerical examples of how well this attempt at unification 
succeeds. Equations (28),  (32),  and (62)  have been used to calculate values of the Hamaker 
constant from refractive index data at  visible wavelengths. These values have then been used 
along with y d  values from Chapter 6 t o  calculate do values according to Equation (68). The 
resulting values of do are seen to be physically reasonable. That such plausible values for do are 
obtained is especially noteworthy in view of the approximations made in the calculations. 

The applicability of this procedure receives a far more stringent test in the case of water 
and SiO, than for the hydrocarbons. London forces are assumed to be the only contributors 
to y (i.e., y d  = y) for hydrocarbons. This is definitely not the case for quartz or water, so the 
do values obtained for these substances are quite satisfactory. 

TABLE 10.5 
Hamaker Constant Compatible with Those Evaluated from Equations (28), (32), and (62)” 

Calculations Intended to Show that Equations (67) and (68) Predict Values of the 

Compound M ( g  mole-’) p (g ~ m - ~ )  n A(J) yd (mJ m-’) do (nm) 

Heptane 100.2 0.684 1.39 1.05 x 10-“ 20.3 0.22 

SiO, (quartz) 60 2.650 1.54 4.14 x lO-’O 78.0 0.22 

Dodecane 170.3 0.749 1.42 9.49 x 1 O P 2 ’  25.4 0.18 
Eicosane 282.5 0.789 1.44 2.07 x 10-” 29.0 0.26 

Polystyrene (104)b 1.050 1.59 2.2 x lO-’O 41 .O 0.23 
Water 18 1.000 1.33 2.43 x lO-’O 21.3 0.33 

aEquations (28), (32), and (62) are used to evaluate A ,  then A and yd values from Chapter 6 are 
used to evaluate do. 
bMonomer. 
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1 0 . 7 ~  Method Based on the Thermodynamics of Liquids 

The Hamaker constants of nonpolar fluids and polymeric liquids can be obtained using an 
expression similar to Equation (67) in combination with the corresponding state theory of 
thermodynamics and an expression for interfacial energy based on statistical thermodynamics 
(Croucher 1981). This leads to a simple, but reasonably accurate and useful, relation for 
Hamaker constants for nonpolar fluids and polymeric liquids. We present in this section the 
basic details and an illustration of the use of the equation derived by Croucher. 

An expression for the Hamaker constant analogous to Equation (67) had been proposed 
by Fowkes (1964) for the case when only dispersion forces determine the surface tension. The 
Fowkes equation 

A = 6.lrdi-y (69) 

is somewhat difficult to use since the choice of do, the intermolecular distance, is not always 
clear because of the asymmetric shape of most molecules. The: above equation can be rewrit- 
ten as 

A = 6a,y (70) 

where a, is the surface area of a molecule. For spherical molecules, the area is well defined 
and the above equation reduces to Equation (67). 

One can now substitute for the interfacial energy y the following equation derived by 
Davis and Scriven (1976) 

(71) 

where p is the number density of the material and (aU/a V), is the rate of change of the energy 
of the material with volume at constant temperature (i.e., the negative of internal pressure). 
This expression for y can be used in combination with Equation (70) to obtain the Hamaker 
constant if the area a, is known and if expressions or values for (aU/av) ,  are available for 
any material for which the dispersion interaction determines y. However, a simplified equation 
based on the above combination of equations and the corresponding state theory is possible 
(Croucher 1981; Croucher and Hair 1977), and one obtains 

(72) 

with 5 = (rn/n)'""-"' (73) 

y = (1/8)p -'I3 (aU/av) ,  

A = (314) k , ~ [ i  - ( t  V ~ - I ' ~ ) I - I  

where V, is the reduced volume of the material and n and rn are exponents of a power law 
potential similar to the one given in Equation (1). When rn = 6 and n = 12, the intermolecu- 
lar potential reduces to the Lennard-Jones potential mentioned in Section 10.3. Equation (72) 
is applicable to liquids (made up of simple molecules or polymers) in which dispersion forces 
dominate the attraction. It is not applicable to  polar substances such as water or to glassy 
polymers. 

The reduced volume V,, which is needed for using Equation (72), can be determined from 
the relation 

(74) 

where (X is the coefficient of thermal expansion and not the polarizability. For the 6-00 
potential (rn = 6, n = 00) ,  for which 4 is 1 ,  Equation (74) becomes 

( c x ~ ) - l  == - (rn/3) + (n - rn)[3( ~ j ~ - ~ ) / ~  - 1 ) I - l  + ([3( vy3 - ()]-I 

Equation (74) with rn = 6 and n = 00 has been tested for a range of a's by Croucher (1981) 
and leads to very good estimates for the Hamaker constant for a number of liquids. Moreover, 
the temperature dependence of the Hamaker constant is also accounted for explicitly. Example 
10.4 illustrates the use of this procedure. 
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* * *  

EXAMPLE 10.4 Hamaker Constant of Liquid Polystyrene. Estimate the Hamaker constant of 
liquid polystyrene at 298 K. The thermal expansion coefficient (I! for polystyrene at 298 K is 
approximately 5.7 . 10-4 K- ’ .  Compare your result with the experimentally obtained value of A 
= 7.8 - 10-20 J reported by Croucher (1981, Fig. 1). 

Solution: From Equation (75)’ for (I!T = 5.7 - 1OP4 - 298 = 0.17, the reduced volume is given 
by 

V, = 1.132 

One can obtain a good estimate for A using the above value of V, and 4 = 1 from Equation (72). 
This leads to 

A = (3/4).1.38*10-23*298-[1 - (1/1.132)”3]-’ J 
= 7.62. 10-20 Joules (from Croucher’s equation) 

A = 7.8- 10-20 Joules (given experimental data) 

The estimate based on Croucher’s equation is in excellent agreement with the reported result. 
H 

* * *  

10.7d Direct Measurement of van der Waals Forces 
It is extremely difficult to measure the Hamaker constant directly, although this has been the 
object of considerable research efforts. Direct evaluation, however, is complicated either by 
experimental difficulties or by uncertainties in the values of other variables that affect the 
observations. The direct measurement of van der Waals forces has been undertaken by literally 
measuring the force between macroscopic bodies as a function of their separation. The dis- 
tances, of course, must be very small, so optical interference methods may be used to evaluate 
the separation. The force has been measured from the displacement of a sensitive spring (or 
from capacitance-type measurements). 

A well-known example of this type of measurement is shown in Figure 10.7 for attractive 
van der Waals force between two mica surfaces. The result shown is obtained using the surface 
force apparatus developed originally in the early 1970s for interaction between two thin 
cylindrical surfaces (of radius R,) at 90° to each other in vacuum. (This geometry mimics the 
interaction between two flat surfaces; see Israelachvili 1991. The surface force apparatus (see 
Chapter 1, Section 1 . 6 ~ )  has since gone through many refinements and can now be used for 
measuring interactions in electrolyte solutions and for tangential force measurements.) 

It is evident from Figure 10.7 that the measurements are consistent with both unretarded 
and retarded attractive forces at appropriate separation distances. It has also been possible to 
verify directly the functional dependence on radii for the attraction between dissimilar spheres 
(see Table 10.4), to determine the retardation of van der Waals forces (see Table lO.l), and to 
evaluate the Hamaker constant for several solids, including quartz. Values in the range of 6 - 
10-20 to 7 - 10-20 J have been found for quartz by this method. This is remarkably close to 
the value listed in Table 10.5 for SO,. 

A more common situation than two bodies interacting across a vacuum is the case in 
which some medium intervenes between the interacting bodies. Before proceeding any further, 
then, let us examine the effect of this medium on particle interactions. 

10.8 EFFECT OF THE MEDIUM ON THE VAN DER WAALS ATTRACTION 

Until now we have considered the interaction between isolated molecules or macroscopic 
bodies when the particles are separated by a vacuum. Interactions in a vacuum is reasonable 
for molecules in the gas phase. However, for dispersions of one phase in another, the effect of 
the medium must be taken into account. Accounting for the effects of the medium leads to 
some useful combining relations for the Hamaker constant Ayk,  which is the Hamaker con- 
stant for interaction between i and k in medium j .  In addition, situations may arise in which 
A,,k is negative, that is, the interaction is repulsive. We review these in this section. 
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FIG. 10.7 Direct measurements of van der Waals dispersion forces. The measurements corre- 
spond to the force between two flat (mica) surfaces separated by a distance d. The line shown is the 
theoretical expression for unretarded van der Waals force. The figure shows that the unretarded 
expression describes the measurements sufficiently accurately for d about 6.5 nm or less. (Redrawn 
with permission of J .  N. Israelachvili and G. E. Adams, J.  Chern. Soc., Faraday T r a m  I ,  78, 975 
(1978).) 

10.8a Combining Relations for the Hamaker Constant 

The easiest way to account for the effect of a medium is to consider the pseudochemical 
reaction illustrated in Figure 10.8a. The particles numbered 2 represent the dispersed phase, 
and those numbered 1 are the solvent. Note that both of the dispersed particles are of the same 
material in this reaction. In the initial condition, each dispersed particle and its satellite solvent 
particle comprise a n  independent kinetic unit. Figure 10.8a represents the process in which the 
two dispersed particles come together to form a doublet and the two solvent particles form a 
kinetically independent doublet. 

The change in the potential energy that accompanies this process is given by 

A@ = @ I [  + @22 - 2@,2 (76) 

where the subscripts apply to the two types of particles. Each of the terms for @ on the 
right-hand side of Equation (76) depends in the same way on the size and distance parameters 
and differs only in molecular parameters that are fully contained in the Hamaker constant. 
Therefore A@ follows the appropriate function for the interaction from Table 10.4 with the 
following value of the Hamaker constant: 
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FIG. 10.8 The coagulation process as a pseudochemical reaction. The filled circles indicate parti- 
cles of the dispersed phase and the open ones satellite particles of the solvent. In (a) the dispersed 
particles are chemically identical, and in (b) the dispersed particles are different substances. 

A212 = All + A22 - 2 4 2  

The subscript 212 indicates two particles of type 2 separated by the medium of type 1 .  
An approximation that results in a useful simplification is 

(77) 

Equation (78) says that the interaction between dissimilar bodies is given by the geometrical 
mean of the homogeneous interactions for the two species considered separately. This geomet- 
rical mixing rule is widely used in solution theory to calculate heterogeneous interactions. We 
invoked this type of averaging procedure in Sections 3.4 and 6.10 when problems arose that 
required a 1-2 interaction to be expressed in terms of 1 - 1  and 2-2 interactions. 

Combining Equations (77) and (78) leads to 

A;?) * (79) 

This is the effective value of the Hamaker constant to be used in evaluating the attraction 
between (like) particles embedded in a medium. Equation (79) leads to three important gener- 
alizations about the value of A212: 

The effective Hamaker constant Az12 is always positive, regardless of the relative 
magnitudes of A , ,  and A22. Thus identical particles exert a net attraction on one another due 
to van der Waals forces in a medium as well as under vacuum. 

Embedding particles in a medium generally diminishes the van der Waals attraction 
between them. Table 10.5 shows that the Hamaker constants for homogeneous interactions A,, 
are generally of the same order of magnitude for different substances. Therefore the effective 
Hamaker constant - which depends on their difference according to Equation (79) -will be 
smaller than A,, for either of the homogeneous interactions. For example, if A , ,  and A,, equal 
8.1 - 1OP2' and 6.4 10-20 J, then A2], is 10-2' J ,  almost two orders of magnitude less than 
the individual A,, values. 

=0, from the viewpoint of van der Waals forces, 
this condition corresponds to no net interaction between particles. By using experimental 
criteria to identify this state of affairs, it is possible to vary the medium in a disperse system 
until this condition is met and then use the surface tension of the medium (via Equation (67) ) 
to evaluate A , ,  and, therefore A22. Going further, Equation (67) can be applied again to 
estimate y22 for the dispersed particles. This strategy implies that suitable values for do are 
available. 

Since van der Waals forces are responsible for the coagulation of lyophobic colloids, the 
mitigating influence of the continuous phase on the attraction between dispersed particles 
imparts a measure of stability to the system. This result was anticipated in our remarks about 

1. 

2. 

3. For A , ,  = Az2, A,,, = 0, and 
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the DLP theory in Section 10.7. An even more dramatic modification of van der Waals 
attraction results when three different substances are involved: dispersed particles of 2 and 3 
separated by medium 1. Figure 10.8b shows the coagulation of the dispersed particles for this 
situation. By analogy with the coagulation of identical particles, we write the following: 

1. For the change in potential energy, 

A 9  = 91, + 9 2 3  - 9 1 2  - 9 1 3  

2. For the contribution of molecular properties, 

A 3 1 2  = A l l  + - A12 - 

3. With the A ,  values replaced by (&A,,) I/’ 

1/2 1/2 1/2 1/2 
A312 = ( A l l A l l  ) + ) - 

which factors to 

A,,,  = ( A i f  - A::2)(A:2/2 - A:?) 

10.8b Negative Hamaker Constants 

What makes the result expressed in Equation (83) particularly interesting is that one of the 
factors in the equation can be positive and one negative, in which case the effective Hamaker 
constant itself becomes negative. A negative proportionality factor in an expression based on 
attraction makes the potential energy change positive. The pairwise attraction between bodies 
results in a net repulsion between dissimilar particles. Since the factors in Equation (83) must 
have different signs, all that is required for this condition of a negative effective Hamaker 
constant is that the A value for the continuous phase be intermediate between the Hamaker 
constants of the two types of dispersed particles: 

For each of the A terms in Equation (83) we may substitute the corresponding version of 
Equation (67). Strictly speaking, each material is characterized by its own intermolecular 
spacing, and this as well as its y value should be used in Equation (67). In a number of 
systems that have been investigated, however, the observed range of do values is quite narrow, 
suggesting that do can be regarded as a constant, at least as a first approximation. For a variety 
of polymers a value of about 0.2 nm appears to be a reasonable estimate for do. With this 
(assumed constant) value factored out, Equation (83) becomes 

> A , ,  > A,, or A,,  > A , ,  > A22. 

With the assumed uniformity of do values, Equation (84) shows that the coagulation of 
dissimilar particles becomes energetically unfavorable when the surface tension of the medium 
is intermediate between the surface tensions of the two kinds of‘ dispersed units. 

An interesting variation on this idea is the study of particle engulfment by an advancing 
solidification front. In such an experiment, solid particles are dispersed in an appropriate 
medium that is then allowed to solidify in a channel along which a suitable temperature 
gradient is maintained. The fate of the dispersed units is monitored microscopically as the 
solidification front advances. What is observed is that the dispersed particles are either en- 
gulfed by the solid or pushed along in the liquid by the advancing front. These observations 
can be interpreted in terms of the formalism we have developed by considering the solid and 
the dispersed units as interacting through a medium composed of the melt. The fact that the 
solid and the melt are chemically identical is immaterial since they are in different physical 
states. 

If we designate the melt as component 1, the dispersed particles as 2, and the solid front 
as 3,  then engulfment is equivalent to coagulation and occu.rs spontaneously when A312 is 
positive. In this case A 9  as given by Equation (80) provides AG for the engulfment process 
and, since the 9’s  themselves are negative, A312 must be positive for spontaneous engulfment. 
Conversely, rejection by the front requires a negative value for A,, , .  Again under the assump- 
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tion of the constancy of do, rejection is predicted so long as the surface tension of the melt is 
intermediate between the values of the solid and the dispersed particles. Example 10.5 consid- 
ers an illustration of this kind of data. 

* * *  

EXAMPLE 1 0.5 Particle Engulfment by An Advancing Solidification front. Experiments were 
conducted at 8OoC in which the solidification front of naphthalene was observed to either engulf 
or reject dispersed particles of several solids. Table 10.6 lists the observed engulfment (E) or 
rejection ( R )  behavior for various systems as well as the surface tensions of the various sub- 
stances. The surface tensions of solid and liquid naphthalene at 8OoC are 26.4 and 32.8 mJ 
m -2, respectively. Is the surface tension criterion cited above consistent with these observa- 
tions? How might any inconsistencies be explained? Evaluate the product (7:” - ~ i / ~ ) ( y ; / ~  - 
7;”) for these systems. 

Solution: The surface tension of liquid naphthalene (1) is greater than that of solid naphthalene 
(3). Therefore A,,, is expected to be negative for all systems having 7 values greater than 7,. 
This is the case for the first six compounds listed in Table 10.6. Therefore these substances are 
expected to display rejection by the solidification front. This is indeed observed for five of the 
six cases. The case of nylon-6,12, which deviates from the predicted behavior, is best under- 
stood by examining the product (y;’* - Y:’~)(Y:’~ - ~4’2). Values of this product for the various 
systems considered are listed in Table 10.6. The factor arising from the solid-liquid (3-1) naph- 
thalene has the constant value -0.0186 for all cases, but differs when various solids are used 
as component 2. For nylon-6,12, the second factor becomes -0.0022, and the product of the 
two, 0.41 10 - 4  mJ m-2, is the smallest of all such products listed in the table. As the surface 
tension difference decreases, the sensitivity of the behavior to variations in do increases. 

* * *  

It is apparent that a single dispersed phase could be investigated with an assortment of matrix 
materials having known properties. The engulfment-rejection behavior of these systems may 
then be used to establish bracketing values of y and A for the dispersed phase. 

Repulsive van der Waals forces occur in a number of practically important cases, such as 
for different types of polymers in organic solvents (van Oss et al. 1980) and for certain 
hydrocarbon films on water (as mentioned in Vignette X). For example, the use of repulsive 
van der Waals forces has been suggested as a way to dissociate antigen-antibody complexes by 
van Oss et al. (1979). A much more detailed and quantitative introduction to repulsive van der 
Waals forces may be found in Israelachvili (1991). 

Although we have not stopped dealing with van der Waals attraction, we have come a long 

TABLE 10.6 
Dispersed in Naphthalene” 

Results of Engulfment Experiments Involving Various Solids 

YY2) Dispersed Observed (#2 - y;’2)(y;/2 - 
particles behaviorb y (mJ mP2) x 104(mJm-’) 

Acetal 
Nylon-6 
Nylon-6,6 
Nylon- 12 
Nylon-6,lO 
Nylon-6,12 
Polystyrene 
Teflon 
Siliconed glass 

41.9 
41.7 
40.8 
38.4 
36.0 
32.0 
27.6 
15.5 
11.5 

- 4.39 
- 4.30 
-3.89 
- 2.77 
- 1.60 
+ 0.41 
+ 2.79 

+ 10.53 
+ 13.75 

Source: Data of A. W. Neumann, S. N. Omenyi, and C. J. van Oss, Colloid 
Polyrn. Sci., 257, 413 (1979). 
”Data discussed in Example 10.5. 
bE, engulfment; R ,  rejection. 
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way from our initial point of view. Without any help from a repulsive mode of interaction, we 
are able to  account for situations in which the dispersed state of a system is energetically 
favored over the coagulated state. The dispersion medium clearly plays an  important role in 
this, since the process involves breaking “bonds” between the dispersed particles and the 
medium and replacing them with new “bonds.” Just as in a metathesis reaction between 
chemical compounds, it is the difference in the “bond strength” between the final and initial 
states that determines the net interaction. If the attraction between molecules can thus override 
itself, this may be helped along by other mechanisms based on actual repulsion between 
approaching surfaces. In Chapter 11 we consider the overlap o f  ion atmospheres as the basis 
for such a repulsion. 

REVIEW QUESTIONS 

1. 
2. 
3. 
4. 

5 .  

6. 
7. 
8. 

9. 

10. 

11. 

12. 
13. 

What are the three van der Waals forces, and what is the molecular origin of each of them? 
Which of these is usually the most dominant? 
Why is the London force also referred to as the dispersion force? 
It is claimed that the dispersion component of the van der Waals forces is always present 
regardless of the nature of the molecules. Why? 
List at least three macroscopic material properties that result from, or are strongly influenced 
by, van der Waals forces, and explain the reasons physically. 
When would you expect the dispersion force to be repulsive? Why? 
What is the Hamaker “constant’? How is it related to molecular-level van der Waals forces? 
List some reasons why it is desirable to relate Hamaker constants to measurable macroscopic 
properties instead of relying entirely on molecular parameters. 
List a few methods that could be used to determine Hamaker constants of materials from 
relevant macroscopic properties. 
Explain how Hamaker constants for interaction between identical materials in vacuum can be 
used to determine Hamaker constants for interaction betwelen dissimilar materials immersed 
in an arbitrary medium. 
Describe the conditions under which the Hamaker constant ‘between two interacting colloidal 
particles is always positive. When can it be negative? 
List a few macroscopic phenomena that can be traced to van der Waals forces. 
What is the connection between surface energy of a material and the Hamaker constant of 
that material? 
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PROBLEMS 
The parameter PI2 for heterogeneous (12) interactions plays a similar role as PI1 (Equation (34)) 
does for homogeneous (1 1) interactions. Use entries from Table 10.1 to write an expression for 
PI2. If Debye interaction makes a negligible contribution to P12 and v I v 2 / ( v I  + v2)  2: % ( v , ~ ~ ) ~ ’ ~ ,  
show that 

P I 2  = (f11,P,1)”2(f22LP22) I i2  + ( f 1 l K P I I )  1 ’ 2 ( f 2 2 K P 2 2 )  I i 2  

P I 2  = (P l lP22)”2  

where the f terms are defined by Equation (35). If fIlL = f 2 2 L  and filK = f22K, show that this 
last result becomes 

Comment on the relevancy of this result to Equation (78). Criticize or defend the following 
proposition: The geometrical mixing rule does not require the absence of permanent dipoles, 
only that 1 1  and 22 interactions both consist of the same fraction of London and permanent 
dipole contributions. Specific interactions, such as hydrogen bonding, must also be absent in 
the 1 1 ,  22, and 12 systems. 

Pressure is a manifestation of the kinetic energy of gas molecules. According to the van der 
Waals equation of state (see Eq. (36)), the pressure of 1 mole of gas must be increased by an 
amount a/v2  due to intermolecular attractions that decrease the pressure from what it would be 
if ideal. Use the term a/v2  as a general expression for the attraction between a pair of molecules 
and, based on this, reconstruct the argument leading to Equation (52). 

A gas adsorption isotherm may be derived by comparing the adsorbed layer around a solid 
particle to a planetary atmosphere, with an equilibrium pressure po at the surface. The change 
in free energy for a molecule going from the bulk pressure p to the surface is kET In (po/p).  
Equating this with Equation (59), the potential energy of attraction responsible for the adsorp- 
tion, gives 

Since z oc V,  this may be written In (po/p)  = const. V P 3 ,  where V is the volume of gas 
adsorbed. A more general form of this isotherm, called the Frenkel-Halsey-Hill (FHH) iso- 
therm, treats the power dependence of Vas an unknown n and writes 

K 

where V, is the volume of gas at monolayer average. 
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Prepare a plot of the FHH isotherm using n = 3 and K = 0.1 and comment on the resem- 
blance of this isotherm to actual gas adsorption isotherms as shown in Chapter 9. 

The derivation of Equation (68) follows the same argument that leads to Equation (61), except 
that the blocks are assumed to be composed of stacks of matter of density p'  in slices having a 
thickness 6 and separated by a distance d. A molecule at 0 interacts with the ith slice in such a 
stack with an energy that is the analog of Equation (56): 

P ' N A P 6  2TYdY -dai = - 
M ( [ z  + i ( d  + 6)12 + y)' 

Evaluate the attraction. between the molecule and the ith layer by integrating this expression 
over all values of y between 0 and 00. The assumption that p ' 6  = p(d + 6) ensures that the 
blocks have the correct macroscopic density. If the separation between layers is the same as the 
separation of the surfaces of the blocks (i.e., z = d),  then the equivalent of Equation (59) 
results from summing the a, values for all i's between 0 and 09 and taking the limit of 6 -+ 0. 
Derive the analog of Equation (59) for matter with this hypothetical structure. Note that 
Ci(l + i)-4 = 1.082. Equation (68) is obtained by assuming a similar structure for the second 
block and continuing along these lines. 

Consider a body of water and a piece of styrofoam. Both are attracted by the earth because of 
gravity. However, when immersed in water, the styrofoam is effectively repelled by the earth 
due to the Archimedes principle. Use this analogy to explain the possibility of repulsive van der 
Waals forces between materials that, taken pairwise, experience only attractive forces. 

Neumann et al. * have tabulated average values of experimentally determined H amaker con- 
stants and then used surface tension data for the same systerns to calculate do values for the 
following materials: 

Substance A,, x 10,' (J) y (mJ m-,) 
~ ~ 

Polystyrene 
Teflon 
Nylon-6,6 
Poly(methy1 methacrylate) 
n-Decane 
Polyet hylene 
Poly(viny1 alcohol) 
Poly(hexafluoropropy1ene) 

8.47 
5.23 

12.05 
8.83 
5.13 
8.43 
8.84 
5.20 

33.0 
20.0 
46.0 
39.0 
23.9 
31.0 
41 .O 
17.0 

Verify that the do values thus calculated show a relatively narrow distribution around a mean 
value close to 0.2 nm. Criticize or defend the following proposition: As a mean center-to-center 
intermolecular spacing, this value is on the low side; as a back-calculated parameter, however, 
it probably compensates for deviations from the assumed geometry, breakdown of Equation 
(33) at short distances, or other shortcomings of the molecular additivity principle. 

An extreme in sediment volume was used? as a criterion for the effective cancellation of 
interparticle attraction by the continuous phase. Nylon-6,6 dispersions consisting of 1 .O g of 
solid in 10 ml of n-propanol-thiodiethanol mixtures of various compositions were allowed to 
settle to sedimentation equilibrium. Listed here are the equilibrium sediment volumes, the 
volume/volume compositions, and the surface tensions of the :media: 

n-Propanol-thiodiethanol (vol/vol) 

20/20 60/40 45/55 35/65 25/75 20/80 15/85 10/90 7.5/92.5 5/95 

Vscd(cm3) 2.15 2.40 2.40 2.50 2.60 2.60 2.70 2.48 2.40 2.35 
y(rnJm-,) 26.20 28.70 30.90 33.60 36.20 38.20 39.60 40.70 44.00 47.10 

*Neumann, A. W., Omenyi, S. N., and Van Oss, C. J.,  Colloid Polym. Sci., 257,413 (1979). 
tNeumann, A. W., Visser, J., Smith, R. P., Omenyi, S. N., Francis, D. W., Spelt, J. K., Vargha- 
Butler, E. B., Zingg, W., Van Oss, C. J . ,  and Absolom, D. R., Powder Technol., 37,229 (1984). 
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Plot the sediment volume versus the surface tension of the continuous phase for these disper- 
sions. What is the apparent surface tension of the nylon-6,6? Briefly describe some precautions 
that must be observed in interpreting results such as these in terms of y values for the dispersed 
solid. 

African green monkey kidney cells (component 2) were cultured on suspensions of collagen- 
coated dextran particles (component 3). Harvesting such cells is traditionally accomplished by 
scraping, ultrasonication, or the use of chelating agents to disrupt cation bridging between 
surfaces 2 and 3. Van Oss et al.* reasoned that the cells might be eluted by lowering the surface 
tension of the suspending medium (component 1). What is the basis for this expectation? 
Dimethyl sulfoxide (DMSO) was incrementally added to cell-carrier particle dispersions in 
buffered aqueous solution. The surface tension of the eluting liquids and the percent yield of 
the harvested cells are tabulated: 

8. 

Vol Oi'o DMSO 0.0 7.5 10.0 12.5 15.0 17.0 18.0 19.0 
y (mJ m-2) 73.0 67.0 65.0 63.6 62.1 61.2 60.7 60.3 
Percent yield 8.4 15.1 16.5 35.6 42.3 59.3 66.7 80.1 

For the solids y2 and y3 have been estimated to be 68.9 and 32 mJ mP2, respectively. Is the 
observed behavior qualitatively consistent with expectations? Suggest some factors that might 
be responsible for any quantitative discrepancy. 

*Van Oss, C. J., Charney, C. K., Absolom, D. R.,  and Flanagan, T. J., BioTechniques, 194 (Nov.- 
Dec. 1983). 



11 
The Electrical Double Layer and 

Double-Layer Interactions 

Suppose that I had the power of passing through . . . things, so that I could penetrate my 
subjects, one after another, even to the number of a billion, verifying the size and distance 
of each by the sense of feeling. 

From Abbott's Flatland 

11.1 INTRODUCTION 

11 . la  What Is an Electrical Double Layer? 

When ions are present in a system that contains an interface, there will be a variation in the 
ion density near that interface that is described by a profile like that shown in Figure 7.13. The 
boundary we identify as the surface defines the surface excess charge, as explained in Chapter 
7. Suppose that it was possible to separate the two bulk phases at this boundary in the manner 
shown in Figure 6.8. Then, each of the separated phases wou'ld carry an equal and opposite 
charge. These two charged portions of the interfacial region are called the electrical double 
layer. 

The purpose of this chapter is to introduce the basic ideas concerning electrical double 
layers and to develop equations for the distribution of charges and potentials in the double 
layers. We also develop expressions for the potential energies ,and forces that result from the 
overlap of double layers of different surfaces and the implication of these to colloid stability. 

11.1 b Why Are Electrostatic Effects Important? 

Electrostatic and electrical double-layer forces play a very irnportant role in a number of 
contexts in science and engineering. As we see in Chapter 13, the stability of a wide variety of 
colloids, ranging from food colloids, pharmaceutical dispers'ions, and paints, to colloidal 
contaminants in wastewater, is affected by surface charges on the particles. The filtration 
efficiency of submicron particles can be diminished considerably by electrical double-layer 
forces. As we point out in Chapter 13, coagulants are added to neutralize the electrostatic 
effects, to promote aggregation, and to enhance the ease of separation. 

The electrostatic forces also play an important role in the conformation and structure of 
macromolecules such as polymers, polyelectrolytes, and proteins. The self-assembly of pro- 
teins from disk s to virus is triggered by electrostatic interactions between neighboring submits. 
In the case of polyelectrolytes (polymer molecules with charges) and charged colloids, trans- 
port behavior such as rheology is also affected significantly by charge effects, as we have 
already seen in Chapter 4. 

Electrostatic and electrical double-layer interactions also create new opportunities in sci- 
ence and technology. We have already seen an example of this in a vignette in Chapter 1 on 
electrophoretic imaging devices, and another, on electrophotography, is described in the next 
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chapter. The very basis of electrokinetic phenomena and their implications and uses arise from 
electrical double-layer interactions. 

As an additional example, Vignette XI draws attention to  the role of electrostatic effects 
in molecular recognition and specificity in the biosciences. 

VIGNETTE XI LIFE SCIENCES, BIOTECHNOLOGY, AND 
BIOMEDICAL ENGINEERING: Molecular Recognition 
and Specificity 

Molecular recognition and specificity are the stuff of life. How are biological macromolecules 
able to recognize each other or recognize a membrane or a substrate and form specific 
associations? What do we need to know about the interplay between charged surface groups 
on interacting macromolecules such as proteins to design better drugs or to understand and 
modify enzyme catalysis? What determines the encounter between an influenza virus and its 
host site (a sialic acid residue) on a cell before the virus binds and enters the cell (by what is 
known as endocytosis)? These are the types of questions with answers that are central to the 
functioning of biological systems, design of drugs, development of artificial biomaterials, 
design of specific chromatographic techniques, and the like. 

Although the answers to questions such as these depend on a complex array of factors 
ranging from the structure of the relevant molecules to their environment and the chemical 
activity of the medium containing the molecules, intermolecular (guest-host) interactions 
play a central role in determining the rate and the efficiency of the ultimate result. A major 
component of the many possible intermolecular forces is the electrostatic interaction, particu- 
larly because of the long-range nature of the Coulombic forces and the inevitable influence 
of the ionic atmospheres that surround the macromolecules and substrates. 

The electrostatic interaction works in tandem with the diffusional (translational as well 
as rotational) motion of the macromolecules as the macromolecules find their way to their 
destination for that crucial first encounter. Moreover, the eventual mutual recognition of the 
guest and the host and the stability of the resulting binding depend on the changes in the free 
energy due to the encounter, contact, and binding. Such free energy changes can be sensitive 
to the details of the electrical double-layer contribution, and it is necessary to understand the 
electrostatic interactions between a target (i.e., a host such as a cell surface or an ion- 
exchange resin) and a guest (say, a protein) as a function of the ionic strength, separation 
distance, orientation, and details of the structure of the materials involved (e.g., both the 
guest and the host may have a mosaic of charged patches; see Figure 11.1). In many cases, a 
rather involved analysis of diffusional encounters (Brownian motion) in an ionic environment 
described by the nonlinear Poisson-Boltzmann equation may be necessary. 

The purpose of the present chapter is to introduce some of the basic concepts essential 
for understanding electrostatic and electrical double-layer pheneomena that are important in 
problems such as the proteidion-exchange surface pictured above. The scope of the chapter 
is of course considerably limited, and we restrict it to concepts such as the nature of surface 
charges in simple systems, the structure of the resulting electrical double layer, the derivation 
of the Poisson-Boltzmann equation for electrostatic potential distribution in the double layer 
and some of its approximate solutions, and the electrostatic interaction forces for simple 
geometric situations. Nonetheless, these concepts lay the foundation on which the edifice 
needed for more complicated problems is built. 

11.1 c Focus of This Chapter 

This chapter focuses on  some of the basic theories of electrical double layers near charged 
surfaces and develops the expressions for interaction energies when two electrical double layers 
overlap (“interact”) with each other. 

The first topic we discuss is the origin of the charge at  certain surfaces through ion 1 .  
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FIG. 11.1 Rat cytochrome b5 (a protein) in the apparent preferred chromatographic contact 
orientation with a simulated anion-exchange surface. Electrostatic equipotential surfaces are dis- 
played for the protein and the ion-exchange surface according to the following scheme. The molecu- 
lar surfaces of the protein and the resin are in an off-white color. The equipotential surfaces (on the 
protein as well as on the adsorbent) at a value of +0.3 k,T/e ( + 7 . 7  mV) are represented by the 
dark regions. The equipotential surface on the protein at -1.2 k,T/e (-30.8 mV) is in gray. 
(Reproduced with permission from D. J. Roush, D. S. Gill, and R, C. Willson, Biophys. J . ,  66, 1 
(1994).) 

adsorption (Section 11.2). A straightforward application of thermodynamics enables us to 
quantify this effect in terms of an  electrical potential associated with the adsorbed ions. 

After these phenomenological considerations, we turn our attention to various models 
for the distribution of charge near the surface, starting from the “capacitor model” in Section 
11.3 and progressively refining it to more realistic approximations such as the Debye-Huckel 
model and Gouy-Chapman model (Sections 11.4-1 1.6). Although we examine several differ- 
ent models under several limiting conditions, most of the theoretical developments of this 
chapter will involve the following assumptions: (a) planar surfaces, (b) isolated surfaces, and 
(c) constant potential surfaces, examined specifically for (d) the variation of the potential with 
distance from the surface and (e) the effect of added electrolyte on the potential. However, 
expressions for spherical and cylindrical surfaces and for constant surface charge densities 
(rather than for constant surface potentials) are also summarized for some important cases. 

To  apply these ideas to coagulation phenomena, we must consider what happens to 
these distributions of potential when two similar surfaces approach one another (Section 
11.7). To study coagulation phenomena, we need to compare the electrostatic effects of 
particle approach with the van der Waals effects discussed in the last chapter. This is done in 
terms of potential energy curves as discussed in Section 10.2. As we move through the chapter, 
our interest shifts from potential (volts) to potential energy (joules). It is important to keep 
track of the difference between the two as the development progresses. 

Finally, a brief overview of the structure of the inner edge of the double layer (the 
so-called Stern layer), which accounts for the preferential adsorption of ions and the finite size 
of the ions, is presented in Section 11.8, along with a discussion of how the developments in 
previous sections can be modified to accommodate the variation in the surface potential 
because of the Stern layer. 

2. 

3. 

4. 
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11.2 SURFACE CHARGES AND ELECTRICAL 
DOUBLE LAYER: BACKGROUND 

At the outset, we need to understand how a surface exposed to a liquid may acquire charges. 
This turns out to be important subsequently when we discuss the repulsive forces that appear 
as two charged surfaces approach each other. How the surface charge equilibrium (between 
the ions on the surface and those in solution) is established and how rapidly this is accom- 
plished affect the magnitude of the forces. In addition, we also need to establish some basic 
concepts concerning the origin and the qualitative structure of the ionic atmosphere that 
develops in the vicinity of a charged surface exposed to a solution containing ions. This is our 
focus in this section. 

11.2a Origin of Charges at a Surface 

A surface immersed in a liquid can acquire charges in a number of ways. For example: 

1. One of the common “charging” mechanisms is the preferential adsorption of an ion 
from a solution on an initially uncharged surface. An example of this mechanism is 
the binding of a Ca2+ ion on a zwitterionic (which implies that the surface group 
consists of surface dipoles but no net charge) head group of a lipid layer. 
Another possible mechanism is the ionization or dissociation of a surface group (e.g., 
dissociation of a proton from a carboxylic group, namely, -COOH -+ -COO - + 
H +, which leaves the surface with a negative charge). 

The first of these is often the most common. Adsorption of Ag + and I - on silver iodide 
particles is an example of this mechanism and is discussed in detail in the following section. 
Adsorption of H +  and OH- on insoluble oxides and adsorption of surfactants on mineral 
particles and air-water interfaces also fall under this category. Dissociation of surface groups 
is a common charging mechanism in the case of latex particles, which are frequently used in 
biomedical applications, as calibration standards in electron microscopy and as model parti- 
cles in experiments on colloidal phenomena. In the case of clay minerals, one often encounters 
isomorphic substitution of ions (e.g., replacement of Si4+ ions in the crystalline mineral with 
other cations such as A13+, or replacement of A13+ with Mg2+). Accumulation of electrons is 
the main charge-inducing mechanism in the case of metal-solution interfaces. Table 11.1 
presents a summary of these general charging mechanisms. 

2. 

TABLE 11.1 
Charges at an Interfacea 

Examples of Charging Mechanisms that Lead to 

~~ ~~ ~ 

Nature of the interface 

Air - Water 
Mercury-Water 

Oil-Water Solid-Water 

Preferential adsorption of ions + 
Dissociation of surface groups - 
Isomorphic substitution - 

Adsorption of polyelectrolytes + 
Accumulation of electrons + 
Source: J. Lyklema, Fundamentals of Electrical Double Layers in 
Colloidal Systems. In Colloidal Dispersions (J. Goodwin, Ed.), 
Royal Society of Chemistry, London, 1982, pp. 47-70. 
”The signs in the table indicate the sign of the acquired charges. 
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In the following section we use the well-known and rather extensively studied silver iodide 
surface as a vehicle for introducing the basic concepts and terminology of charged surfaces 
and the nature of the ionic atmosphere that develops in the vicinity of such surfaces. 

11.2b Reversible Electrodes: The Silver Iodide Electrode 

To arrive at an understanding of the distribution of charge and potential near an interface, it 
is helpful to consider an electrode. A reversible electrode is one in which each of the phases 
contains a common ion that is free to  cross the interface. The system Ag-AgI-aqueous solution 
is an example of a reversible electrode. A polarizable electrode, on the other hand, is imperme- 
able to charge carriers, although charge may be brought to the surface by the application of 
an external potential. The system metallic Hg-aqueous solution is an example of a polarizable 
electrode; we discussed the relationship among the applied potential, the interfacial tension, 
and the adsorption of ions in Chapter 7, Section 7.11. 

It is also convenient to divide ions into two categories: potential determining and indiffer- 
ent ions. The terminology here is self-explanatory. For example, we can say that Ag+ is 
potential determining for the Ag-Ag + electrode and that NaNO, is an indifferent electrolyte 
as far as this potential is concerned. This obviously neglects any effects of NaNO, on the 
activity of the Ag+ .  Such an approximation increases in accuracy as the concentration of 
electrolyte decreases. We consistently neglect activity correctiorns in this chapter. 

10-l7 at 25OC. This means that the 
equilibrium concentration of Ag + and I - in a saturated solution of AgI in pure water equals 
about 8.7 - 10 - 9  mole liter -’. Electrokinetic experiments (Chapter 12) on AgI particles under 
these conditions reveal that the particles carry a negative charge in this case. Common ion 
sources such as AgN0, or KI may be added to the solution to vary the proportions of the Ag’ 
and I - ions in solution, subject to the condition that the ion product equals Ksp. When this is 
done, it is found that the AgI particles reverse charge at an Ag concentration of about 3.0 - 
10-6 mole liter -’. When the concentration of Ag+ is greater than this, the particles are positively 
charged. For Ag + concentrations less than 3.0 - 10 -6 M, they are negatively charged. 

One way of understanding these results is t o  consider the A.g + and I - ions competing for 
adsorption sites on the surface. The tendency of both kinds of ions to adsorb at  the AgI 
interface is not hard to understand. After all, the solid crystals would continue to grow if more 
ions were present. At the point of zero charge the two kinds of ions are adsorbed equally (in 
stoichiometric proportion). Negatively charged particles imply the adsorption of excess I - 
ions, whereas positively charged particles imply excess Ag + adsorption. Since the zero point 
of charge and the saturation concentration in pure water do not coincide, we infer that the I - 
ions have a greater affinity with the surface. 

The Nernst equation provides us with a relationship that permits an electrical potential 
difference to be associated with a concentration difference. We adopt the convention that the 
potential at the AgI-solution interface is zero at the zero point (zp) of charge, a point at which 
the ion molarities will be symbolized c,. Our interest is to express the potential at the interface 
$o in terms of the concentration of ions in solution for conditions other than the zero point of 
charge. The Nernst equation gives 

The solubility product constant for AgI is about 7.5 

Go = (k,T/e) In (c/c,)  = (2.303 R T / 5 )  log (c/c,)  (1) 

where 5 is the Faraday constant. We are accustomed to using the second form of Equation (1) 
in physical and analytical chemistry. The quantity (2.303 R T / S )  has the familiar numerical 
value 0.05917 V at 25OC. Multiplying this by 103 and dividing by 2.303 gives 25.7 mV as the 
value of (k ,T/e) .  We verify this result shortly, but this is a convenient way to relate a familiar 
numerical constant to the units most often used in surface and colloid chemistry. 

Suppose we apply Equation (1) to AgI in “pure water” (i.e., no common ion source 
present). We use cAg = 8.7 - 10-9 and cAg,zp = 3.0 - 10-6 to calculate 

Go = 25.71n (8.7 - 10-9/3.0 - 10-6) = -150mV 
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Identical results would be obtained if the calculation had been based on I -  concentrations 
rather than Ag+ .  As noted, the surface is negatively charged at this concentration since I - is 
preferentially adsorbed. 

In principle, part of the potential of any cell may be attributed to each interface; that is, 
if $, is the potential drop associated with the ith interface, we can write for the total potential 
difference qT 

Any electrochemical cell containing an Ag-AgI electrode automatically includes the AgI- 
solution interface and the potential associated with it. Generally speaking, we are not able to 
assign absolute numerical values to the various contributions in Equation (3).  We can, how- 
ever, design cells such that only one of the interfaces is sensitive to a particular ion. Clearly, 
Ag + and I - are the potential-determining ions at the AgI-solution interface. If none of the 
other interfaces in the cell are appreciably affected by changes in the concentrations of these 
ions, then variations in the experimental cell potential GT measure changes in Go. This may be 
expressed 

(4) 
where c is the concentration of the potential-determining ion. This result is important be- 
cause it shows how changes in $o can be measured even if Go itself is unknown. That is, to 
integrate Equation (4) back to an absolute value of Go, an integration constant must be 
evaluated. According to our convention, this involves knowing the zero point of charge (Go = 
0 at c = cJ. 

from the perspective of electrodes, the 
discussion makes it clear that the potential given by Equation (1) applies to any AgI-aqueous 
solution interface, and not just to electrode surfaces. We may not always know the concentra- 
tions required to use Equation (1) numerically, but so long as the bulk concentration of 
potential-determining ions differs from czp, a potential difference exists at the surface. The 
ions of water itself are potential determining for many surfaces. These as well as added solutes 
or ions in equilibrium with the solid mean that surface potentials at (especially, but not 
exclusively) aqueous interfaces are the norm rather than something exceptional. 

The potential at  an interface can be related through the abundant relationships of thermo- 
dynamics to the concentration and adsorbability of ions, but thermodynamics provides no 
information as to how the potential varies as we move through a small distance perpendicular 
to the surface. This observation reminds us of Figure 7.13, in which the profile of the variation 
in some general property in the immediate vicinity of a surface is shown. Figure 11.2a is 
essentially the same drawing with the property under discussion specified as the potential. 

The question we consider in the next few sections is this: How does the potential vary with 
distance across an interface? This question cannot be answered by thermodynamics alone, but 
it can be examined in terms of various models. We consider a succession of models for a 
planar surface between two phases. The models will become progressively more complex - and 
therefore realistic-as we proceed. As far as this presentation is concerned, models are pro- 
posed and modified in an intuitive way, rather than by critique of each in terms of experimen- 
tal results. 

dGT = dG0 = (k,T/e)(dc/c) 

Although we have approached the potential 

11 -3 THE CAPACITOR MODEL OF THE DOUBLE LAYER 

Figure 11.2a shows schematically the situation in which the potential equals $a at a position 
xl, a small distance into the a phase, and equals $o at x,, a small distance into the p phase. One 
of our major goals in this chapter is to study the details of the potential variation between xI  
and x,. 

A vastly oversimplified model of how this potential variation might occur on a molecular 
scale (remember that the distance between x1 and x, is of the order of molecular dimensions) is 
shown in Figure 11.2b. In this representation two smeared-out planes of charge are situated at 
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FIG. 11.2 The variation of electrochemical potential in the vicinity of the interface between two 
phases, CY and p: (a) according to a schematic profile; and (b) according to the parallel plate 
capacitor model. 

x, and x,. Note that the model shown in Figure 11.2b resembles a parallel plate capacitor in 
which two charged conducting surfaces separated by a dielectric occur with a potential differ- 
ence AI) between them. Although this is certainly not a realistic picture of the actual distribu- 
tion of charge at a solution interface, Figure 11.2b allows us to visualize a double layer of 
charge at  an interface. Elsewhere in this book we have referred to the counterion atmosphere 
that adjoins a charged surface. Figure 11.2b represents this situation, and one of the layers 
may be regarded as a crude model of this ion atmosphere. This is the origin of the term 
electrical double layer, which is generally used to describe this physical situation, and we use 
this terminology from now on in preference to ion atmosphere. 

Our interest in this chapter and in Chapter 12 is centered primarily on the part of the 
double layer that extends into the aqueous solution, which is the continuous phase in many 
important systems. There may be some interfaces between water and a second phase in which 
the charge on the nonaqueous phase is essentially concentrated on the surface plane. The rigid 
alignment of a second layer of counterions in the aqueous solution is implausible, however, 
because of thermal agitation, which tends to diffuse the ions throughout the solution. This 
leads to what is known as the diffuse layer (sometimes referred to as the Gouy layer or the 
Gouy-Chapman layer, in honor of G.  Gouy and D. L. Chapman; see also Sections 11.4,11.6, 
and 11.8). For now, the parallel plate capacitor model will get us started with the help of some 
basic relationships and units from elementary physics. The diffuse model of the double layer 
is discussed in other sections. 

Coulomb’s law is the basic point of departure. It may be written for the Coulombic force 
F, as 

F, = (1/4ne,)(qq’/e~’) ( 5 )  

to describe the force operating between two charges q and q’ separated by a distance r. The 
factor er is the dielectric constant of the medium, and the proportionality factor (1/4ne,) 
implies that SI units are being used. Remember that eo has the value 8.85 - 10-l2 C 2  J - ’  m-’ ,  
4ne, = 1.11 - C 2  J-I m-’ ,  and (1/47reo) = 8.99 - 109 J m C-* .  This factor does not 
appear when cgs units are used. Appendix B contains some additional remarks about these 
two systems of units, which can be especially troublesome in electrical calculations. 

Next let us consider the definition of the strength of an electric field E. The field E 
describes the force per unit charge in an electrically influenced environment, 
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E = Fc/q (6) 

Now suppose we bring two identical +q charges toward one another to a distance of separa- 
tion r .  Combining Equations ( 5 )  and ( 6 )  enables us to calculate the field at that separation: 

E = (1/47r&o)(q/&~~) (7) 

This is precisely the same as the force that a unit positive charge would experience at the same 
location. Since force is the negative gradient of the potential, Equation (7) also supplies a 
second definition of field: 

E = -(d\l / /dx) (8) 

where \l/ is the potential and x is the separation of the plates. 
A fiction that helps us understand electric fields is the notion of lines of force. Suppose 

we imagine one line of force as emanating from each unit of positive charge. If the charge has 
a magnitude of + q, then there would be q lines of force produced by this particular charge. 

A radial distance r from this central charge, the lines of force cut across a spherical 
surface of area 47rr2. If we divide the number of lines of force by the cross-sectional area, we 
obtain, in a vacuum, 

(9) 

Equation (9) shows that the field E and the number of lines per area are directly proportional, 
with q, the factor of proportionality. In the presence of a dielectric, E, is inserted into Equation 
(9) to bring it into conformity with Equation (7). Now suppose we apply this idea to a parallel 
plate capacitor. 

In the case of a capacitor - taken here as a prototype of a double layer - the charges are 
not isolated. Instead, the lines of force emanating from one charged surface terminate at an 
opposite charge on the other plate of the capacitor. Figure 11.3a represents such a situation 
when the plates are separated by a vacuum. Suppose a plate of area A carries q charges; then 
we define the charge density U* as 

(Number of lineslarea) = q/47rr2 = q,E 

U* = q/A (10) 

Since a line of force is associated with each unit of charge, there are (q /A)  lines of force 
crossing the evacuated gap between the two plates of the capacitor. As we have already seen, 

I - - - - - .Vacuum 

Dielectr 

FIG. 11.3 The electric field in a parallel plate capacitor: (a) the dielectric is a vacuum; and (b) a 
material of dielectric constant E, is present. 
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the number of lines of force measures the field; therefore we write for a capacitor that contains 
a vacuum 

E. = (q/c , ,A)  = (a*/eo) 

If a substance with a relative dielectric constant E, is placed between the plates, the field will be 
less by this factor. This is because of the partially compensating field that is induced within 
the dielectric by dipole orientation, as suggested by Figure 11.3b. Therefore, in the presence 
of the dielectric, the field is given by 

Next we ignore the directional (sign) aspect of the field and equate Equations (8) and (12) to 
obtain 

(d$/dx)  =5 (A$/6) = (o*/E,&,,) (13) 

where A$ is the potential drop between plates separated by a distance 6. This equation relates 
the charge density, voltage difference, and distance of separation of the capacitor. Since this 
is the model we are using for the double layer, it is of interest to check whether Equation (13) 
agrees - at least qualitatively -with what we know about the double layer. 

We saw in Chapter 7 that charged monolayers are likely to obey the two-dimensional ideal 
gas law, and we also saw that areas per molecule of 10 nm2 or so were also required for this 
ideal law to apply. Hence we may estimate U* for a monovalent ion to be 

a* = (ion./lO nm2)(10'* nm2/1 m2)(l.60- lO-I9 C/ion) 

= 1.6. 10-2 C m-2  

Taking the dielectric constant of water to be about 80, its bulk value, Equation (12) permits 
the field strength to be estimated: 

E = 1.6- 10P2 C m-2/(80.8.85- 10-I2 C2 J- '  m-I) 

= 2.26-10' V m-' 

Even allowing for an order of magnitude error in this estimate, we see that there is an 
exceptionally strong field in the vicinity of a charged interface. In Section 12.8 we examine 
this in greater detail and consider whether we are justified in using bulk values for such 
parameters as the permittivity E and the viscosity 17 within the double layer. 

If we estimate the potential drop between the two phases, we may determine the distance 
over which the potential drop occurs from the value of E given by Equation (15). If we take 
the potential difference to be 0.10 V - an arbitrary but reasonable value - Equation ( 13) shows 
that the plate separation of an equivalent capacitor is 

(16) 6 = A $ / E  = (0.10/2.26 - 10') = 4.4 * 10P9 m = 4.4 nm 

Considering the simplicity of the model and the arbitrariness of the numerical estimates made 
in this calculation, 4.4 nm seems like a reasonable estimate of the distance over which surface 
charge neutralization is accomplished. 

Throughout this section we have examined the distribution of charge at an interface as if 
the charge were constrained to two planes. When one of the phases is an aqueous electrolyte 
solution, the inadequacy of this model is apparent. An immediate improvement of the model 
is anticipated if we allow for a diffuse double layer, that is, a situation in which the charge 
density varies with distance from the interface, as shown in Figure 11.4a. Alternatively, we 
might combine features from both the parallel plate distribution and the diffuse distribution 
to give a still more elaborate picture of the double layer, as shown in Figure 11.4b. We 
consider this last situation in Section 11.8. According to this picture, each part of the double 
layer is analyzed independently, and the effects combined according to the rule for adding 
capacitors in series: 
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FIG. 11.4 Two models for the double layer: (a) a diffuse double layer; and (b) charge neutraliza- 
tion due partly to a parallel plate charge distribution and partly to a diffuse layer. 

(1/CT) = (l/C1) + (1/C2) + . . . + ( l /CJ  

where C, is the capacitance of the ith element in series and C ,  is the total capacitance. 

11.4 THE DIFFUSE DOUBLE LAYER: 
THE DEBYE-HUCKEL APPROXIMATION 

In the preceding section we discussed the problem of the variation of potential with distance 
from an  interface from the highly artificial perspective of a parallel plate capacitor. The 
variation of potential with distance from a charged surface of arbitrary shape is a classical 
electrostatic problem. The general problem is described by the Poisson equation, 

(18) (a2$/dx2) + (a2$/ay2) + ( d 2 $ / d Z 2 )  = - ( p * / & )  

or in terms of the Laplacian operator V2,  

V2$ = - @ * / E )  

where we define E as the product ereo and thereby account for the effect of the medium. In 
these expressions, p* is the charge density (i.e., C m -’) in the system, a quantity that itself is a 
function of x, y ,  and z .  The solution to this differential equation, therefore, is an  expression 
for the potential that satisfies Equation (18) and also the boundary conditions of the specific 
problem. We adopt the convention of measuring all distances outward from the interface 
where the potential has the value $o. As the distance from an isolated surface increases to 
infinity, the value of $ approaches zero. The stipulation of an “isolated” surface means that 
we are concerned with only one interface at  this time. In Section 11.7 we consider the case in 
which electrical double layers overlap. 

11.4a Meaning of the Poisson Equation 

The Poisson equation is a fundamental relationship of classical electrostatics and really need 
not be proved here. However, since we are using it as a starting point, it seems desirable to 
explore the meaning of this important equation to some extent. 

Equation (7) describes the field a distance r from a charge + q.  A basic law of electrostat- 
ics is that this field describes any distribution of charge that results in q units of positive charge 
being enclosed by a sphere of radius Y. It is not critical that a single + q  charge be situated at 
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the center for this expression to apply. Suppose, therefore, we consider a portion of solution 
in which the charge is distributed with a uniform density p * .  In this case 

q = (4/3)7rr3p* (20) 

E = rp*/3e (21) 

d(r2E)/dr = r2p*/c (22) 

E = -(d+/dr) (23) 

and, from Equation (7),  

Next we multiply both sides of Equation (21) by r2 and then differentiate with respect to r: 

In the present notation, Equation (8) becomes 

where the minus sign is included since J/ decreases as r increases. 
Substituting this result into Equation (22) gives 

Remember that the operator V 2 J /  in Equation (19) transforms into the following form in 
spherical coordinates: 

Thus the left-hand side of Equation (24) is seen to be identical to V2+ for the case (spherical 
symmetry) in which + is independent of 0 and 4. Although this presentation does not consti- 
tute the most general proof of the Poisson equation, it does give it some plausibility. 

There are many situations in which the spherically symmetrical case is specifically in- 
voked, as in the Debye-Huckel theory of electrolyte nonideality, for example. We consider 
situations for which this is the case in Chapter 12. For now, however, we consider the potential 
distribution adjacent to a planar wall that carries a positive charge. 

11.4b Potential Distribution Near Planar Surfaces 

We define the direction perpendicular to the wall as the x direction and consider the wall as 
extending to infinity in the positive and negative y and z directions. In this case the operation 
V2+ becomes (d+2/dx2) ,  and Equation (18) is written 

(d+2/dx2) = - P * / E  (26) 

The next problem is to express the charge density as a function of the potential so the 
differential equation (26) can be solved for J/. The procedure is to describe the ion concentra- 
tions in terms of the potential by means of a Boltzmann factor in which the work required to 
bring an ion from infinity to a position at which the potential rl/ is given by z1&. The probabil- 
ity of finding an ion at this position is given by the Boltzmann factor, with this work appearing 
as the exponenlial of energy: 

nl/n,, = exp( -zleJ//k,T) (27) 

In this expression n, is the number of ions of type i per unit volume near the surface, and n,, is 
the concentration far from the surface, that is, the bulk concentration. The valence number z, 
is either a positive or negative integer. 

The charge density is related to the ion concentrations as follows: 

Combining Equations (26) and (28) gives a result known as the .Poisson-Boltzmann equation: 
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This same relationship is the starting point of the Debye-Huckel theory of electrolyte nonideal- 
ity, except that the Debye-Huckel theory uses the value of V2$ required for spherical symme- 
try. It is interesting to note that Gouy (in 1910) and Chapman (in 1913) applied this relation- 
ship to the diffuse double layer a decade before the Debye-Huckel theory appeared. 

The derivation of the Poisson equation implies that the potentials associated with various 
charges combine in an additive manner. The Boltzmann equation, on the other hand, involves 
an exponential relationship between the charges and the potential. In this way a fundamental 
inconsistency is introduced when Equations (26) and (28) are combined. Equation (29) does 
not have an explicit general solution anyhow and must be solved for certain limiting cases. 
These involve approximations that - at the same time - overcome the objection just stated. 

We introduce the first of the Debye-Huckel approximations by considering only those 
situations for which (z& < k,T). In this case the exponentials in Equation (28) may be 
expanded (see Appendix A) as a power series. If only first-order terms in (z&/k,T) are 
retained, Equation (28) becomes 

Because of electroneutrality, two of the terms in Equation (30) cancel: 

C zien, ,  = o 

p* = - C (2 n i m  e2 $ / ~ B T )  

(3 1) 
I 

so that Equation (30) becomes 

(32) 

In this approximation, the ion potentials are additive, so Equation (32) may be consistently 
substituted into Equation (26) to give 

(33) 

The above equation is known as the linearized Poisson-Boltzmann equation since the assump- 
tion of low potentials made in reaching this result from Equation (29) has allowed us make 
the right-hand side of the equation linear in II/. This assumption is also made in the Debye- 
Huckel theory and prompts us to call this model the Debye-Huckel approximation. Equation 
(33) has an explicit solution. Since potential is the quantity of special interest in Equation 
(33), let us evaluate the potential at 25OC for a monovalent ion that satisfies the condition ell/ 
= k,T: 

I 

( d2$/dxZ) = [ ( e2/EkBT) C zf njml $ 
I 

$ = (k,T/e) = (1.38. 10-23) (298)/( 1.60. 10-19) 
= 0.0257V = 25.7mV (34) 

Thus at 25OC potentials may be regarded as low or high, depending on whether they are less 
or more than about 25 mV. The factor (e$/k,T) appears often in double-layer calculations, 
so this conversion factor is worth remembering. The relationship of (k,T/e) to ( R T / 5 )  was 
noted in Section 11.2. 

It is convenient to identify the cluster of constants in Equation (33) by the symbol K ’ ,  

which is defined as follows: 

K’ = [ ( e2/ek,T) C zf n,,] 
I 

(35) 

With this change in notation, Equation (33) becomes simply 

(d2$/dx2) = K ~ $  (36) 

The above equation will have to be solved under the conditions that $ -+ 

$ + 0 as x + 00. The solution that satisfies these conditions is given by 
as x + 0 and 
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(37) 

In Section 11.5 we examine the implications of Equation (37) in detail. 

1 1 . 4 ~  Potential Distribution Around Spherical Surfaces 

For studying the stability of colloidal particles in suspension (Chapter 13) or for determining 
the potential at the surface of particles (Chapter 12), one often needs expressions for potential 
distributions around small particles that have curved surfaces. Solving the Poisson-Boltzmann 
equation for curved geometries is not a simple matter, and one often needs elaborate numerical 
methods. The linearized Poisson-Boltzmann equation (i.e., the Poisson-Boltzmann equation 
in the Debye-Huckel approximation) can, however, be solved for spherical electrical double 
layers relatively easily (see Section 12.3a), and one obtains, in place of Equation (37), 

$ = $o(Rsm exp - 4 r  - Rs) 1 (38) 

where R,  is the radius of the spherical particle and r is the distance of any point in the double 
layer from the center of the particle. Notice that the above equation satisfies the required 
boundary conditions $ -+ $o as r --+ R, and $ --+ 0 as r -+ 00.  We return to this topic in 
Chapter 12 when we discuss motion of charged particles in electric fields. 

1 1.4d Potential Distribution Around Cylindrical Surfaces 

The solution of the linearized Poisson-Boltzmann equation around cylinders also requires 
numerical methods, although when cylindrical symmetry and the Debye-Huckel approxima- 
tion are assumed the equation can be solved. The solution, however, requires advanced mathe- 
matical techniques and we will not discuss it here. It is nevertheless useful to note the form of 
the solution. The potential $ for symmetrical electrolytes has been given by Dube (1943) and 
is written in terms of the charge density o* as 

where r is the radial distance from the axis of the cylinder, R, is the radius of the cylinder, and 
KO and K ,  are known as zero- and first-order modified Bessel functions of the second kind, 
respectively. A few values of these Bessel functions are tabulated in Table 11.2 and are useful 
for calculating electrophoretic mobilities (discussed in Chapter 12). A more detailed analysis 
of cylindrical double layers may be found in Hunter (1981). 

TABLE 11.2 
Potentials of Long Cylinders" 

Bessel Functions K,(Kx) and K,(Kx) for Computing 

0.06 2.950 0.60 0.9942 
0.08 2.675 1 .oo 0.7 176 
0.10 2.463 1.40 0.5426 
0.14 2.151 2.00 0.407 1 
0.20 1 A35 3 .OO 0.2872 
0.40 1.275 4.00 0.2235 
~~ 

Source: H. A. Abramson, L. S. Moyer, and M. H. Gorin, Elec- 
trophoresis ofProteins, Reinhold, New York, 1942, p. 129. 
aOne may substitute either the radius of the cylinder R, or the 
radial position r for the dummy variable x. 
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11.5 THE DEBYE-HUCKEL APPROXIMATION: RESULTS 

The Debye-Huckel approximation is strictly applicable only in the case of low potentials. 
Nevertheless, there are several reasons why the significance of Equation (37 )  should be fully 
appreciated: 

1. 
2. 

It is simpler to understand than any of the modifications we consider subsequently. 
It is a limiting result to which all equations that are more general must.reduce in the 
limit of low potentials. 

3 .  The effects of electrolyte concentration and valence in this approximation are qualita- 
tively consistent with the results of more elaborate calculations. 

11.5a Physical Significance of the Debye-HUckel Parameter K 

One of the most important quantities to emerge from the Debye-Huckel approximation is the 
parameter K .  This quantity appears throughout double-layer discussions and not merely at  this 
level of approximation. Since the exponent KX in Equation (37 )  is dimensionless, K must have 
units of reciprocal length. This means that K has units of length. This last quantity is often 
(imprecisely) called the “thickness” of the double layer. All distances within the double layer 
are judged large or  small relative to this length. Note that the exponent KX may be written 
x / K - ~ ,  a form that emphasizes the notion that distances are measured relative to K - ’  in the 
double layer. 

are such important quantities, we examine them in greater detail, first 
verifying their dimensions and then considering their numerical magnitude. Especially impor- 
tant is the dependence of K and K - l  on the concentration and valence of the electrolyte in 
solution. 

It is an easy matter to verify that K~ as defined by Equation (35 )  does indeed have units of 
length -2 ,  or m -2  in SI. This is seen by writing the SI units for the various factors appearing in 
Equation (35 )  as follows: 

Since K and K 

K~ = (C)’(m -3)/(C2J -‘m -‘)(J K -’) (K) = m - 2  

The parameter K depends on concentration; accordingly, we must express it in practical con- 
centration units. If n, is expressed as the number of ions per cubic meter, then n, is related to 
the molar concentration M, of the ions and the Avogadro’s number NA by 

(40) nl = 1000 A4, NA 

since 1000 dm = 1 m ’. Therefore Equation (35 )  yields 

K = [ ( 1000 e2 NA/&kBT) 2 Mill’* 
I 

The summation in this expression is twice the ionic strength of the solution. We examine the 
numerical substitutions into Equation (41) in Example 1 1.1. 

* * *  

EXAMPLE 11.1 Dependence of the Debye-Hiickel Parameter K on Temperature and Type of 
€/ectro/ytes. Evaluate the numerical factor in Equation 41 for aqueous solutions at 25OC. At 
this temperature E, = 78.54 for water. Calculate K and K -‘ fo! 0.01 M solutions of 1 : 1, 2 : 1 ,  and 
3 : 1 electrolytes. Suggest how these values can be adapted to other temperatures (or media) 
without complete recalculation. 

Solution: Recalling that E = qq,, we write 

K~ = (1 OOO)( 1.60 - 1 0- ’9)2(6.02 * 1 023)(2/)/(78.54)(8.85 1 0 - ”)( 1.38 - 1 0 -23)(298) 
= 2.32.109(2 /)1’2m-1 

and 
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K - I  = 4.31 - 10-l' (21) - 'I2 m 

where I is the ionic strength. Note that, for a 1 : 1 electrolyte, the summation in Equation (41) 
gives (21). In general, for any symmetrical (z  : z)  electrolyte, the ionic strength equals z2 M (or 

= IzI M" ). Therefore in a 0.01 M solution of 1 : 1 electrolyte 

K = 3.29 108m- '  and K - '  = 3.04 lO- 'm = 3.Q4nm 

For asymmetrical electrolytes the ionic strength is the same for, say, 1 : 2 as for 2 : 1 
solutes; namely, 3 M as verified by substitution into the summation (and remembering the 
stoichiometry of the dissociation!). Therefore in a 0.01 M solution of 2 : 1 electrolyte 

and in a 0.01 M solution of 3 : 1 electrolyte ( 1  = 6 M) 

K = 5.68 9 10'rn-I and K - I  = 1.76 - lO- 'm = 1.'76 nm 

K = 8.04 - 1O8rn-' 

It is easy enough to evaluate K and K - '  for different concentrations and valence types; it is 
more of a nuisance to recalculate these quantities at different temperatures and/or in different 
media. An easy way to do this using the expressions given is to factor out ~ ~ ~ 2 9 8  and T = 298K 
and replace them with quantities pertinent to the problem at hand. For example, at 90°C, er = 
57.98 for water; therefore the value of K at this temperature is given by 

and K - I  = 1.24 * lO-'rn = 1.24 nm 

K = 2.32 * 1 09[(78.54)(298)/(57.98)(363)]"2 (21)"2 
= 2.32. 109(1 .05)(21)II2 
= 2.45. I - I  

* * *  

Both K and K - '  are used extensively in this chapter and Chapters 12 and 13 (as well as in the 
sections on the rheology of charged dispersions in Chapter 4). Table 1 1 . 3  lists numerical values 
for these quantities and the pertinent equations for their calculation for aqueous solutions at 
25OC. This table may be consulted as a source for K and K - '  values when these are required for 
exercises in these chapters. 

Several things should be noted about Table 11.3: 

1 .  The tabulated values of K - '  multiplied by 109 give the double layer "thicknesses" 
in nanometers. For example, in a 0.01 M solution of a 1 : 1 electrolyte, K - '  equals 
3.04 nm. 

TABLE 11.3 Values of K and K - '  for Several Values of Electrolyte Concentrations and Valences 
for Aqueous Solutions at 25OC 

Symmetrical electrolyte Asymmetrical electrolyte 
- 

K(m-') = 3.29 K - '  (m) = 3.04 x K (rn-I) = 2.32 x K - '  (m) = 4.30 x 
x 1091zp41/2 lo- lolzl  -%-'/* I . o ~ ( c , ~ M ~ ) ~ / ~  10 - lo(~j&w,) - 

Molarity z+ :z- z+: z -  

0.001 1:l 1.04 x 108 
2:2 2.08 x 108 
3:3 3.12 x 10' 

0.01 1:l 3.29 x 10' 
2:2 6.58 x 10' 
3:3 9.87 x 10' 

0.1 i : i  1.04 x 109 
2:2 2.08 x 109 
3:3 3.12 x 109 

9.61 x 10-9 1:2, 2:l 1.80 x 10' 
4.81 x lOP9 3:1, 1:3 2.54 x 108 
3.20 x lOP9 2:3, 3:2 4.02 x 10' 
3.04 x lOP9 1:2, 2:l 5.68 x 10' 
1.52 x 10-9 1:3, 3:l 8.04 x 108 
1.01 x 10-9 2:3, 3:2 1.27 x 109 
9.61 x 10-" 1:2, 2:l 1.80 x 109 
4.81 x 10-" 1:3, 3:l 2.54 x 109 
3.20 x 10-l' 2:3, 3:2 4.02 x 109 

5.56 x 1 0 - ~  
3.93 x 1 0 - ~  
2.49 x 1 0 - ~  
1.76 x 1 0 - ~  
1.24 x 1 0 - ~  

3.93 x 10-I' 

7.87 x 10-I' 
5.56 x 10-I' 

2.49 x 10-l' 
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2. This “thickness” is about the same magnitude as the prediction based on the capacitor 
model (Equation (16) ). The diffuse model is clearly superior, however, since it shows 
how the double layer “thickness” depends on the concentration and valence of the 
ions in the solution. 
The “thickness” of the double layer varies inversely with z and inversely with M’’2 for 
a symmetrical z : z electrolyte. Therefore K - ’  equals 1 .O nm for a 0.01 M solution of a 
3 : 3 electrolyte and is about 10 nm for a 0.001 M solution of a 1 : 1 electrolyte. 

Figure 11.5 shows how the potential drops with distance from the surface according to 
Equation (37). The curves in this figure are drawn for two different variations in K :  in Figure 
11.5a, a 1 : 1 electrolyte at 0.1, 0.01, and 0.001 M concentrations; and in Figure 11.5b, a 0.001 
M solution of 1 : 1, 2 : 2, and 3 : 3 electrolytes. Again, it is important to recognize that the 
curves drop off more rapidly for either higher concentrations or higher valences of the electro- 
lyte. 

The curves in Figure 11.5 are marked at the x value that corresponds to K -‘. Note that the 
potential has dropped to the value (&/e)  at this point. Calling K - ’  the double layer “thickness” 
is clearly a misnomer. We see presently, however, that there is some logic underlying this 
terminology. 

3. 

w 
W O  

- 

1 .o 

0.8 

0.6 

0.4 

0.2 

0.0 
1 .o 

0.8 

0.6 

0.4 

0.2 

0.0 
0.0 2.0 4.0 6.0 8.0 10.0 12.0 

FIG. 11.5 Fraction of double-layer potential versus distance from a surface according to the 
Debye-Huckel approximation, Equation (37): (a) curves drawn for 1 : 1 electrolyte at three concen- 
trations; and (b) curves drawn for 0.001 M symmetrical electrolytes of three different valence types. 
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11.5b Comparison Between the Capacitor and Diffuse Models 

Although the potential is fundamentally a more important quantity than charge density, 
examining the charge density will enable us to compare the capacitor and diffuse models for 
the double layer. 

The condition of electroneutrality at a charged interface requires that the density of 
charge at the two faces be equal. Note that this does not require the charges to be physically 
situated at the interface. When one of the phases contains a diffuse layer, the total charge 
contained in a volume element of solution of unit cross section and extending from the wall to 
infinity must contain the same amount of charge-although of opposite sign-as a unit area 
of wall contains. Stated in formula, this becomes 

We now examine the implications of Equation (42) for the situation in which one of the 
adjoining phases contains the diffuse half of a double layer. Combining Equations (26) and 
(42) gives 

U* = E i, (d2$/d$)dx (43) 

a result that is easily integrated to yield 

U* = E(d$/dx)( 7 (44) 

The quantity d$/dx is zero at infinity, and we define its value at the wall by (d$/dx),; 
therefore Equation (44) becomes 

U* = - e(d$/dx)o (45) 

Equation (45) provides a relationship between the surface charge density and the slope of the 
potential at the surface. Next, we turn to Equation (37)- the Debye-Huckel approximation 
for $- to evaluate (d$/dx)o.  Differentiation leads to the value 

(d$/dx)o = lim [ - K $ ~  exp ( - K X ) ]  = - K $ ~  
x+o 

Substituting Equation (46) into Equation (45) gives 

Q* = &K$o (47) 

U* = &($o/K-’) (48) 

Rewriting Equation (47) in terms of K - I ,  the double-layer “thickness,” yields 

Equation (48) is identical in form to Equation (13) for a parallel plate capacitor, with Go 
replacing A$ and K -’ replacing 6. This result shows that a diffuse double layer at low potentials 
behaves like a parallel plate capacitor in which the separation between the plates is given by 
K . This explains why K - ’  is called the double-layer thickness. It is important to remember, 
however, that the actual distribution of counterions in the vicinity of a charged wall is diffuse 
and approaches the unperturbed bulk value only at  large distances from the surface. 

Even allowing for the fact that the Debye-Huckel approximation applies only for low 
potentials, the above analysis reveals some features of the electrical double layer that are 
general and of great importance as far as stability with respect to coagulation of dispersions 
and electrokinetic phenomena are concerned. In summary, three specific items might be noted: 

1. The distance (away fiom the wall) over which an electrostatic potential persists may be 
comparable to the dimensions of colloidal particles themselves. 

2. The distance over which significant potentials exist decreases with increasing electro- 
lyte concentration. 

3. The range of electrostatic potentials decreases as the valence of the ions in solution 
increases. 

- 1  
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The Debye-Huckel approximation to the diffuse double-layer problem produces a number 
of relatively simple equations that introduce a variety of double-layer topics as well as a 
number of qualitative generalizations. In order to extend the range of the quantitative relation- 
ships, however, it is necessary to return to the Poisson-Boltzmann equation and the unrestric- 
ted Gouy-Chapman theory, which we do in Section 11.6. 

1 1 . 5 ~  Relation Between the Surface Charge and Surface Potential for 
Spherical Double Layers 

Before we proceed to the Gouy-Chapman theory of electrical double layers, it is worthwhile to 
note that relations similar to Equations (45) and (47) can also be derived for double layers 
surrounding spherical particles. The equation for surface charge density takes the form 

U* = - ~ ( d $ / d r ) , ~  (49) 

where the subscript R, implies that the slope (d$/dr)  is evaluated at the particle surface, that 
is, r = R,. When the expression for $ given in Equation ( 3 8 )  is substituted in this expression, 
one derives for the following equation 

(50) q = 47rR:a" = 47r&,( 1 + K R , ) $ ~  

for the relation between the total charge q on the particle and the surface potential Go. 

11.5d Relation Between the Surface Charge and Surface Potential for 
Cylindrical Double Layers 

In the case of cylindrical particles (of radius Rc),  if one again assumes that the charge is 
smeared uniformly on the surface of the cylinders (including the flat circular ends), we can use 
Equation (39) to obtain 

4 = [2.lr&KRc(2Rc + L)K,(KRc)/Ko(KRc) 1$0 (51) 

where L is the length of the cylinder, and K,and K ,  are the Bessel functions listed in Table 
11.2. Additional details are available in the references cited in Section 1 1.4d. 

11.6 THE ELECTRICAL DOUBLE LAYER: GOUY-CHAPMAN THEORY 

The theoretical inconsistencies inherent in the Poisson-Boltzmann equation were shown in 
Section 11.4 to vanish in the limit of very small potentials. It may also be shown that errors 
arising from this inconsistency will not be too serious under the conditions that prevail in many 
colloidal dispersions, even though the potential itself may no longer be small. Accordingly, we 
return to the Poisson-Boltzmann equation as it applies to a planar interface, Equation (29) ,  to 
develop the Gouy-Chapman result without the limitations of the Debye-Huckel approxima- 
tion. 

If both sides of Equation (29) are multiplied by 2 d$/dx, we obtain 

2 (d$/dx)  ( d211,/d,?) = 2 (d$/dx) { - ( e / c )  zin,, exp ( -z,&/k,T) } (52) 

The left-hand side of this equation is the derivative of (d$/dx)2; therefore 

(d$/dx)2 = (2k,T/c) c n,, exp ( -z,e$/k,T) + const. (53) 

The integration constant in this expression is easily evaluated if we define the potential in the 
solution at x = 00 to be zero. At the same limit, d$/dx also equals zero. In view of these 
conventions, Equation ( 5 3 )  becomes 

I 

(d$/dx)2  = (2k,T/c) c ni, [exp ( -z,e$/k,T) - 11 (54) 
I 
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This result may be integrated further if we restrict the electrolyte in solution to the 

( 5 5 )  

in which z is the absolute value of the valence number, the sign having been incorporated into 
the algebraic form. Note that in Equation ( 5 5 )  we have written n,, as simply n, since we are 
considering symmetric (z : z) electrolytes. The bracketed term is readily seen to  equal [exp 
( -ze$/2kBT) - exp (ze$/2k,T)] 2; therefore Equation ( 5 5 )  may be written as 

(56) 

symmetrical z : z type. In that case, Equation (54) can be written as 

(d$/dx)2 = (2k,Tn,/c)[exp (-ze$/k,T) + exp (ze$/k,’T) - 21 

(d$/dx)2 = (2k,Tn,/c)[exp ( -ze$/2kgT) - exp (zerl//2kgT)] 

Identifying (ze$/k,T) as y permits the simplification of notation to 

(dy/dx) = (2e2z?n,/cksT)1/2[exp ( -y/2) - exp (y/2)] 
:= K [exp (-y/2) - exp (y/2)] 

(57) 

This last result may be written in an integrable form by defining U as ey/2, in which case dy = 
2e -Y/2du, and the following relationships hold: 

( 5 8 )  
- du du 2 du 2 du + -  -- - .- - _.-- 

2 du d y  - =  
,-Y/2 - eY/2  eY/2(e-Y/2 - I - 8 1 - u2 I + U 1 - U 

Combining Equations (57) and (58) gives 

du du 
l + u  1 - U  

+ -  = KdX 

which is easily integrated to yield 

In (=I 1 + U\ = Kx + const. 

(59) 

The integration constant is evaluated from the fact that $ = Go, y = y,, and U = U, at x = 
0; therefore 

In terms of the physical variables, Equation (61) may be written 

In { [exp (ze$/2k,T) + l][exp (ze$,/2kBT) - I]/{ [exp (zerl//2k,T) - 11 
[exp (ze$,/2kBT) + 1 J } } = KX (62) 

Equation (62) describes the variation in potential with distance from the surface for a diffuse 
double layer without the simplifying assumption of low potentials. It is obviously far less easy 
to gain a “feeling” for this relationship than for the low-potential case. Anticipation of this 
fact is why so much attention was devoted to the Debye-Huckel approximation in the first 
place. Note that Equation (62) may be written 

[exp (ze$/2kBT) - l]/[exp (zerl//2kBT) + 13 

= { [exp (ze$,/2k,T) - 1 ]/[exp (ze$,/2k,T) + 11 } exp ( - KX)  (63) 

Equation (63) is the Gouy-Chapman expression for the variation of potential within the 
double layer. For simplicity, Equation (63) may be written 

T = Toexp( -m)  (64) 

where T is defined by the relationship 

T = [exp (2e$/2kgT) - l]/[exp (ze$/2k,T) + 11 (65) 
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and To is equal to 'Y' evaluated with $ = Go. Equation (64) shows that it is the ratio 'Y' that 
varies exponentially with x in the Gouy-Chapman theory rather than $, as is the case in the 
Debye-Huckel approximation. Some values of To calculated for a variety of Il/o values are listed 
in Table 11.4. 

As a check on the consistency of our mathematics, it is profitable to verify that Equation 
(63) reduces to Equation (37) in the limit of low potentials. Expanding the exponentials in 'Y' 
and truncating the series so that only one term survives in both the numerator and denomina- 
tor results in the Debye-Huckel expression, Equation (37). 

Another situation of interest in which Equation (63) simplifies considerably is the case of 
large values of x at which $ has fallen to a small value regardless of its initial value. Under 
these conditions the exponentials of the left-hand side are expanded to give 

ze$/4k,T = exp ( -  K X )  (66) 

or 

$ = (4kBT/ze) To exp ( - K X )  

For very large values of Go, To + 1 .  In this case, Equation (67) becomes 

$ = (4k,T/ze) exp (-a) (68) 

which shows that the potential in the outer (i.e., well removed from the wall) portion of the 
diffuse double layer is independent of the potential at the wall for larger potentials. In colloi- 
dal dispersions (ze$o/kET) is generally greater than unity, but not too much greater. This 
means that approximations represented by Equations (37) and (67) will generally bracket the 
true potential-versus-distance curve given by Equation (63). The situation is shown graphically 
in Figure 11.6. In drawing these curves, we chose a value of $o equal to 77.1 mV and arbitrarily 
selected the electrolyte to be a 0.01 M solution of a 1 : 1 electrolyte for which K -' is 3.04 nm. 
Equation (68) is a poor approximation in this case because Go is not large enough. Values of 
the abscissa are readily converted into dimensionless variables that apply to any solution by 
dividing the x coordinate in nanometers by 3.04 nm. 

We conclude this section by considering the expression for charge density, Equation (42), 
as it applies in the Gouy-Chapman model. As we saw in the preceding section, the charge 
density expression integrates to Equation (45) with no assumptions as to the nature of the 
potential function. Accordingly, we may combine Equations (45) and (56) to obtain 

(69) o* = &(2k,Tn,/&) ''2[exp (ze+,/2k,~) - exp ( -ze$,/2k,~) 1 

TABLE 11.4 Variation of the Parameter 
To with $o at 25OC 

260 
240 
220 
200 
180 
160 
140 
120 
1 00 
80 
60 
40 
20 

0.9874 
0.9814 
0.9727 
0.9600 
0.9415 
0.9149 
0.8765 
0.8230 
0.7500 
0.6528 
0.5249 
0.371 1 
0.1968 
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FIG. 11.6 Variation of the double-layer potential versus distance from the surface according to 
four expressions from this chapter. The figures are for Go = 77.1 mV and K = 3.29 - 108 m - '  (or 
0.01 M solution of 1 : 1 electrolyte). Curves are drawn according to Equations (37), (63), (67), and 
(68). 

Equation (69), known as the Graharne equation, describes the variation of charge density with 
potential at  the surface with no limitations as to the value of the potential. Example 11.2 
considers an  application of this relationship. 

EXAMPLE 11.2 Relation Between Surface Charge Density and Surface Potential. Show that 
for a 1 : 1 electrolyte in water at 25OC, Equation (69) can be rearranged to give 

in which $o is expressed in millivolts, c is in moles per liter, and o o  is the area (in A') per charge 
at the surface. Davies (1951) measured the potential across an air-aqueous NaCl interface that 
carried a monolayer of C,,H,,N(CH,),+. When the quaternary octadecyl-amine was at a pres- 
sure corresponding to o 0  = 85 A ', the following potentials were measured at different concen- 
trations of NaCl (data from Davies 1951 ): 

Eobs (mv) 240 280 325 340 380 
CNaCl (M) 2.0 0.5 0.1 0.033 0.01 

About 200 mV of these potential differences arises from dipole effects at the interface and 
should be subtracted from each value to give the double-layer contribution to the measured 
potentials. Compare these corrected values with the values of $o calculated by the equation 
given. 

Solution: First recognize that 2 sinh x = e x  - e -'; therefore Equation (69) can be written 

$o = 51.4 sinh [137/(ooJc)] 

o* = (8~k,Tn,)"~ sinh (ze1)~/2k~T) 

sinh -' [o*(8&kBTn,) -"'] = ze$,/2kBT 

or 
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For a 1 : 1 electrolyte, this yields 

To assure proper units, we assemble the following substitutions for this expression: 

which gives the desired coefficient. Next we use Equation (40) to obtain n,; nm = (103)(6.02 - 
1023)c = 6.02 - 1O2%. With this the factor, 8&,Tn, becomes 

Finally, CT* is related to o0 as follows: 

From these components the argument of the sinh can be evaluated as 137/0~c”~,  which is the 
desired result. 

By substituting the value of O O  into this expression and using the various NaCl concentra- 
tions given, $o values are readily calculated; these are to be compared with Eobs - 200. The 
following values are obtained: 

$0 (mv) 50.4 80.2 119.8 148.0 178.9 

$o = (2k,T/e) sinh -‘[0*(8~k,Tn,)”’~] 

(2k,T/e) = 2(1.38 10-23)(298)/1.60 - 10-l’ = 0.0514 V = 51.4 mV 

8(78.54)(8.85 * 10 -l2)(1 .38 * 10 -23)(298)(6.02 * 1 0 2 6 ~ )  = 1.38 * 10 - 2 ~  

O* = 1.60 . 10-191a0(10-10)2 = 1 6 1 ~ ~  

(Eobs - 200) (mv) 40 80 125 140 180 

The agreement between theory and experiment is seen to be quite satisfactory. rn 
* * *  

11.7 OVERLAPPING DOUBLE LAYERS AND INTERPARTICLE REPULSION 

From the viewpoint of the stability of lyophobic colloids discussed in Chapter 13, this section 
(and the developments based on this in Chapter 13) is of central importance. In this section 
we examine the force per unit area-that is, the pressure-that operates on two charged 
surfaces as a result of the overlapping of their double layers. As we saw in Chapter 10, it is 
more convenient to compare attraction and repulsion between particles in terms of potential 
energy rather than force. Therefore we see how to express double-layer repulsion in terms of 
potential energy; this will be developed further in Chapter 13. As was the case with a single 
double layer, it is easier to treat overlapping double layers if the potential is low. Accordingly, 
the detailed derivation we consider will assume this condition. We generalize to the case of 
higher potentials below, but without presenting all the mathematical details of that situation. 
Following this, we show how the results obtained for interaction forces between flat surfaces 
can be used to obtain forces between curved double layers. Since the basic approach is more 
easily demonstrated for spherical surfaces, the results will be given for interaction between 
spherical particles only. 

11.7a Repulsion Between Planar Double Layers 

Figure 11.7 is a schematic representation of the situation with which we are concerned. It 
shows two plates of unspecified thickness; the planar faces of these plates are separated by a 
distance h .  The plates are immersed in an infinite reservoir of electrolyte, the bulk concentra- 
tion of which is n,. The potential at the surface of the plates is defined as $o. It will be 
convenient to distinguish between the inner and outer regions of the solution. By the inner 
region, we refer to the region between the plates, and by the outer region we mean the region 
influenced by only one of the faces. 

When the distance between the plates is large, the potential on both the inner and outer 
faces will drop with distance from the surface according to Equation (63) or one of its 
approximations. The profile of the potential drop in this case is shown by the solid curve in 
the outer region in Figure 11.7 and by the dashed line in the inner region. As the distance 
between the plates decreases, the potential from each of the inner faces begins to overlap in 
the inner region. Therefore the net potential in the inner region varies as the solid line in the 
figure for this region. The potential in the outer region is unaffected by the separation of the 
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FIG. 11.7 Schematic representation of the overlap of two double layers when a pair of plates is 
brought to a surface separation h .  

plates. Since we already know how to handle the potential in the outer region, our interest 
now focuses on the potential in the inner region in which double layer overlap occurs. 

1 I .  7a. 1 Repulsive Force Between Interacting Surfaces 
At equilibrium all forces on any volume element of a solution must balance. Suppose we apply 
this equilibrium criterion to a volume element of solution that lies in the plane parallel to the 
face of the plates in Figure 11.7 and lies a distance x from the face of one of these plates. Two 
kinds of force must operate on this volume element: osmotic pressure and electrostatic forces. 
According to Equations (4.25) and (4.27), the x component of the pressure force acting on the 
volume element (i.e., per unit volume) is given by 

F, = -dp/dx (70) 
The electrical force per unit volume is given by the product of the charge density times the 
field strength according to  Equation (6 ) :  

Combining these results with the criterion for equilibrium leads to the expression 

(dp/dx)  + p*(d$/dx) = 0 (72) 

When Equation (26)  is substituted for p * ,  this becomes 

(dp/dx)  - e(d2$/dx2)(d$/dx) = 0 

(d2$/dx2)(d$/dx) = ( 1/2)(d/dx)(d$/dx)2 

Since 

(73) 

Equation (73) can be written 

(d/dx)[p - (e/2)(d$/dx)2] = 0 

[P - ( ~ / 2 ) ( d $ / d x ) ~ ]  = const. 

(74) 

(75) 

at all locations in the solution. Equation (75) shows that two influences-the pressure and the 
electric field - operate within the solution. The electric field contribution from (drl//dx)’ is 
known as the Maxwell pressure (or, Maxwell stress). Equation (75) also shows that the 
difference between the two contributions is a constant that still remains to be evaluated. We 
are specifically interested in evaluating this constant in the inner region. We proceed in two 
steps: (i) first, we obtain p in terms of $, and (ii) then, we replace rl/ as a function of the 
distance between the plates. 

This result shows that the condition for equilibrium is equivalent to requiring that 
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At this point, the symmetry of the situation shown in Figure 11.7 becomes helpful. We 
realize that $ goes through a minimum at the midpoint position; that is, d$/dx = 0 at x = 
h / 2 .  Thus the constant in Equation (75) equals the pressure at the midpoint P h / 2 .  The differ- 
ence between the pressure and the field effect is equal to this quantity at all locations between 
the plates. Because of this constancy, the entire inner region is characterized by the parameters 
that apply at the midpoint. Therefore $ h / 2  is the potential that governs the repulsion between 
the surfaces. Next, we write Equation (72) as 

dp = -p*d$ (76) 

dp = -zen,[exp ( - ze$ /k ,T)  - exp (ze$/k,T)]d$ (77) 

dp = 2zenw sinh (ze$/k,T) d$ (78) 

Equation (78) is easily integrated between the following limits: p = po (the outer reference 
pressure) at $ = 0 a n d p  = ph/2 at $ = $ h / 2 .  Integration of Equation (78) gives 

(79) 

Equation (79) gives the excess pressure at x = h / 2 ,  and therefore the force per unit area with 
which the plates are pushed apart, FR. 

This analysis is one of several treatments of double-layer repulsion presented in Verwey 
and Overbeek's classic book cited at the end of this chapter. The reader will find the topics of 
this chapter developed in great detail in that source. 

Although Equation (79) is correct, it is not particularly helpful. The problem is that FR is 
expressed in terms of the potential at the midpoint, which is itself an unknown quantity. For 
the special case in which h / 2  is relatively large, the approximation given by Equation (67) may 
be applied to the potential from each of the two approaching surfaces. The potential at the 
midpoint then becomes 

Now Equation ( 2 8 )  may be substituted for p* for a z : z electrolyte, giving 

Since ex - e - = 2 sinh x, Equation (77) may also be written 

P h i 2  - PO = 2k,Tn,[cOSh (Ze$h/2/ksT) - 11  = FR 

$ h / 2  = + 4b2 = 2(4k,TTo/ze) exp ( - ~ h / 2 )  (80) 
according to this approximation. This approximation if often called the superposition approxi- 
mation and is clearly admissible only when the surfaces are sufficiently far apart so that the 
overlap of the double layers is moderate. Since this result applies well away from the surface, 
the potential is low when Equation (80) holds. Therefore cosh (Ze$h/Z/kBT) in Equation (79) 
may be expanded as a power series (see Appendix A), with only the leading terms retained. 
This leads to the result 

(8 1) FR * kBTnw(Ze$h/2/ksq2 = kETn,[8T0 exp ( - ~ h / 2 ) ]  

or 

FR = 64k,Tn,Ti exp ( - h/K - I )  (82) 

An issue of considerable practical importance is how the force of repulsion described by 
Equation (79) and its approximation Equation (82) varies with the electrolyte content of a 
solution. Since K varies with nz2,  Equation (82) is of the form 

(83) 

where C, is a constant and Cz remains fixed for a given distance of separation h .  The exponen- 
tial factor is clearly the more sensitive involvement of n,  in Equation (83).  Therefore this 
expression shows that the force of repulsion decreases with increasing electrolyte concentration 
between two surfaces compared at the same separation, at least at relatively large separation. 
The addition of indifferent electrolyte to an aqueous dispersion of a lyophobic colloid may 
induce the coagulation of that colloid. Equation (83) is therefore an important step toward 
understanding this behavior. One interesting system to which these ideas have been applied is 

FR = C,n, exp ( -C2nF) 
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the case of liquid films. An aqueous soap bubble, for example, reaches an equilibrium thick- 
ness at which the various forces acting on it balance out. Such forces are readily enumerated: 

Gas pressure tends to squeeze the two faces of the film together. 
Van der Waals attraction between the two gas masses is transmitted across the liquid 
surface. 
Amphipathic surfactant ions adsorb at the liquid surface - tails out - so counterions 
form diffuse double layers that can overlap in a manner resembling Figure 11.7. 
The equilibrium thickness of most bubbles is so much less than the radius of curvature 
of the bubble that the air masses can be regarded as blocks with planar faces like 
those in our models. In research studies on such systems, the bubbles are allowed to 
equilibrate on frames that make their compliance with the model even better. 

In Example 11.3 we discuss the results of such a study with soap bubbles. 

EXAMPLE 11.3 Influence of Electrostatic Repulsion on the Thickness of Soap Bubbles. 
Lyklema and Mysels (1965) measured the equilibrium thickness of a soap bubble as 73.1 nm 
when the bubble was stabilized by 8.7 - 10-4 M sodium dodecyl sulfate and the hydrostatic 
pressure on the surface of the film was 66 N m -2. In this experirnent the thickness satisfies the 
condition of equilibrium between the hydrostatic pressure and .the force of repulsion between 
double layers on the adjacent faces of the film, as given by Equation (82). Assuming that the 
adsorption of dodecyl sulfate ions at the air-solution interface gives a very high value of $,,, 
calculate the equilibrium bubble thickness predicted by this model. Criticize or defend the 
following propositions: If an appreciable concentration of indifferent electrolyte is added to the 
soap solution, the calculation just given is no longer feasible because (a) Equation (82) ceases 
to be valid for FR and (b) van der Waals attraction between the two air masses also promotes 
film thinning. 

Solution: The strategy here is to neglect van der Waals forces and to solve Equation (82) for h 
when FR = 66 N m-2. If $o is large enough, To = 1 ;  furthermore, by Equation (40), n, = 1000 
MNA = 5.24 - 1023 liter-'. Assuming the bulk concentration is undiminished by adsor tion, we 
obtain K = 3.29 . log - M"2 = 9.70 - 107 m-'. Therefore 66 = 64(5.24 . 10 )(1.38 - 
10 -23)(298) exp [ -(9.70 - 107)h], from which we find h = 7.88 - 10 -*  m = 78.8 nm. Consider- 
ing that this calculation is insensitive to the actual potential at the surface, the agreement 
between this quantity and the experimental film thickness is acceptable. 

The quantity FR continues to be valid in the presence of indifferent electrolyte as long as 
the electrolyte is a z : z type of compound. As a matter of fact, added electrolyte helps meet the 
requirement that $,,,* be low, which actually improves the applicability of Equation (82). 

Adding electrolyte will cause the film to thin by shortening the range of the repulsive force. 
At smaller distances of separation the van der Waals attraction is definitely increased and 
should be added (as force area-2) to the pressure before attempting this kind of calculation. 
Even without added electrolyte, the air masses attract each other; neglecting this is another 

E 

possible source of discrepancy between theory and experiment in this example. 
* * *  

II.7a.2 Energy of Repulsion Between Planar Double Layers 
We discuss the topic of colloid stability and the role of electrostatic repulsion in imparting 
stability to a dispersion in Chapter 13. In order to evaluate fully the effect of electric charge 
on the stability of a colloidal dispersion, it is necessary to compare the magnitude of the 
repulsion between particles with the magnitude of the attraction between them. The attraction 
is most readily described in terms of potential energy; therefore the repulsion should be 
expressed in this form as well. For the approximation we have just discussed, this is not 
particularly difficult to evaluate. Since potential energy is given lby the force times the distance 
through which it operates, we may write 

daR = -FRdh (84) 
In this expression, daR is the increment in potential energy ;arising from a change in the 
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separation. The minus sign arises from the fact that the potential energy decreases with 
increasing separation. 

Substituting the approximation given by Equation ( 8 2 )  for FR gives 

d9,  = -64kBTnwTi exp ( - h / K - ' ) d h  

9, = 6 4 k B T n w ~  -'Ti exp ( - h / K - ' )  

( 8 5 )  

(86) 

This particular form is limited in applicability to situations in which the separation of the 
surfaces is large compared to K - ' and is large so that To = 1 .  As we did with the force of 
repulsion, we may write G R  as 

a result that is easily integrated by recalling that 9, = 0, when h = 00.  Integration yields 

since K varies with n?. In Equation (87) ,  C, is the same as the one in Equation ( 8 3 ) ,  but C3 is 
a different constant that is proportional to C,.  Again we see that at large separations the 
potential energy of repulsion decreases with increasing electrolyte concent ration. The contin- 
ued emphasis on large separations is formally imposed by the use of approximation repre- 
sented by Equation ( 6 7 )  in the development of this result. There are practical reasons for 
interest in this limit also. As colloidal particles approach one another, it is the outermost 
portions of their double layers that first interact. The outcome of such an encounter, then, is 
influenced by the interaction between the particles at large separations. 

The derivation of Equation ( 8 6 )  is possible only because relatively simple approximations 
are available that permit \l/h,2 to be solved explicitly and generate an integrable expression for 
9,. This is not generally the case, however, so the approach used to reach Equation (86)  is not 
applicable to most situations. Verwey and Overbeek have found another method for evaluat- 
ing aR, but the mathematics are tedious by this approach, involving numerical integrations. 
The method consists of calculating the free energy difference between particles separated by a 
distance h and infinitely separated. The interested reader will find details of this method 
discussed by Verwey and Overbeek in their 1948 book. As far as we are concerned, it is 
sufficient to note the following conclusions from the general theory: 

1 .  A potential energy of repulsion may extend appreciable distances from surfaces, but 
its range is compressed (i.e., reduced) by increasing the electrolyte content of the 
system. 
The conditions under which approaching particles first influence one another are at 
large distances of separation, for which the approximate relationship given by Equa- 
tion ( 8 6 )  holds. 

3.  The sensitivity of aqueous lyophobic colloids to electrolyte content is due to the 
dependence of interparticle repulsion on this concentration. 

What makes these generalizations significant is their relation to the discussion of the 
potential energy of attraction as developed in the last chapter. Item 1 means that, at least 
under some conditions, double-layer repulsion competes with van der Waals attraction in both 
magnitude and range to govern particle interactions. Item 2, we shall see, is similar to the 
attitude we take in discussing steric stabilization in Section 13.7, namely, that the interactions 
the particles experience at their first encounter are the easiest to handle and may determine 
their subsequent behavior. Item 3 indicates that the location and shape of the repulsion curves 
in Figure 10.1 are governed by the electrolyte concentration in the system. There are two 
aspects to this last point. The concentration of the potential-determining ions determines the 
potential at the wall via Equation ( l ) ,  and the indifferent electrolyte content determines K - ' ,  

which in turn measures the range over which <pR decays. As we discussed in Section 10.2, the 
net potential energy curve- the result of attractive and repulsive components - is a convenient 
way to analyze coagulation phenomena. In Chapter 13 we combine the various results from 
this chapter and Chapter 10 to arrive at a quantitative theory for electrostatic stabilization 
against coagulation. The resulting theory is generally called the DL VO theory after B. Derja- 

2. 
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guin, L. D. Landau, E. J .  W. Verwey, and J. Th. G. Overbeek, who initially brought the 
diverse elements of this theory together. 

11.7b Interaction Between Spherical Double Layers: 
The Derjaguin Approximation 

As we mentioned in our discussion of the planar double layers, solving the Poisson-Boltzmann 
equation for the potential variation in curved double layers is complex and requires numerical 
solutions in the general case. One can see then that the same holds in the case of interacting 
double layers as well. In addition, the force of interaction between curved surfaces cannot be 
expressed in terms of the osmotic pressure at the midpoint of separation, as we did in Section 
11.7a. This is because electrical stresses (i.e., the Maxwell stresses) arising from the derivative 
of II/ do not become zero as they did in the case of planar double-layer interaction (see 
Equation (75)  ). However, the solution we obtained for interacting planar double layers can 
be used in combination with what is known as the Derjaguin approximation to obtain the 
potential energy of interaction between two spherical particles. The basic geometric idea 
behind the Derjaguin approximation is that the surface of the spheres (or curved surfaces, in 
general) may be divided into a collection of small stepped surfaces of plane geometry. These 
infinitesimal planes will become ring-shaped flat plates in the case of spherical particles. The 
equations for plane geometry we developed above can then be used for determining the 
interactions between corresponding rings on the two spheres, and these can be integrated over 
all the rings. This is illustrated in Example 11.4. 

* * *  

EXAMPLE 11.4 Interaction Between Spherical Particles: The Use of the Derjaguin Approxima- 
tion. Spherical particles can be approximated by a stack of circular rings with planar faces as 
shown in Figure 11.8. Use Equation (86) to describe the repulsion between rings separated by 
a distance z and derive an expression for the repulsion between the two spheres of equal 
radius R,. Assume that the strongest interaction occurs along the line of centers and make any 
approximations consistent with this to obtain the final result. 

Solution: Indexing the various tiers of rings by i, we note that the increment of the interaction 
due to the ith ring is diP, = iP,dAi, with the area of the ring 2~h,dh.  We eliminate dh as follows: 
The separation of the ith ring z, is related to the distance of closest approach by the formula 
(1/2)(z, - s) = [R, - (R:  - h2)1’2] ,  in which the factor (1/2) arises because part of the effect 
occurs at each surface. Since R, is a constant, this last result may be differentiated and 
rearranged to give [R,(l - h2/R~)”’]dz = 2hdh. This may be combined with the expression for 

FIG. 11.8 
from the interaction between flat plates. 

Schematic illustration that shows how the repulsion between spheres may be calculated 
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d+R to yield dGR = rR,( 1 - h 2 / ~ ) 1 / 2 + ( z ) d ~ ,  where the functional notation has been added to G 
as a reminder that it is different for each ring. Substituting Equation (86) for +(z), we obtain 

If we further assume that h2/R: Q 1 , this simplifies to 
dGR = d , ( 7  - h2/R:)112(64kBTn,~-’r~) exp ( - K Z ) ~ Z  

d+, = (64nR&Tn,~ -’“E) exp ( - KZ)~Z 
The total potential energy of repulsion is given by integrating over all values of z. This is 

most readily done by assuming that z varies between s and infinity. This upper limit is justified 
because the potential function drops off exponentially with distance. Therefore large separa- 
tions make a negligible contribution to the total. Integrating between these limits, we obtain 

Under various circumstances, it may be justified to replace either the exponential or To by their 
aR = (64rR,k,Tn,~ -‘T:) exp ( - KS) 

series approximations, thereby simplifying this result still further. 
* * *  

The Derjaguin approximation illustrated in the above example is suitable when KR* > 10, 
that is, when the radius of curvature of the surface, denoted by the radius R*, is much larger 
than the thickness of the double layer, denoted by K -’. (Note that for a spherical particle R* 
= R,, the radius of the particle.) Other approaches are required for thick double layers, and 
Verwey and Overbeek (1948) have tabulated results for this case. The results can be approxi- 
mated by the following expression when the Debye-Huckel approximation holds: 

+ R  = (47r~f&$,3 exp ( - K s ) / ( s  + ~ R J  (88) 
This expression, although seldom useful in the case of aqueous dispersions, is very useful in 
nonaqueous dispersions, for which the double layer is usually very thick. 

1 1 . 7 ~  Interaction Between Double Layers: Other Considerations 

The above discussions illustrate that the interactions between overlapping electrical double 
layers depend on a number of considerations, such as the magnitude of the surface potential, 
the thickness of the double layer, and the type of electrolyte, among others. Moreover, the 
expressions that have been obtained here (and others that are available in the literature) 
depend on additional conditions that are determined by the approximations made in deriving 
the expressions. 

In addition to all these, it is also important to keep in mind that the results depend also on 
what types of surface equilibrium conditions exist as the double layers interact. For example, 
when two charged surfaces approach each other, the overlap of the double layers will also 
affect the manner in which the charges on the surfaces adjust themselves to the changing local 
conditions. As the double layers overlap and get “compressed,” the local ionic equilibrium at 
the surface may change, and this will clearly have an impact on the potential distribution and 
on the potential energy of interaction. 

For example, if we assume for the moment that the surface ionic equilibrium is reestab- 
lished rapidly as the two surfaces approach each other, we can identify two limiting situations 
depending on the origin of the surface charges. If the surface charges are the result of adsorp- 
tion of potential-determining ions, the surface potentiaI will remain constant as the two 
surfaces approach each other. In this case, the surface charge densities will change. On the 
other hand, if the surface charges are the result of ionization, the charge densities will remain 
constant while the potentials readjust themselves. The results we have obtained in the previous 
sections are based on the former. 

The differences between the above two limiting cases are not very significant when the 
separation distances are large, and one can get good qualitative and fairly quantitative esti- 
mates of interaction energies using the constant-potential condition. It is, however, important 
to know that differences exist, and that they may be important, depending on the types of 
surfaces involved. Overbeek ( 1952a, 1952b) provides additional discussions on this topic. 
Clearly, intermediate conditions (referred to as charge regulation) are also possible (and are 
more likely), although very little is known currently about dealing with such cases. 
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In addition to the above considerations, practical situations often demand that we con- 
sider dissimilar surfaces (i.e., the potentials or surface charges of the interacting surfaces may 
differ from each other). In the case of particles, one may 4also have different sizes. The 
method of deriving expressions for interaction energies in these cases does not involve any new 
fundamental concepts. In fact, the expressions we have derived for interactions between 
identical planar surfaces can be extended using simple graphical and geometrical arguments t o  
interactions between dissimilar surfaces. 

A good discussion of this may be found in Hunter (198’7, Chapter 6). It is, however, 
helpful to list some expressions for interactions between dissimilar spherical particles since 
they are useful in studying heterocoagulation problems. Hogg et al. (1966) and Wiese and 
Healy (1970) have derived the following equations for spherical particles for low surface 
potentials and thin double layers: 

= NI  { N2f(s )  + In [ 1 - exp (~Ks)]  } (89) 

In the above equations, s is the shortest surface-to-surface separation distance, R,; is the 
radius of the ith particle, $o,i is the corresponding surface potential, and the superscripts of aR 
indicate whether the particles interact at constant potential ($) tor constant surface charge (a). 
These equations can be reduced to appropriate simpler forms when R,] = Ry,2 or $o,l = $0,2. 

In addition, interactions between a flat surface and a particle (needed, for example, when 
considering filtration or deposition problems) can also be obtained by taking one of the radii 
to infinity (plane). 

11.8 “NOT-QUITE-INDIFFERENT” ELECTROLYTES: 
STERN ADSORPTION 

At the beginning of this chapter we divided electrolytes into categories of potential determining 
and indifferenl . We saw in Section 11.2 that the potential-determining ions are adsorbed at 
surfaces and determine the value of $o according to Equation (I). Throughout our discussion 
of the diffuse double layer, we have treated indifferent electrolytes as point charges with 
no chemical uniqueness except for their valence number. While this is a useful simplifying 
approximation, it underestimates the complexity of the “real world.” The assumption that ions 
have no volume is acceptable for the bulk region of dilute solutions, but real ions cannot be 
drawn toward charged surfaces without crowding becoming a .problem. At the inner edge of 
the diffuse part of the double layer some sort of saturation limit must be approached. 

One way of handling this-according to 0. Stern-is to divide the aqueous part of the 
double layer by a hypothetical boundary known as the Stern surface. The Stern surface is 
situated a distance 6 from the actual surface. Figure 11.9 schematically illustrates the way this 
surface intersects the double layer potential and how it divides the charge density of the double 
layer. 

The Stern surface is drawn through the ions that are assumed to be adsorbed on the 
charged wall. (‘This surface is also known as the inner Helmholtzplane [IHP], and the surface 
running parallel to the IHP, through the surface of shear (see Chapter 12) shown in Figure 
11.9, is called the outer Helmholtz plane [OHP]. Notice that the diffuse part of the ionic 
cloud beyond the OHP is the diffuse double layer, which is also known as the Gouy-Chapman 
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FIG. 11.9 
the presence of a Stern layer. See Chapter 12 for discussion of surfaces of shear and zeta potential. 

Schematic illustration of the variation of potential with distance from a charged wall in 

layer as mentioned in Section 11.3.) There are several consequences of assuming an adsorbed 
layer of ions at the surface: 

An adsorption isotherm may be written for these ions that allows for surface satura- 
tion and thus introduces the idea of finite ionic size. The Langrnuir isotherm (Equa- 
tion (7.67) ) is one expression that can be used for this purpose: 

1. 

8 = Kn,/(l + Kn,) (94) 

In this expression 8 is the fraction of surface adsorption sites occupied, n,  is the 
concentration of the adsorbed ions in the solution, and K is a constant. 
The constant in Equation (94) is easily shown to be proportional to a Boltzmann 
factor in which the exponential energy consists of two contributions: ze+h6, the electri- 
cal energy associated with the ion in the Stern layer, and 4,  the specific chemical 
energy associated with the adsorption: 

(95) 

The Stern layer resembles the parallel plate capacitor model for the double layer. 
Therefore Equation (13)  may be applied to this region: 

(96) 

2. 

K = exp [(ze& + 4 ) / k B T ]  

3. 

( $ 0  - +hW = Q V E a  
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and q, is the product of q, and the relative dielectric constant that applies within the 
Stern layer. 
The fraction of surface sites occupied equals the ratio 8/02, where crf0 is the charge 
density at surface saturation. Therefore, Equations (94) and (96) may be combined 
to give 

4. 

This equation shows that the potential drop in the Stern layer increases with the 
concentration of the adsorbed ion and ultimately approaches a constant value when 
the surface is saturated. 

Outside the Stern surface the double layer continues to be described by Equation (63) or 
one of its approximations. The only modifications of the analysis of the diffuse double layer 
required by the introduction of the Stern surface are that x be measured from 6 rather than 
from the wall and that $* be used instead of $o as the potential at the inner boundary of the 
diffuse layer. 

The Stern theory is difficult to apply quantitatively because several of the parameters it 
introduces into the picture of the double layer cannot be evaluated experimentally. For exam- 
ple, the dielectric constant of the water is probably considerably less in the Stern layer than it 
would be in bulk because the electric field is exceptionally high in this region. This effect is 
called dielectric: saturation and has been measured for macroscopic systems, but it is difficult 
to know what value of E* applies in the Stern layer. The constant K is also difficult to 
estimate quantitatively, principally because of the specific chemical interaction energy 4. Some 
calculations have been carried out, however, in which the various parameters in Equation (97) 
were systematically varied to examine the effect of these variations on the double layer. The 
following generalizations are based on these calculations: 

As 4 increases, K increases and the equilibrium amount adsorbed for any n ,  value 
short of saturation also increases. 
As the electrolyte concentration increases, increasing amounts of the potential drop 
occur in the Stern layer. This is true even if 4 = 0, which shows that specific chemical 
effects are not necessary for this result. 
Values of $& that are much less than +b0 are possible in dilute solutions only if 4 is 
relatively large. 
The quantity G6 varies only slightly with 4- although it is highly sensitive to nm -until 
4 is relatively large. 

Values of the parameter 4 may be experimentally evaluated for the mercury-water surface 
from electrocapillary studies. The displacement of the coordinates of the electrocapillary 
maxima in Figure 7.23 reflects differences in the intrinsic adsorbability of various ions. Elec- 
trocapillary studies reveal that the strength of specific adsorption at the mercury-water inter- 
face for some monovalent anions follows the order 

1 .  

2. 

3.  

4. 

I -  > SCN- > Br- > C1- > OH- > F -  

whereas for some monovalent cations the order is 

N(C,H,)l :> N(CH,)l > T1' > Cs' > Na' 

In general, the specific adsorption of an ion is enhanced by larger size-and therefore 
larger polarizability - and lower hydration, which itself is a function of ion size. For example, 
among the ions just listed, the large I - ion is the most strongly adsorbed, and the small but 
highly hydrated Na + ion is adsorbed least. 

By allowing for surface saturation, the Stern theory overcomes the objection to the 
Gouy-Chapman theory of excessive surface concentrations. In so doing, however, it trades off 
one set of difficulties for another. In the Gouy-Chapman theory the functional dependence of 
$ on x involves only the parameters K and $o. The former is lcnown and the latter may be 
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evaluated-at least for some surfaces-by Equation ( 1 )  when the point of zero charge is 
known. The Stern modification of the double-layer picture introduces parameters that are not 
only difficult t o  estimate- such as 6 and K (or 6) -but also specific characteristics of different 
ions. The generality of the Gouy-Chapman model is thus lost when the specific adsorption 
effects of the Stern theory are considered. 

It is the outer portion of the double layer that interests us most as far as colloidal stability 
is concerned. The existence of a Stern layer does not invalidate the expressions for the diffuse 
part of the double layer. As a matter of fact, by lowering the potential at  the inner boundary 
of the diffuse double layer, we enhance the validity of low-potential approximations. The only 
problem is that specific adsorption effects make it difficult to decide what value to use for +b6. 

In subsequent chapters it will be the potential in the diffuse double layer that concerns us. 
It can be described relative to its value at  the inner limit of the diffuse double layer, which may 
be either the actual surface or the Stern surface. We continue to  use the symbol rl/o for the 
potential at  this inner limit. It should be remembered, however, that specific adsorption may 
make this quantity lower than the concentration of potential-determining ions in the solution 
would indicate. We see in Chapter 12 how the potential at some (unknown) location close to 
this inner limit can be measured. It is called the zeta potential. 

REVIEW QUESTIONS 

1. 
2. 
3.  
4. 
5 .  

6. 
7. 
8. 

9. 
10. 

11. 
12. 
13. 
14. 
15. 

List some of the mechanisms by which a surface exposed to a liquid may acquire charges. 
What is the Helmholtz double layer? 
Explain the Stern layer and discuss its relation to the inner Helmholtz plane. 
What is the outer Helmholtz plane? 
What is the diffuse layer, and what is its relation to the Gouy-Chapman theory of electrical 
double layers? 
Why is an electrical double layer called a “double layer”? 
What is the physical significance of the Poisson equation? 
What are the assumptions that are needed to obtain the linearized Poisson-Boltzmann (LPB) 
equation from the Poisson-Boltzmann equation, and under what conditions would you expect 
the LPB equation to be sufficiently accurate? What is the relation between the Debye-Hiickel 
approximation and the LPB equation? 
In what way does the Gouy-Chapman theory extend the Debye-Huckel approach? 
Describe the physical significance of the Debye-Huckel parameter K .  How does it vary with 
the bulk concentration n ,  for a 1 : 1 electrolyte? How does it vary with ionic charge for a 
constant bulk concentration? 
What is the relation between the surface charge density and the potential in a double layer? 
Why is there a repulsion between two surfaces with like charges in a liquid? 
What is the so-called Derjaguin approximation? 
Explain the difference between (electrical) potential and potential energy. 
Why is it that the force of double-layer interactions for curved surfaces cannot be derived 
using osmotic pressure arguments as is done in the case of planar double layers? 
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Show that the one-dimensional Poisson equation for planar electrical double layers discussed 
in the text has the following analog in the case of spherically symmetric double layers: 

Obtain the corresponding Poisson-Boltzmann equation and the linearized version based on 
the Debye-Huckel approximation. 

Solve the Poisson-Boltzmann equation for a spherically sym.metric double layer surrounding 
a particle of radius R, to obtain Equation (38) for the potential distribution in the double 
layer. Note that the required boundary conditions in this case are: $ = go at r = R,, and $ 
+ 0 as r -+ 00. (Hint: Transform $(r) to a new function y(r)l = r$(r) before solving the LPB 
equation.) 

Develop the equivalent of Equation (47) for the surface charge density of a spherical particle 
(i.e., the relation between U* and (d$/dr) evaluated at the surface). 

The viscosity of negatively charged colloidal agar (0.14% at SOOC) was studied with a variety 
of different electrolytes added.* The ratio of the specific viscosity (qsp = q / q o  - 1) in the 
presence of salt to qsp without salt is given below for some of' these salts at several concentra- 
tions: 

*Kruyt, H. R., and deJong, H. G., Kolloid Z., 100, 250 (1922). 
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c (m Eq liter-') KC1 K2SO4 K,Fe(CN), BaCl, SrC1, MgS0, La(NO,), Pt(en),(NO,)," 

- 79.2 0.25 
0.50 90.8 90.7 90.5 - - - 76.6 69.7 
1 .oo - - - 78.2 77.9 78.6 - 64.0 
2.00 81.2 81.4 81.1 - - - 68.1 60.6 
4.00 77.3 77.5 76.7 70.6 70.9 71.6 67.2 60.0 

aen = ethylenediamine. 

- - - - - - 

Discuss this electroviscous effect in terms of the concepts of this chapter and Chapter 4. 

The deficiency of positive ions (I?, < 0) adjacent to a positively charged planar surface may 
be evaluated as follows 0, = ze+/k,T): 

Present the physical and/or mathematical justification for equalities (1)-(7) in this sequence. 
Show that the final result is equivalent, at high surface potentials, to emptying a region of 
thickness 2 ~ ~ '  of ions possessing the same charge as the wall. 

If a soap film is sufficiently thin, its equilibrium thickness is the result of the double-layer 
repulsion, given by Equation (82), and van der Waals attraction, given by 

according to Equation (10.63). These conditions are satisfied by certain films studied by 
Lyklema and Mysels,* who obtained the following results with 1 : 1 electrolyte: 

Concentration (mole liter-') 0.103 0.066 0.0197 
Thickness of aqueous layer (A) 91 94 153 
Thickness of entire film (A) 123 126 185 

Use the thickness of the aqueous layer in Eq. (82) to calculate FR per unit area (assume To = 
1). By equating this quantity to FA per unit area (just given) and using the total film thickness, 
estimate A for each of these data. Explain why two different values are used for d in this 
calculation. 

Using the average value of A you determined in Problem 6, criticize or defend the proposition 
that van der Waals forces are negligible compared to hydrostatic forces when the hydrostatic 
forces equal 660 dyne cmP2 in a film for which the total thickness is 763 A. Note that this is 
the assumption made in Example 11 .3 .  Qualitatively reexamine the last question in light of the 
results of this problem. 

Criticize or defend the following propositions: The DLVO theory should apply to particles 
dispersed in nonaqueous media once E and A for the solvent have been included in the relevant 
expressions. Since ion concentrations are low in media with low dielectric constant, K - '  will be 
very large for such systems. For a concentrated colloid the mean interparticle spacing may be 
less than K - I .  In such a case it is more plausible to picture a particle approaching a "target" as 
traveling along a potential energy plateau rather than facing a potential energy barrier. 

Comment on the relevancy of these propositions to the observation? that a 15% (by 
volume) water-in-benzene emulsion stabilized by the calcium salt of didodecylsalicylic acid has 
a $0 of - 130 mV, yet breaks immediately after preparation. 

*Lyklema, J . ,  and Mysels, K .  J . ,  J. Am.  Chem. Soc., 87, 2539 (1965). 
tAlbers, W., and Overbeek, J .  Th. G., J. Colloid Sci., 14, 501 (1959). 
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9. The interfacial tension at the electrocapillary maximum for several electrolytes in dimethyl- 
formamide (DMF) solutions has been measured as a function of the electrolyte concentra- 
tion:* 

log c KI LiCl KSCN 

0 354 366 370 
- 0.3 356 367 371 
- 1.0 361 369 373 
- 1.3 364 370 374 

Use these results to estimate the relative adsorbabilities of the I- ,  Cl-, and SCN- ions from 
DMF. How does the sequence of anion adsorbabilities compare with that from aqueous 
solution as given in Section 11.8? More comprehensive electrocapillary data suggest that 
SCN- is more solvated in DMF than in water. Is this consistent with the adsorbability series 
just compared? 

10. A negatively charged AgI dispersion was caused to coagulate by the addition of various 
electrolytes. The concentrations of several divalent metal nit rates needed to produce coagula- 
tion are as follows:? 

Salt 

c x 103 (mole liter-’) 2.60 2.40 2..38 
Salt Ba(N03)2 Zn(N03)2 Pb(N03)2 

c x 103 (mole liter-’) 2.26 2.50 2..43 

That these different compounds produce the same effect at !so nearly the same concentration 
argues that the principal cause of the effect is electrostatic. Use the average of these concentra- 
tions to calculate (a) the value of K at which this system coagulates, (b) the force of repulsion 
(Equation (82)), and (c) the potential energy of repulsion (Equation (86)) when two planar 
surfaces are separated by a distance of 10 nm. For the purpose of calculation in parts (b) and 
(c), $o may be taken as 100 mV. Comment on the applicability of these equations to the 
physical system under consideration. 

The slight differences in the concentrations of divalent cations required to flocculate the AgI 
sol of the preceding problem may be attributed to differences in the adsorbability of these 
cations at the AgI-solution interface. Use the data of Problem 10 to rank the cations with 
respect to their tendency to adsorb. Is there a correlation between adsorbability and ion size 
and/or hydration? List any references consulted for data concerning the last two quantities. 

Once the significance of the midpoint between two parallel plates for the force between those 
plates is established, there are several ways of arriving at Equation (79). One argument is 
that the plates shown in Figure 11.7 function as a semipermeable membrane, sustaining a 
concentration difference between x = h and the outer region of the solution. Use Equations 
(3.25) and (27) to show that the osmotic pressure across this “semipermeable membrane” is 
given by Equation (79). 

11. 

12. 

*Bezuglyi, V. D., and Korshikov, L. A., Electrokhirniya, 3, 390 (1967). 
TKruyt, H. R., and Klompe, M. A., Kolloid Beihefte, 54, 484 (1942). 



12 
Electrophoresis and Other 
Electrokinetic Phenomena 

There is a constant attraction to the South . . . yet the hampering effect of the southward 
attraction is quite sufficient to serve as a compass in most parts of our earth. 

From Abbott’s Flatland 

12.1 INTRODUCTION 

The word electrokinetic implies the combined effects of motion and electrical phenomena. 
Specifically, our interest in this chapter centers on those processes in which a relative velocity 
exists between two parts of the electrical double layer. This may arise from the migration of a 
particle relative to the continuous phase that surrounds it. Alternatively, it could be the 
solution phase that moves relative to stationary walls. 

12.la What Are Electrokinetic Phenomena? 

There are four phenomena that are normally grouped under the term electrokinetic phe- 
nomena. 

1. Electrophoresis: This refers to movement of a particle (and any material attached to 
the surface of the particle) relative to a stationary liquid under the influence of an 
applied electric field. 

2. Electroosmosis: Here, the liquid (an electrolyte solution) moves past a charged sur- 
face (e.g., the surface of a capillary tube or through a porous plug) under the influ- 
ence of an electric field. Thus, electroosmosis is the complement of electrophoresis. 
The pressure needed to balance the electroosmotic flow is known as electroosmotic 
pressure. 
Streamingpotential: This is a consequence of the electric field created when a liquid 
(an electrolyte) is forced to flow past a charged surface. The situation here is the 
opposite of electroosmosis. 
Sedimentation potential: This is due to the electric field created by charged particles 
sedimenting in a liquid. This situation is the opposite of electrophoresis. 

The first three electrokinetic processes are our concern in this chapter, with the emphasis on 
electrophoresis. 

3. 

4. 

12.1 b Why Study Electrokinetic Phenomena? 

In each case the electrokinetic measurements can be interpreted to yield a quantity known as 
the zeta (<)potential. It is important to note that this is an experimentally determined potential 
measured in the double layer near the charged surface. Therefore it is the empirical equivalent 
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to the surface potentials discussed in the Chapter 11. We saw in Chapter 10 how the stability 
of a hydrophobic colloid depends on the relative magnitude of the potential energies of 
attraction and repulsion between a pair of particles approaching a collision with each other. 
Therefore the electrokinetic or potential has a direct bearing on the material of the previous 
two chapters and the following one as far as the theory and practice of colloid stability are 
concerned. 

In addition to the above, there are a number of phenomena or processes of practical 
utility that are based on principles of electrokinetic processes. We already saw in Chapter 1 
the possibility of developing image displays based on electrophoretic motion (i.e., electropho- 
retic image displays, Vignette I .4). There are so-called liquid immersion development devices 
in which the image that needs to  be copied is transferred onto a plate or paper as a pattern of 
charges so that the transferred image could be developed by exposing the plate or paper to a 
dispersion of appropriately charged dye particles (Lyne and Aspler 1982). The method is 
actually an electrophoretic development process and is highlighted further in Vignette XII. 
Electroosmosis, for instance, has also been used in a number o f  practical applications such as 
dewatering of soils for construction purposes and dewatering of waste sludges and may also 
be useful for controlling toxic leakage in waste sites through the injection of detoxifying agents 
(Probstein 1994). We list some more applications in Section 12.1 1. 

VIGNETTE XI1 ELECTROKINETIC PHENOMENA IN MODERN 
TECHNOLOGY: Electrophotograp hy 

When one thinks of electrokinetic phenomena in the context of a first-level course on colloid 
and surface chemistry, the first thought that probably comes to mind is the use of such 
phenomena to measure zeta potentials and charges of colloidal species. But, as we have 
already seen in Chapter 1 and as we see later in this chapter, electrokinetic phenomena play a 
significant role in many other applications. We take a look at lone such application here and 
see why the topics we consider in this chapter and in others are important in that context. 

Using photoconductive insulating surfaces to produce latent electrostatic images was 
suggested by Carlson over 50 years ago (Carlson 1938, 1940). The image thus produced is 
developed using toner particles of colloidal size and is subsequently transferred to paper. This 
forms the basis of xerography, a “dry” copying technique. (A modification of this process in 
which paper with a photoconductive coating containing a ZnO binder is used directly is 
known as electrofax. It is seldom used today.) 

There are a number of advantages for using liquid-developing processes instead of “dry” 
processes: (a) the possibility of high resolution using fine-grain suspensions, (b) minimizing 
“edge effect’’ (namely, the partially higher image density caused by stronger electric field in 
the edge regions of the latent image) through the control of the conductivity of the developer, 
and (c) the possibility of compact equipment design. The liquid-development process was 
first proposed by Metcalfe (1955, 1956) and seeks to develop the latent image by electropho- 
retic particle deposition from a colloidal dispersion. Theoriles of the liquid-development 
process rest on the electrophoretic mobility equations (e.g., Henry’s equation) we derive in 
this chapter and are presented by Kurita (1961) and Ohyama et al. (1961), among others (see 
Kitahara and Watanabe 1984). 

Let us focus here on some of the general issues that a colloid scientist should be con- 
cerned with in this context: (a) the toner must have stable polarity and stable charges on the 
particles and must be stable against settling; (b) the liquid must have low ion concentration 
and a low dielectric constant to avoid “electrical leakage” of the electrostatic image; and (c) 
color, concentration, and distribution of the pigment particles inside the toner particles must 
be such that the quality of the developed image is high. In order to guarantee these, informa- 
tion on physicochemical properties of the liquid developer (e.g., viscosity, dielectric constant, 
etc.), the mechanisms responsible for the charges on the toner particles, and the interac- 
tion forces responsible for stabilization (usually steric hindrance and polymer-mediated 
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forces arising from polymer additives) must be examined. These factors also determine the 
electrophoretic mobility of the particles and are, therefore, important since the electropho- 
retic mobility, in turn, determines the image density and the developing time (Kitahara and 
Watanabe 1984, Chapter 17). 

1 2 . 1 ~  Focus of This Chapter 

The focus of this chapter is to present the basics of electrokinetic phenomena and to provide a 
working knowledge of the subject. Some classical and some novel applications of these phe- 
nomena are also summarized at the end of the chapter. 

We begin with the definition of electrophoretic mobility, namely, the velocity of a 
charged particle per unit field strength (Section 12.2). 

Our next task is to relate this mobility to the zeta potential. This requires a number of 
assumptions, and we focus on the most important of these. We derive the equations for thick 
electrical double layers (Section 12.3) and for thin double layers (Section 12.4) first and then 
examine how intermediate cases can be studied (Section 12.5). 

Following this we derive the equation for electroosmotic flow and relate it to the zeta 
potential of the charged surface (Section 12.6). Section 12.7 focuses on the streaming potential 
and compares the zeta potentials obtained by the different methods. 

potential is undoubtedly an important quantity in colloid chemistry, 
it is not totally free of ambiguity. The problem is this: It is not clear at what location within 
the double layer the potential is measured. The derivations of this chapter show that the { 
potential is the double-layer potential close to the surface, but the precise quantitative meaning 
of close cannot be defined. We examine this briefly in Section 12.8. 

Following the above, we address some of the experimental aspects of electrophoresis. 
In this context, a few other forms of electrophoresis (e.g., moving boundary electrophoresis 
and zone electrophoresis) are described briefly. The last of these is used when separation of 
charged species, rather than the measurement of mobilities, is the item of interest (Section 
12.9). 

6. One of the applications of zeta potential measurements is in the determination of 
surface charges of colloids such as proteins. We look into this briefly in Section 12.10 and 
derive the equation connecting the surface charge to the zeta potential under some simplifying 
assumptions. 

7.  Finally, a number of examples of applications of electrokinetic phenomena are de- 
scribed briefly in Section 12. l l .  

Most textbooks on colloids usually devote no more than a chapter or two to electrokinetic 
phenomena since so many other topics also need to be covered for a balanced introduction to 
colloid and surface chemistry. A recent textbook (Masliyah 1994) focuses almost exclusively 
on electrokinetic phenomena and may be consulted for details not presented here. 

1 .  

2. 

3.  

4. Although the 

5 .  

12.2 MOBlLlTlES OF SMALL IONS AND MACROIONS IN ELECTRIC 
FIELDS: A COMPARISON 

The fact that positive ions migrate toward the cathode and negative ions migrate toward the 
anode is so well known as to be virtually self-evident. It seems equally evident, therefore, that 
positively and negatively charged colloidal particles should display similar migrations. Indeed, 
this is the case. Because we are relatively familiar with the conductivity of simple electrolytes, 
we start our discussion of electrokinetic phenomena with a comparison of the mobilities of the 
particles in the small ion and macroion size domains. 
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12.2a Mobility of An Ion in An Electric Field 

An isolated ion in an electric field experiences a force directed toward the oppositely charged 
electrode. This force is given by the product of the charge of the ion q times the electric field E: 

Fe, = 4E (1) 

In SI units, E is expressed in volt meter-' and q in coulombs, so Fe, is correctly given in 
newtons, since C V = J = N m. The cgs unit system, which is widely encountered in older 
references, requires dividing the right-hand side of Equation (1 ) by a factor of about 300 since 
299.8 V = 1.0 statvolt. Use of Equation (1) is limited to situations in which the electric field 
at the ion is due to the applied potential gradient only, undisturbed by the effects of other ions 
in the solution (i.e., infinite dilution). 

An ion in an electric field thus experiences an acceleration toward the oppositely charged 
electrode. However, its velocity does not increase without limit. An opposing force due to the 
viscous resistance of the medium increases as the particle velocity increases: 

F", = f v  (2) 

where f is the friction factor (see Equation (2.2) ). A stationary-state velocity is established 
quite rapidly in which these two forces are equal: 

v = qE/f  (3) 

The situation is thus very much like the sedimentation velocity discussed in Chapter 2 in which 
the gravitational forces on a particle are opposed by viscous resistance. 

As a further development, we may tentatively substitute the value for f given by Stokes's 
law (Equation (2.8) ) to obtain 

v = qE/(6n$?,) (4) 

where R, is the radius of the particle, assumed to be a sphere by this substitution. The charge 
of a simple ion can be written as the product of its valence z times the electron charge e: 

q = ze ( 5 )  

Substitution of this result into Equation (4) yields 

v = zeEi(6nrR,) (6) 

The velocityper unit field is defined as the mobility U of the ioin: 

U = v/E (7) 

For simple ions mobilities are typically on the order of 10 -' rn s - ' /V m - I  (m2  V s - I ) .  It is 
shown in physical chemistry (see, for example, Atkins 1994) that the mobility of an ion is 
directly proportional to its equivalent conductance hlo: 

U, = h,&F (8) 

where 5: is the Faraday constant. We have stipulated the conductance at infinite dilution 
(subscript 0) as a reminder that these relationships all refer to isolated ions. When ion mobili- 
ties are analyzed by Equation (6) ,  quite reasonable values for the radii of the hydrated ions 
are obtained. 

12.2b Electrophoretic Mobility of Macroions 

The success and relative simplicity of conductivity as a method of study for small ions prompt 
us to extend these ideas to particles in the colloidal size range. For the purpose of our 
discussion here, we can treat a charged colloidal particle as an ion of large charge, hence the 
name macroion. However, we identify shortly some of the differences between such macroions 
and small ions with respect to their response to an applied electric field. For certain colloids 
the experimental aspects of studying mobilities are simpler than for small ions because of the 
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possibility of measuring the velocity of high-contrast particles by direct microscopic observa- 
tion. If the velocity and the field responsible for the migration are known, the mobility of the 
colloid may be evaluated directly from Equation (7). When the term is applied to colloidal 
particles, the mobility is known specifically as the electrophoretic mobility. In this case the 
overall phenomenon is known as electrophoresis, and the specific experimental technique of 
direct microscopic observation of the electrophoretic mobility is called microelectrophoresis. 
This and other electrophoretic techniques are described in more detail in Section 12.9. 

Although the electrophoretic mobility is -at least in some cases - a readily measured 
quantity, its interpretation is considerably more difficult for colloidal particles than for small 
ions. First, we realize that the charge carried by a colloidal particle is not a constant known 
quantity as is the case for simple ions. This prevents us from using Equation (6) to evaluate 
R,, but suggests instead a method by which the charge might be determined. Suppose, for 
example, we substitute Equation (2.32) for f rather than use Stokes’s law for this quantity. 
Then the electrophoretic mobility is given by 

U = ze/(k,T/D) = zeD/(k,T) (9) 
It appears that the combination of electrophoresis and diffusion experiments would allow 

for the evaluation of the charge carried by the macroion. Again, the situation is reminiscent of 
the procedures described in Chapter 2 in which sedimentation and diffusion experiments were 
combined. However, this is only the beginning of the difficulty. The validity of Equation (9) 
is limited to the situation in which a charged particle is considered in isolation from other ions. 
A charged colloid will be surrounded by an electrical double layer, as we saw in Chapter 11. 
Thus the field at the particle is modified by the potential of the double layer; that is, the 
migrating unit is the charged colloidal particle along with its electrical double layer just as the 
same composite is the kinetic unit in coagulation. 

Therefore this strategy for determining the charge of a colloid from electrophoresis mea- 
surements is invalid except for the rather special case of determining the conditions of zero 
charge for the colloid. We return to a discussion of this point in Section 12.10. 

In Chapter 11 we discussed the structure of the double layer in terms of the potential at 
the surface. This background plus the realization that the ion atmosphere also contributes to 
the electrophoretic mobility of a colloid suggests that potential rather than charge is the more 
useful parameter to pursue. This is the topic of the following section. In discussing the 
migration of charged colloidal particles through a solution containing small ions, it is conve- 
nient to begin by distinguishing between two extremes of particle size. We saw in Chapter 11 
that the parameter K -’  (see Table 11.3) is a convenient way to characterize the “thickness” of 
the ion atmosphere near a surface. Distances are regarded as large or small relative to this 
quantity, as discussed in Section 4.8. For simplicity we restrict our consideration to spherical, 
nonconducting particles (of radius R,) and begin by examining the two extremes of very small 
and very large particles. These designations acquire specific meaning when compared to K -l, 
taken as a standard length. Thus the two cases we consider first are those in which R,/K -‘ (or 
simply KR,) is either small or large. 

Figure 12.1 shows schematically the shape of the flow streamlines around the particle in 
the two cases. The dashed line in the figure is displaced from the surface of the spherical 
particles by an amount K - ’ .  In Figure 12. la,  R, is small (compared to K- l )  and the streamlines 
undergo negligible displacement. In Figure 12. lb ,  on the other hand, the streamlines follow 
the contours of the particle nearly tangentially. Since matter is conserved, a flow streamline 
that carries matter into a volume element must also carry matter out of that volume element. 
Charge is also conserved, so the same number of lines of force must enter and leave a 
volume element. Accordingly, the streamlines shown schematically in Figure 12.1 may also be 
regarded as describing the electric field in the neighborhood of small and large particles. 

12.3 ZETA POTENTIAL: THICK ELECTRICAL DOUBLE LAYERS 

We know from Chapter 11 that the potential drops gradually with distance from a charged 
surface, its range decreasing with increasing electrolyte content. Most of the expressions 
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FIG. 12.1 Streamlines (which also represent the electric field) around spherical particles of radius 
R,. The dashed lines are displaced from the surface of the spheres by the double-layer thickness K - I .  

In (a) KR,  is small; in (b) KR, is large. 

developed in Chapter 11, however, describe the situation adjacent to a planar wall. In the 
present context we need to know how the potential varies with distance from the surface of a 
sphere, as discussed briefly in Section 1 1 . 4 ~ .  We examine this a little closely before proceeding 
to discuss how the results are used for understanding motion of spherical colloidal particles in 
electric fields. 

12.3a Potential Distribution Around a Spherical Particle 

The Poisson equation (see Equation (1 1.18) ) gives the fundamental differential equation for 
potential as a function of charge density. The Debye-Huckel approximation may be used to 
express the charge density as a function of potential as in Equation (1 1.28) if the potential is 
low. Combining Equations (1 1.24) and (1 1.32) gives 

Remember that E is equal to the product of q, times E, with E, = 8.85 - 10 - I 2  C 2  J m -'; for 
water at 25OC, E, = 78.54. Because of its importance to the present material, we repeat the 
defining expression for K as given originally by Equation (1 1.41): 

or, in terms of ionic strength I = ( 1/2)CIz5A4,, 
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K =  ( 2 O O e ~ J ) ” 2  

Remember that Table 1 1.3 contains some useful numerical values of K at different concen- 
trations of various electrolytes. Equation (10) is the basic relationship of the Debye-Huckel 
theory and may be integrated as follows. The variable x is introduced with the following 
definition: 

x = r$ (13) 

Thus Equation (10) may be written 

5 d (r2 d$ --) = K 2  r x 

Now let us consider the incorporation of Equation (13) into the left-hand side of Equation 
(14): 

d$ d ( x / r )  - 1 dx x 
dr dr r dr r2  

- - - _  - - 

and 

f ( r 2 $ ) = $ ( r $ - x ) = r z  d ’x 

Combining Equations (14) and ( 16) gives 

d2x/dr2 = K ~ X  

for which a general solution is 

x = A exp (-Kr) + Bexp (Kr) (18) 

as may be readily verified by differentiation. Replacing x in this equation by its definition in 
Equation (13) gives 

Since $ -+ 0 as r -+ 00,  it is apparent that B = 0. 
To evaluate A we proceed as follows. In the limit of infinite dilution - that is, as K -+ 0- 

the potential around the charged particle is given by the expression for the potential of an 
isolated charge. Elementary physics gives this as 

a distance r from a charge q.  As K -+ 0, Equations (19) and (20) must converge; therefore A 
must equal (q/4ne). The general expression for potential around a spherical particle at low 
potential may be written as 

Notice that if we use the condition that $ = $o at r = R, we will recover the result developed 
in Section 1 1 . 4 ~  for a spherical particle of finite size (given by radius Rs). 

As a reminder that the level of approximation in Equation ( 2 1 )  is the same as that of 
the Debye-Huckel limiting law, the following example continues from this last result to the 
Debye-Huckel expression for the mean ionic activity coefficient of an electrolyte solution. 

* * *  

EXAMPLE 12.1 Debye-Huckel Expression for Ionic Activity Coefficients. The Debye-Huckel 
limiting law attributes all of the nonideality of an electrolyte solution to electrostatic effects 
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associated with the diffuse double layer. As a way to isolate this effect, consider the hypothetical 
process of discharging an ion in a solution of concentration c, moving it to a solution of concen- 
tration c2, and then recharging it in the new solution. The individual steps and general expres- 
sions for the associated free energy changes are listed below, with the subscripts 1 and 2 
indicating the two concentration conditions: 

q = ze at c1 -+ q = 0 at c1 Ac = NA s:e $1 dq 

q = 0 at cl -+ q = 0 at c2 AG = RT 1 4  ( c2/c1 ) 
ze 

q = 0 at c2 -+ q = ze at c2 Ac = NA so $2 dq 

Net: q = ze at cl -+ q = ze at c2 AG,,, = RT In ( a2/a1 ) 

where ai is the activity of component i and can be written as ai = y,ci in terms of the activity 
coefficient yi.  Derive the Debye-Huckel expression for the activity coefficient y, assuming Equa- 
tion (21) describes $ and that solution 2 is dilute and solution l very dilute. 

Solution: The activities in the expression for AG,,, can be replaced by the product of concentra- 
tions and activity coefficients: 

AG,,, = RT In (y2c2/y1c1) = RT In (y2/y1 ) + RT In ( c2/c1) 
ze 

= N,4 {le $1 dq + RT In (c2/cl + N A  so $2 dq 

Since solution 1 is very dilute, y1 can be set equal to unity, in which case 
re 

R T 1 n  7 2  NA s", $1 dq + NA so $2 dq 

The activity coefficient for (dilute) solution 2 is therefore obtained by evaluating the inte- 
grals based on Equation (21). Using a series approximation (see Appendix A) for the exponen- 
tial in Equation (21) and retaining only the leading term for solution 1 ,  where K ,  (i.e., c , )  is very 
small, and the first two terms for solution 2, where K p  is small but larger than for 1 ,  we obtain $, 
= 9 / 4 ~ u  and $2 = (q/4nu)( 1 - ~ ~ r ) .  With these substitutions the integrals can be evaluated as 
foliows: 

re 

RT ln 7 2  ( N A / 4 T & r )  ( JI, 4 dq + J, 4 dq - K2 r sr 4 d<7 ) N A K 2  ( ~ e ) ~ / 8 7 r c  

Substituting Equation (1 2) for K yields 

For aqueous solutions at 25OC this becomes log,, y 2  = 0.0509 z * / " ~ ,  or, with a bit more argu- 

In y2 = - ( NA$e2/8T&RT) ( 20002 NA/&kBT)1/211/2 

mentation, log,, y+ = -0.0509 Z + Z - / " ~ ,  which is the result sought. 
* * *  

12.3b Zeta Potential 

Next, let us consider the application of Equation (21) to a particle migrating in an electric 
field. We recall from Chapter 4 that the layer of liquid immediately adjacent to a particle 
moves with the same velocity as the surface; that is, whatever the relative velocity between the 
particle and the fluid may be some distance from the surface, it is zero at the surface. What is 
not clear is the actual distance from the surface at which the relative motion sets in between 
the immobilized layer and the mobile fluid. This boundary is known as the surface of shear. 
Although the precise location of the surface of shear is not known, it is presumably within a 
couple of molecular diameters of the actual particle surface for smooth particles. Ideas about 
adsorption from solution (e.g., Section 7.7) in general and about the Stern layer (Section 11.8) 
in particular give a molecular interpretation to the stationary layer and lend plausibility to the 
statement about its thickness. What is most important here is the realization that the surface 
of shear occurs well within the double layer, probably at a location roughly equivalent to the 
Stern surface. Rather than identify the Stern surface as the surface of shear, we define the 
potential at the surface of shear to be the zeta potential {. It .is probably fairly close to the 
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Stern potential pb6 in magnitude, and definitely less than the potential at the surface pbo. The 
relative values of these different potentials are shown in Figure 12.2. 

Distances within the double layer are considered large or small, depending on their magni- 
tude relative to K - I .  Thus in dilute electrolyte solutions, in which K is large, the surface of 
shear - which is close to the particle surface even in absolute units - may be safely regarded as 
coinciding with the surface in units relative to the double-layer thickness. Therefore, in the 
case for which K - '  is large (or K small), Equation (21)  becomes 

(22) { = -  exp ( - K  R , )  
47reR, 

where R, is the actual radius of the particle. 

Appendix A) to give 

{ = -  

Since this result applies only when K is small, the exponential may be expanded (see 

(23) 
4 1 4 1 =-  

47reR, exp ( K R , )  47r&R, ( 1  + KR,)  

This result may also be written 
- 1  

{ = -  4 
4 m R ,  R, + K - '  

which is the same as 

{ = - -  4 4 
~ P E R ,  47re ( R ,  + K - ' )  

This last result is interesting because it may be interpreted as the sum of two superimposed 
potentials: one arising from a charge q on a surface of radius R, and a second arising from a 
charge - 4  on a sphere of radius (R,, + K - ' ) .  This is the net potential between two concentric 
spheres carrying equal but opposite charges and differing in radius by an amount K -'. Such a 

L 

\ 

' 1  I 

/' Stern + Surface of Distance from 

surface shear surface 

FIG. 12.2 The relative magnitudes of various double-layer potentials of interest. 
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situation corresponds to a concentric sphere capacitor. As in Chapter 11, we again see the 
double layer behaving as if it was a capacitor with a characteristic spacing K - ' .  

1 2 . 3 ~  Electrophoretic Mobility and the HUckel Equation 

Having explored the capacitor analogy, we no longer need to  retain the second term in the 
series expansion of the exponential in Equation (23). For our present purposes it is sufficient 
to note that for small values of KR,, Equation (22) becomes 

4 { = -- 
4mR,  

Solving this result for q and combining with Equations (5)-(7), we obtain 

2 E l  
3 7  

U=:- 

The possible usefulness of this relationship - which is known as the Huckel equation - should 
not be overlooked. Throughout Chapter 1 1 we were concerned with the potential surrounding 
a charged particle. Equation (1 1.1) provides a way of evaluating the potential at the surface, 
Go, in terms of the concentration of potential-determining ions. Owing to ion adsorption in the 
Stern layer, this may not be the appropriate value to use for the potential at the inner limit of 
the diffuse double layer. Although { is not necessarily identical to rc/o, it is nevertheless a 
quantity of considerable interest. 

More elaborate theory shows that Equation (27) is valid for spheres when KR, is less than 
about 0.1. This imposes a rather severe restriction on the applicability of this result in aqueous 
systems since for R, = 1OP8 m the corresponding concentration is about l ops  M for a 1 : 1 
electrolyte. In nonaqueous media, however, ion concentrations may be very low, and this 
result assumes increasing importance. 

* * *  

EXAMPLE 12.2 Relation Between Electrophoretic Mobility and Zeta Potential. In many refer- 
ences the Huckel equation is written U = q{/6?rq. How do you account for the difference be- 
tween this expression and Equation (27)? What is the { potential of a particle that displays a 
mobility of 10-4  cm2 V- '  s - '  in water at 2OoC for which 77 = 0.010 P and cr = 80.4, assuming 
the Huckel potential applies? 

Solution: The discrepancy between the equation given here and Equation (27) arises from the 
fact that the equation above is written for cgs units whereas Equation (27) applies to SI. 
Remember that E = e h  in Equation (27) and that the vacuum permittivity q, usually appears 
with the factor 4 ~ .  When we combine Equations (6) and (26), the ratio 4 d 6 ~  reduces to 2/3. 
Many electrokinetic formulas differ by a factor 4 ~ ,  depending on the system of units being used, 
and the reader is cautioned to be aware of this difference. The presence or absence of the 
vacuum permittivity in the equation is the key to the system being used, although this factor is 
sometimes hidden, as in the case of Equation (27). 

Either system of units can be used to calculate { from the mobility given; in either case 
some unit conversion must be done on the mobility since the units given are a hybrid of SI and 
cgs units. 

In SI the mobility is given by 

I O - ~ C ~ ~ V - ' S - ~  (I m/100cm)2 = 1 0 - 8 m 2 V - 1 s - 1  

{ = [ (  l o p * )  ( 3 )  (0.010 P 

In cgs, the mobility is given by 

1 0 - ~ c m s - ' / ~ c m - '  

Therefore 
{ = [ 6 ~ ( 3  . 10 -2)(0.010)]/80.4 = 7.03 10 -5 statV 

Therefore 

1 kg m-'  s-'/lO P)] / [2  (80.4) (8.85 - 10-12)] 

= 2.11 1 0 - ~  v = 21.1 mV 

3 0 0 ~ / s t a t ~  = 3 - 10-2cm2statV-' s - '  
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or 

Note that the factor 300 Vlstatvolt enters the calculation twice if cgs units are used. 

{ = 7.03 10 -5 statV - 300 V/statV = 2.1 1 . 10 -* V 

* * *  

The next question to be considered is the relationship between U and {when KR, is not small. 

12.4 ZETA POTENTIAL: THIN ELECTRICAL DOUBLE LAYERS 

In this section we consider the situation in which the thickness of the double layer is negligible 
compared to the radius of curvature of the surface. The derivation is not limited to any 
particle geometry as long as the radius of curvature R* is large compared to K -’. This situation 
may be brought about by making K - ’  small (i.e., K large), which is equivalent to dealing with 
relatively high concentrations of electrolyte or with flat or slightly curved surfaces. For our 
purposes it is convenient to consider a planar surface, but the results will apply equally to any 
case for which the product KR* is large. 

12.4a Helmholtz-Smoluchowski Equation for Electrophoretic Mobility 

Suppose we consider a volume element of area A and thickness dx situated a distance x from a 
planar surface as shown in Figure 12.3. The viscous force on the face nearest the surface is 
given by 

Fx = 7 A ( $ 
Y 

and the force exerted on the face farther from the surface is given by 

In these equations v is the relative velocity between the particle and the surrounding medium. 
The difference between Equations (28) and (29) therefore equals the net viscous force on the 
volume element: 

Equation (4.12) can be used to write Equation (30) as 

FIG. 12.3 Location of a volume element of solution adjacent to a planar wall. 
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Under stationary-state conditions an equal and opposite force is exerted on the volume 
element by the electric field acting on the ions contained in the volume element. The force on 
the ions is given by the product of the field strength times the total charge. The latter equals 
the charge density p* times the volume of the element; therefor,e 

Fe, = Ep"A dx (32) 

The Poisson equation for a planar surface (Equation (1 1.26) ) may now be used as a substitu- 
tion for p* to yield 

where the second result applies specifically to the region adjacent to the planar surface and 
where 1c/ is the potential at a distance x from the surface. 

Setting Equations (31) and (32) equal to each other, substituting Equation (33), and 
simplifying leads to the equation 

d2v d21c/ 
% =  dx 

(34) 

With certain assumptions this result may be integrated twice to give the relation between v 
and $. 

The integration of Equation (34) is carried out by assuming that both 7 and E are constants 
in the vicinity of the surface. We return to a discussion of this assumption in Section 12.8. 
Making this assumption, we can write Equation (34) as 

In this form the first integration is readily found to give 

dv 
dx dx 

r , ~ -  = -E&* + C, 

(35) 

The constant of integration C, is evaluated by noting that both dv/dx and d$/dx must equal 
zero at large distances from the surface; therefore C, = 0. 

The resulting expression is easily integrated again with the following limits: (a) at the 
surface of shear rc/ = ( and  v = 0; (b) at the outside edge of the double layer $ = 0 and v 
equals the observed velocity of particle migration. Therefore 

or 

~ , I V  = EEC (38) 

In terms of electrophoretic mobility, Equation (38) can be written as 

U = v / E  = (~{)/q (39) 

Equation (39) is known as the Helmholtz-Smoluchowski equation. No assumptions are made 
in its derivation as to the actual structure of the double layer, only that the Poisson equation 
applies and that bulk values of r,~ and E apply within the double layer. It has been shown that 
this result is valid for values of KR* larger than about 100 (Le., KR, > 100 for spherical 
particles). 
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12.4b HUckel and Helmholtz-Smoluchowski Equations as Limiting Cases 

We have now reached the position of having two expressions-Equations (27) and (39)-to 
describe the relationship between the mobility of a particle (an experimental quantity) and the 
zeta potential (a quantity of considerable theoretical interest). The situation may be summa- 
rized by noting that both the Huckel and the Helmholtz-Smoluchowski equations may be 
written as 

e r  U = c-  
7 

where C is a constant with a numerical value that depends on the magnitude of KR,. In the 
limit of both large and small values of KR,, the value of C becomes independent of KR,: 

C = (2/3) (41) 

2. For KR, > 100 

C = l  (42) 

In view of the widely different pictures of the electric field surrounding the particles in the 
two extremes - as shown schematically in Figure 12.1 -it is not surprising that different results 
are obtained in the two limits. 

A major remaining problem is that many systems of interest in colloid chemistry do not 
correspond to either of these two limiting cases. The situation is summarized in Figure 12.4, 
which maps the particle radii R, and 1 : 1 electrolyte concentrations that correspond to various 
KR, values. Clearly, there is a significant domain of particle size and/or electrolyte concentra- 
tion for which neither the Huckel nor the Helmholtz-Smoluchowski equations can be used to 
evaluate r from experimental mobility values. The relationship between ( and U for intermedi- 
ate values of KR, is the topic of the following section. 

12.5 ZETA POTENTIAL: GENERAL THEORY FOR SPHERICAL PARTICLES 

It is apparent from the above sections that the understanding of electrophoretic mobility 
involves both the phenomena of fluid flow as discussed in Chapter 4 and the double-layer 
potential as discussed in Chapter 11. In both places we see that theoretical results are depen- 
dent on the geometry chosen to describe the boundary conditions of the system under consider- 
ation. This continues to be true in discussing electrophoresis, for which these two topics are 
combined. As was the case in Chapters 4 and 11, solutions to the various differential equations 
that arise are possible only for rather simple geometries, of which the sphere is preeminent. 

12.5a General Formulation of Electrophoresis for Spherical Particles: 
Henry’s Equation 

The generalized electrophoresis problem has been solved for spherical and rod-shaped particles 
and, more approximately, for random coils. In this section we restrict our attention to spheres, 
although in the limit of large values of KR,, the Helmholtz-Smoluchowski equation is obtained, 
a result that is independent of particle shape. In the general theory the conductivity of the 
particle is one of the parameters that must be considered. We discuss only the case of noncon- 
ducting spheres. It has been shown experimentally that mercury droplets for which KR, is large 
follow Equation (39), even though - as conductors - the full theory predicts they should show 
zero mobility. The explanation of this anomaly is that the surface of the metallic drops 
becomes sufficiently polarized to block the passage of current through the particle. Thus even 
a metallic particle may behave as an insulator, thereby justifying our choice of the noncon- 
ducting particle as the model for consideration. 
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FIG. 12.4 The domain within which most investigations of aqueous colloidal systems lie in terms 
of particle radii and 1 : 1 electrolyte concentration. The diagonal lines indicate the limits of the 
Huckel and the Helmholtz-Smoluchowski equations. (Redrawn with permission from J .  Th. G., 
Overbeek, Quantitative Interpretation of the Electrophoretic Velocity of Colloids. In Advances in 
Colloid Science, Vol. 3 (H. Mark and E. J. W. Verwey, Eds.), Wiley, New York, 1950.) 

In addition, we consider only the case in which the colloid is present in small concentration 
so that colloid-colloid interactions can be ignored. We assume that the diffuse part of the 
double layer is adequately described by the Gouy-Chapman theory. Since the surface of shear 
more or less coincides with the Stern surface, it is the diffuse part of the double layer and not 
the Stern layer (where specific adsorption occurs) in which we are interested. Specific adsorp- 
tion in the Stern layer may have a large effect on the zeta potential itself, but should be 
unimportant when it comes to establishing the connection between U and <. The Gouy- 
Chapman theory ignores the actual discreteness of electrical charges and is also subject to the 
objections against the Poisson-Boltzmann equation (see Section 11.4). An extensive body 
of research has been devoted either to circumventing these limitations or to estimating the 
approximation introduced by their use. Overbeek and Wiersma (1967) have rightly noted that 
it is rather futile t o  introduce one or two corrections to the theory while neglecting other 
approximations that are probably of the same magnitude. A safer procedure, they note, is to 
use the simpler theory, keeping in mind the semiquantitative nature of the result. 

By assuming that the external field - deformed by the presence of the colloidal particle - 
and the field of the double layer are additive, D. C.  Henry derived the following expression 
for mobility: 
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where r is the radial distance from the center of the particle. To  go beyond Equation (43), it is 
necessary to know + as a function of r.  The resulting expressions are mathematically intracta- 
ble unless a relatively simple expression is used for +. We may use the Debye-Huckel approxi- 
mation given by Equation (19) for this, but the constant in that equation is best evaluated 
somewhat differently before proceeding. 

We return to the solution of the Poisson-Boltzmann equation for a spherical particle, 
Equation (19), with B = 0: 

A exp ( -Kr) 
+ =  (44) 

In the present development we evaluate A by recalling that + = r when r = R,. Therefore 

A = R,r exp (KR,) 

and Equation (44) becomes 

(45) 

exp [ - -K(r  - R,)1 (46) 
+ = -  R, r 

This equation, with +o instead of r, was given without proof as Equation (1 1.38) in Section 
11 .4~ .  Combining Equations (43) and (46) and integrating leads to the result 

where 

1 5 1 1 
f(a) = (1 + -&Y2 - - a 3  - - a 4  - -a5 

48 96 96 

with a = KR, < 1 - [ La4 - -a'] 1 exp ( a )  I, a e- '  .t) 
8 96 

For KR, > 1, the functionf(a) becomes (see Hunter 1981) 

The above result (Equations (47a)-(47c) ) is known as Henry's equation. Two specific 

1. The ion atmosphere is undistorted by the external field. 
2. The potential is low enough to justify writing e+/k,T < 1, which is equivalent to 

requiring that + < 25 mV (Section 11.2b). 

It should also be noted that in the limit of K R ,  -+ 0, Equation (47a) reduces to the Huckel 
equation, and in the limit of KR, -+ 00, it reduces to the Helmholtz-Smoluchowski equation. 
Thus the general theory confirms the idea introduced in connection with the discussion of 
Figure 12.1, that the amount of distortion of the field surrounding the particles will be totally 
different in the case of large and small particles. The two values of C in Equation (40) are a 
direct consequence of this difference. Figure 12.5a shows how the constant C varies with KR, 
(shown on a logarithmic scale) according to Henry's equation. 

assumptions underlying its derivation should be pointed out: 

12.5b Effect of Double-Layer Relaxation 

We noted above that many systems of interest in colloid chemistry involve intermediate values 
of KR,, so Henry's equation fills an important gap. At the same time it explicitly introduces 
additional restrictions: (a) low potentials and (b) undistorted double layers. A topic of consid- 
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Henry’s Equation 

(at low potentials) 
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FIG. 12.5 Variation of the constant C (Equation (40) ) with KR, (log scale): (a) at low potentials 
according to Henry’s equation; and (b) for various potentials. (Data from P. H. Wiersma, A. L. 
Loeb, and J. Th. G. Overbeek, J. Colloid Interface Sci., 22, 78 (1966); redrawn with permission 
from Shaw 1969.) 

erable importance is the actual distortion of the double layer that accompanies particle migra- 
tion. The consequences of this distortion - known as the relaxsrtion effect - are known to be 
important in the conductivity of simple electrolytes. A remaining development, therefore, is 
to consider the relaxation effect in colloidal systems. 

Because the charged particle and its ion atmosphere move in opposite directions, the 
center of positive charge and the center of negative charge do not coincide. If the external field 
is removed, this asymmetry disappears over a period of time :known as the relaxation time. 
Therefore, in addition to the fact that the colloid and its atmosphere move countercurrent 
with respect to one another (which is called the retardation effect), there is a second inhibiting 
effect on the migration that arises from the tug exerted on the particle by its distorted atmo- 
sphere. Retardation and relaxation both originate with the double layer, then, but describe 
two different consequences of the ion atmosphere. The theories we have discussed until now 
have all correctly incorporated retardation, but relaxation effects have not been included in 
any of the models considered so far. 

A number of workers have tackled the problem of relaxation. The use of computers has 
greatly assisted this area of research because of the complexity of the mathematics involved. 
Loeb et al. (1960) report the results of some numerical solutions to the mobility problem with 
relaxation specifically considered. Figure 12.5b summarizes some results from these studies 
for the case of a 1 : 1 electrolyte. The various curves correspond to values of zeta equaling 
25.7, 51.4, 77.1, and 102.8 mV at 25OC. It will be noted that the restriction to low potentials 
no longer applies in the theory from which these curves were evaluated. It is evident from the 
figure that the relaxation effect is negligible when { < 25 mV, regardless of the value of KR,, 
and in the limit of both large and small values of KR,, regardless of the value of {. That is, 
intermediate values of KR, and large potentials correspond to the condition of maximum 
resistance to flow arising from relaxation. 

A family of curves qualitatively similar in appearance to  those shown in Figure 12.5b 



550 HIEMENZ AND RAJAGOPALAN 

results when C is plotted versus KR, at constant { with the valence of the electrolyte taken as 
the variable parameter. In that case the relaxation effect is found to increase with the valence 
of the counterions. As the valence of those small ions that have the same charge as the 
macroion increases, the relaxation effect leads to a higher mobility (at constant {) than would 
be predicted from Henry’s equation. 

In this section we have considered the relationship between U and { under conditions of 
intermediate KR, values, a wide range of { values, and a number of ionic valence possibilities. 
The relationship is seen to be quite complex, except in the Huckel and Helmholtz- 
Smoluchowski limits. When the particle size and electrolyte concentration conditions are such 
that one of these limits clearly applies, { can be evaluated unambiguously from experimental 
mobilities. The Helmholtz-Smoluchowski limit is independent of particle shape. The Hiickel 
equation is equally free from ambiguity, although it does require spherical particles and - as 
already noted - the circumstances under which it holds are not especially useful for aqueous 
colloids. If a particle is of intermediate size with definite, known values of K and R, and with ( 
known to be small, Henry’s equation (or Figure 12.5a) could be used to evaluate { from 
mobility measurements. As the complexity (i.e., higher potentials, mixed electrolyte valences) 
of the system increases, however, the feasibility of evaluating { from experimental mobilities 
becomes increasingly tenuous. In these circumstances precise experimental results are best 
reported as mobilities, with the corresponding value of { only an approximation. 

12.6 ELECTROOSMOSIS 

In all the sections of this chapter until now we have focused attention on electrophoresis. We 
have seen that the potential at  the surface of shear can be measured from electrophoretic 
mobility measurements, provided the system complies with the assumptions of a manageable 
model. One feature that has been conspicuously lacking from our discussions is any compari- 
son between electrophoretically determined values of { and potential values determined by 
another method. The reasons for this are twofold: 

1. Other techniques for measuring { are contingent on the same set of assumptions 
associated with electrophoresis and therefore do not constitute an independent deter- 
mination. 
Uncertainty as to the location within the double layer at which the shear surface is 
located makes it difficult to relate { to other double-layer potentials, such as Il/o as 
determined from knowledge of the concentration of potential-determining ions (see 
Equation ( 11.1) ). 

2. 

In this section we describe electroosmosis and in the following section the streaming potential. 
These two electrokinetic techniques also permit the evaluation of {, but are subject to objec- 
tion 1. In Section 12.8 we examine in greater detail the location of the surface of shear, which 
is the essence of objection 2 above. 

12.6a Difference Between Electroosmosis and Streaming Potential 

Above we defined electrokinetic phenomena as arising from the relative motion of a charged 
surface and its associated double layer. In electrophoresis it is the dispersed phase that moves, 
with the continuous phase remaining (more or less) stationary. It is apparent that the required 
relative motion between a surface and its double layer could also be brought about by causing 
the electrolyte solution to flow past a stationary charged wall. The complements of electropho- 
resis are electroosmosis and streaming potential. These two measurements differ from each 
other as follows: (a) in electroosmosis it is an applied potential that induces the flow of 
solution, as illustrated in Figure 12.6; (b) in streaming potential the solution is made to flow 
by applying a pressure, and a potential is induced as a result. Cause and effect are thus 
interchanged in electroosmosis and streaming potential. 
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FIG. 12.6 Electroosmotic flow through a pore. If the fluid flow occurs as a result of applied 
pressure difference along the length of the pore, the resulting potential difference is known as the 
streaming potential. (Adapted with permission from Probstein 1994.) 

12.6b Relating Electroosmotic Flow to Zeta Potential 

The electroosmosis apparatus shown in Figure 12.7a consists of two capillaries in parallel 
attached at  either end to reservoirs of electrolyte solution. One of the capillaries - the working 
capillary - is arranged with reversible electrodes at  either end, while the measuring capillary 
contains an air bubble to  indicate fluid displacement. It is the glass-solution interface in the 
working capillary at which the electroosmosis phenomenon originates. Substances other than 
glass may also be investigated by this method, a particularly useful variation being the replace- 
ment of the capillary by a plug of powdered material that cannot be fabricated into a cylindri- 
cal tube. For the purpose of discussion, we continue to refer t o  the capillary. The conditions 
under which the same analysis applies to a plug will be clear from the following discussion. 

FIG. 12.7 Schematic illustrations of the apparatus used to measure (a) electroosmosis and (b) 
streaming potential. 
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When an electric field is applied across the working capillary, the double-layer ions begin 
to migrate and soon reach the steady-state velocity. In the steady state, electrical and viscous 
forces balance one another. The forces exerted on the ions by the medium are equal and 
opposite to the forces exerted on the medium by the ions; consequently, the liquid also attains 
a stationary-state velocity. The tangential displacement of the fluid relative to the wall defines 
a surface of shear at which the potential equals r. 

Although the Helmholtz-Smoluchowski equation was derived in reference to electropho- 
retic mobility, it clearly applies to electroosmosis as well since the displacement of one part of 
the double layer relative to another part is common to both. Figure 12.3, for example, may be 
taken as an illustration of either electrophoresis or electroosmosis. The condition of the 
Helmholtz-Smoluchowski equation - that R, is large compared to K - I -  is clearly applicable to 
capillaries of macroscopic dimensions. We noted above that the Helmholtz-Smoluchowski 
equation applies to the electrophoresis of nonspherical particles as long as KR* is large (with 
R* the radius of the curvature); the same logic permits Equation (39)  to be applied to cylindri- 
cal capillaries, as well as pores of irregular shape. It is this latter application that allows the 
replacement of a well-defined capillary by a porous plug of material in an apparatus such as 
that shown in Figure 12.7a. 

Equation (38)  may therefore be used to describe the relationship between the potential at 
the capillary wall and at the velocity of electroosmotic flow. The volume of liquid V displaced 
per unit time is given by multiplying both sides of Equation (38)  by the cross-sectional area of 
the capillary: 

(48) 

Now suppose we apply Ohm's law to the capillary. The electric field is related to the current I 
and the conductivity k of the electrolyte solution as follows: 

E = I / ( A k )  (49) 

V = @I/(qk)  (50) 

V = V A  = &rEA/v 

This result may be substituted into Equation (48)  to yield 

This equation permits to be evaluated from measurements of the rate of volume flow 
through the capillary; the measurements are made by observing the rate of displacement of the 
air bubble in the measuring capillary of Figure 12.7a. 

1 2 . 6 ~  Effect of Surface Conductivity on Electroosmosis 

The last three equations are the first we have encountered in which conductivity plays a role. 
What is troublesome about this quantity is the fact that it is a property of bulk solutions, and 
we are considering here an effect that arises precisely as a result of the uneven distribution of 
ions near a charged wall. It is essential, therefore, to examine the current carried by the ions in 
the double layer. Toward this end, current may be written as the sum of two contributions: 

I = + 1, ( 5 1 )  

where the subscripts b and s refer to bulk and surface contributions, respectively. Equation 
(49)  may be used as a substitution for Ib, with nRf: as the area of a cylindrical capillary of 
radius R,. An analogous expression may be written for the current carried by the surface layer. 
In this case the bulk conductivity is replaced by surface conductivity, and the cross-sectional 
area is replaced by the perimeter of the capillary. With these substitutions, Equation ( 5 1 )  
becomes 

(52) I = E(nR:kb + 2nR,k,) = EA[kb + (2k , /R, ) ]  

According to this relationship, the product E A  in Equation (48)  should be replaced by 

E A  = I/ [kb + (2k , /R, ) ]  ( 5 3 )  

to give 
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V = W { r [ k ,  + (2kJRC)l)  (54) 

It will be noted that the importance of the correction for surface conductivity increases as R,  
decreases and vanishes as R,  -+ 00 .  Equation (54 )  also suggests that the numerical evaluation 
of k, may be accomplished by studying electroosmosis in a set of capillaries identical in all 
respects except for variability in R,. Finally, the expansion of Equation (50) to Equation (54) 
in correcting for surface conductivity explicitly assumes a cylindrical capillary. Experiments 
made with porous plugs cannot be corrected for surface conductivity by Equation (54) ,  but 
the qualitative conclusion that the effect of surface conductivity increases as the pore radius 
decreases is valid in this case also. 

It has already been noted that there is a close similarity between electroosmosis and 
streaming potential. Therefore we consider this additional elect.rokinetic phenomenon next. 

12.7 STREAMING POTENTIAL 

The definition of streaming potential was presented in the previous section. Here, we derive 
the relation between the streaming potential and the zeta potential and discuss some of the 
issues that must be considered in comparing zeta potentials obtained by different electrokinetic 
measurements. 

12.7a Relation Between Streaming Potential and Zeta Potential 

Figure 12.7b is a sketch of an apparatus that may be used to measure streaming potential. As 
was the case with electroosmosis, the capillary can be replaced by a plug of powdered material 
between perforated electrodes. An applied pressure difference 13 across the capillary causes the 
solution to flow through the capillary, thereby tangentially displacing the part of the double 
layer in the mobile phase from the stationary part. 

The relationships developed in Chapter 4 for fluid flow through a capillary can be applied 
to this situation as follows: 

1 .  The velocity of the fluid at radius r in a capillary of radius R, and length P is given by 
Equation (4.18): 

( 5 5 )  v = [p / (4$' ) ] (R:  - r 2 )  

2 .  The volume flow rate through an elemental area 2rrdr is given by (see Equation 
(4 .19)  ): 

(56) dV,/dt = [ p / ( 4 $ ) ] ( R :  - r2)2.1rrdr 

where V, denotes the volume flow. 
The current associated with this flow rate is 3 .  

d l  = p*(dV,/dt) = [p*p / (4$ ) ] (R;  - r2 )2rrdr  (57) 

where p* is the charge density. 
Next a change of variable is helpful. We replace r by a distance measured from the 
surface of shear x ,  where 

x = R , - r  ( 5 8 )  

d l  = - [ p * p / ( 4 $ ) ] ( 2 R , ~  - x2)2r(R,  - X )  dx 

4 .  

In terms of this substitution, Equation (57) becomes 

(59) 

Our specific interest is in the region near the walls of the capillary where x 4 R,. In 
this region Equation (59)  may be approximated as 

(60) d l  = - x[p*p/(qP) ] R  : X  dx 
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5 .  

6 .  

Substituting Equation (1 1.26) for p* yields 

3 x d X  dI = ~ 

qP dx2 

The total current carried by the capillary is obtained by integrating the above equa- 
tion. Integration by parts yields 

since I,I~ = {at x = 0 and $ = d$/dx = 0 at x = R,. 

The quantity calculated by Equation (62)  is known as the streaming current. It is specifi- 
cally due to the net displacement of the mobile part of the double layer relative to the 
stationary part of the double layer. The field associated with this current is given by combining 
Equations (52 )  and (62):  

If both sides of Equation (63)  are multiplied by the length of the capillary l ,  the potential 
difference between the measuring electrodes - the streaming potential Esrr- is obtained: 

The conditions under which Equation (64)  for streaming potential and Equation (54)  for 
electroosmosis were derived are comparable inasmuch as each applies to the case of large KR,. 
Comparison of Equations (54)  and (64 )  in the limit of large R,  shows that 

(65) 

The coupling of two different electrokinetic ratios (EsJp and V / I )  through Equation (65)  is 
an illustration of a very general law of reciprocity due to L. Onsager (Nobel Prize, 1968). The 
general theory of the Onsager relations, of which Equation (65)  is an example, is an  important 
topic in nonequilibrium thermodynamics. 

If the relationships shown in Equation (65 )  are to be used in computations, it is essential 
that proper units be used. Example 12.3 considers some numerical substitutions into Equation 
(65) .  

(EstJP) = (JW = & { / ( d o  

* + *  

EXAMPLE 12.3 Units of Electrokinetic Parameters. Show that Estr/p, V/l,  and q l / q k  all have 
units m3 C-’. For water at 25OC, 7 = 8.937 - 1 O P 4  kg m- ’  s - ’  and E, = 78.54. Evaluate the 
proportionality factor between V//  and { /k  if V is expressed in cm3 s -’ and l is expressed in 
milliamperes with all other quantities in SI units. Evaluate the proportionality factor between 
€,Jp and c/k if p is expressed in torr with all other quantities in SI units. 

Solution: Examine the SI units of each term in Equation (65). The units of (VII) are (m3s-’)/ 
(Cs-’) = m3 C -’. The units of E,,/p are V/(N m -‘); when multiplied by the conversion factor (J 
C-’ ) /V,  this becomes m3 C -’. The units of qJhk are (C‘ J -’ m -‘)(V)/(kg m -’ s -‘)(ohm -’ 
m - I ) ;  when multiplied by the conversion factor V (C s) -‘/ohm, this becomes J C -’ s/kg m -’ = 
m3 C-’. 

Substituting the SI values for all quantities, we obtain the following for Elhk 

(78.54)(8.85 - lO-’‘)l/(8.937 - 1014)k = 7.777 - 10-’{/k m3 C-’ 

V/l = 7.777 - lO-’ ( /k m3 C-’ - (102 ~ m / m ) ~  - 1 C s-’/103 mA 

from which 

= 7.777 l O W 4  (/k cm3 s-’/mA 

and 
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,ESt/p = [(7.777 - l O - ’  r /k)  m3 C-’1 - (103 liter/m3) - (1 C Vi1 J) 
- (8.314 J/0.08205 liter atm) - (1 atm/760 torr) 

= (1.037 . 10-4 elk) V torr-’ 
* * *  

For 10 - 3  M NaCl, k = 1.26 - 10 -’ ohm m - ’  and a surface with a < potential of 50 mV will 
displace about 1 1 cm h if a current of 1 .O mA flows through an electroosmosis apparatus. 
With the same electrolyte and the same value of r, an applied pressure of 760 mm Hg would 
produce a streaming potential of 3 13 mV. 

In hydrocarbons the specific conductivity may be lower than that of aqueous solutions by 
many orders of magnitude, so the streaming potentials generated by the high-pressure pump- 
ing of these materials may be quite spectacular. The danger of sparking at such voltages plus 
the flammability of these substances makes the petroleum industry an area in which streaming 
potential finds important applications. For example, gasoline (for which the specific conduc- 
tivity would be as low as 10 - I 2  ohm if untreated) pumping equipment must be ground- 
ed. In addition, a variety of organic-soluble electrolytes have been developed as antistatic 
additives for petroleum. Examples of two such compounds are tetraisoamyl ammonium pic- 
rate and calcium diisopropyl salicylate. Crude petroleum is less troublesome in this regard 
than refined products since the crude contains oxidation prociucts, asphaltenes, and so on, 
which impart a natural conductivity to this material. 

m 

12.7b Comparison of Zeta Potentials from Different Methods 
The objective of comparing values of r determined from electrophoresis with those determined 
by other electrokinetic methods was stated at the beginning of Section 12.6. Enough experi- 
ments have been conducted in which at least two of the electrokinetic methods we have 
discussed are compared to leave no doubt as to the self-consisteiicy of r as determined by these 
different methods. There is no guarantee, however, that self-consistent < potentials are correct. 
Consistency means only that r has been extracted from experimental quantities by a self- 
consistent set of approximations. It should be emphasized, holwever, that the existence of a 
potential at the surface of shear-which is the common component in all the electrokinetic 
analyses we have discussed - is more than amply confirmed by these observations. 

Two conditions must be met to justify comparisons between < values determined by 
different electrokinetic measurements: (a) the effects of relaxation and surface conductivity 
must be either negligible or taken into account and (b) the surface of shear must divide 
comparable double layers in all cases being compared. This second limitation is really no 
problem when electroosmosis and streaming potential are compared since, in principle, the 
same capillary can be used for both experiments. However, obtaining a capillary and a migrat- 
ing particle with identical surfaces may not be as readily accomplished. One means by which 
particles and capillaries may be compared is to coat both with a layer of adsorbed protein. It 
is an experimental fact that this procedure levels off differences between substrates: The 
surface characteristics of each are totally determined by the adsorbed protein. This technique 
also permits the use of microelectrophoresis for proteins since atisorbed and dissolved proteins 
have been shown to have nearly identical mobilities. 

12.8 

The surface of shear is the location within the electrical double layer at which the various 
electrokinetic phenomena measure the potential. We saw in Chlapter 11 how the double layer 
extends outward from a charged wall. The potential at any particular distance from the wall 
can, in principle, be expressed in terms of the potential at the wall and the electrolyte content 
of the solution. In terms of electrokinetic phenomena, the question is: How far from the 
interface is the surface of shear situated and what implications does this have on the relation 
between measured zeta potential and the surface potential? 

First, the very existence of a surface of shear implies some interesting behavior within the 
fluid phase of the system under consideration. In our discussion of all electrokinetic phenom- 

THE SURFACE OF SHEAR AND VISCOELECTRIC EFFECT 
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ena until now, we have assumed that the viscosity of the medium has its bulk value right up to 
the surface of shear. In addition, it has been implicitly assumed that the viscosity abruptly 
becomes infinite at the surface of shear. 

At this point, it is convenient to recall Figure 7.13 and the discussion of it. In that context 
we observed that there is generally a variation of properties in the vicinity of an interface from 
the values that characterize one of the adjoining phases to those that characterize the other. 
This variation occurs over a distance 7 measured perpendicular to the interface. In the present 
discussion viscosity is the property of interest and the surface of shear-rather than the 
interface per se-is the boundary of interest. The model we have considered until now has 
implied an infinite jump in viscosity, occurring so sharply that 7 is essentially zero. From a 
molecular point of view such an abrupt transition is highly unrealistic. A gradual variation in 
q over a distance comparable to molecular dimensions is a far more realistic model. 

With these ideas in mind, it is evident that we would do better to think of a zone of shear 
rather than a surface of shear. Although we continue to speak of the shear “surface,” the term 
is not used in the mathematical sense of possessing zero thickness, but rather in the broader 
sense of Chapter 7. Moreover, under certain circumstances, the viscosity has a strong depen- 
dence on the electric field. This is known as viscoelectric effect and must be taken into account 
since the electric field changes sharply within the electrical double layer. We examine how the 
viscoelectric effect affects the Helmholtz-Smoluchowski results obtained above for the relation 
between the electrophoretic mobility and the zeta potential. Following this, we look at what 
conditions make the zeta potential obtained from the Helholtz-Smoluchowski result a good 
measure of the surface potential. 

12.8a Viscoelectric Effect and Its Influence on Electrophoretic Mobility 
and Zeta Potential 

How must the expressions derived in the sections above be modified to take into account the 
variation in q and the finite distance over which it increases? The answer is that q-the 
viscosity within the double layer-must be written as a function of location. Our objective in 
discussing this variation is not to examine in detail the efforts that have been directed along 
these lines. Instead, it is to arrive at a better understanding of the relationship between ( and 
the potential at the inner limit of the diffuse double layer and a better appreciation of the 
physical significance of the surface of shear. 

Measurements of the viscosity of organic liquids in the presence of an electric field reveal 
that there is an increase in viscosity in high electric fields that is described by the expression 

where the subscripts indicate the presence ( E )  or absence (0) of a field. The factorfis called 
the viscoelectric constant and has a value of about 2 - 10-l6 V-’  m 2  for several organic 
liquids. Thus a 10% increase in viscosity may be anticipated for a field strength of about 2 * 

i 07  v m - I .  

An expression such as Equation (11.56) may be used to estimate E ( = drC//dx) in the 
double layer. Table 12.1 shows values of E evaluated by means of this equation for a variety 
of Go values and 1 : 1 electrolyte concentrations. It will be noted that for high values of rC/o and 
high ionic strengths, the field in the double layer may be large enough to produce a very 
significant viscoelectric effect. 

Now suppose we reexamine the derivation of the Helmholtz-Smoluchowski equation as 
given in Section 12.4. Returning to Equation (37), we note that the relationship between U and 

is given by 

where q has been left inside the integral this time since its value is assumed to vary with rC/. We 
continue to assume that E is a constant since the effect of the field is known to be less for this 
quantity than for q .  
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TABLE 12.1 
Calculated in the Double Layer by Equation ( 1  1.56) for 
Various $o Values and Concentrations of 1 : 1 Electrolyte 

Values of the Electric Field (V m-') 

c (mole liter-') 

$09 mV 1 0 - ~  10-2 10-' 
~~ ~ ~~ 

50 6.36 - 106 2.01 . 107 6.36 107 

150 5.49 - 107 1.74 * 108 5.49 * 108 
200 1.51 - 108 4.77 - 108 1.51 - 109 

100 1.98 - 107 6.24 . 107 1.98 - 108 

Now we substitute qE from Equation (66) for the viscosity in the double layer in Equation (67) 
to obtain 

U = -  E i  d$ 
rlo l 0  1 + f (d$/dx)2 

Finally, Equations ( 1  1.40) and (1 1.56) may be used to evaluate d$/dx in the double layer: 

d$ 
O 1 + [f(8000 c R TIE)] sinh2 (ze$/2kET) 

i 

where c is in mole liter 
(8OOOfcRT/&) and B = ze/2kET, this result is more concisely written as 

and 2 sinh x has been substituted for ex  - e -" .  If we define A = 

d$ 
U = q  f 

rlo 0 1 + A sinh2 (B$)  

If c (and therefore A )  and $ are small, Equation (70) becomes approximately 
m y  

(71) 
E '  

rlo O 
U = - 3 [ l  + A sinh2 (B$) ]  d$ 

Under the same conditions the sinh function may be expanded (see Appendix A), with 
only the leading term retained, to obtain 

f 

U = _f_ i [ l  - A (B$)2] d$ (72) 
rlo O 

This equation is readily integrated to yield 

A B ~  
3 

1 - - {2) 
E 

(73) 

Under conditions in which the second term is negligibly small, Equation (73) becomes identical 
to Equation (39), the Helmholtz-Smoluchowski result. On the other hand, when the concen- 
tration and { increase, the value of { that wouid be associated with an observed mobility is 
larger than the Helmholtz-Smoluchowski equation would indicate. 

12.8b Deviation from Helm holtz-Smoluchowski Predictions 

Equation (69) may also be integrated analytically. Although >we do not consider the actual 
solutions, which are rather complex, Figure 12.8 shows graphically the results of these integra- 
tions for water at 25OC, assuming f = 10 - I 5  V - 2  m2. The abscissa shows values of $o, the 
potential at the inner limit of the diffuse double layer, with V U / E  plotted on the ordinate. It 
must be remembered that this last quantity equals { according to Equation (39)-which we 
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FIG. 12.8 Plot of ~ U / E  versus $o, that is, the zeta potential according to the Helmholtz- 
Smoluchowski equation, Equation (39), versus the potential at the inner limit of the diffuse part of 
the double layer. Curves are drawn for various concentrations of 1 : 1 electrolyte with f = 10-l5 
V - *  m2. (Redrawn with permission from J. Lyklema and J. Th. G. Overbeek, J. Colloid Sci., 16, 
501 (1961).) 

designate rHS- when the viscosity is assumed to be the bulk value throughout the double layer. 
The figure shows that rHs = $o at low values of the potential. As the potential increases, 
however, rHs begins lagging behind +b0, the effect indicated by Equation (73) in a limiting 
approximation. At still higher potentials, rHs eventually reaches a constant value that is inde- 
pendent of the actual value of $o. 

Note, further, that this leveling off occurs at progressively lower potentials as the concen- 
tration of electrolyte increases. Increasing both the potential and the electrolyte concentration 
tends to increase the field in the double layer (see Table 12.1), which in turn increases the 
viscosity of solvent in the double layer. As the effective viscosity of the medium increases, the 
surface of shear occurs progressively further from the surface. This accounts for the fact that 
rHS falls behind $o as $o increases. These conclusions are consistent with the experimental 
observation that rHs for AgI becomes independent of the concentration of the potential- 
determining Ag + and I - ions once the concentrations of these ions are well removed from the 
conditions at  which the particles are uncharged. 

The results shown in Figure 12.8 illustrate quite clearly the relationship between r and $o 

and in this way reveal the dependence of the location of the surface of shear on the structure 
of the double layer. It might appear that one could consult curves such as those shown in 
Figure 12.8 to read from the appropriate plot the value of q0 that corresponds to a particular 
{, at least for values of r less than the limiting value. Although semiquantitative interpretations 
based on this figure may be trusted, some caution must be expressed about the numerous 
assumptions and approximations inherent in Figure 12.8. In summary, the following may be 
cited as examples of such constraints: 

The possible immobilization of solvent near the surface due to either chemical or 
mechanical (as opposed to viscoelectric) interaction with the solid phase has not been 
considered. 

2. Use of the Gouy-Chapman theory (Equation (69)) overlooks any specific effects 
arising from differences between ions, especially with regard to hydration. 

3. The validity of Equation (66) in electrolyte solutions, especially the dependence of f  
on concentration, has not been investigated as fully as might be desired. 

1. 
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12.9 EXPERIMENTAL ASPECTS OF ELECTROPHORESIS 

Of the electrokinetic phenomena we have considered, electrophoresis is by far the most impor- 
tant. Until now our discussion of experimental techniques of electrophoresis has been limited 
to a brief description of microelectrophoresis, which is easily visualized and has provided 
sufficient background for our considerations to this point. Microelectrophoresis itself is sub- 
ject to some complications that can be discussed now that we have some background in the 
general area of electrical transport phenomena. In addition, the methods of rnoving-boundary 
electrophoresis and zone electrophoresis are sufficiently important to warrant at least brief 
summaries. 

12.9a Microelectrophoresis 

Microelectrophoresis depends on the visibility of the migrating particles under the microscope. 
As such, it is inapplicable to molecular colloids such as proteins. By adsorbing the protein 
molecules on suitable carrier particles, however, the range of utility for microelectrophoresis 
can be extended. Dark-field illumination (see Section 1 . 6 a . l ~ )  can sometimes be used to 
advantage to extend microelectrophoresis observations to small, high-contrast particles. 

The migrating particles are observed in a cell that may be either cylindrical or rectangular. 
The walls must be optically uniform for observation and fewer optical corrections, and ther- 
mostating difficulties are encountered if the walls are thin. The working part of the apparatus 
is thus fragile, and auxiliary connecting rods are generally incorporated into the design to 
increase the mechanical strength of the cell. Figure 12.9 is a sketch of an electrophoresis 
apparatus with a rectangular working compartment. 

The electric field in the cell is best established by means of reversible electrodes such as 
Ag-AgC1 or Cu-CuSO,. Care must be taken to prevent the electrolyte of the electrode from 
contaminating the dispersion. Platinized electrodes behave reversibly with low currents, but 
gas evolution causes troubles at higher currents. 

The field strength is best obtained by including an accurate ammeter in the circuit to 

FIG. 12.9 
partment. 

Schematic illustration of a microelectrophoresis cell with a rectangular working com- 
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determine the current. Independent conductivity measurements in the cell with standard solu- 
tions permit the determination of the field through Equation (49). 

The rate of particle migration is determined by measuring with a stopwatch the time 
required for a particle to travel between the marks of a calibrated graticule in the microscope 
eyepiece. If the objective of the microscope is immersed during the electrophoresis measure- 
ment, the calibration of the graticule should be made with the same immersion liquid. 

Electrophoretic migrations are always superimposed on other displacements, which must 
either be eliminated or corrected to  give accurate values for mobility. Examples of these other 
kinds of movement are Brownian motion, sedimentation, convection, and electroosmotic 
flow. Brownian motion, being random, is eliminated by averaging a series of individual 
observations. Sedimentation and convection, on the other hand, are systematic effects. Cor- 
rections for the former may be made by observing a particle with and without the electric 
field, and the latter may be minimized by effective thermostating and working at low current 
densities. 

Even in the absence of a colloid, an electrolyte solution will display electroosmotic flow 
through a chamber of small dimensions. Therefore the observed particle velocity is the sum of 
two superimposed effects, namely, the true electrophoretic velocity relative to the stationary 
liquid and the velocity of the liquid relative to  the stationary chamber. Figure 12.10a shows 
the results of this superpositioning for particles tracked at different depths in the cell. The 
particles used in this study are cells of the bacterium Klebsiella aerogenes in phosphate buffer. 
Rather than calculated velocities or mobilities, Figure 12.10a shows the reciprocal of the time 

FIG. 12.10 Velocity profiles in electrophoresis cells: (a) velocity (as time-') of Klebsiella aero- 
genes particles as a function of their location in a rectangular electrophoresis cell (redrawn with 
permission from A. M. James, in Surface and Colloid Science, Vol. 11 (R. J .  Good, and R. R. 
Stromberg, Eds.), Plenum, New York, 1979); (b) location of the surface of zero liquid velocity in a 
cylindrical capillary. 
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required for the particles to travel a fixed distance. Since the electrophoretic velocity is a 
single-valued property of the (uniform) particles under consideration, Figure 12.1Oa raises the 
question of which, if any, of these “velocities” represents the true mobility of these particles. 
Example 12.4 considers a possible interpretation of these results. 

* * *  

EXAMPLE 12.4 Electrophoretic Mobility of Bacteria. It is proposed to evaluate the electro- 
phoretic mobility of the bacteria cells shown in Figure 12.1Oa by multiplying the appropriate 
value of time-’ by the distance of particle displacement and then dividing by E. Criticize or 
defend the following proposition: It is appropriate to use the ma.ximum apparent velocity since 
this is measured at the center of the cell and is therefore subject to the least interference by 
wall effects. 

Solution: The observed effect is the sum of two contribution:;, one of which is the electro- 
osmotic flow of the medium through the cell. The latter has its maximum value at the center 
since the layer of fluid adjacent to the walls is stationary. The particles tracked at the center of 
the cell therefore possess the maximum increment in velocity due to electroosmotic flow. Since 
the cell is a closed compartment, the liquid displaced by electroosmosis along the walls must 
circulate by a backflow down the center of the tube. Since the total liquid flow in a closed cell 
must be zero, the appropriate value from Figure 12.10a to use for the velocity is the average of 
observations made at all depths. 

* * *  

Since the liquid circulates, there must be certain locations in the cell at which the forward and 
backward flows of the liquid are equal. An alternative to the averaging procedure suggested in 
the example is to do the particle tracking at a location at which .the medium experiences no net 
flow. 

The analysis of this effect in a closed cylindrical cell is obtained by subtracting from the 
electroosmotic velocity vEo the velocity of flow vp through a capillary given by Poiseuille’s 
equation (Equation (4.18) ): 

(74) 
where vL is the velocity of the liquid and C is a constant. The requirement of no net displace- 
ment of liquid is incorporated by integrating Equation (74) over the cross section of the 

vL = VEO .- vp = V, - C(r2 - R f )  

cylinder and setting the result equal to zero: 

1,”. vL (27rr) dr = 0 (75) 

In this expression R, is the radius of the capillary and r is the radial distance from the 
capillary axis as shown in Figure 12.10b. Substitution of Equation (74) into Equation (75) and 
integration gives 

This result may be substituted back into Equation (74) to evaluate that location in the cylinder 
at which the net liquid displacement is zero: 

C = -2vEO/Rf (76) 

This result shows that electroosmotic flow and backflow in the capillary cancel when the 
factor (2r2/Rf - 1) equals zero. This condition corresponds to r / R ,  = 0.707. Thus at 70.7% 
of the radial distance from the center of the capillary lies a circular surface of zero liquid flow. 
Any particle tracked at this position in the capillary will display its mobility uncomplicated by 
the effects of electroosmosis. This location may also be described as lying 14.6% of the cell 
diameter inside the surface of the capillary. Experimentally, then, one establishes the inside 
diameter of the capillary and focuses the microscope 14.6% of this distance inside the walls of 
the capillary. Corrections for the effect of the refractive index must also be included. Addi- 
tional details of this correction can be found in the book by Shaw (1969). 

The location of the surface of zero liquid flow in cells of rectangular cross section has also 
been worked out. For a cell in which the direction of migration is very long compared to the 
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width of the cell, the surface where v = 0 lies 21.1070 of the cell depth above the bottom and 
below the top of the working compartment. 

12.9b Moving-Boundary Electrophoresis 

In addition to microelectrophoresis, another important method for the determination of mo- 
bility is the moving-boundary method (Longsworth 1959). In essence, this is no different from 
the moving-boundary method as applied to simple ions. The apparatus most commonly used 
is that of Arne Tiselius (Nobel Prize, 1948), which is illustrated schematically in Figure 12.11. 
The Tiselius cell consists of a U tube of rectangular cross section that is segmented in such a 
way that the sections between the lines AA’  and BB’ in the figure can be laterally displaced 
with respect to the rest of the apparatus. The offset segments of the U tube are filled with the 
colloidal dispersion and, after thermal equilibration with the buffer solution contained in 
other parts of the apparatus, the various sections are aligned so that sharp boundaries are 
obtained. The location of the boundaries is usually observed by schlieren optics that identify 
refractive index gradients (see Section 2.4). As the macroions migrate in the electric field, the 
schlieren peak becomes displaced and the mobility of a colloidal component may be deter- 
mined by measuring the rate of boundary movement per unit electric field. Relatively longer 
times are required for accurate mobility experiments than for microelectrophoresis since the 
particles must migrate over macroscopic distances rather than microscopic ones. To avoid 
contamination of the electrolyte in the U tube with electrode products, the electrodes are 
generally located near the bottom of large reservoirs as shown in Figure 12.11. Relatively 
concentrated salt solution is used to cover the electrodes, with the buffer solution layered on 
top. 

Under optimum conditions the dimensions of the cross section of the cell are such that the 
effects of electroosmosis are minimal. The rectangular profile of the cross section allows for 
both good thermal equilibration (because one dimension is short) and good optical precision 
(because the other dimension is longer). 

Moving-boundary electrophoresis is most widely applied to protein mixtures. In such a 
case each molecular species travels with a characteristic velocity. After sufficient time the 
various components in a mixture become effectively separated, and the percentage of each 
may be determined by measuring the areas under the schlieren peaks. Figure 12.12a shows a 

FIG. 12.1 1 Schematic illustration of a Tiselius-type moving boundary electrophoresis apparatus. 
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FIG. 12.1 2 Electrophoresis patterns for human serum: (a) schematic of schlieren profiles; and 
(b) semilog plot of protein molecular weight versus electrophoretic mobility for particles electro- 
phoresed on cross-linked polyacrylamide. (Reprinted with permission from K. Weber and M. 
Osborn, J.  Biol. Chern., 244, 4404 (1969).) 
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typical electrophoresis pattern for human blood serum. In this figure the protein albumin (A), 
al-,  a2-, 0-, and y-globulin, and fibrinogen (4) are fairly clearly resolved. The remaining peak 
in the figure is the boundary between the original buffer and the colloid. This “false boundary” 
moves little in an electrophoresis experiment and is obviously not considered in determining 
the percentages of different proteins in a mixture. Some additional details on moving- 
boundary electrophoresis are available in Longsworth (1959) and Probstein (1994). 

1 2 . 9 ~  Zone Electrophoresis 

When separation rather than determination of mobility is the primary objective of an electro- 
phoresis experiment, a technique called zone electrophoresis is quite widely employed. In zone 
electrophoresis, a supporting medium such as moist filter paper or a gel such as polyacryl- 
amide is the location of the particle migration. The method thus resembles solid-liquid chro- 
matography, and many of the substrates and analytical methods of solid-liquid chromatogra- 
phy are used in this electrophoretic procedure as well. As with chromatography, a spot or 
band of a mixture is applied to one end of the support medium. As the electrophoresis 
proceeds, spots or bands of the individual components appear at different locations along the 
axis of the voltage gradient. Sometimes the resolution is improved by following the electropho- 
resis by a chromatographic separation at right angles to the direction of the initial separation. 

Zone electrophoresis is influenced by adsorption and capillarity, as well as by electro- 
osmosis. Therefore evaluation of mobility (and {) from this type of measurement is consider- 
ably more complex than from either microelectrophoresis or moving-boundary electrophore- 
sis. Nevertheless, zone electrophoresis is an important technique that is widely used in 
biochemistry and clinical chemistry. One particularly important area of application is the field 
of immunoelectrophoresis, which is described briefly in Section 12.1 1. Additional information 
on zone electrophoresis may be obtained from Probstein (1994) and Hunter (1981) and the 
references given there. Variants of zone electrophoresis also exist; see, for example, Gordon et 
al. (1988) for information on a variant known as capillary zone electrophoresis and Righetti 
(1983) for information on what is known as isoelectric focusing. 

Figure 12.12b illustrates the application of gel electrophoresis to protein characterization. 
In this illustration a cross-linked polyacrylamide gel is the site of the electrophoretic migration 
of proteins that have been treated with sodium dodecyl sulfate. The surfactant dissociates the 
protein molecules into their constituent polypeptide chains. The results shown in Figure 12.12b 
were determined with well-characterized polypeptide standards and serve as a calibration curve 
in terms of which the mobility of an unknown may be interpreted to yield the molecular 
weight of the protein. As with any experiment that relies on prior calibration, the successful 
application of this method requires that the unknown and the standard be treated in the same 
way. This includes such considerations as the degree of cross-linking in the gel, the pH of the 
medium, and the sodium dodecyl sulfate concentration. The last two factors affect the charge 
of the protein molecules by dissociation and adsorption, respectively. Example 12.5 considers 
a similar application of electrophoresis. 

* * *  

EXAMPLE 12.5 Estimation of Number of Nucleotides in Glycine tRNA Using Electrophoresis. 
Synthetic DNA standards and RNA molecules were electrophoresed in 7 M urea solution on 
cross-linked polyacrylamide gels (Maniatis et al. 1975). A semilog plot of the number of nucleo- 
tides versus the mobility relative to xylene cyanol FF dye is linear and includes the points (N = 
100, U,/ = 0.33) and (N  = 50, U,/ = 0.55). Estimate the number of nucleotides in the glycine 
tRNA molecule of Staphylococcus epidermidis if it shows a relative mobility of 0.16. 

Solution: The linear semilog plot means that these data follow the equation In N = 6 + mu,,. 
Since we know two points from this plot, we can evaluate the constants m and 6 by simultane- 
ous equations. This procedure yields b = 5.63 and m = -3.09. Combining these constants 
with the observed mobility allows the number of nucleotides in the unknown to be calculated by 

W the formula In N = 5.63 + (-3.09)(0.16) = 170. 
* . *  
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12.10 DETERMINING THE SURFACE CHARGE FROM 
ELECTROKINETIC MEASUREMENTS 

In the quantitative sections of this chapter the primary emphasis has been on establishing the 
relationship between the electrophoretic properties of the system and the zeta potential. We 
saw in Chapter 1 1  that potential is a particularly useful quantity for the characterization of 
lyophobic colloids. In this context, then, the r potential is a valuable property to measure for 
a lyophobic colloid. For lyophilic colloids such as proteins, 011 the other hand, the charge of 
the particle is a more useful way to describe the molecule. In this section we consider briefly 
what information may be obtained about the charge of a particle from electrophoresis mea- 
surements. 

12.1 Oa Relation Between Surface Charge and Zeta Potential 

We have lamented the fact that electrokinetic potentials cannot be evaluated independently to 
check the correctness of various theories. However, the charge of a protein can be evaluated 
from its titration curve. Therefore, if we can find a way to evaluate particle charge from 
electrokinetic data, the long-sought independent verification will be established. The net 
charge q of a particle is equal and opposite to the total charge in the double layer. The 
increment of charge in a spherical shell of radius r and  thickness dr  in the double layer is given 
by the area of the shell times its thickness times the charge density: 

d q  = 4nr2p*dr (78) 

Integrating this expression over the entire double layer gives 

where the Poisson equation ( 1  1.24) has been substituted for p * .  Integration yields 

where the derivative is evaluated at r = R,. 
Now Equation ( 4 6 )  is used to evaluate the derivative in Equation (80): 

(79) 

Substituting this result into Equation (80) gives 

q = 47r~rR,(l + KR,)  (82) 

for the charge enclosed by the surface of shear. (Contrast this with Equation ( 1  1.50).) 
This discussion shows that the evaluation of charge from electrokinetic measurements 

involves all the complications inherent in the evaluation of < plus the additional restrictions of 
low potentials and spherical particles. Additional relationships have been developed that per- 
mit these restrictions to be relaxed, but we do not discuss these here. 

12.1 Ob Charge of Protein Molecules 

We conclude this section by comparing briefly the charge on protein molecules as determined 
by electrophoresis measurements through Equation ( 8 2 )  and as determined by titration. Pro- 
tein molecules carry acid and base functions in side groups dong  the macromolecule. In a 
strongly acidic solution amine groups will be protonated, and the protein will carry a positive 
charge. Addition of a known number of equivalents of strong base to a measured volume of 
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protein solution results in a change of pH and a change in the state of charge of the protein. 
From the volume of the solution, the change of pH, and a knowledge of activity coefficients, 
the number of added equivalents of base that react with the protein may be determined. It 
should be noted that the added base may remove protons from either neutral groups or 
cationic groups. 

Thus in acid solution a protein may have a charge corresponding to the binding of z H + 

ions: + z. After z OH - ions have reacted with it, the molecule will have a net charge of zero. 
If the reactions consist exclusively of the removal of bound H +  ions, the net charge (zero) 
would correspond to  the actual charge of the particle. If all the reacting OH - ions remove H + 

ions from neutral groups on the other hand, the molecule would be twice as highly charged as 
the initial species, with an equal number of positive and negative charges. In reality, both 
processes occur together, so it cannot be inferred that the point of equivalency-called the 
isoionic point - corresponds to an uncharged state. All that can be said is that the net charge 
is zero at the isoionic point. Addition of more base beyond this point will increase (still by both 
processes) the negative charge of the molecule even further. The isoionic point corresponds to 
a point at which the polyelectrolyte changes sign. This discussion shows that the net charge 
relative to the initial condition of the colloid is readily determined from titration curves. 

The electrophoretic mobility of a protein solution may also be measured as a function of 
pH. By this technique it may also be observed that the colloid passes through a point of zero 
net charge at which its mobility is zero. The point at which charge reversal is observed 
electrophoretically is called the isoelectric point. 

Figure 12.13 shows the relationship between the charge of egg albumin as determined by 
titration and by electrophoresis. The points were determined electrophoretically, and the solid 
line was determined by titration. The titration curve has been shifted so that the isoionic 
point and the isoelectric point match. It will be observed that the two independent charge 
determinations led to slightly different values. The charges determined electrophoretically are 
60% of those determined analytically. If the titration results are multiplied by 0.60, the dashed 
line in Figure 12.13 is obtained. This shows clearly that the two determinations are identical in 
pH dependence, but raises the question as to the origin of the constant percentage difference. 

There are several minor corrections that tend to reduce the discrepancy between the two 
curves, for example, corrections for relaxation and finite ion size. It should also be remem- 
bered that electrophoresis measures the net charge inside the surface of shear. To the extent 
that this diverges from the “surface” of the molecule, the two techniques may very properly 
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FIG. 12.13 Net charge of egg albumin versus pH. The points were determined by electrophoresis, 
and the solid line by titration; the broken line represents 60% of charge from titration. (Data from 
L. G. Longsworth, Ann. NY Acad. Sci., 41, 267 (1941). (Redrawn with permission from J. Th. G. 
Overbeek, Quantitative Interpretation of the Electrophoretic Velocity of Colloids. In Advances in 
Colloid Science, Vol. 3 (H. Mark and E. J. W. Verwey, Eds.), Wiley, New York 1950.) 



ELECTROPHORESIS & OTHER ELECTROKINETIC PHENOMENA 567 

“see” different charges for the colloid. Additional studies in this area, therefore, might help to 
clarify the relationship between the actual surface and the surface of shear. 

We noted above that proteins display essentially the same mobility both as free molecules 
and when adsorbed on carrier particles. Adsorption clearly increases the radius of the kinetic 
unit appreciably, so this effect on mobility is unexpected. One way to rationalize this result is 
to assume that the protein adsorbs on the surface with very little alteration of the shape it has 
in free solution. Next assume that it is the radius of these molecular protuberances rather than 
the overall radius of curvature of the carrier that governs the mobility. 

12.1 1 

Throughout most of this chapter the emphasis has been on the evaluation of zeta potentials 
from electrokinetic measurements. This emphasis is entirely fitting in view of the important 
role played by the potential in the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of 
colloidal stability. From a theoretical point of view, a fairly c’omplete picture of the stability 
of dilute dispersions can be built up from a knowledge of potential, electrolyte content, 
Hamaker constants, and particle geometry, as we discuss in Chapter 13. From this perspective 
the fundamental importance of the {potential is evident. Below we present a brief list of some 
of the applications of electrokinetic measurements. 

APPLICATIONS OF ELECTROKINETIC PHENOMENA 

12.1 1 a Colloid Stability 

As we have emphasized in some of the previous chapters, there are many practical situations 
in which coagulation is a process of considerable importance. Often all that is desired in these 
cases is either to maximize or minimize coagulation in some experimental system. Systems of 
practical interest are frequently so complex that theoretical models apply to them only qualita- 
tively at best. In this context the concept of zeta potential emerges as a valuable practical 
parameter. If two systems of different r are compared - all other factors being equal - the one 
that has the higher { potential is expected to be more stable with respect to coagulation and 
the one with the lower potential less stable. The second case is particularly important. At the 
isoelectric point electrophoretic mobility is zero, {is zero, and the potential energy of repulsion 
between particles is minimal. Thus electrophoresis measurements can be used as an indicator 
for optimum conditions for coagulation. In this type of application the technique is used as a 
null detector; hence it is independent of any model or equation for interpretation. 

12.1 1 b Sewage Treatment 

One important -if not so appealing - example of the above application is in sewage treatment. 
Industrial wastewater and domestic sewage contain an enormous assortment of hydrophilic 
and hydrophobic debris of technological and biological origin. The concentration of surface- 
active materials in sewage from household detergents alone is about 10 ppm. In addition, 
sewage abounds in amphipathic materials of natural and biological origin. These substances 
tend to adsorb on and impart a charge to the suspended solid and liquid particles in the 
polluted water. Negative zeta potentials in the range of 10 to 410 mV are fairly typical for the 
suspended particles in sewage. 

A typical purification scheme consists of adding NaHCO, and Al,(SO,), (alum) to water 
with agitation. The aluminum ion undergoes hydrolysis ancl precipitates as a gelatinous, 
polymeric hydrated oxide. Suspended material is enmeshed in this amorphous precipitate, 
which produces flocs by bridging the particles together. The polymeric nature of the 
“Al(OH),” precipitate permits us to compare it with protein in its ability to coat particles and 
impart to the carrier particles its own characteristic potential. Like proteins, Al(OH), is also 
capable of reacting with both H +  and O H -  so that these ions determine the charge of the 
suspended units, whether these are flocs formed by the Al(OH), network or individual parti- 
cles with an adsorbed layer of Al(OH),. In either case the charge is pH sensitive, the isoelectric 
point occurring near pH 6 .  It is under these pH conditions, then, that the flocculating effec- 
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tiveness of the precipitate is optimum. In fact, the pH is often adjusted so that the hydrous 
aluminum oxide surface has a slightly positive value of { (about 5 mV). This promotes further 
interaction with slightly anionic polymeric materials that are also added to further build up 
and strengthen flocs. Once adequate flocculation has been accomplished, the dispersed parti- 
cles are removed by sedimentation, centrifugation, or filtration. 

Numerous other applications could be listed in which electrokinetic characterization pro- 
vides a convenient experimental way of judging the relative stability of a system to coagula- 
tion. Paints, printing inks, drilling muds, and soils are examples of additional systems with 
properties that are extensively studied and controlled by means of the {potential. 

12.1 1 c Environmental Remediation 

Contamination in low-permeability soil is a problem of major importance in environmental 
remediation. Traditional treatments of contaminated soils include bioremediation methods, 
vapor extraction, and what are known as “pump-and-treat” methods. However, poor accessi- 
bility to the contaminants and difficulties in delivering reagents used for treatment make these 
current in situ methods very ineffective. Electroosmosis (combined possibly with one or more 
of the traditional techniques) can potentially serve as an alternative in situ treatment process, 
as shown in Figure 12.14. 

Electroosmosis has been used for dewatering fine sands, clays, and silts since the 1930s, 
and its application in environmental remediation is somewhat similar to its earlier uses. For 
example, as illustrated in Figure 12.14, an electrical potential difference is set up between two 
embedded granular electrodes on either side of the contaminated zone. Water injected into the 
soil at the anode is made to flow through the contaminated zone under the action of electro- 
osmosis, thus bringing the contaminants (e.g., metals and organics) to the surface at the 
cathode region for further treatment and disposal. Advantages of such a technique include a 
relatively uniform flow through heterogeneous regions, a high degree of control of the flow 
direction, and very low power consumption. 

Figure 12.14 illustrates a vertical flow arrangement, but other configurations are also 
possible. The process as illustrated in Figure 12.14 is being developed by Monsanto Company 
and is known as the “lasagna process” because of the layered structure of the treatment zones 
(Ho et al. 1993). 

FIG. 12.14 
cess). (Redrawn with permission of Ho et al. 1993.) 

The use of electroosmosis in environmental remediation (known as the lasagna pro- 
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The use of electroosmosis in groundwater remediation is not a well-established technol- 
ogy, and a number of technical issues are currently being investigated. However, it illustrates 
the types of large-scale practical applications of charge-induced phenomena in technology. 
Another interesting application of electroosmosis, for extracting bitumen from oil sands, is 
described by Masliyah (1 994). 

12.1 Id lmmunoelectrophoresis 

In addition to these applications in which is used to monitor for optimum coagulation 
conditions, there are applications of electrophoresis that explicitly depend on mobility or 
differences in mobility for their usefulness. We have already noted that zone electrophoresis 
is similar in many ways to chromatography. One important application of the ability of 
electrophoresis to segregate materials by mobility is immunoelectrophoresis. This technique 
uses known immunochemical reactions between antigen and antibody for the identification of 
proteins separated electrophoretically. Experimentally, an antigen mixture is subjected to 
electrophoresis on a suitable medium (usually agar gel). Next the antibody mixture is intro- 
duced into a slit cut in the gel parallel to the axis of the separation. The antigen and antibody 
components then diffuse toward one another, producing an arc-shaped precipitate where the 
two fronts meet. 

Tests of this sort are particularly useful for comparing either two antigen preparations 
(against a single antibody) or two antibody preparations (against a single antigen). In such a 
comparison one of the samples serves as a control, and differences between the two are 
revealed by an unpaired arc of precipitate at a particular location along the path of separation. 

Alternatively, electrophoretic separation in one direction may be followed by a second 
electrophoresis in a perpendicular direction, the latter into a gel containing antibodies. This 
technique is called crossed immunoelectrophoresis and combines high resolution with the 
possibility of quantification by measuring the area of the precipitate formed. Figure 12.15 is a 

FIG. 12.15 Crossed immunoelectrophoresis of human serum with rabbit antihuman serum. (Re- 
drawn with permission from B. Weeke, in A Manual of Quantitative Irnmunoelectrophoresis: 
Methods and Applications (N. H.  Axelsen, J .  Krsll, and B. Weeke, Eds.), Universitetsforlaget, 
Oslo, Norway, 1973 .) 
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photograph of the peaks of antigen-antibody precipitates formed by crossed immunoelectro- 
phoresis of human serum interacting with rabbit antihuman serum. 

12.1 1 e Electrodeposition 

Electrodeposition is another direct application of electrophoretic mobility. In this process, as 
in electroplating with metals, the substance to be coated is made into an electrode of opposite 
charge from the particles to be deposited. At one time, natural rubber latex was extensively 
fabricated in this way. Paint coatings that are quite dense and coherent with little tendency to 
sag or run can be prepared by electrodeposition. If the deposited layer has insulating proper- 
ties, this technique is also self-regulating, producing a uniform thin covering of very good 
quality. 

12.1 I f  Applications of Other Electrokinetic Phenomena 

Although electrophoresis is the most important of the electrokinetic methods, it is not the only 
one with practical applications. We already noted in Section 12.7 that streaming potentials 
could be quite hazardous in low-conductivity, highly flammable substances such as purified 
hydrocarbons. In this case our knowledge of the effect enables us to minimize it. Dewatering 
fine suspensions that are not amenable to filtration is an application of electroosmosis, as 
mentioned in Section 12.lb. Peat, clay, and other minerals have been dewatered this way, and 
water may be removed from moist soil prior t o  excavation by electroosmosis. Electrodes are 
driven into the ground, with the cathode in the form of a perforated pipe. The surface of the 
soil particles carries a negative charge; therefore the diffuse part of the double layer is positive, 
and the solution moves toward the cathode. The water that collects in the cathode is subse- 
quently removed by pumping. Similar ideas have been suggested in studies of salt rejection 
characteristics of reverse osmosis membranes (Jacazio et al. 1972; Sonin 1976). 

REVIEW QUESTIONS 

1. 
2. 
3. 
4. 

5. 
6. 

7. 
8. 

9. 
10. 
11. 
12. 
13. 

14. 
15. 
16. 

List the different electrokinetic phenomena and discuss their similarities and differences. 
Why are these electrokinetic phenomena important? 
What is the mobility of a particle? How is electrophoretic mobility defined? 
What is zetapotential, and how is it related to the electrophoretic mobility? What properties 
of the dispersion influence such a relation? 
What is the relation between the zeta potential and the surfacepotential? 
What is the relation between the zeta potential and the charge on a particle? How is this 
relation determined? 
What is the Huckel equation, and what approximations are made in its derivation? 
What is the Helmholtz-Smoluchowski equation? How is it different from the Hiickel equa- 
tion? 
What is Henry’s equation, and what are the assumptions implicit in its derivation? 
What is electroosmosis? How is it used to measure the zeta potential? 
Give an example of the use of electroosmosis. 
What is surface conductivity, and when and why is it important? 
Define streaming potential and explain how it is measured. What is its relation to the zeta 
potential? 
What is the viscoelectric effect? How does it affect electrokinetic phenomena? 
What is surface of shear? 
What are moving-boundary electrophoresis and zone electrophoresis? Where are they used? 
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PROBLEMS 

1 .  Particles of Fe,O, with an average diameter of 1 pm were dispersed in xylene containing 5 x 
lOV3 mole liter-' of copper(1) oleate. These showed an electrophoretic mobility of 0.110 pm s-'  
V- '  cm. The conductivity of the solution was 4.7 x 10-''I ohm - '  cm-', indicating an ion 
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2. 

3 .  

4. 
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concentration about 10-” M.* Calculate K -  ’ for this concentration. Which limiting form of 
Equation (40) is most applicable in this system? Would the same conclusion be true for a 5 x 
10-3 M aqueous solution of a 1 : 1 electrolyte? What is ( for these particles? For xylene, E, = 
2.3 and 11 = 0.0065 P. 

Criticize or defend the following proposition: Zeta potentials for three different polystyrene 
latex preparations were calculated by the Helmholtz-Smoluchowski equation from electropho- 
resis measurements made in different concentrations of KC1.t 

r (mV) 
Latex 
designation R, x 108 (cm) 10-’ M KC1 10-, M KCl l O P 3  M KC1 

L 
M 
N 

47 5 21 29 40 
610 29 39 53 
665 34 47 64 

These zeta potentials are inaccurate because the range of KR, values exceeds the range of 
validity for the Helmholtz-Smoluchowski equation. The nature of the error is such as to make 
the estimated values of (too low. 

The electrophoretic mobility of sodium dodecyl sulfate micelles was determined by the mov- 
ing-boundary method after the micelles were made visible by solubilizing dye in them. This 
quantity was measured at the critical micelle concentration (CMC) in the presence of various 
concentrations of NaCl. The radius of the micelles was determined by light scattering$ 

x 104 
Moles of NaCl liter-’ (em's-' V - ’ )  K R S  

0.00 
0.05 

4.55 0.61 
3.63 1.69 

Estimate from Figure 12.5a the appropriate value of C to be used in Equation (40) according 
to Henry’s equation. Calculate ( using these estimated C values. Figure 12.5b shows that 
Henry’s equation overestimates C (and therefore underestimates (). Estimate C from Figure 
12.5b using the curve for the ( value that is nearest - on the high side - to the values obtained 
by using Henry’s equation. Reevaluate ( on the basis of these “constants.” For this system, E, 

= 78.5 and 7 = 0.0089 P. 

The accompanying mobility data for colloidal SiO, at a constant ionic strength of 10-3 M 
reveal the superpositioning of specific chemical effects on general electrostatic phenomena. 
Adjustment of pH was made by addition of HN03 or KOH, maintaining the ionic strength. 
The following results were obtained:§ 

pH of solution: 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 

Si02 0 -1.4 -1 .7  -2.0 -2.3 -2.5 -2.6 -2.8 -3.0 
SiO, + lOP4M 0 - 1 . 1  -1.2 -1.2 - 1 . 1  -0.1 +2.2 +0.5 -1.2 

La(NO3)3 

Criticize or defend the following propositions: H +  and OH- are potential determining for 
SO,-in the absence of a hydrolyzable cation-with an isoelectric point of 2.0. For solid 
La(OH), the zero point of charge is known (by independent studies) to be 10.4. The solid 

*Koelmans, H., and Overbeek, J. Th. G., Discuss. Faraday Soc., 18, 52 (1954). 
TKitahara, A., and Ushiyama, H., J.  Colloid Interface Sci., 43, 73 (1973). 
SStigter, D., and Mysels, K. J., J.  Phys. Chem., 59, 45 (1955). 
§James, R. O., and Healy, R. W., J.  Colloid Interface Sci., 40, 42 (1972). 



ELECTROPHORESIS & OTHER ELECTROKINETIC PHENOMENA 573 

surface apparently becomes coated by La(OH), at higher pH levels and goes through a transi- 
tion from one character to another at intermediate pH values. 

In their study of the effects of hydrolyzable cations on electrokinetic phenomena (see Problem 
4), James and Healy compared the electrophoretic behavior of colloidal silica with the stream- 
ing potential through a silica capillary. In both sets of experiments the solution was lO-, M 
KNO, and 10-4 M Co(NO,),. The following results were obtained: 

5. 

PH 6.0 7.0 7.5 8.0 9.0 10.0 
{ (mV) from streaming -65 -55 -30 +10 +25 +20 

U x ~ O ' ( C ~ * S - ' V - ' )  -2.5 -2.5 -2.2 -1.8 +0.5 +0.3 
potential 

The silica surface area-to-solution volume ratio was 2 x 10-3 m2 liter-' for the streaming 
potential experiment and 1 .O m2 liter-' for the electrophoresis experiment. Calculate s;ls at 
each pH from the electrophoresis data (q  = 0.00894 P, E, = 78.5). Propose an explanation 
for the charge reversal behavior of the silica. Discuss the origin of the difference between s;ls 
and lst A,, in terms of this model. 

Somasundaran and Kulkarni* measured the streaming potential of lO-, N KNO, against 
quartz at 25OC, obtaining the following results: 

6. 

E s t r  (mv) -9.0 -18.0 -26.0 -35.0 
P (mm w 50 100 150 200 

Use these data to evaluate c / k .  What would be the value of the ratio V / I  for this system? 
What would be the rate of volume displacement if a current of 1.0 mA flowed through the 
apparatus? Evaluate ( for the quartz-solution interface, assuming A = 145 cm2 eq-' ohm-' 
for lOP3 N KNO,. 

It has been estimated? that a specific conductivity of 103 picomho m-'  would provide an 
ample margin of safety against electrokinetic explosions for the handling of refined petroleum 
products. These authors also measured the concentrations of various additives needed to reach 
this level of conductivity: 

7. 

Solvent Additive 
Concentration 

(kmol m-,) 
~~~ ~ 

Benzene Tetraisoamyl ammonium picrate 1 x 1 0 - ~  
Benzene Calcium diisopr opylsalicylate 5 x 10-, 
Gasoline Ca salt of di-(2-ethylhexyl)sulfosuccinic: acid 1 x 10-, 
Gasoline Cr salt of mono- and dialkyl (CI4-Cl8) salicylic acid 2.5 x 10-6 

Calculate the apparent value of the equivalent conductance A for each of these electrolytes in 
the conventional units cm2 eq-' ohm-'. How do the A values of these compounds compare 
with A. for simple electrolytes in aqueous solutions? 

The pH variation of the electrophoretic mobility of solid Th(OH)4 in 10-2 M HN0,-KOH 
electrolyte is as follows:$ 

8. 

PH 7.6 8.0 9.0 9.6 10.0 10.3 10.6 11.3 
u x 1 0 4 ( c m 2 s - ' V - ' )  +2.4 +2.2 +1.3 +1.0 --0.1 -1.1 -1.5 -1.8 

Use these data to evaluate the isoelectric point for Th(OH),. Since H+ and OH- appear to be 
potential determining, may be estimated at various pH levels according to Equation (1 1.1) 
if we identify the isoelectric point with the true point of zero charge. Compare these values 

*Somasundaran, P., and Kulkarni, R. D., J.  Colloid Interface Sci., 45, 591 (1973). 
TKlinkenberg, A., and Poulston, B. V., J. Inst. Pet., 44, 379 (1958). 
$James, R. O., and Healy, T. W., J.  Colloid Interface Sci., 40, 42 (1972). 
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with values of { calculated by means of the Helmholtz-Smoluchowski equation (q  = 0.0089 
P, E, = 78.5). Are the results qualitatively (quantitatively?) consistent with Figure 12.8? 

The aggregation number n and radius of sodium dodecyl sulfate micelles (by light scattering) 
and the zeta potential (from electrophoresis, by an accurate formula) were determined in the 
presence of various concentrations of NaCl. * 

9. 

R, x 108 
Moles of NaCl liter -’ { (mV) (cm) KR, n 

0.01 
0.03 
0.10 

92.3 22.1 0.86 89 
80.9 23 .O 1.32 100 
68.3 24.0 2.40 112 

Use Equation (82) to estimate the charge of the micelles. What approximation(s) in the 
derivation of Equation (82) prevents this expression from applying exactly to this system? On 
the basis of the charges evaluated by Equation (82), calculate the ratio of charge to aggregation 
number, the effective degree of dissociation, of these micelles. How do these results compare 
with the numbers given in Table 8.  l? 

An electrophoretic technique that is especially interesting for the study of proteins is called 
“isoelectric focusing.” In this method electrophoresis is carried out across a medium that 
supports a pH gradient. The pH gradient and cell polarity are such that the cathode end of the 
column is relatively basic. Thus a positively charged protein gradually loses its charge as it 
migrates, finally coming to rest at a pH corresponding to its isoelectric point. Carlstrom and 
Vesterbergt used this method to study the heterogeneity of peroxidase from cow’s milk. After 
focusing was achieved, the column was drained and the pH and absorbance (at 280 nm) of 
successive fractions of eluent were measured: 

10. 

Fraction Fraction 
number Absorbance pH number Absorbance pH 

12 
14 
16 
18 
20 
21 
22 
24 
26 

0.9 
3 .O 
2.1 
1.2 
2.7 
2.2 
2.8 
1.6 
1.2 

9.830 
9.800 
9.750 
9.700 
9.690 
9.685 
9.680 
9.600 
9.550 

28 
30 
32 
34 
36 
38 
40 
41 
42 

1.4 
0.9 
0.6 
0.8 
0.5 
0.3 
0.4 
0.5 
0.4 

9.49 
9.45 
9.38 
9.3 1 
9.30 
9.28 
9.23 
9.16 
9.10 

How many components does this sample apparently contain? What are the values of the 
isoelectric points for each? 

*Stigter, D., and Mysels, K. J., J. Phys. Chem., 59, 45 (1955). 
“yarlstrom, A., and Vesterberg, D., Acta Chem. Scand., 21, 271 (1967). 



13 
Electrostatic and Polymer-Induced 

Colloid Stability 

You, who are blessed with shade as well as light, you who are gifted with two eyes, 
endowed with a knowledge of perspective, and charmed with the enjoyment of various 
colours, you, who can actually see an angle, and contemplate the complete circumference 
of a Circle in the happy region of Three Dimensions- how shall I make clear to you the 
extreme difficulty which we in Flatland experience in recognizing one another’s con- 
figuration? 

From Abbott’s Flatland 

13.1 INTRODUCTION 

13.la What Is Colloid Stability? 

The term colloid stability stands for the ability of a dispersion to resist coagulation. The 
stability of dispersions may be either kinetic or thermodynamic and has been traditionally the 
primary focus of colloid science at least dating back to the ancient Egyptians. Kinetic stability 
is a consequence of a force barrier against collisions between the particles and possible coagu- 
lation subsequently. As we saw in Section 10.2, in such cases, coagulation is preferred because 
of the resulting reduction in thermodynamic “free” energy, but the interaction energy barrier 
in the interparticle energy is larger than the thermal energy and any other applied energy of 
the particles. Dispersions of charged latex particles in low-electrolyte environments provide 
examples of kinetically stabilized colloids. In the case of thermodynamic stability, coagulated 
states correspond to an increase in free energy and, therefore, are thermodynamically unfavor- 
able. 

We saw in Chapter 10 that the van der Waals force between particles in a dispersion is 
usually attractive and is strong at short interparticle separations. Therefore, if there are no 
repulsive interactions between particles, the dispersion will be unstable and coagulate. The 
protection against van der Waals attraction is usually provided in one of two ways: 

As we saw in Chapter 1 1 ,  surfaces of colloidal particles typically acquire charges for 
a number of reasons. The electrostatic force that results when the electrical double layers of 
two particles overlap, if repulsive, serves to counteract the a.ttraction due to van der Waals 
force. The stability in this case is known as electrostatic stability, and our task is to understand 
how it depends on the relevant parameters. 

In many practical instances (see Vignette 1.5), electrostatic repulsion is not a conve- 
nient option. In such cases, a suitable polymer that adsorbs on the particle surfaces may be 
added to the dispersion. The resulting polymer layer masks the attraction and may also 
provide a repulsive force, partly due to pure steric effect, when the polymer layers on two 
interacting particles attempt to overlap with each other. This is what is known as polymer- 
induced stability. Polymer-induced stability is often referred to as steric stability for the above 

1 .  

2. 
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reason, but the role of polymers in a colloidal dispersion is actually much more complex than 
this, and we try to get a feel for this below. 

Our primary focus in this chapter is on kinetic stability of dispersions arising due to either 
electrostatic forces or polymer-mediated forces. 

13.1 b Why Is Colloid Stability Important? 
Colloid stability enters our daily life in many different ways. A visit to the kitchen provides 
numerous examples of food colloids with microstructure and stability that are, in no small 
measure, an important aspect of their appeal to the palate! For example, mayonnaise-a 
mixture of vegetable oil, egg yolk, and vinegar or lemon juice-is an emulsion of oil in water 
and is stable because the lecithin molecules in the egg yolk provide the needed stability. Milk 
is another example. We have seen others in the vignettes in Chapters 1 and 4. 

Electrostatic stability plays a dominant role in many separation processes, such as filtra- 
tion of industrial wastewaters. Coagulation aids (known as coagulants) are routinely used to 
improve the effectiveness of separation processes in such cases. Polymer-induced stability is 
often the method of choice, particularly in the case of concentrated dispersions; for example, 
many pharmaceutical preparations, paints, inks, and liquid toners depend on surfactants or 
polymer additives for ensuring stable preparations. We see in Section 13.2 that in the case of 
concentrated dispersions both thermodynamic and kinetic issues often become very important. 

Colloid stability plays a role in many processing operations as well. Vignette XI11 provides 
an example of current interest. 

VIGNETTE Xlll DISPERSION-BASED PROCESSING: 
Steric Stabilization and Environmentally 
Friendly Polymerization Processing 

Perhaps the term steric stabilization normally brings to mind dispersions such as paints and 
food colloids, which are usually stabilized against coagulation by a layer (sometimes a 
“brush”) of polymer chains that mask the van der Waals attraction at short interparticle 
separations. However, there are other applications in which steric stabilization (and the steric 
effect, in general) provides interesting and exciting possibilities. We have already come across 
the role of the steric effect in the case of the so-called stealth liposomes as drug delivery 
vehicles in Vignette 1.3 in Chapter 1. Here, let us look at another, the use of specially designed 
polymeric surfactants (designer surfactants?) for manufacturing polymer particles in an envi- 
ronmentally friendly fashion! 

First, let us look at the classical manufacturing route to the large-scale production of many 
polymers of commercial importance (e.g., polystyrene, poly(viny1 chloride), poly(acry1ic acid), 
etc.). These polymers are synthesized typically with water or an organic solvent as the dispers- 
ing medium (depending on whether the polymer is water insoluble or water soluble, respec- 
tively). This is a heterogeneous polymerization process that has two or more phases with the 
monomer or the polymer (or both) in a finely divided form (see Section 8.10b). The final 
product, in the form of a powder or a dispersion, is then used in subsequent fabrication steps 
to produce the end products in desired shapes through compaction, pressing, and so on. The 
particle sizes in the polymerization step are usually controlled by the addition of suitable 
surfactants that stabilize the particles against coagulation to prevent a large size distribution. 
To begin, this is already an example of steric stabilization in action! But what is wrong with 
it? The problem is that this processing route produces a large amount of hazardous waste, 
namely, either contaminated water or organic qolvents (like chlorinated hydrocarbons and 
toluene), or both. 

How can we minimize the damage to the environment? Common sense says that preven- 
tion is better than cure. If one can use an environmentally friendly solvent in the processing 
step, the discharge of hazardous chemicals and the need for environmental post-treatment 
can be avoided. This is an approach that is currently being explored in polymer processing as 
well as in other manufacturing technologies (DeSimone et al. 1994). In the case of the 
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polymerization operations, one possibility is to use supercritical CO,, which resembles a 
liquid but has low viscosity, as the solvent. However, most polymers, with the exception of 
fluoropolymers, do not dissolve in CO,. Here is the point at which specially designed surfac- 
tants enter the picture. What one needs is a molecularly engirleered polymer surfactant with a 
backbone that can adsorb on the growing polymer particle, but with side chains or “tentacles” 
that are COz loving so that the growing polymer particles can stay dispersed in the solvent 
(see Figure 13.1). In addition, adsorption of the surfactant backbone anchors the polymer on 
the surface of the particles, and the loops and the tails of the polymer provide a steric barrier 
against coagulation as desired. Recent research shows that such an approach is feasible. 

We are not concerned with molecular engineering of surfactants in this chapter; our 
objective is to introduce the basic concepts concerning colloid stability, including the role of 
polymer (adsorbed or grafted on the particles or simply dispersed in the solvent along with 
the particles) in imparting stability to colloidal dispersions. In addition to highlighting the 
role of polymeric stabilization in a novel (and politically correct!) context, the application 
described in this vignette brings to the forefront a number of topics of interest in colloid and 
surface chemistry we have discussed in previous chapters. 

13.1 b Focus of This Chapter 

The stability and the structure of dispersions (structure here means the spatial organization of 
the colloidal particles) are topics of considerable research activity currently; there is a lot that 
we do not know despite the long-standing focus on these topics in colloid science. The first 
step in approaching problems in this area is to study the origin and the nature of the interparti- 
cle forces and how they affect coagulation in dilute dispersions. This is what we focus on in 
this chapter. 

FIG. 13.1 A polymer particle in supercritical CO, is protected against coagulation by the steric 
action of specially designed polymer chains with fluorine-containing tails on the polymer backbone. 
(Redrawn with permission from K. C. Fox, Science, 265, 321 (1994), and DeSimone et al. 1994.) 
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1. In Section 13.2, we begin with a closer look at one of the applications we alluded to 
in Vignette 1.5 in Chapter 1 (colloidal processing of ceramics) in order to gain some perspective 
on how interparticle forces influence the structure of a dispersion. 

The influence of interparticle interaction energies and how the energies vary with 
solution chemistry is the first key in understanding colloid stability. Since we have already 
developed a fairly detailed understanding of van der Waals and electrostatic forces in Chapters 
10 and 11, we are already in a position to look at the role of interparticle energies on electro- 
static stability. In Section 13.3, we investigate this and discuss the threshold value of electrolyte 
concentration, known as the critical coagulation concentration (CCC), beyond which a colloid 
coagulates rapidly. We also explore the role of ionic valences and a rule known as the Schulze- 
Hardy rule in this section. 

A more quantitative measure of stability, known as the stability ratio, can be obtained 
by setting up and solving the equation for diffusive collisions between the particles. Quantita- 
tive formulations of stability, known as the Smoluchowski and Fuchs theories of colloid 
stability, are the centerpieces of classical colloid science. These and related issues are covered 
in Section 13.4. 

Theoretical studies of the role of polymer additives lag behind their analogs in electro- 
static stability since polymer molecules have considerably more configurational freedom and 
since the interaction of the polymer molecules with the solvent is an inseparable part of 
phenomena in polymer-colloid mixtures. We begin with some of the general issues and a 
thermodynamic analysis of the role of polymer on stability in Section 13.5. 

In contrast to the situation in the case of van der Waals and electrostatic forces, very 
little is known about polymer-induced forces. The development of the surface force apparatus 
and scanning tunneling and atomic force microscopies have begun to shed light on this very 
difficult topic. In Section 13.6, we take a brief look at some of the polymer-induced forces of 
interest in colloid stability and structure. 

In the final section, we build on the thermodynamic theories of polymer solutions 
developed in Chapter 3, Section 3.4, to provide an illustration of how a thermodynamic 
picture of steric stabilization can be built when excluded-volume and elastic contributions 
determine the interaction between polymer layers. 

Despite the fact that there is much that is unknown about colloid stability, the topics 
covered in the chapter are sufficient to solve many routine problems of industrial interest, 
particularly in the case of electrostatic stability. More advanced information on polymer- 
induced forces is available in specialized monographs (Napper 1983; Israelachvili 1991 ; Sat0 
and Ruch 1980) and in other texts on colloid science (Hunter 1987). 

2. 

3. 

4. 

5 .  

6. 

13.2 INTERPARTICLE FORCES AND THE STRUCTURE AND 
STABILITY OF DISPERSIONS 

Our objective in this chapter is to establish the quantitative connections between interparticle 
forces and colloid stability. Before we consider this it is instructive to look at the role of 
interaction forces in a larger context, that is, the relation between interparticle forces and the 
microstructure of dispersions and the factors that determine such a relation. These aid us in 
appreciating the underlying theme of this chapter, namely, the manipulation of interparticle 
forces to control the properties of dispersions. 

13.2a Competition Between Thermodynamics and Kinetics 

Before we proceed, however, it is important to review briefly the roles thermodynamic and 
kinetic considerations play in determining the structure. In some cases, the distinction is easy 
to establish. In the case of the association colloids we discussed in Chapter 8, thermodynamics 
determined the formation and the structure of the colloidal particles and their subsequent 
transformations to more complex structures at higher concentrations of the particles. In 
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contrast, lyophobic colloids, such as the silica dispersion we saw in Example 5.4, are usually 
thermodynamically unstable, but are stable kinetically if the surface charges or potentials are 
sufficiently large. This is what we saw in Section 10.2 in our discussion of the relation between 
interparticle forces and colloid stability. In fact, arguments presented there form the backbone 
of the classical theory of electrostatic stability of colloids known as the Derjaguin-Landau- 
Verwey-Overbeek (DLVO) theory, based on kinetic arguments. We discuss this further in 
Sections 13.3 and 13.4. 

Frequently, however, the stability and, more generally, the microstructure and the macro- 
scopic states of dispersions are determined by kinetic and thermodynamic considerations. 
Thermodynamics dictates what the equilibrium state will be, but it is often the kinetics that 
determines if that equilibrium state will be reached and how fast. This becomes a consideration 
of special importance in practice since most processing operations involve dynamic variables 
such as flow, sedimentation, buoyancy, and the like. Although a detailed discussion of this is 
beyond our scope here, it is important that we consider at least one example so that we can 
place some of the topics we discuss in this chapter in proper context. 

For this, let us consider the subject of Vignette 1.5 on ultrastructural processing of ceram- 
ics, highlighted in Chapter 1. 

13.2b Interplay Between Interparticle Forces and Structure 

We have already seen in previous chapters and in a number of vignettes (for example, Vignette 
1.4 on electrophoretic imaging devices in Chapter 1 and Vignette IV on the rheology of 
chocolate in Chapter 4) that the microstructure and stability of dispersions determine the 
quality, processability, and properties of many products and devices. The colloidal processing 
of ceramics is a particularly interesting example since our goal in such a processing route is to 
optimize the colloidal forces so that we can minimize the cornpetition between thermodynam- 
ics and kinetics. 

First, let us begin with a consideration of how interparticle forces and the concentration 
of the particles work together to determine the structure of dispersions. Figure 13.2 is a 
schematic representation of the microstructure (i.e., the local arrangement of the particles) in 
a monodisperse colloid in terms of the particle concentration as the relative magnitude of 
attractive and repulsive forces varies between the extremes. The figure is like a “phase” dia- 
gram and shows roughly three regions that differ from each other in terms of the expected 
microstructure of the dispersion: 

Overall interparticle forces dominated by strong repulsion: When the particles have 
large enough surface charges, the overall interaction force becomes strongly repulsive and 
could extend over large distances (of the order of particle dimensions or larger; i.e., the 
Debye-Huckel thickness, K - ~ ,  is very large). As we saw in Section 10.2, for all practical 
purposes this corresponds to a thermodynamically stable dispersion; in fact, because of the 
large repulsion, the particles can organize themselves in crystalline structures even at volume 
fractions of the order of 0.001 or lower, depending on thLe magnitude and the range of 
repulsion. 

The type of crystalline structure that is formed depends on the concentration of the 
particles as well as the magnitude of the Debye-Huckel thickness. For large Debye-Huckel 
thicknesses a body-centered cubic crystal is formed, whereas for smaller values a face-centered 
cubic crystal is preferred. An example of the latter observed experimentally in a dispersion of 
latex spheres is shown in Figure 13.3. Note that this crystallization phenomenon is analogous 
to crystallization of simple atomic fluids, as is evident from Figure 13.3a, which shows the 
coexistence of a crystal with a “liquidlike” structure. 

Because of the low volume fractions at which such transitions can occur, the typical 
interparticle spacing in these cases can be quite large. Therefore charged colloids can be used 
as model systems to study visually the influence of charge effects on phase transitions in 
colloidal as well as atomic systems (see Murray and Grier 1995 for another example). 

The structure of the dispersion can be quite sensitive to the parameters that influence the 

1. 
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FIG. 13.2 Schematic illustration of the relation between the interparticle forces and the corre- 
sponding microstructure observed in dense, monodisperse colloids. (Adapted with permission from 
D. R. Ulrich, Chern. andEng. News, 28-35, January 1, 1990.) 

FIG. 13.3 Micrographs of local structure in a charged dispersion: (a) an ordered region coexisting 
with a liquidlike region; (b) an ordered crystalline structure, with a two-dimensional slice of the 
crystal shown. (Photographs courtesy of Dr. Norio Ise, Fukui Laboratory, Rengo Co., Fukui, 
Japan.) 
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interparticle forces near the liquid-crystal transition. This is illustrated in Figure 13.4, which 
presents stereograms based on computer simulations of a dispersion. The liquidlike isotropic 
structure seen in Figure 13.4a transforms to a crystalline (face-centered cubic) structure with a 
small change in the surface potential (Figure 13.4b). 

Overall interaction forces dominated by strong attraction: At the other extreme, in 
Figure 13.2, attraction dominates the overall forces. Then the dispersion becomes thermody- 
namically and kinetically unstable and forms aggregates and an interconnected network 
known as colloidal “gels” as the particle concentration is increased. The aggregates in this case 
generally have a loose, fractal structure, similar to the one we saw in Example 5.4. Increases 
in the particle concentration d o  not eliminate the microvoids in the structure of the aggregates 
since strong van der Waals attraction leads to  strong interparticle “bonds” that are difficult to 
break. 

3. Intermediate situations: The situation in the intermediate region is much more com- 
plicated, but is very important in practice. When repulsion and attraction are comparable, the 
resulting microstructure depends on the details of the interaction forces more sensitively and 
can be manipulated by adjusting the relative magnitudes of the two forces. We already saw in 
Section 10.2 that -depending on the details of the interaction energy profile- aggregation in 
secondary or primary minima can occur in this case. More importantly, in contrast to cases 1 
and 2 above, which do  not permit closely packed structures, the intermediate situation can 
allow the formation of dense packing (see Fig. 13.2), and the solution chemistry and surface 
chemistry serve as important tools to achieve this goal. 

In general, “soft” repulsion at short interparticle separation distances and mild attraction 
at larger distances promote better packing, and this can be used profitably in colloidal process- 
ing of ceramics (see Vignette 1.5 in Chapter 1). In fact, this provides one of the strong 
incentives for studying the effects of polymer additives (discussed in Sections 13.5- 13.7) since 
polymers adsorbed on (or end-grafted onto) particles can be tailored to provide the needed 
“soft” repulsive cushion and to mask out the strong van der Waals attraction, which, as we 
saw above, promotes the formation of fractal aggregates. Intuitively, one expects the weak 
“bonds” resulting from weak attraction to permit a particle in a cluster to break loose and, 
perhaps, reattach itself repeatedly until it finds a site with a larger number of neighbors (hence 
a stronger bond). 

The picture gets even more complicated when we include other variables. For example, if 
minimizing microstructural voids (or, “defects”) is our goal, the logical choice is to use a 
mixture of particle sizes since the smaller particles (in principle) can fill the voids created by 
the larger ones. However, the particle size also has a strong influence on the structure and 
stability of dispersions. As an illustration, Figure 13.5 shows the interaction energy profiles 
(calculated from the expressions we have developed in Chapters 10 and 11) for spherical 
particles of two different diameters d,  and d2. This figure illustrates two very important points 
of interest. First, it shows that, for otherwise identical conditions, the repulsive barrier is 
greater for larger particles than for smaller ones because of the different dependence of 
repulsion and attraction on particle size. Therefore, even if the small particles are unstable 
because of low barriers, once the resulting aggregates reach a large size the dispersion may 
become stable against further coagulation. The structure that develops with increasing particle 
concentration in this case is a complicated function of the kinetic stability of the dispersion. 
Second, in dispersions with a distribution of particle sizes, the smaller particles may aggregate 
with the larger ones, although a monodisperse system of small particles may be stable by itself. 

2, 

1 3 . 2 ~ .  Modeling Equilibrium Structures and 
Time Evolution of Structures 

The discussions above highlight the following: (a) the structure of a dispersion is a complicated 
function of interaction forces; (b) equilibrium thermodynamics dictates what is possible and 
what is not, but (c) for lyophobic colloids, ultimately it is kinetics that determines whether the 
structures predicted by thermodynamics can be realized in practice. One of the major objec- 
tives of thermodynamic and kinetic studies of colloidal systems is to be able to predict and 
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FIG. 13.4 Stereo pairs of colloidal dispersions generated using computer simulations. ( a )  Polystyrene latex particles at a volume fraction of 0.13 with a 
surface potential of 50 mV. The 1 : 1 electrolyte concentration is 10 -' moVcm1. The structure shown is near crystallization. (The solid-black and solid-gray 
particles are in the back and in the front, respectively, in the three-dimensional view.) (b)  A small increase in the surface potential changes the structure to  
face-centered cubic crystals. (Redrawn with permission from Hunter 1989.) 
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FIG. 13.5 Interaction energy between two spheres of diameters d ,  and d2. (Redrawn with permis- 
sion from C .  J.  Brinker G. and Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel 
Processing, Wiley, New York, 1990.) 

control the structure of the dispersions. In a thermodynamic formulation the initial and final 
states must be clearly understood, and the transition between them is immaterial. In kinetics 
the path and any energy barriers along the way are important. In contrast to dilute dispersions, 
meeting the above objectives is considerably more difficult in the case of concentrated disper- 
sions (especially the ones with additional complications such as variations in charges, sizes, 
and additives). This is an area of intense research activity currently, and radiation scattering 
techniques (Chapter 5), rheological behavior (Chapter 4), computer simulations (Figure 13.4 
above), and statistical mechanical methods find considerable use in this context. The task is 
relatively more manageable in the case of dilute systems, and this forms the focus of this 
chapter. In the following sections we examine the classical approach to colloid stability and 
then consider the influence of polymers on stability. 
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13.3 THE DERJAGUIN-LANDAU-VERWEY-OVERBEEK THEORY 
OF COLLOID STABILITY 

The interaction energy curves of the type shown in Figure 13.5 (and in Figure 10.1) are useful 
constructs for developing quantitative measures of kinetic stability. Such a study of stability is 
known as the Derjaguin-Landau- Verwey-Overbeek (DLVO) theory, in honor of the Russian 
physicists B. Derjaguin and L. Landau and the Dutch pioneer!; in colloid chemistry, E. Verwey 
and J. Th. G. Overbeek, who independently formulated theories of interaction forces between 
colloidal particles in the 1940s. In this section, we use the DLVO theory to examine, more 
quantitatively than we have done so far, the dependence of colloid stability on the various 
parameters that determine the shapes and the magnitudes of interaction energies between 
particles. A rnore elaborate formulation follows in Section 13 -4. 

13.3a Interaction Energy Curves and Their Dependence on 
the Properties of the Dispersion 

The exact shape of potential energy curves depends on the physical factors responsible for the 
interaction and also on the assumed geometry of the particles. We are mainly concerned with 
the case of two interacting planes since the expressions describing the various interactions are 
simpler in this case than for the more realistic case of interacting spheres. The more compli- 
cated spherical geometry contains no major fundamental insights beyond those already ob- 
tained from considering interactions between two planar surfaces. 

A quantitative expression for the net interaction of two blocks of material separated by a 
distance d between their surfaces is obtained by combining E:quations (10.63) and ( 1  1.86) to 
give 

( 1 )  

where A is the Hamaker constant. In the next few paragraphs the effects of the Hamaker 
constant, the surface potential, and the electrolyte content - considered separately and in this 
order - on the net potential energy curves are examined. 

13.3a. I Efject of the Hamaker Constant A 
It is understood that A in Equation ( 1 )  is the effective Hamaker constant Az12 for the system. 
Of the variable parameters in this equation, it is the one over which we have least control; its 
value is determined by the chemical nature of the dispersed and continuous phases. The 
presence of small amounts of solute in the continuous phase leads to a negligible alteration of 
the value of A for the solvent. 

The effect of variations in the value of A,, ,  on the net potential energy is shown in Figure 
13.6. Each of the curves in the figure is drawn for a different value of A ,  but at identical 
values of K ( 109 m - I  or 0.093 M for 1 : 1 electrolyte) and Go ( 103 mV). As might be expected, 
the height of the potential energy barrier decreases and the depth of the secondary minimum 
increases with increasing values of A .  If the cross-sectional area of interaction is 4.0 nm2, each 
unit on the ordinate scale corresponds to kBT at 25OC. This is the unit of thermal energy 
against which all interactions are judged to be large or small. Thus for the curves shown in 
Figure 13.6, the depth of the secondary minimum is slight, and only for the smallest A value is 
the barrier height significant for particles with this interaction cross section. 

13.3a.2 Effect of the Surface Potential $o 
The potential at the inner limit of the diffuse part of the double layer enters Equation ( 1 )  
through To, defined by Equation ( 1  1.65) with Go in place of $. For large values of Go, To = 1 ,  
so sensitivity to the value of Go decreases as Go increases. Figure 13.7 shows the effect of 
variations in the value of $o on the total interaction potential energy with K ( 109 m or 0.093 
M for a 1 : 1 electrolyte) and A (2 - lO-I9 J )  constant. The height of the potential energy 
barrier is seen to increase with increasing values of Go, as would be expected in view of the 

+,,, = 64kBTn,u -?: exp ( - ud) - (A/127r)dP2 
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increase of repulsion with this quantity. For some systems, Go is adjustable by varying the 
concentration of potential-determining ions, as described in Section 11.2 for the AgI surface. 
We have already seen in Section 11.8 that this quantity can be complicated by other adsorption 
phenomena; this is why we described it above as the potential at the “inner limit of the 
diffuse part of the double layer” rather than simply “at the wall.” As we saw in Chapter 12, 
electrokinetic experiments measure a potential within the double layer - the r potential - but it 
is not entirely clear at which location within the double layer this potential applies. However, 
the experimental r potential does establish a lower limit for $,,. 

13.3a.3 Effect of Electrolyte Concentration 
Of the various quantities that affect the shape of the net interaction potential curve, none is as 
accessible to  empirical adjustment as K .  This quantity depends 0x1 both the concentration and 
valence of the indifferent electrolyte, as shown by Equation (11.41). For the present we 
examine only the consequences of concentration changes on the total potential energy curve. 
We consider the valence of electrolytes in the following section. To consider the effect of 
electrolyte concentration on the potential energy of interaction, it is best to  use the more 
elaborate expressions for interacting spheres. Figure 13.8 is a plot of a,,, for this situation as a 
function of separation of surfaces with K as the parameter that varies from one curve to 
another. 

J, and q0 = 
25.7 mV. The ordinate in this figure has been labeled both in joules and in multiples of k,T at 
25OC. For the system described by these curves a significant energy barrier is present at all 

Figure 13.8 has been drawn for spheres with radius R, = 100 nm, A = 
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l O - I 9  J )  and go (25.7 mV). (Redrawn with permission from E. .J. W. Verwey and J .  Th. G. 
Overbeek, Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam, Netherlands, 
1948.) 
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concentrations of a 1 : 1 electrolyte less than about 1Ow3 M. For concentrations between 10-3 
and 10 - 2  M, however, the barrier vanishes. This particular colloid is thus expected to undergo 
a transition from a stable dispersion to a coagulated one with additions of an indifferent 1 : 1 
electrolyte to a concentration in this range. 

13.3b Implications for Colloid Stability 

13.3b. I Critical Coagulation Concentration 
It has long been known that the addition of an indifferent electrolyte can cause a lyophobic 
colloid to undergo coagulation. The DLVO theory provides a quantitative explanation for this 
fact. Furthermore, it is known that, for a particular salt, a fairly sharply defined concentration 
is needed to induce coagulation. This concentration may be called the critical coagulation 
concentration. The DLVO theory in general and Figures 13.6-13.8 in particular can be sum- 
marized by the following statements: 

1. 

2. 

3 .  

The higher the potential at the surface of a particle- and therefore throughout the 
double layer - the larger the repulsion between the particles will be. 
The lower the concentration of indifferent electrolyte, the longer is the distance from 
the surface before the repulsion drops significantly. 
The larger the Hamaker constant, the larger is the attraction between macroscopic 
bodies. 

Remember, the point of these figures is to see the effect on the potential energy curves of 
systematically varying one parameter at a time. It is the trends of behavior rather than the 
parameters themselves that are of greatest interest. In the following section we discuss the 
critical coagulation concentration as a simple quantitative test of the theory. In Section 13.4 
we see how studies of the rate of coagulation provide still more stringent tests of the theory 
and the means for evaluating parameters of interest. 

One of the easiest tests that can be performed on an aqueous colloid is to determine the 
critical concentration of electrolyte required to coagulate the colloid. We use the notation 
CCC (for critical coagulation concentration) to indicate this quantity. This experiment is 
conducted by introducing the dispersion into a series of test tubes and adding to each various 
proportions of water and electrolyte solution. In this way the total dilution of the dispersed 
particles is held constant while different amounts of salt are added to each. After mixing and 
waiting an arbitrary but consistent length of time, we visually inspect the tubes for evidence of 
the effect of the added salt. There will generally be clear evidence of coagulation (e.g., the 
settling out of the dispersed phase) in some of the tubes, whereas other tubes appear un- 
changed. Thus the highest concentration of salt that leaves the colloid unchanged and the 
lowest concentration that causes coagulation bracket the CCC. A second series of experiments 
may be conducted within this range to narrow the range of the CCC still further. 

The actual concentration of electrolyte at the CCC depends on the following: (a) the time 
allowed to elapse before the evaluation is made, (b) the uniformity or, more likely, the 
polydispersity of the sample, (c) the potential at the surface, (d) the value of A,  and (e) the 
valence of the ions. In a series of tests on any particular system, items (a)-(d) remain constant, 
so the CCC is a quantitative measure of the effect of the valence of the added ions. Table 13.1 
summarizes some experimental results of this sort. 

13.3 b. 2 Sch ulze-Hardy Rule 
The results in Table 13.1 have been collected for colloids bearing both positive and negative 
surface charges. One of the earliest (1900) generalizations about the effect of added electrolyte 
is a result known as the Schulze-Hardy rule. This rule states that it is the valence of the ion of 
opposite charge to the colloid that has the principal effect on the stability of the colloid. The 
CCC value for a particular electrolyte is essentially determined by the valence of the counter- 
ion regardless of the nature of the ion with the same charge as the surface. The numbers listed 
in parentheses in Table 13.1 are the CCC values in moles per liter for counterions of the 
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TABLE 13.1 Critical Coagulation Concentration Values (in Moles Liter-') for Mono-, Di-, Tri-, and Tetravalent Ions Acting on 
Both Positive and Negative Colloids (Numbers in Parentheses) and CCC Values Relative to the Value for Monovalent Electrolytes 
in the Same System (Numbers Outside Parentheses)a 

Negatively charged colloids Positively charged colloids 
Valence of 
counterion As2S3 Au AgI A1203 Theory 

1 (5.5 x 10-2) 
1 

2 (6.9 x 10-') 
1.3 x 10-2 

3 (9.1 x 1 0 - ~ )  
1.7 x 1 0 - ~  

4 (9.0 x 1 0 - ~ )  
17 x 1 0 - ~  

Potential- 
determining ion S2 - 

(2.4 x 10-2) 
1 

1.6 x 10-2 
(6.0 x 10-6) 

(3.8 x 1 0 - ~ )  

0.3 x 1 0 - ~  
(9.0 x io-') 
0.4 x 1 0 - ~  

c1 

(1.42 x 10-I) 
1 

1.7 x 10-2 
(6.8 x 10-5) 

(2.43 x I O - ) )  

0.5 x 1 0 - ~  
(1 .3  x 1 0 - ~ )  

I x 1 0 - ~  

I -  

(1.18 x 10-2) (5.2 x 10-2) 
1 1 I 

(6.3 x 1 0 - ~ )  
1.8 x 10-2 1.2 x 10-2 1.56 x 10-2 

- (8 x 1 0 - ~ )  
- 1.5 x 1 0 - ~  1.37 x 1 0 - ~  
- (5 .3  x 1 0 - ~ )  
- 10 x 1 0 - ~  2.44 x 1 0 - ~  

(2.1 x io-') 

H' H' 

Source: J .  Th. G. Overbeek, in Colloid Science, Vol. I (H. R.  Kruyt, Ed.), Elsevier, Amsterdam, Netherlands, 1952. 
"Theoretical values are given by Equation (10). 
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indicated valence. That is, about 7 - 10-4 M of divalent cation is needed to coagulate the 
negative As2S3 sols, whereas about 6 1 O W 4  M of divalent anion is required to coagulate 
positive A1203 sols. 

The actual values of these concentrations depend on a whole array of unknown parame- 
ters, but their relative values depend only on the valence of the counterions. The entries 
outside parentheses in Table 13.1 are the values of the CCC relative to the value for the 
monovalent electrolyte in the same set of experiments. These are seen to be remarkably 
consistent for the divalent ions and acceptably close together for trivalent and tetravalent 
counterions. 

Now let us see how this result is to be understood in terms of the DLVO theory. At first 
glance, it seems remarkable that any consistency at all can be found in tests as arbitrary as the 
CCC determination. It is not difficult, however, to show that these results are quite close to 
the values predicted in terms of the DLVO model for interacting blocks with flat faces. From 
an inspection of Figure 13.8, we concluded that the system at K = 108 m - ’  would be stable 
with respect to coagulation, whereas the one at  K = 3 - 108 m - ’  would coagulate. Further- 
more, we examined the energy barrier to draw these conclusions. Next we must ask how 
the qualitative criteria we used in discussing the curves can be translated into an analytical 
expression. 

One way of doing this is to assume that the demarcation between stable and unstable 
colloids occurs at the value of K for which the height of the “barrier” is zero. Physically, this is 
a somewhat arbitrary choice: Thermal energy is sufficient to allow particles to overcome a 
barrier of low but nonzero height. Mathematically, however, the assumption that the maxi- 
mum in the potential energy curve occurs at  zero permits us to write 

aner = 0 at d = d, 

and 

d@,,,/dd = 0 at d = d, (3) 

as the conditions for stability, where d = d, is the location of the maximum in the potential. 
Applying Equations ( 2 )  and ( 3 )  to Equation ( 1 )  gives 

and 

where the subscript m reminds us that this describes the maximum. From these equations it is 
readily apparent that 

Kd, = 2 (6) 

is the criterion for stability according to this model. This may also be written as 

d, = 2 ~ ~ ’  (7) 

in terms of the “thickness” of the double layer. Again we see an important distance measured 
in terms of K - I .  If we had used the interaction energy expression corresponding to Equation 
(1) for spherical particles of the same radii, the above result would have been d, = K - I .  The 
difference is thus only a numerical factor; the functional relationship does not change. 

It is the dependence of the CCC values on the valence of the electrolyte that we seek to 
obtain rather than the absolute value of the CCC. Therefore it is sufficient to proceed from 
this point by merely retaining those factors that involve either the concentration ( n ,  a c, 
where c is the molar concentration) or the valence z .  A more detailed expression can be 
obtained easily (see Problem 1 at the end of the chapter), but we shall not consider it here. 

Substituting Equation (6) back into Equation (5) yields 

n ,  a K 3  
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The dependence of To on z has been neglected in writing this result, a procedure that is 
entirely justified for the level of approximation involved here (recall that To = 1). From the 
definition of K (Equation ( 1  1.41) ), we obtain 

n m  23n3,/2 (9) 

or 

c = z - 6  (10) 

which is the desired result. According to Equation (lO), the: CCC value varies inversely 
with the sixth power of the valence of the ions in solution. The column of numbers in Table 
13.1 labeled “theory” follows the progression z - ~ :  1 ,  2 - 6 ,  3 -6 ,  4 -”. The actual CCC values are 
seen to be in quite reasonable accord with these predictions. 

Note that if rl/o is not assumed to be large, To depends on both z and Go. In this case the 
CCC is found to show a less sensitive dependence on the counterion valence than predicted by 
Equation (10). Example 13.1 examines this point. 

* * *  

EXAMPLE 13.1 Critical Coagulation Concentration and rl/@ Use the accompanying data given 
below to criticize or defend the following proposition: Since the CCC for positively charged AgBr 
is less (regardless of counterion valence) than that for poly(viny1 chloride) (PVC) latex, $o must 
be less for AgBr. 

C c c  (mole liter -’) 
of ions opposite in charge to $o 

Colloid z = l  z = 2  

PVC latex 2.3 * 10 -’ 1.2 - 10-2 
AgBr 1.6 * 1OP2 2.3 * 10 - 4  

Solution: Because of the arbitrary time of observation in CCC experiments, the absolute val- 
ues of the CCCs have no significance. In this regard the proposition is wrong. It may be possible 
to rank the two colloids with respect to surface potential, however, by examining the order of 
the dependence of CCC on ion charge for each of the colloids: 

ForAgBr: 1.6 - 1OP2/2.3 10-4 = 69.6 = (1/2)-” son = 6.12 
For PVC: 2.3 10-’/1.2 . 10-‘ = 19.2 = (1/2)-” son = 4.26 
The fact that AgBr agrees with the prediction of Equation (lO), which applies at high potentials, 

rn suggests that $o IS greater for this colloid than for PVC. 
* * *  

Although this test of the DLVO theory itself introduces some additional approximations, it is a 
workable unification of experimental and theoretical points of view. The threshold of stability in 
terms of the concentration and valence of indifferent electrolyte is easily measured. Theoretical 
models describe the interaction between a pair of particles in terms of potential energy diagrams. 
The reconciliation of these two approaches constitutes an important step toward obtaining still 
more quantitative information from the study of coagulation. This is discussed in the following 
sections, which are concerned with the kinetics of coagulation. First, however, a few remaining 
comments about the critical coagulation concentrations must be made. 

In Chapter 1 1  (Sections 11.4 and 11.6) we implicitly anticipated that the ion opposite in 
charge from the wall plays the predominant role in the double layer, the central observation of 
the Schulze-Hardy rule. This enters the mathematical formalism of the Gouy-Chapman theory 
in Equation (1 1.52), in which a Boltzmann factor is used to describe the relative concentration 
of the ions in the double layer compared to the bulk solution. For those ions that have the 
same charge as the surface (positive), the exponent in the Boltzniann factor is negative. This 
reflects the Coulombic repulsion of these ions from the wall. Ions with the same charge as the 
surface are thus present at  lower concentration in the double layer than in the bulk solution. 
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The signs are reversed for oppositely charged ions; therefore the concentration of the latter is 
increased in the double layer. It may be shown-at least for high $" values-that the result of 
these considerations is essentially equivalent to emptying a region 2~ - '  thick of ions having 
the same charge as the wall (see Problem 11.5). Thus, in terms of the model for coagulation 
just presented, it is essentially only the counterions that contribute to the diffuse double layer 
at the critical separation for coagulation. 

The CCC values reported in Table 13.1 in many cases are average values for several 
compounds of similar valence. The use of averages to compare CCC values is justified since 
the valence primarily determines the CCC for an electrolyte. 

However, a closer inspection of the data reveals that there are second-order differences 
between different ions. For example, 0.058 and 0.051 M are the Li ' and Na ' concentrations 
required to coagulate As& sols, and 0.165 and 0.140 M are the concentrations required to 
coagulate AgI sols. Although both sets of values are acceptably close to the mean (which 
includes a number of other compounds), it is also clear that Li + is consistently slightly less 
effective than Na' in inducing coagulation. A more complete sequence of these variations in 
effectiveness is as follows: 

1. For monovalent cations, 

Cs' > Rb' > NH: > K +  > N a +  > Li' 

2. For monovalent anions, 

F -  > C1- > Br- > NO; > I -  > SCN- 

It is apparent from the correlation between the rankings of monatomic ions and their 
placement in the periodic table that some systematic effect is responsible for this ordering. 
This was the focus of Section 11.8 on Stern adsorption. 

13.4 THEORY OF COAGULATION IN DILUTE DISPERSIONS 

In this section we formulate the theory of kinetic stability of colloids. Our ultimate goal is to 
derive expressions for what is known as the stability ratio, defined in the following section, in 
terms of the interaction potential. The classical approach to this problem divides the process 
of coagulation into two steps. The first is the transport of particles toward each other, and the 
second is the eventual attachment on contact, for which we will assume that the particles stick 
to each other with a probability of unity on contact. The transport step can be driven by a 
number of mechanisms depending on the situation considered (e.g., externally imposed flow 
of fluids that carries the particles toward each other, differential sedimentation, and transport 
due to other forces such as magnetic or externally imposed electric fields), but for simplicity 
we consider only diffusion and attraction or repulsion due to interparticle forces. When the 
primary transport mechanism is diffusion, the coagulation is known as perikinetic coagula- 
tion. When velocity gradient is the dominant transport mechanism, the process is called 
orthokinetic coagulation. 

13.4a Stability Ratio W 

The stability of a dispersion against coagulation is expressed quantitatively by what is known 
as the stability ratio, usually denoted by W. The stability ratio is defined as 

Rate of diffusion-controlled interparticle collision 
Rate of interaction-force-controlled interparticle collision 

W =  

If one assumes that a collision between two particles leads to permanent contact between the 
colliding particles, the diffusion-controlled collision rate in the numerator of the definition of 
W corresponds to "rapid" coagulation since the ever-present diffusion (i.e., the random 
Brownian motion) of the particles is unhindered by any energy barrier against contact. The 
denominator, the rate of collisions controlled by interaction forces (presumed to act against 
coagulation), then corresponds to "slow" coagulation. Thus large values of W imply that the 
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dispersion is slow to coagulate (and is “stable”), whereas Wof the order of unity implies that 
the dispersion coagulates rapidly. 

Clearly, Wis a function of any property of the dispersion that affects the strength of the 
interparticle forces and the energy barrier that slows down (or prevents) coagulation. A 
classical goal of colloid science has been to develop the equations necessary to predict the 
extent of stability of dispersions so that the results could be used in combination with the 
theories of interaction forces developed in previous chapters to promote or prevent the stabil- 
ity of dispersions. 

We focus on the above goal in the following sections. First, we develop the equations for 
describing the mutual transport and collision of particles in the case of “rapid” coagulation. 
Then we modify the transport equation to reflect appropriately the influence of interparticle 
forces; the solution of this equation leads to the collision rate for “slow” coagulation. From 
these we then develop the equation for Win terms of the expressions for interparticle energies. 
Finally, the resulting expression for W is used, with a set of simplified electrostatic and van 
der Waals interaction energies, to show how colloidal stability can be predicted for known 
physicoc hemical conditions. 

13.4b Theory of Rapid Coagulation 

Let us now consider coagulation of particles in the absence of any repulsive barrier. In 
addition, we assume that, although there are no interparticle forces that contribute to the 
transport of particles toward each other, there is sufficient attraction between the particles on 
contact for them to form a permanent bond. As early as 1917, Smoluchowski formulated the 
equations for the collision rate for particles transported by diffusion alone (Smoluchowski 
1917), and we develop the same idea here. 

We begin by considering an array of spherical particles with motion that is totally gov- 
erned by Brownian movement. Let us assume that there are particles of two different radii, 

and We assume the spheres interact on contact, in which case they adhere, forming a 
doublet. Although this is a highly oversimplified picture, it provides a model from which more 
realistic models can be developed in subsequent stages of the presentation. 

Figure 13.9 shows a schematic illustration of the formation of a doublet. We have fixed 
the origin of the coordinate system (i.e., r = 0, with r the center-to-center distance between 
two particles) at the center of a particle of type 2, that is, a particle with radius R3,z. Since the 
particles adhere on contact, the rate at which these particles disappear equals the rate at which 
they diffuse across the dashed surface in the figure. This surface corresponds to a spherical 

FIG. 13.9 Coagulation of two spherical particles bf radii Rs,l and to form a doublet. 
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surface of radius (Rs,, + Rs,2) inscribed around one of the spheres, which, for the present, is 
assumed to be stationary. After coagulation the number of independent kinetic units is locally 
decreased in the neighborhood of this coagulation site. Therefore we may imagine a concentra- 
tion gradient around the fixed particle as responsible for the diffusion toward it. 

As mentioned above, in 1917 M. Smoluchowski applied the theory of diffusion to this 
situation to evaluate the rate of doublet formation. According to Fick’s first law (Equation 
(2.22) ) J ,  the number of particles crossing a unit area toward the reference particle per unit of 
time is given by 

J = -D,(dN,/dr) (12) 
where D, is the diffusion coefficient of the spheres of radius Rs,,, and NI is their total number 
of particles of type 1 per unit volume. This flux can be combined with a number or mass 
balance equation on a thin spherical shell t o  obtain the unsteady-state diffusion for the 
particles : 

where N I  is the number concentration at position r a n d  at time t .  Note that this equation is the 
analog, in spherical coordinates, of Fick’s second law of diffusion we derived in Chapter 2 
(Equation (2.26) ). The diffusion coefficient D, is given by the Stokes-Einstein relation (Equa- 
tion (2.32) ). 

D = k,T/6qRS,, (14) 

where Tis the temperature of the dispersion (in K), q is the viscosity of the fluid (mass/(length 
- time)), and k, is the Boltzmann constant. The diffusion equation for N I  given above 
assumes that the spatial variation N I  is spherically symmetric and depends on the radial 
distance only. 

We restrict our attention to steady-state diffusion, for which the left-hand side of Equa- 
tion (13) is zero. The resulting equation can be integrated easily, and one gets 

(15) 
1 
r 

N , ( r )  = - B -  + C 
where B and C are integration constants that we determine shortly. 

for flux: 
The flux at any distance r is obtained simply from the above solution using the Fick’s law 

J( r )  = Flux = Number of particles arriving at r per unit area per unit time 

which, for our solution, is 

(17) 
1 

J ( r )  = -BD, - 
r2 

Now, let us evaluate the constants B and C; for this we use the usual boundary conditions 

(i) As r + m, N I  ( r )  -+ Nbl ,  the bulk concentration of particles (of type 1 )  (18) 
(19) 

where we have assumed that particles of radius Rs,, are diffusing relative to particles of radius 
The reference point r = 0 is fixed at the center of a particle of radius R,,2 (see Fig. 13.9). 

The second boundary condition states that the “concentration” of particles of radius R , ,  at the 
contact point r = R,, + Rs,2 is zero. 

From the above conditions one sees that C = Nbl and B = Nbl (Rs,, + Rs,2). Therefore, 
the flux at the contact point r = (Rs,, + Rs,2) becomes 

(ii) At r = R,, + Rs,2, N I  ( r )  = 0 

J ( a t r  = Rs,l + Rs,2)  = -DINbl(Rs,l + R3,2)-’ (20) 
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The negative sign indicates that the particles of radius R , ,  are transported toward the particle 
of radius R , ,  (which has been assumed to be fixed in its position a t  r = 0). The magnitude of 
the collision rate Z 1 ,  that is, the number of collisions of type 1 particles with a stationary 
particle of type 2 per unit time, is then 

(21) 
In general, particles of radius R,,, will also be executing random Brownian motion (i.e., 

diffusion). In such a case, D ,  should be replaced by D,, = (Dl  + 0,). The collision rate Z 1 2  
(where the second subscript now reminds us that particle 2 is also executing diffusive motion) 
is then 

z l  = IJ14r(Rs,l + R s , 2 ) 2  = 4r(Rs,l  + Rs,2)D1Nbl 

z12 = 4r(R~,l + Rs,2)D12Nbl 

The above result implies that the collision rate is of the form 

z12 = arNb,  (23) 

a r  = 4r(Rs,, + Rs,,)D12 (24) 
with the subscript r indicating that the result is for rapid coagulation. One can now use this 
result to determine the reduction in Nbl as a result of the formation of 1-2 pairs (doublets). In 
particular, the rate of reduction of the bulk concentration Nbl with time t can be written as 

where 

dNbl/dt = -CY,NblNb2 (25) 

where we have multiplied Equation (23) by (a) Nb2 since there are Nb2 number of type 2 
particles (used as reference particles in solving the diffusive collisions by particles of type 1) 
per unit volume of the dispersion and (b) - 1 to indicate the reduction in the particles of type 
1 due to coagulation. Note that the same equation with subscript 1 in place of 2 and vice versa 
describes the reduction in concentration Nb2. 

For particles of identical radius R,, one has 

z = 16rDRsNb = arNb (26) 
with 

a, = 16rDRs 

Note that we no longer need the subscripts 1 and 2 on Z and Nb. 
The coagulation rate for identical particles is then given by 

with (ar/2) written as k,, the rate constant for  rapid coagulation. Notice that the factor (1/2) 
appears in this case to avoid counting the same particle twice in the total collision rate; that is, 
collision of particle i with particlej accounts also for collision of j with i .  Equations (25) and 
(28) correspond to the rate expressions for bimolecular “reactions” and, in this sense, the 
above description of coagulation is analogous to two reactant particles forming a doublet as 
the product of the reaction. 

Equation (28) can be solved easily to obtain the concentration Nb as a function of time. If 
Nbo is the overall (bulk) concentration at t = 0, one gets from the above equation 

Nb(t) /Nm = (1 + t / f 1 / 2 ) - 1  (29) 

where 

is the so-called half-life for coagulation, that is, the time it takes for the overall concentration 
to reduce to half the initial concentration Nm. Equation (29) can also be written as 
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= k,t 
1 1 

N U )  NbO 
One should keep in mind the restrictions or limitations implicit in this development. It has 
been assumed, in effect, that only binary collisions occur. The result obtained is therefore 
strictly applicable to  dilute dispersions, for which the probability of the formation of triplets, 
quadruplets, and so on, is negligible. We touch on the generalization of Equation (25) in 
Section 13.4f. 

The most reliable way to evaluate a rate constant for coagulation, therefore, is to measure 
Nb as a function of time. Although this is an easy statement to make, it is not an easy thing to 
do experimentally. One technique for doing this is literally to count the particles microscopi- 
cally. In addition to particle size limitations, this is an extraordinarily tedious procedure. 
Light scattering (Chapter 5 )  is particularly well suited to kinetic studies since, in principle, 
experimental turbidities can be interpreted in terms of the number and size of the scattering 
centers. A variety of additional techniques for following the rate of particle disappearance has 
been developed for specific systems. We do not pursue these, but merely note that experimen- 
tal rate constants for coagulation can be determined. 

Now, substituting the Stokes-Einstein equation (Equation (14) ) for the diffusion coeffi- 
cient in the expression for k, leads to 

k,  = 4kBT/3y (32) 

Note that the size of the particles drops out of the final expression for k,; therefore the 
expression is equally valid for small molecules or colloidal particles so long as the various 
assumptions of the model apply. This constant describes the rate of diffusion-controlled 
reactions between molecules of the same size. In Example 13.2 we examine the numerical 
magnitude of the rate for the process we have been discussing. 

* * *  

EXAMPLE 13.2 Variation of Particle Conce;tration Due to Rapid Coagulation. An aqueous 
dispersion initially contains 1 O9 particles cm - . Assuming rapid coagulation, calculate the time 
required for the concentration of the dispersed units to drop to 90% of the initial value. The 
viscosity of water is 0.010 P at 2OoC, which may be used for the temperature of the experiment. 

Solution: First we evaluate k,, using Equation (32). It is convenient to use cgs units for this 
calculation; therefore we write k, = 4 - (1.38 - . (293)/(3 )(0.010) = 0.54 - 10-l1 cm3 
s-’. Recall that the coefficient of viscosity has units (mass length-’ time-’), so the cgs unit, 
the poise, is the same as (g cm -’ s -’). As a second-order rate constant, k, has units (concentra- 
tion -’ time - l ) ,  so we recognize that the value calculated for k, gives this quantity per particle, 
or k, = 0.54 . 10-l1 cm3 particle-’ s-’. Note that multiplication by Avogadro’s nulmbyr of 
particles per mole and dividing by 103 cm3 per liter gives k, = 3.25 . log  liter mole- s -  for 
the more familiar diffusion-controlled rate constant. 

The 90% time is analogous to the half-life of the reaction. By considering a smaller extent 
of reaction, the assumptions of the model are more apt to remain valid. Substituting Nb = 0.90 
Nbo into Equation (31), we obtain (0.90 Nbo)-’ - (Nbo)-’ = k,t0,,, or to.go = (1.00 - 0.90)/0.90 
kflbo. = 0.10/(0.90)(109)(0.54 - 10-” ) = 20.6 s. Note the cancellation of concentration units 
in this last step. 

* * *  

Examples are readily found in which the observed rate constant for coagulation is several 
orders of magnitude smaller than the rate constant we have been discussing. These are cases of 
slow coagulation and imply a component of net repulsion between the dispersed particles. We 
continue with the analysis of the kinetics of slow coagulation at this point. This is the topic of 
the next section. 

1 3 . 4 ~  Theory of Slow Coagulation 

Attractive interparticle forces can enhance collision rates (although only moderately) and can 
cause more rapid coagulation; however, in most practical cases of interest we are concerned 
with the reduction in collision rates (and the consequent increase in stability) caused by 
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energy barriers introduced through net interparticle repulsive forces (hence the name slow 
coagulation). The diffusion equation used in the last section can be modified to account for 
the presence of interparticle interaction forces, and a closed form expression can be developed 
for the collision rate. The corresponding analysis in this case is k:nown as the Fuchs theory of 
slow coagulation, after Fuchs (1934), who addressed this problem first. 

We saw above, from Fick’s first law of diffusion, that the flux at a distance r from the 
central particle is given by 

dN, J ( r )  = -11, - 
dr (33)  

at steady state (when only diffusion is the transport mechanism). We must now add the flux 
due to the interparticle interaction energy (PI2(r) between particles of type 1 and type 2 to the 
above expression. The interaction energy exerts a force given by (-d@,,/dr) on the diffusing 
particle. This force imposes on the particle an effective drift velocity veff, given by 

where f is the friction factor (and l / f  is the mobility of the particle; see Atkins 1994). Note 
that for a spherical particle of radius R,,, in Stokes flow, f = 6~7R,,l as we introduced in 
Chapter 2 and used in the last section. The velocity veff can therefore be written as 

by using the Stokes-Einstein relation. Equation ( 3 3 )  for the diffusive flux can now be modified 
to include the flux vCff N I  caused by the drift velocity of the particles in the direction of the 
force due to interparticle energy: 

dr 

The magnitude of the number of particles transported through the spherical cross section of 
area 4rr2 is then equal to the collision rate Z , ,  which at steady state becomes 

This equation can be simplified by defining 

y ( r )  = exp [@12(r)/kBTlNI(r) (38)  

to 

dr 
exp[-@,,(r)/k,T] = dy 4 

4rD, r 

On integration one has 

(39)  

where the conditions that N = Nbl and a,, -+ 0 as r -+ 00 have been used. 
The second boundary condition (i.e., N I  = 0 at r = RS,, + R,,2, which also implies that 

(exp [@,,(r)/k,T]N,(r))  is also equal to zero at r = R,, + Rs,2)  can now be used to get the 
collision rate 2, (with a stationary reference particle of radius R,,;): 
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As discussed in the previous section, D, will have to be replaced with D,, for two mutually 
diffusing particles of radii R , ,  and Rs,2: 

The total rate of collision (and, hence, the coagulation rate) is now given by 

in analogy with Equation (25).  

Equation (43) can be written as 

dNb,/dt = -(Y,Nb,NbZ (44) 

analogous to the case of rapid coagulation. The subscript s on the rate coefficient as draws 
attention to the fact that our focus here is slow coagulation: 

For identical particles of radius R,, with D,2 = D ,  + D2 = 2 0 ,  one gets from Equation 
(42) 

where s is the dimensionless surface-to-surface distance defined by s = [ (r /R,)  - 21. The 
corresponding coefficients a, and k, become 

= 2 k ,  (47) 
ds 

(Y, = g.lrDR, + e*(s)/kBT 1: (s + 2 ) 2  

where the fact that k, = ( 4 2 )  has been used. 
When there is no interaction force between the particles (i.e., cP(r) = 0), the above result 

reduces to ar, corresponding to the rapid coagulation rate given by Equation (27) in the 
previous section. When there is a strong repulsive barrier, the integral in Equation (47) leads 
to a large value, thereby reducing the rate of coagulation. 

13.4d Stability Ratio Wand Its Dependence on cP(r) 

Equations (27) and (47) show that 

k, = kr/ W 

where W is the stability ratio defined in Equation (1 1). Thus 

As we noted above, the evaluation of W for given values of dispersion properties such as 
surface potential, Hamaker constant, pH, electrolyte concentration, and so on, forms the goal 
of classical colloid stability analysis. Because of the complicated form of the expressions for 
electrostatic and van der Waals (and other relevant) energies of interactions, the above task is 
not a simple one and requires numerical evaluations of Equation (49).  Under certain condi- 
tions, however, one can obtain a somewhat easier to use expression for W. This expression 
can be used to understand the qualitative (and, to some extent, quantitative) behavior of W 
with respect to the barrier against coagulation and the properties of the dispersion. We exam- 
ine this in some detail below. 
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When the repulsion barrier is large (i.e., is about 10 k,Tor larger), one can evaluate 
the integral in the expression for Wusing what are known as asymptotic techniques and obtain 
the following expression (Derjaguin 1989, p. 162): 

- Q r "  (s,) 

where s, is the value of s corresponding to the maximum in 9 [i.e., 9 ( s m )  = 9m0x] and 9"(s,) 
= d29/ds2 evaluated at s = s,. Note that because 9(s,) is the maximum in the potential, the 
second derivative of 9 at s = s, is negative and [ - 9 " ( s , ) ]  is positive. Typically, the location 
of the maximum in 9 ( s )  occurs at distances of the order of a few nanometers. Therefore, for 
particle radii of the order of 100 nm or larger, s, 4 1, and the above equation simplifies to 

Equation (51) shows that Wis a sensitive function of 9,,, the maximum in the interaction 
potential, which in turn is a very sensitive function of properties such as &, electrolyte 
concentration, and so on. As a consequence, the stability ratio decreases rapidly with, for 
example, added electrolyte, and the dispersion coagulates beyond a threshold value of electro- 
lyte concentration known as the critical coagulation concentration, as we saw in Section 
13.3b.l. 

Example 13.3 shows another way of deriving the above equation. 
* * *  

EXAMPLE 13.3 Expression for Stability Ratio in Terms of By replacing r by r,,,, the 
center-to-center distance of separation at the maximum in the potential energy curve and using 
a truncated Taylor series about the maximum to estimate CP(r), show that W a exp (CP,,,/k,T), 
with a,,, the height of the potential energy barrier at the maximum. Comment briefly on these 
and any other assumptions or approximations involved. 

Solution: The function ( r - ' )  exp (CP/k,T) has its maximum at CP,,, and drops off rapidly for CP < 
CP,. This justifies focusing attention on the maximum. Furthermore, the exponential term is more 
important than the r -' factor; hence the latter is replaced by r;'. 

The Taylor series expansion of CP can be written 

CP = CP, + ( r  - r,,,)(aWar),,, + [ (r  - r,,,)'/21(a2+/ar2),,, + . . . 
according to Appendix A. The subscript rn reminds us that the derivatives are evaluated at the 
maximum, and for this reason the term (aWdr),,, equals zero. With these substitutions Equation 
(49) may be written as (in terms of the center-to-center distance I' instead of the dimensionless 
surface-to-surface distance s)  

with p 2  = -(a2War2),/2k,T. In the second part of the above equation, the variable has been 
changed to Ar ( =  r - r,,,) with the limits adjusted accordingly. We can rewrite the above result 
in terms of two integrals, one going from Ar = (2R, - rm) to Ar = 0 (i.e., r going from 2Rs to rm) 
and the second from Ar = 0 to Ar = 00: 

The second inte ral is one of those shown in Table 2.2 and is equal to ( l / 2 ) (dp2)" ' .  As 
noted above, (a2CP/ar ),,, is negative since the point of evaluation is a maximum; therefore (p')  
is positive, and there is no sign problem with the square root. The fact that the function in ques- 
tion drops off sharply with distance from the maximum implies that the first integral can be 
written as 

9 
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rm - 2Rs so exp ( - p2(6r)2)d(hr) = som exp ( - p2(6r)2)d(Ar) 

where 6r is now (r,,, - r).  Therefore, we again have the same result as above, that is, the first 
integral is also equal to ( 1 / 2 ) ( ~ / p ~ ) ” ~ .  The final expression for W is thus 

w=- ‘K112 Rs e+mlkBT 

c P 
It is a simple exercise to show that the above result is identical to Equation (50). If p can be 
regarded as a constant, then W plays a role in Equation (51) that converts the latter to the form 
of the Arrhenius expression for ordinary chemical rate constants. 

Let us consider some variations of the above approximation. 
Case 1. The location of the maximum r,,, is approximately 2Rs and the potential drops off 

relatively slowly. 
In this case, the lower limit of the integral in 

can be replaced with zero and, using the arguments presented above, we obtain 

This expression can be used for arriving at the stability ratio for charged particles in nonaqueous 
media in which the repulsion can be modeled using a simple Coulombic expression (see 
Problem 3 at the end of the chapter). 

Case 2. Step function barrier. 
A useful approximation for the interaction energy is a step function of the form 

+(r) = - 00 

= a,,, 
= o  

forr < 2Rs 
for2Rs < r < 2Rs + K - ~  

forr > 2R, + K - ’  

where K - ’  represents the range of the potential. In this case, the integral for the stability ratio 
can be evaluated easily to obtain 

Although highly simplified, the above expression provides a simple way to get an estimate of W. 

* * *  

The development sketched in Example 13.3 is not valid under all circumstances, but when it 
applies, it allows Equations (48) and (49) to be approximated by 

k, k,  e-om/k~T (52) 
This is the Arrhenius form to which the example refers. In it, the height of the maximum in a 
net potential energy curve plays the role of the activation energy. In the next chapter we see 
how this method has been used to evaluate W for systems in which the overlapping ion 
atmospheres of approaching colloidal particles provides the repulsion needed to give slow 
coagulation. 

13.4e Stability Ratio and Critical Coagulation Concentration 
Using the approach developed in Example 13.3 and interaction energy expressions for spheri- 
cal particles, it has been possible to predict how the stability ratio Wvaries with electrolyte 
concentration according to the DLVO theory. Since W can be measured by experimental 
studies of the rate of coagulation, this approach allows an even more stringent test of the 
DLVO theory than CCC values permit. We shall not bother with algebraic details, but instead 
go directly to the final result: 

(53) log W = K ,  log c + K2 
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where K ,  and K2 are constants and c is the concentration of the ions in moles per liter. For 
water at 25OC the value of K ,  has been calculated as [ -2.15 - 109 TiRs/z2]  where To is given 
by Equation (1 1.65) with +bo in place of +b, z is the valence of the counterions, and R, (in m) is 
the radius of the particles. Notice that because of the way Equation (53) has been written, the 
value of K2 depends on the units used for c, although taken together the right-hand side is 
dimensionless since log Wis dimensionless. We shall not go into this further since our primary 
objective here is to use Equation (53) to  examine the dependence of W o n  c and its agreement 
with experimental results. 

Figure 13.10 is a plot of log Wversus log c for AgI sols of several different particle sizes. 
The experimental W values in this figure were determined from absorbance measurements. 
According to the preceding section, data of this sort not only test the DLVO theory but also 
permit the evaluation of several important colloidal parameters. From the data in Figure 13.10 
the following conclusions can be drawn: 

1. 
2. 

A plot of log Wversus log c is linear as required by Equation (53). 
The concentrations at which W = 1 (where the breaks in the curves appear) measure 

the CCC values for the electrolyte involved. The CCC values for mono-, di-, and trivalent ions 
are about 0.199, 2.82 * lOP3, and 1.3 * 10-4 mole liter - I ,  respectively. These are in the ratio 
1 : 1.42 - 10 - 2  : 0.7 - 10 - 3 .  These figures compare very favorably with the other experimental 
data for AgI and the theoretical values presented in Table 13.1. 

Slow coagulation is observed for log W < 4 or W = 104. For a typical potential 
energy curve, this corresponds to  a value of am of about 15 k,T. From this we may conclude 
that the height of an energy barrier must be at least 15 k,T if the colloid is to have any 
appreciable stability. Likewise, we may assume that unless the secondary minimum is approxi- 
mately this deep, particles will be able to “escape” from it. In view of the general shape of the 
potential energy curves, the retardation effect, and this assessment of what constitutes a “high” 
barrier or a “deep” well, it seems likely that rigid aggregates are not formed in the secondary 
minimum. 

4. Equation (53) can be used to analyze the slopes of the curves in Figure 13.10 since the 
mean size of the AgI particles is known. In this way, Reerink and Overbeek (1954) found $o 
values in the range 12 to 53 mV and A values in the range 0.2 10-20 to 10 - 1 9  J .  Both of these 

3. 

FIG. 13.10 Plot of log Wversus log c for AgI sols of five different particle sizes coagulated with 
the electrolytes shown. The mean particle radii in the different sols are filled circles, 52.0 nm; open 
circles, 22.5 nm; squares, 53.5 nm; filled triangles, 65.0 nm; and open triangles, 158.0 nm. (Re- 
drawn with permission from H. Reerink and J. Th. G. Overbeek, Discuss. Faraday Soc., 18, 74 
( 1954) .) 



602 HIEMENZ AND RAJAGOPALAN 

are of the proper order of magnitude-no minor accomplishment in itself in light of the 
diverse assumptions required to get to this point. 

The values of A and $o obtained from this analysis are slightly less satisfying in detail: 
The values of A show a lot of scatter and Go appears to be too low. Recall that the variation of 
the CCC with z - ~  implies large values of $o (see Section 13.3b.2); for lower $o values a 
different dependence on z is expected. 

6. Least satisfactory of all is the correlation with particle size. The results shown in 
Figure 13.10 were determined for AgI sols covering a 10-fold range of particle sizes. 

It is evident from Figure 13.10 that the slopes do not vary over a similar range, as required 
by Equation (53). As a matter of fact, there are examples for which the steepest slope is 
associated with the coarsest particles (as required by theory) and others for which it occurs 
with the smallest particles. The quantitative predictions fail on this particular point, but, as we 
see below, there are some discrepancies between the theoretical model and the actual experi- 
mental system that may account for this apparent insensitivity to particle size. Example 13.4 
considers another application of Equation (53) to an experimental system. 

5 .  

* * *  

EXAMPLE 13.4 Change of Stability Ratio with Ionic ConSentration. Colloidal gold stabilized 
by citrate ions and having a mean particle radius of 103 A was coagulated by the addition of 
NaCIO,. The kinetics of coagulation were studied colorimetrically and the stability ratio W for 
different NaCIO, concentrations was determined (Enustun and Turkevich 1963): 

c . 103 (mole liter-’) 2 3 5 8  10.5 
W 48 31 17 8.9 0.84 

When these data are plotted in the manner suggested by Equation (53), a straight line is 
obtained up to about 10-2 M, at which point a precipitous deviation from linearity sets in. The 
slope of the linear portion is about - 1.20; estimate To from this slope. Verify that this value of 
To corresponds to a value of I)o equal to about 25 mV. Estimate what the CCC value would be 
for this system if W continued to vary according to the same function of c both above and below 
10-2 M. Suggest an explanation for the abrupt decrease in W near 10P2 M. 

Solution: The slope of the linear portion equals K , ,  the theoretical value of which is given 
above. Since R, is known for these particles, To may be calculated as follows: 

To2 = 1.20/[(2.15 - 109)(103 * 10-”)] = 0.054 

To = 0.23 
or 

Table 11.4 shows that this value of To corresponds to a value of I)o between 20 and 40 mV. For 
I)o = 25 mV, Equation (11.65) shows that To = exp ([25/2(25.7)] - l } / ( e x p  [25/2(25.7)] + 
1 } = 0.24, which is very close to the experimental value. If the linear portion of the plot is 
extrapolated to log W = 0, the value for log CCC is found to be -1.25, from which CCC = 
0.055 M. Apparently significant Na + adsorption begins to occur at about 10P2 M, and W begins 
to decrease rapidly above this concentration. 

* * *  

Before concluding this section, it seems desirable to comment a bit more fully on some possible 
sources of the discrepancy between the predictions of Equation (53) and the data shown in 
Figure 13.10. It is convenient to divide these remarks into those that involve the interaction 
energy explicitly and those that pertain to the kinetic part of the discussion. 

In the context of the interaction energy the following considerations are relevant: 
1. It may not be adequate to describe the interaction between AgI particles - especially 

at relatively close range-in terms of the radii of the dispersed units. In fact, the radii of 
surface protuberances rather than the dimensions of the particle as a whole may affect the 
short-range interaction. 

Throughout this discussion only nonspecific effects have been considered; that is, we 
have totally neglected to consider ion adsorption and the contribution of the Stern layer to the 
overall picture. This can be a serious source of complication, at least in some systems. This is 

2. 
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evident from the fact that some dispersions show a reversal of charge (from negative to 
positive) with the addition of La3+ and Th4+, indicating the adsorption of these ions. 

Several aspects of the kinetic part of the discussion above also warrant additional com- 
ments. These and a few other items are discussed in the following section. 

13.4f Other Factors Affecting Coagulation Kinetics 

There are a number of issues related to kinetics of coagulation that are not discussed in the 
previous sections. For example, 

For highly asymmetrical particles, the probability of collision is greater than that 
predicted for identical particles. This may be understood by noting that the diffusion 
coefficient is most influenced by the smaller dimensions of the particles (therefore 
increased), and the “target radius” is most influenced by the longer dimension (also 
increased, relative to the case of symmetrical particles’); see Equations (24) and (42). 
The frequency of collisions is also expected to be greater in a polydisperse system 
than in a monodisperse system by the same logic as presented in item 1. 
The presence of velocity gradients in the system may also increase the rate of coagula- 
tion above the value given by Equation (24) or (42). 

. 

The ratio of the probability of a collision induced by a fluid velocity gradient (dv/dx) 
(i.e., orthokinetic coagulation) to the collision probability under the influence of Brownian 
motion (perikinetic coagulation-what we have considered so far) has been shown to be 
(Probstein 1994) 

(For particles of different sizes, 2R, should be replaced with I?,, + Rs,2.)  Since this increases 
with the cube of particle size, it may be the dominant mechanism for the coagulation of larger 
particles. Note that all the kinetic complications - items 1 through 3 -tend to cancel out of the 
evaluation of the stability ratio since the rates of both rapid and slow coagulation are deter- 
mined on the same colloid. In spite of these complications, the value of the kinetic approach 
over, say, using Equation (1 1.1) or electrophoresis results (see Chapter 12) to determine $o is 
that the potential is evaluated in the actual coagulating system. and hence includes any contri- 
bution from Stern adsorption. Once a suitable value for Go is known, potential energy curves 
for that value of $o and a measured concentration of electrolyte (i.e., K )  can be constructed for 
different values of A2,2. That plot of anel versus d that is most consistent with W (e.g., by the 
method of Example 13.3) may be used to identify A,,, for the system under consideration. 

For a polydisperse colloid (or for a monodisperse colloid that has evolved to a polydis- 
perse suspension of aggregates of various sizes), we can develop an equation to calculate the 
concentrations of the aggregates as a function of time. For example, Equation (25) can be 
generalized to 

m - 1 m 

where Nbj is the concentration of particles of sizej  in the bulk and k,,, is the rate coefficient for 
collisions between particles of size i and sizej. The first term on the right-hand side has been 
multiplied by (1/2) to avoid double counting the same collisions (i.e., i * (rn - i) collisions 
are the same as (rn - i) * i collisions). The terms in the first summation on the right are 
known as the “birth” term since they represent the formation of particles of size m from the 
collisions of i and ( rn  - i ) .  Similarly, the terms in the second summation are known as the 
“death” terms since they represent the disappearance of size m because of the formation of 
larger particles through rn * i collisions. The above equation is therefore known as the 
birth-death equation or population balance equation (since it describes the populations of 
particles of various sizes). One can show that this equation reduces to the simpler ones we 
have used in the previous sections under appropriate conditions. 



604 HIEMENZ AND RAJAGOPALAN 

Although Equation ( 5 5 )  is formally correct, in practice one needs to make a number of 
assumptions to be able to use it for calculating the aggregate concentrations. For example, one 
usual assumption is that the radius of an aggregate of size rn is simply the radius of a sphere 
with a volume that is equal to the volume of all the particles in the aggregate; that is, the likely 
nonspherical shape of the aggregate and the porosity are ignored. The use of the birth-death 
equation in the case of slow coagulation is complicated further by the fact that the rate 
coefficients are functions of the stability ratio W ,  which, in turn, is a complicated function of 
the interaction potential 9, between particles of sizes i and j (see the discussion in Section 
13.2b in the context of Fig. 13.5). The use of birth-death population balance equations is more 
common in aerosol science since some of the approximations needed (such as equating the 
volume of an aggregate to the volumes of all the particles in the aggregate and approximating 
the aggregates as spheres) are more easily met, particularly for liquid aerosol droplets. We 
shall not discuss these here further; more information on the above is available in Sonntag and 
Strenge (1987) and standard books on aerosols (e.g., Hidy and Brock 1970). 

We shall now turn our attention to polymer-induced forces and their influence on colloid 
stability . 

13.5 POLYMER-COLLOID MIXTURES: 
A PHENOMENOLOGICAL PERSPECTIVE 

As mentioned in Section 13.1, polymers have been used since antiquity to stabilize dispersions 
of solids in liquids against coagulation. Paints and inks used by ancient civilizations were 
prepared by dispersing suitable pigments in water and “protecting” the resulting system by 
additives such as gum arabic, egg albumin, or casein. Gelatin has also been used extensively as 
a stabilizing agent. In molecular terms, these substances are charged polymers (polyelectro- 
lytes) and their stabilizing influence is traceable to both electrostatic and polymeric effects. 
Each of these contributions is complicated in its own right, so we have divided the discussion 
into two parts. Charge effects have been discussed in Chapter 11 in terms of low molecular 
weight electrolytes. In this chapter, we consider the stabilizing effects of nonionic polymers. 
The advantages of polymer-induced stability over electrostatic stability imparted through low 
molecular weight electrolytes is summarized in Table 13.2. 

13.5a General Considerations 

The role of polymers on colloid stability is considerably more complicated than electrostatic 
stability due to low molecular weight electrolytes considered in Chapter 11. First, if the added 
polymer moieties are polyelectrolytes, then we clearly have a combination of electrostatic 
effects as well as effects that arise solely from the polymeric nature of the additive; this 
combined effect is referred to as electrosteric stabilization. Even in the case of nonionic 

TABLE 13.2 Electrostatic and Steric Stabilization: A Comparison 

Electrostatic stabilization Steric stabilization 

Addition of electrolytes causes coagulation. 

Usually effective in aqueous systems. 

More effective at low concentrations of the 

Coagulation is not always possible. 
Freezing of the dispersion induces irreversible 

Insensitive to electrolytes in the case of non- 

Equally effective for both aqueous and non- 

Effective at both low and high concentrations 

Reversible coagulation is more common. 
Good freeze-thaw stability. 

ionic polymers. 

aqueous dispersions. 

dispersion. 

coagulation. 

Source: Hunter, 1987. 
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polymers, addition of the polymer to a dispersion can promote stability or destabilize the 
dispersion, depending on the nature of interactions between the polymer and the solvent 
and between the polymer and the dispersed particles. As a result, both polymer solution 
thermodynamics and the thermodynamics of polymer-colloid interactions play important 
roles. 

The importance of polymer solution thermodynamics in the present context will become 
evident when we discuss polymer-induced forces in Section 13.6. For the present, in order to 
illustrate the above point, we may consider a very highly simplified picture of some of the 
possible effects of polymer chains on a dispersion, as depicted in Figure 13.11. 

In the case of very low polymer concentrations, bridging flocculation may occur as a 
polymer chain forms bridges by adsorbing on more than one particle (see also Fig. 13.12f). 

At higher concentrations of the polymer, “brushlike” layers can form on the particles. 
These brushes can extend over sufficiently large distances to mask out the influence of van der 
Waals attraction between the particles, thereby imparting stability to the dispersion. This 
mechanism, already mentioned in Section 13.2, is known as steric stabilization. For steric 
stabilization, the polymer molecules must be adsorbed or anchored on the particle surfaces. 

At moderate to high polymer concentrations, the “free” polymer chains in the solution 
may begin to exercise an influence. One such effect is the so-called depletion flocculation 
caused by the exclusion of polymer chains in the region between two particles when the 
latter are very close to each other (i.e., at surface-to-surface distances less than or equal to 
approximately the radius of gyration of the polymer chains). The depletion effect is an osmotic 
effect and is discussed further in Section 13.6. 

At high polymer concentrations, one may also have what is known as depletion 
stabilization. The polymer-depleted regions between the particles can only be created by de- 
mixing the polymer chains and solvent. In good solvents the demixing process is thermody- 
namically unfavorable, and under such conditions one can have depletion stabilization. 

1. 

2. 

3. 

4. 

We are concerned primarily with steric stabilization in this chapter. 

FIG. 13.11 
dispersions. See the text for explanation. (Redrawn with permission from Hunter 1987.) 

A simplified representaticii of the effects of polymer additives on the stability of 
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FIG. 13.12 The structure of polymer chains in bulk solution and near a solid interface: (a) 
configuration of a chain in bulk solution and the corresponding segment-density distribution with 
R, the radius of gyration of the polymer chain; (b) an end-grafted chain; (c) an adsorbed chain; (d) 
configurations of chains adsorbed on a surface at low surface coverage (i.e., there is no nearest- 
neighbor overlap) and R, is the so-called Flory radius of the polymer chain (RF = aR,, with a 
known as the intramolecular expansion factor; a is unity in ideal solutions, larger than unity in 
good solvents and less than unity in poor solvents [see Equation (4.90)]); (e) adsorption at high 
coverage, leading to a polymer brush; (f) bridging. (Redrawn with permission from Israelachvili 
1991.) 

The above discussion also points out why homopolymers (i.e., polymers containing only 
one kind of repeat unit) are not usually a good choice as steric stabilizers. The first require- 
ment for stabilization by polymers is that the polymer adsorb at the solid-solution interface 
since it is the resulting "fringe" on the solid particles that produces the desired result. In 
general, the adsorbed polymer is considered to reside partially at surface sites and partially in 
loops or tails in the adjoining solution. The distribution of polymer segments between these 
two states depends on the relative strength of the interactions between the polymer and the 
solid compared to those between the polymer and the solvent. Figure 13.12 illustrates some of 
the possible configurations of the polymer chains (including polymer brushes and bridging 
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mentioned above) and the corresponding segment densities (i.e., number of monomer seg- 
ments per unit area parallel to the surface). Synthetic polymers designed specifically as stabiliz- 
ers are often block copolymers that contain two different kinds of repeat units, clustered in 
long sequences of one kind. In this type of polymer, one sequence is designed to optimize the 
adsorption, while the other gives maximum extension from the surface. In polymers made of 
a single kind of repeat unit, these two considerations tend to work in opposition. 

Attachment of a single segment of the polymer chain is sufficient to confine the molecule 
to the layer of solution adjacent to the adsorbing surface. The solid exerts very little influence 
on the polymer molecule as a whole in such a case. In fact, the overall spatial extension of the 
polymer chain is expected to be about the same as that of an isolated molecule in this situation. 
The polymer-solvent interaction plays a more important role than the polymer-surface interac- 
tion in determining the thickness of the adsorbed layer in this case. This is only one of the 
relative interaction combinations possible, but it is the one that we consider in the greatest 
detail. As the number of polymer segments actually attached to the surface increases, the 
influence of the surface causes the spatial extension of the adsorbed chains to decrease. 

The picture that emerges from the above discussion visualizes the layer adjacent to the 
solid surface as a polymer solution characterized by some average volume fraction of polymer 
+* and having an average thickness 6R,. If the interaction with the surface is not too strong, 
6R, may be on the order of 2R,, twice the radius of gyration of the polymer in the solution 
under consideration. Example 13.5 considers how the thickness of such a layer can be deter- 
mined experiment ally. 

* * *  

EXAMPLE 13.5 Determination of the Thickness of Adsorbed Polymer Layer from the Intrinsic 
Viscosity of the Dispersion. An adsorbed layer of thickness 6R, on the surface of spherical 
particles of radius R, increases the volume fraction occupied by the spheres and therefore 
makes the intrinsic viscosity of the dispersion greater than predicted by the Einstein theory. 
Derive an expression that allows the thickness of the adsorbed layer to be calculated from 
experimental values of intrinsic viscosity. 
Solution: Equation (4.41) gives the Einstein relationship between [ q ]  and 6, the volume frac- 
tion occupied by the dispersed spheres. The volume fraction that should be used in this relation- 
ship is the value that describes the particles as they actually exist in the dispersion. In this case 
this includes the volume of the adsorbed layer. For spherical particles of radius R, covered by a 
layer of thickness 6R,, the total volume of the particles is (413) + 47&6R,. Factoring out the 
volume of the “dry” particle gives Vdry(l + 36R,/R,), which shows by the second term how the 
volume is increased above the core volume by the adsorbed layer. Since it is the “dry” volume 
fraction that is used to describe the concentration of the dispersion and hence to evaluate [ q ] ,  
the Einstein coefficient is increased above 2.5 by the factor (1 + 36RJ3,) by the adsorbed 
layer. The thickness of adsorbed layers can be extracted from experimental [ q ]  values by this 
formula. U 

* * *  

There are several additional points to be noted about this adsorbed layer: 

1. 

2. 

The polymer concentration 4* in the adsorbed layer is different from that in the bulk 
solution. The two are related through the adsorption isotherm of the polymer. 
As illustrated in Figure 13.12, the concentration +* is not expected to be uniform at 
all distances outward from the wall, although we use some average value of this 
quantity as if it was uniform. 
For steric stabilization, the surface layer rather than the bulk solution is the region of 
interest (see Fig. 13.13). 

3. 

13.5b Thermodynamic Considerations 
As the distance of separation between the core particles decreases in the coagulation step, the 
adsorbed layers begin to overlap as shown in Figure 13.13. Ultimately, it is the crowding of 
the polymer chains within this overlap volume that produces any stabilizing effect observed. 
Consequently, this mechanism for protecting against coagulation is called steric stabilization. 
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FIG. 13.1 3 Interaction between polymer-coated particles. Overlap of adsorbed polymer layers on 
close approach of dispersed solid particles (parts a and b). The figure also illustrates the repulsive 
interaction energy due to  the overlap of the polymer layers (dark line in part c). Depending on the 
nature of the particles, a strong van der Waals attraction and perhaps electrostatic repulsion may 
exist between the particles in the absence of polymer layers (dashed line in part c), and the steric 
repulsion stabilizes the dispersion against coagulation in the primary minimum in the interaction 
potential. 
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In Section 13.7 we consider a specific model by which this can be accomplished. For now we 
take a more phenomenological point of view. It is an experimental fact that, at least under 
some circumstances, an adsorbed polymer layer stabilizes a dispersion against aggregation. 
This implies that the approaching particles in an aggregation step experience an increase in 
free energy AGR (subscript R for repulsion) that prevents the completion of the step. Although 
the details of this repulsion are irrelevant for now, we associate AGR with the overlap shown 
in Figure 13.13; that is, AGR is zero when the overlap is zero and increases as the volume of 
the lens-shaped overlap region increases. As a free energy change, A G ,  can be either positive 
or negative. In keeping with the usual sign conventions, a positive value for this quantity 
indicates repulsion (i.e., protection against aggregation), while a negative value contributes 
(along with van der Waals forces) to spontaneous aggregation. 

As usual, AGR can be broken into enthalpy and entropy contributions: 

where the individual terms describe changes in the respective property arising from the over- 
lap. In principle, AHR and ASR can both be either positive or negative; therefore the possibility 
exists for AG,q to change sign with changes in temperature. In fact, it is observed experimen- 
tally that some sterically stabilized dispersions are caused to aggregate by increases in tempera- 
ture and others by decreasing 7'. The threshold temperature for the onset of flocculation in 
these systems is called the critical flocculation temperature (CFT). Thermodynamics offers a 
formalism for interpreting these observations. With this in mind, let us consider some different 
sign combinations for AHR and AS,: 

Suppose AHR and ASR are both positive. In this case the enthalpy change arising from 
the close approach of particles with adsorbed layers opposes aggregation while ASR favors it. 
Since AS, is weighted by T in AGR, it follows that increasing T causes the entropy effect to 
become more important. The situation described here is one in which increasing temperature 
is expected to cause aggregation. Polyisobutylene adsorbed from 2-methyl butane and poly- 
oxyethylene adsorbed from aqueous electrolyte are examples of systems that show a CFT with 
increasing temperature. Since it is the positive AHR that is responsible for the stability in this 
case, such a system is said to display enthalpic stabilization. 

Suppose AH, and ASR are both negative. In this case: ASR opposes aggregation while 
aU, favors it. Since the resistance to aggregation decreases with decreasing temperature, 
aggregation is expected as T is lowered. Poly( 12-hydroxystearic acid) adsorbed from n- 
heptane and polyoxyethylene adsorbed from methanol are examples of systems that display a 
CFT with decreasing temperature. Since ASR is the source of the stabilization in these cases, 
this mechanism is called entropic stabilization. 

3. If AHR is positive and AS, is negative, AGR is positive at all temperatures, and the 
system is not subject to aggregation by changes in temperature. 

Several things should be noted about the above discussion. First, both AHR and ASR are 
generally functions of temperature and may change signs themselves as Tvaries. Second, a given 
polymer may be governed by MYR in one solvent and by ASR in another. Finally, the addition of 
a second solvent to a dispersion can also induce aggregation in a polymer-stabilized system. We 
saw in Chapter 3 that changes of solvent goodness (as seen by the properties of polymer solu- 
tions) could be brought about by both temperature changes and addition of diluents. 

Figure 13.14 illustrates the sort of data that can be used to determine the CFT for a 
dispersion. The absorbance of the system is measured as a function of temperature. A disconti- 
nuity in absorbance is observed to develop over a relatively narrow range of temperatures. The 
system shown in Figure 13.14 is an aqueous latex dispersion stabilized by polyoxyethylene. 
The threshold for aggregation is about 291 K. One characteristic of steric stabilization is 
that aggregated systems usually redisperse spontaneously if the goodness of the solvent is 
subsequently improved. In terms of the potential energy diagrams of Figure 10.1, this shows 
that aggregation in these systems does not occur by particles dropping into a deep primary 
minimum, but rather occurs in a shallow minimum at a larger distance from the surface. 

Before we turn to a more detailed look at the origin of steric stabilization, it is informative 

1. 

2. 
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FIG. 13.14 Critical flocculation temperature of aqueous poly(viny1 acetate) dispersion stabilized 
by poly(oxyethy1ene) indicated by a sharp change in absorbance with temperature. (Redrawn with 
permission from D. H. Napper, in Colloid and Interface Science (M. Kerker, R. L. Rowell, and A. 
C. Zettlemoyer, Eds.), Academic Press, New York, 1977.) 

to review the assortment of observations that are encountered if the polymer content of the 
continuous phase is varied from almost pure solvent to pure liquid polymer. As we have 
already seen, at very low polymer concentrations the solute can induce aggregation in a 
dispersion; at somewhat higher concentrations it can stabilize the dispersion against aggrega- 
tion. At still higher concentrations there is a wide range of polymer concentrations in which 
the dispersion aggregates. Dispersions that are stable against aggregation have been prepared 
in polymer melts. This variety of behaviors with increasing polymer concentration suggests 
that the process under consideration is too complicated for explanation by a single model. In 
Section 13.7 we examine a mechanism for the stabilization that is observed at relatively low 
polymer concentrations. In such a case one can assume the adsorbed polymer molecule is not 
very different from an isolated molecule of the same polymer in solution. This assumption 
limits the applicability of our discussion but permits us to invoke some of the concepts of 
Chapter 3 for the problem at hand. 

However, before we consider the above model, let us review briefly the types of interparti- 
cle forces that can result from the presence of polymer chains at particle-solvent interfaces. 

13.6 POLYMER-INDUCED FORCES 

In developing the expressions for van der Waals and electrical double-layer forces in Chapters 
10 and 11 we have assumed that the surfaces involved are atomically smooth. Of course, in 
practice this is very seldom the case. One can divide “surface roughness” into two categories: 
static roughness and dynamic roughness. The former denotes surface roughness resulting from 
surface imperfections, as in the case of a solid surface. What is of interest to us, however, is 
the !atter, which refers to thermally mobile surface molecules (usually adsorbed or grafted 
onto the surface) that may rearrange their positions and orientations in response to tempera- 
ture, interactions with the solvent molecules, rearrangements of neighboring surface-bound 
molecules, proximity to another surface, and so on. The surface-bound molecules may be low 
molecular weight species or macromolecules such as neutral polymers or polyelectrolytes. The 
magnitude of the fluctuations depends on the size and the nature of the molecules. What is 
important is that, even if the scale of the fluctuations of these molecules is less than a 
nanometer (as one might expect in the case of simple molecules), the effects of such fluctua- 
tions on the roughness of the surface and the forces of interactions between two surfaces are 
not inconsequential. In fact, in many cases they play a very important role. 

Our focus in this section is on the effects of polymer molecules adsorbed or grafted onto 
surfaces, but before we examine them in some depth it is good to get an idea of what 
phenomena cause the above molecular fluctuations to manifest themselves as forces (of attrac- 
tion or repulsion). Even in the case of small molecules adsorbed strongly on a surface, the 



COLLOID STABILITY 61 1 

presence of another surface in proximity restricts the orientational freedom the molecules 
otherwise enjoy. This loss of entropy manifests itself as a repulsive force in the absence of any 
other interactions. The interaction force is then said to be entropically driven. The same 
principle applies in the case of polymer molecules adsorbed or grafted on a surface when 
another such surface is close by. When the second surface, with or without a polymer layer, is 
close enough to restrict the configurational freedom of the polymer chains dangling from the 
first surface, the net effect is to create an entropically driven repulsive or steric force between 
the surfaces. 

What makes the understanding of such forces particularly difficult, especially in the case 
of polymer layers, is that the overall effect may be influenced by other factors such as the 
affinity of the polymer segments to each other and the affinity to solvent molecules. As a 
consequence the net force may be enthalpically (i.e., energetically) driven or entropically 
driven and may vary with other factors such as temperature (since, for example, temperature 
may change the nature of solvent-polymer-segment interactions; see Chapter 3) or depending 
on whether the polymer chains are physically adsorbed on the surfaces or grafted firmly to the 
surfaces (see Figure 13.12 for an illustration of the differences between the structures of 
adsorbed and grafted layers). The resulting net interaction can be attractive or repulsive, and 
the polymer additives may, therefore, serve as stabilizers or destabilizers. 

Ideally, it would be desirable to be able to develop quantitative expressions for the interac- 
tion energies so that we can deal with coagulation or flocculation, at least in the case of fairly 
dilute dispersions, the way we did in Sections 13.3-13.4 for electrostatic stabilization. It is 
possible to develop approximate expressions for interaction energy due to various individual 
effects such as osmotic repulsion, attraction or repulsion due to the overlap of the tails of the 
adsorbed (or grafted) polymer layers, interaction of the loops in the layers, and so on (see Fig. 
13.15). However, the complicated nature of polymer-induced interactions makes these tasks 
very difficult. In this section, we merely illustrate some of the issues that need to be considered 
in developing a fundamental quantitative understanding of polymer-induced forces. In Section 

van/der Wads Attraction 

FIG. 13.15 Examples of the various contributions to the interaction energies between two poly- 
mer-coated particles. The curves shown illustrate qualitatively the change in Gibbs free energy due 
to the overlap of the tails, loops, and so on. (Redrawn with permission from Sat0 and Ruch 1980.) 
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13.7 we return to a thermodynamic analysis of stability along the lines of the discussion 
presented in Section 13.5 for a simple case to illustrate one of the approaches. 

13.6a Repulsive Forces Due to Polymers 

As mentioned above, there are a number of factors that affect the repulsive forces arising 
from the loss of configurational entropy of polymer chains. 

The number of polymer chains per unit surface area (i.e., the density of surface 
coverage) determines whether or not interactions between the neighboring chains will 
have an influence on the extension of the chains from the surfaces. The affinity or the 
lack of affinity between the neighboring chains also affect the interaction forces. 
Whether a polymer is grafted on the surface or simply adsorbed on the surface has a 
bearing on the force between two polymer-coated surfaces. Adsorption is a reversible 
process and can be affected by temperature, compression of the polymer layer, and 
the like. 
The quality of solvent (i.e., solvent-polymer interactions) can also clearly affect the 
interaction forces. In a good solvent, polymer segments favor contacts with the sol- 
vent. Since the compression of the polymer layer by an approaching surface tends to 
squeeze out the solvent and force segment-segment interactions, the net result is a 
repulsion. In contrast, poor solvents produce an opposite effect, and a net attraction 
is possible for certain range of compression (see Section 13.6b). 

1. 

2. 

3. 

A full theoretical treatment is therefore very difficult, and we restrict ourselves to two cases, 
primarily to illustrate some of the above points. 

For example, consider a surface with a low coverage of end-grafted polymer chains under 
theta conditions (see Chapter 3). If the density of polymer ends per unit area of the surface is 
denoted by n, (number per unit area), the typical magnitude of the distance between the 
grafted ends on the surface is equal to ns-1’2. If the density is low enough so that ns-1’2 > R,, 
the radius of gyration of the polymer chain, we may assume that the neighboring chains do 
not interfere with each other and that their configurations in the solution are essentially the 
same as what one would expect in a dilute solution of the polymer in the same solvent (see 
Fig. 13.12d). The repulsive energy of interaction between two such surfaces can be obtained 
theoretically (Dolan and Edwards 1974) and is a power series of (d/R,), with d the distance 
between the interacting surfaces. In a certain range of distances, however, one can approxi- 
mate the energy by an exponential function as below: 

@ ( r )  = 36n,k,Texp(-d/R,) 2 < (d/R,) < 8 (57) 

As one moves away from low to high surface coverages, however, interactions between 
neighboring chains begin to influence how far the chain extends into the solution. At high 
coverages, the surface layer is commonly referred to as a brush (see Fig. 13.12e), and the 
polymer chains tend to extend farther into the solvent. In a theta solvent, the distance of 
extension L increases as N u ,  with N the number of segments of monomer units in the polymer 
chain and v roughly unity for high coverages (it is 0.5 for low coverages since R, is of the order 
of for low coverages; see Equation (2.77)). In this case also it has been possible to obtain 
a quantitative expression, which again is exponential in ( d / L )  for a restricted range of ( d / L ) .  
The length L itself is a function of the surface density, length of the monomer units, the degree 
of polymerization (i.e., the number of monomers N per chain), and the nature of the solvent. 
We shall not go into the theoretical and quantitative details since our purpose here is merely to 
point out the general issues that are important. 

The repulsive force between surfaces with end-grafted polymer chains has been fairly well 
studied both theoretically and experimentally and more details can be obtained from advanced 
and specialized textbooks such as Israelachvili (1991) and Napper (1983). The situation is 
much more complicated in the case of chains adsorbed on surfaces. In this case, the segments 
adsorbed on the surfaces are held on the surfaces by relatively weaker forces (in contrast to 



COLLOID STABILITY 61 3 

t 

!/.T > 0 (Bridgin 

T > 0 (No bridgin 
f + 

---. - .. 

end-grafted chains), and the adsorbed segments may continually detach from and reattach to 
the surfaces, especially as a second surface approaches the first. The calculation of the repul- 
sive force is difficult because of this and because different segments of a polymer chain may 
adhere to both surfaces causing polymer “bridges” (see Fig. 13.12f). Moreover, the force 
between two surfaces at a given distance of separation may be time dependent since the time 
for equilibration between two surfaces can be rather large. 

13.6b Attractive Forces Due to Polymers 

As mentioned in the previous section, conditions corresponding to poor solvents give rise to 
attractive forces between polymer layer. At short enough distances, however, steric repulsion 
takes over, and the overall force has regions of repulsion as well as attraction. The attractive 
forces can come about for at least three reasons; we consider each briefly. 

13.6b. I Segment-Segment Attraction in Poor Solvents 
In poor solvents, polymer segments prefer each other over the solvent. As polymer layers 
overlap with each other, segment-segment attraction occurs and draws the particles together. 
This occurs both in adsorbed layers and in grafted layers as the temperature is taken below the 
theta temperature (0) at low and high coverages and is illustrated in Figure 13.16. As illus- 
trated in this figure, at close enough separations steric repulsion due to the overlap of the 
segments begins to dominate eventually, and one sees a net repulsion. As the temperature is 
taken above the theta temperature (Le., as one goes from poor solvent to good solvent), the 
segment-segment attraction vanishes, and the force becomes repulsive at all separations (see 
Fig. 13.16). 

13. 6b. 2 Bridging Attraction 
Any polymer chain that has an  affinity with a surface has the potential to form a bridge 
between the surfaces; this may give rise to an attraction known as bridging attraction. How- 
ever, just as segment-segment forces, the segment-surface interaction can be attractive or 
repulsive depending on the affinity between the segments and the surfaces and the availability 
of free surface sites for adsorption. Strong bridging attraction is favored when a polymer is 
attracted to a surface that is not too highly or too sparsely covered with other polymer 

’ 1 ........ :::::: ~ : : : ~ ~  ................................. 
, ........ 

i LOW 

1 ADSORBED 1 I GRAFTED I 
FIG. 13.1 6 Interaction forces between polymer-coated surfaces and their dependence on the type 
of layers and quality of the solvents. (Redrawn with permission from Israelachvili 1991.) 
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segments. In the case of densely covered surfaces, the availability of vacant surface sites is 
limited and bridging is unlikely. In the case of low coverages, the density of bridges will also 
be low. Although bridging attraction may exist in the last cases, the net attraction is relatively 
low because of the low number of bridges. 

These are illustrated in Figure 13.16 for low and high surface coverages and for tempera- 
tures below and above the theta temperature. For instance, for adsorbed polymer layers at low 
coverage, the attraction is due to the formation of bridges for the temperature above the theta 
temperature. For T < To, both bridging and segment-segment attraction join together to 
increase the total attraction. 

13.6b.3 Depletion Forces 
Another source of attraction between two surfaces is possible when the surfaces are immersed 
in a solution of a nonadsorbing polymer (e.g., a polymer that does not adsorb on, or is 
repelled by, the surfaces). Although this force is generally weak, it can play a significant role 
in destabilization of colloidal particles under certain circumstances. 

In order to understand the source of this force, consider two particles separated by a 
distance d as shown in Figure 13.17. The dispersed polymer molecules exert an osmotic 
pressure force on all sides of the particles when the particles are far apart, that is, when d > 
R,. Then, there is no net force between the two particles. However, when d < R,, there is a 
depletion of polymer molecules in the region between the particles since otherwise the polymer 
coils in that region lose configurational entropy. As a consequence, the osmotic pressure 
forces exerted by the molecules on the “external” sides of the particles exceed those on the 
interior (see Fig. 13.17), and there is a net force of attraction between the two particles. The 
range of this attraction is equal to R, in our highly simplified model. 

The depletion forces are relatively weak compared to the dispersion force and solvation 
forces but become significant with increases in the concentration and molecular weight of the 
polymer. In practice, however, the presence of strong depletion interaction requires a high 
polymer concentration (and therefore low molecular weights and R,’s). The existence of deple- 
tion forces has been predicted using computer simulations and has been verified experimen- 
tally using the surface force apparatus (SFA; see Section 1.6c.2) for surfaces immersed in a 
micellar solution, in which the spherical micelles play the same role as polymer molecules. 
However, theoretical treatments of depletion forces (and the bridging forces discussed above) 
are not as advanced as those for other polymer-induced forces. 

The complexities of the polymer-mediated forces evident from the above discussions make 
it difficult to formulate theories of coagulation and phase separation for such interactions. 
Nevertheless, it is instructive to consider in detail an example of how the effects of polymer 
chains are incorporated in quantitative prediction of dispersion stability. In the following 
section we discuss such an example, although we restrict ourselves to a discussion of a thermo- 
dynamic analysis of stability. 

13.7 STERIC STABILIZATION: A MODEL FOR THE INITIAL ENCOUNTER 

We discussed in Section 13.5 how thermodynamic considerations determine the effects of 
polymer layers on stabilization. In this section we consider a simple case of interaction between 
two polymer layers to illustrate the ideas introduced above. It will become evident that some, 
but not all, of the polymer-induced forces discussed in Section 13.6 are encompassed by the 
arguments presented in this section. Even with some factors omitted, detailed determination 
of forces is considerably involved, as is evident from the following discussion. 

Consider two particles with adsorbed layers approaching each other. The adsorbed layers 
on the core particles first begin to overlap at the outermost extreme of the “fringe,” at which 
the surface exerts the least influence. As a first approximation, then, the initial encounter 
between two approaching core particles is comparable to the approach of two polymer coils in 
solution. In Chapter 3,  Section 3.4a, we saw that the concept of excluded volume could be 
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FIG. 13.1 7 Depletion attraction between two surfaces immersed in a polymer solution. 

used to account for the initial nonideality in a polymer solution. Remember that the excluded 
volume is that region of space from which one molecule is denied access because of the 
presence of a second molecule. This also describes what happens as the adsorbed layers on two 
interacting particles approach one another. To quantify this idea, we are interested in an 
expression for AG, as a function of the distance of separation between core particles as shown 
in Figure 13.13. 
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13.7a Free-Energy Change Due to Excluded-Volume Interactions: 
The Flory-Krigbaum Approach 

It is important to remember that the overlapping layers in which we are interested are solutions 
of pendant or looped polymer chains surrounded by solvent. There is room for interpenetra- 
tion of the two domains, but the process is uphill thermodynamically. 

This can be illustrated through the following arguments against the overlap of coil do- 
mains using some pertinent results from previous chapters: 

1. 

2 .  

3 .  

4 .  

5 .  

6 .  

If we treat the domain of the chain as a random coil, Equation (2.73) or (2.77) shows 
that the radius of this domain is proportional to the square root of the degree of 
polymerization n. This means the volume of the domain varies with n3"2. 
Since n is the number of chain segments in this volume, the volume fraction +* of the 
domain that is actually occupied by polymer is proportional to n/n312 = n - ' I 2 .  

The fraction of the domain that is not occupied by polymer is ( 1  - +*) = ( 1  - n - ' I 2 ) .  

For large n this fraction is close to unity, which shows that there is plenty of space 
within the domain for additional polymer segments. 
Those sites that are not occupied by chain segments are potential placement sites for 
the segments of a second polymer molecule. 
Following the kind of statistical argument used in Section 3.4, we argue that there are 
(1 - n ways of placing a second molecule of n segments within the domain of 
the first. 
This last expression is approximately equal to exp ( - n  which shows that the 
probability of a second molecule entering the domain of the first decreases rapidly 
with increasing n. 

Flory and Krigbaum developed these ideas into a theory of solution nonideality that is 
useful in the present context. As the two coil domains overlap as shown in Figure 13.13 ,  the 
concentration of chain segments in the lens-shaped volume of overlap doubles compared to its 
value in the separate layers: +* -+ 2+*. Solutions tend to dilute spontaneously and not become 
more concentrated; therefore we expect AG in the lens to be positive for this process. The total 
free energy change associated with the overlap depends on both AGO,, and the volume of the 
lens; that is, 

(58)  

Next we consider these two contributions separately. 
The Flory-Huggins theory of Section 3.4b provides the components from which we can 

assemble expressions for AG,,,, and AG,,2Q1, the weighted difference of which gives AGO,,. The 
strategy is to apply these expressions to the domain of the individual polymer coil, which we 
define as V,. If it was necessary to arrive at a numerical estimate for this volume, we could 
treat the domain as a sphere of radius R, and write V, = (4 /3)nR: .  Within such a domain, 
the following applies: 

The volume fraction of polymer is +* and the volume fraction of solvent is ( 1  - +*). 

The number of polymer molecules N2 is unity, and the number of solvent molecules is 
[( 1 - +*) V,/( v l / N A ) L  with v, the partial molar volume of the solvent. Therefore, 

The Flory-Huggins expression for the enthalpy of mixing is given by Equation (3.71).  
In the present notation it becomes 

AG, = (AGO,)( V,,,) = ( Concentration effect) - (Geometrical effect) 

1. 
2. 

NI = (1 - +*)Vdv,/Vl. 
3 .  

AH, = (1/2)zNI+,Aw = xRTN,+* 

4 .  The Flory-Huggins expression for the entropy of mixing is given by Equation (3.65).  
In the present notation it becomes 

- TAS, = RT(N, In + N2 In +2) = RT[N,  In ( 1  - +*) + N2 In +*I 
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Since N, 4 N , ,  the second term can be neglected compared to the first to give 

-- TAS, = RTN, In ( 1  - +*) 

5 .  Within the volume of the coil domain we can write 

AG, = AH, - TAS, = RTNl[x+* + In ( 1  - 4 * ) ]  

Substituting for N ,  from item 2, we then have 

AG, = ( R T V J V A / v l ) ( l  - + * ) [ x + *  + In ( 1  - 4*) ]  

which may be approximated as 

AG,,, = (RTVJVA/l / , ) [ (x  - l ) + *  + ( 1 / 2  - x ) + * , ]  

by expanding the logarithm (see Appendix A) and retaining no terms higher than 
second order in +*. 
For the process +* -, 2+*, AGO,, = (AGm,2+. - 2AG,,,,,). Therefore 6. 

AGO, = ( R T V f l A / v l ) { [ ( x  - l ) ( 2 + * )  + (112 - x ) ( 2 + * ) * ]  

- 2"x - U+* + ( 1 / 2  - X ) + * 2 1 j  

= (2RTI/ ,NA/V1)(1 /2  - x ) + * ,  
7 .  We can write +* = F2/NA V,, with F2 the partial molar volume of the polymer. With 

this substitution 

AGO,, = 2kBT(vi/V,v1)(1/2 - X )  

8. Finally, we give without proof the expression for the volume of the lens that experi- 
ences the free energy change given by item 7 (see Figure 13.13b): 

Substituting the results in items 7 and 8 into Equation ( 5 8 )  gives 

which is the result toward which we have been working. 

Two of the terms in Equation (59) are easy to interpret in relation to dispersion stability. 
Although it is not the entire geometrical effect, the term containing (6R, - d/2)-which is 
half the maximum width of the lens-shows that the repulsion increases with the square of 
this quantity. 'This shows how the repulsion develops as the overlap increases. 

The term [ ( 1 / 2 )  - X I  is the only factor in Equation (59) that can have either positive or 
negative values, depending on whether x is less than or greater than 1/2 .  Again, we review 
some ideas from Section 3.4b pertaining to the Flory-Huggins interaction parameter x :  

In units of k,T, x measures the energy change per pair for the process ( 1 , l )  + (2 ,2)  
-+ 2( 1,2) in which the indices refer to different pairwise interactions. 
x = 1/2 corresponds to the critical point on a miscibility diagram for a polymer of 
infinite molecular weight. 
x < 1 /2 corresponds to a good solvent, and x > 1 /2 corresponds to a poor solvent. 
According to Equation ( 3 . 8 1 ) ,  

so T = 0 divides the temperature range into good ( T  > 0) and poor ( T  < 0) re- 
gions. 
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This review indicates that good solvent conditions (in terms of either x or 0) result in a 
positive value for AGR. This is what would be expected from a model that assumes that the first 
encounter between particles with adsorbed layers is dominated by the polymers. Conversely, in 
a poor solvent AGR is negative and amounts to a contribution to the attraction between the 
core particles as far as flocculation is concerned. Under these conditions the polymer itself is 
at the threshold of phase separation. Van der Waals attraction between the core particles 
further promotes aggregation, but it is possible that coagulation could be induced in a poor 
solvent even if the medium decreases the effective Hamaker constant to zero. 

Replacing [( 1/2) - x] by [ 1 - 0/r]  offers an opportunity to test the ideas of the Flory- 
Krigbaum theory against experimental observations of the CFT. It is apparent from the 
material presented here that the CFT and the 8 temperature correspond to the same condition. 
Table 13.3 lists CFT values and independently determined 8 temperatures for several systems. 
The agreement between the two is quite satisfactory for these systems. Incidentally, electro- 
lytes are added to the aqueous media in Table 13.3 to suppress the ion atmosphere mechanism 
for stabilization. 

13.7b Inclusion of Elastic Contributions 

There is another type of free energy change that can be considered within the overlap volume 
in addition to the concentration effect considered by the Flory-Krigbaum theory. This addi- 
tional contribution to AG,e,, is likely to be more important for d < 6R, and should be consid- 
ered when the outcome of the encounter is not determined by the initial approach of the 
colliding particles. This contribution arises from an elastic response by the adsorbed polymer, 
effectively pushing the approaching particles apart. 

The elasticity of polymer coils is a well-known phenomenon and is involved in many 
important mechanical properties of bulk polymers. Stated briefly, it arises from a difference 
in conformational entropy between stretched and randomly jumbled chains. A statistical 
theory that counts the number of ways the two conformations can come about can be com- 
bined with the Boltzmann entropy equation (Equation (3.45) ) to give an expression for the 

TABLE 13.3 Critical Flocculation Temperatures for Various Polymer- 
Solvent Systems, with 0 Temperatures Included for Comparison 

Stabilizer 
Molecular Dispersion CFT 0 

weight medium (inK) (inK) 

Poly(ethy1ene oxide) 10,000 0.39 M MgS04 
96,000 

1,000,000 

5 1,900 
89,700 

57,000 
270,000 

60,000 
180,000 

150,000 

Poly(acry1ic acid) 9,800 0.2 M HCl 

Poly(viny1 alcohol) 26,000 2 M NaCl 

Pol yacr ylamide 18,000 2.1 M (NH4)2S04 

Polyisobutylene 23,000 2-Methylbutane 

318 315 
316 315 
317 315 
287 287 
283 287 
281 287 
302 300 
301 300 
312 300 
292 - 
295 - 
280 - 
325 325 
325 325 

Source: Reprinted with permission of D. H. Napper, in Colloid and Interface 
Science, Vol. 1 (M. Kerker, R. L. Rowell, and A. C. Zettlemoyer, Eds.), Aca- 
demic Press, New York, 1977. 
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entropy change associated with stretching a chain or its “snapping” back to equilibrium. At 
small deformations, individual chains obey Hooke’s law with the force constant 

kH = 3kB7/(nP6) (60) 

where n is the degree of polymerization and P,, is the step length in the random walk analysis 
of Section 2.7. By Equation (2.77), the denominator in this expression can be replaced with 
6R:. In the context of steric stabilization, we can readily picture the close approach of two 
core particles as compressing a layer of polymeric “springs.” According to Hooke’s law, these 
springs will oppose compression with a restoring force that is proportional to the extent of 
compression with a force constant given by Equation (60).  This is the origin of the elastic 
mechanism for interparticle repulsion from adsorbed polymers. 

One of the first theoretical attempts to understand steric stabilization of dispersions was 
based on an entropic mechanism that resembles the elastic contribution to AGR. We consider 
this mechanism in Example 13.3.  

EXAMPLE 13.6 An Entropic Model for Steric Stabilization Due to Adsorbed Polymer Layers. 
Picture a flat surface to which rigid rods are attached by ball-arid-socket-type joints. The free 
ends of the rods can lie anywhere on the surface of a hemisphere. The approach of a second 
surface blocks access to some of the sites on the cap of the hemisphere. Outline the qualitative 
argument that converts this physical picture to a theory for stabilization. What are some of the 
shortcomings of the model? 

Solution: When the two solid surfaces are far apart ( d  = m), the free end of each adsorbed 
rod has access to Q ,  sites, with Q ,  = 2=L* and L the length of the rod. When the separation is 
such that the second surface cuts off access to some of these sites, the number of accessible 
sites becomes ad. The subscript here indicates a separation less than some critical distance 
that is the threshold for interaction. The exact form of Qd and the critical separation at which it 
begins to apply depends on whether one or both surfaces carry the adsorbed rods. The fraction 
of the area of the hemisphere that remains accessible to the free ends of the rods could be 
calculated from geometrical considerations. Using these Q values as substitutions in Equation 
(3.46), we obtain AS8 = kB In (QJQ,). Since Qd < Q, ,  ASR is negative. This gives the effect per 
rod; if there are N such rods per unit area and if AHR = 0, then we obtain AGR = -Nk,T In 
( Q d / Q , ) ,  which gives a positive repulsion as required. This model has several deficiencies: 

1. It is unrealistic for polymers, although it may be a reasonable approximation for linear 
amphipathic molecules. 

2. It assumes very low surface coverage so that the individual rods do not interfere 
laterally. 

3. 

t . .  

It is a purely entropic mechanism and makes no provision for enthalpy effects. 
t . .  

What we have covered in this chapter barely scratches the surface of a vast area of 
applications of‘ colloidal phenomena in chemical and materials processing industries and in 
environmental and other operations. There are many fundamental, as well as practical, prob- 
lems in the above topics (especially ones involving polymers, polyelectrolytes, and polymer- 
colloid and polymer-surfactant mixtures) that are currently areas of active research in engi- 
neering, chemistry, physics, and biology. Some of the references cited at the end of this 
chapter contain good reviews of topics that are extensions of what we have covered in this 
chapter (see, e.g., Elimelech et al. 1995, Hirtzel and Rajagopalan 1985, Israelachvili 1991, 
Gregory 1989, and O’Melia 1990). 

REVIEW QUESTIONS 

1. 
2.  

3 .  

What is meant by the microstructure of a dispersion? 
What is meant by the stability of a dispersion? Why is it important? Give a few examples for 
which stability is important and a few for which it is not desirable. 
Discuss the differences between the thermodynamic and kinetic factors that determine the 
structure and stability of dispersions. Give examples of dispersions with stability that are 
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4. 

5 .  
6. 
7. 
8.  
9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 
17. 

18. 
19. 

20. 

21. 

22. 

23. 
24. 

25. 

controlled by thermodynamic factors. Give a few examples for which kinetic considerations 
determine stability. 
How does the interparticle interaction energy influence thermodynamic or kinetic stability? 
Discuss how variations in dispersion properties influence thermodynamic or kinetic stability. 
What is the critical coagulation concentration? How does it vary with interaction energies? 
What is the Derjaguin-Landau- Verwey-Overbeek theory? 
Explain the Schulze-Hardy rule. Is it empirical or based on theory? 
What are perikinetic and orthokinetic coagulation? 
What is the stability ratio W? What values of W correspond to a stable dispersion? Why? 
What is meant by rapid coagulation? What is the basic principle behind the Smoluchowski 
theory of rapid coagulation? What is the rate coefficient for rapid coagulation? How is it 
defined, and what properties of the dispersion determine its magnitude? What are the limita- 
tions of this theory as presented in the text? 
What is meant by slow coagulation? What is the basic principle behind the Fuchs theory of 
slow coagulation? What is the rate coefficient for slow coagulation? How is it defined, and 
what properties of the dispersion determine its magnitude? What are the limitations of this 
theory as presented in the text? 
How is the stability ratio related to the interparticle interaction energy? Under what conditions 
can it be written in Arrhenius form? 
What is the relation between the stability ratio and the DLVO theory? How would you use the 
DLVO theory to predict the stability ratio of a dispersion? 
Discuss how the stability ratio varies with dispersion properties such as electrolyte concentra- 
tion, pH, surface potential, Hamaker constant, particle size, and so on. 
Discuss the agreements and disagreements between the theoretical predictions for the stability 
ratio with what is observed experimentally. 
What is a birth-death (or population balance) equation? 
What are the factors that are relevant for extending the theories of coagulation presented here 
to (a) polydisperse colloids, (b) nonspherical colloids, and (c) conditions for which fluid flow 
is important? 
Discuss how polymers influence colloid stability. 
For polymer-induced stability, would you recommend the use of a homopolymer or a block 
copolymer? Why? 
Discuss polymer-colloid interactions and steric stability from a thermodynamic perspective. 
What is enthalpic stabilization? What is entropic stabilization? What is the critical flocculation 
temperature (CFT)? 
Does the adjective steric fully justify the role of polymers in imparting stability to a disper- 
sion? Discuss. 
List the types of polymer-induced forces one can expect when two particles with polymer 
coatings interact with each other. Discuss what factors influence the existence and the magni- 
tude of such forces. 
Why can polymer-induced forces be functions of solution temperature? 
Why does polymer solution thermodynamics play an important role in polymer-colloid mix- 
tures? 
What is the depletion force? What is the bridging force? 

REFERENCES 

General References (with Annotations) 

Elimelech, M., Gregory, J . ,  Jia, X.,  and Williams, R., Particle Deposition and Aggregation: 
Measurement, Modelling and Simulation, Butterworth-Heinemann, Oxford, England, 1995. 
(Graduate and research levels. A state-of-the-art treatment of deposition of colloidal particles 
and their dependence on colloidal forces. Includes theoretical, computational, and experimen- 
tal approaches.) 

Hirtzel, C. S. ,  and Rajagopalan, R., Colloidal Phenomena: Advanced Topics, Noyes, Park Ridge, 
NJ,  1985. (Research monograph. A broad, qualitative review of colloidal phenomena. Dis- 
cusses colloid stability as well as deposition phenomena and structural evolution in concen- 
trated dispersions. Contains an extensive collection of references prior to 1985.) 

Hunter, R. J . ,  Foundations of Colloid Science, Vol. 1 ,  Clarendon Press, Oxford, England, 1987. 



COLLOID STABILITY 621 

Hunter, R. J . ,  Foundations of Colloid Science, Vol. 2, Clarendon Press, Oxford, England, 1989. 
(Undergraduate and graduate levels. Along with Volume 1, these two volumes cover almost all 
the topics covered in the present chapter at a more advanced level. Volume 1 discusses DLVO 
theory and thermodynamic approaches to polymer-induced stability or instability and is at 
the undergraduate level. Volume 2 presents advanced topics (e.g., statistical mechanics of 
concentrated dispersions, rheology of dispersions, etc.).) 

Israelachvili, J .  N. ,  Intermolecular and Surface Forces, 2d ed., Academic Press, London, 1991. 
(Graduate and undergraduate levels. An excellent and intuitive introduction to polymer- 
induced forces is given in this volume, which also discusses direct measurement of such forces 
using the surface force apparatus.) 

Kruyt, H. R. (E:d.), Colloid Science. Vol. 1. Irreversible Systems, Elsevier, Amsterdam, Nether- 
lands, 1952. (Graduate and undergraduate levels. A classic reference on colloids. Chapters 
6-8, by Professor J. Th. G. Overbeek, present the classical DLVO theory of colloidal forces 
and their application to kinetics of coagulation.) 

(Graduate- 
level concepts, but some of the general ideas presented are accessible to undergraduates, This 
is a moderately technical, but qualitative, overview of the use of charged latex particles for 
studying phase transitions in atomic solids and alloys. The color illustrations presented provide 
a glimpse of the numerous possibilities made possible by “model colloids’ for studying structure 
of materials.) 

Napper, D. H., Polymeric Stabilization of Colloidal Dispersions, Academic Press, London, 1983. 
(Graduate-level monograph. An advanced and in-depth treatment of the role of polymers in 
colloid stability.) 

Sato, T., and Ruch, R., Stabilization of Colloidal Dispersions b,y Polymer Adsorption, Marcel 
Dekker, New York, 1980. (Research monograph. An advanced treatment of polymer- 
induced forces.) 

Sonntag, H., and Strenge, K . ,  Coagulation Kinetics and Structure Formation, Plenum Press, 
New York, 1987. (Undergraduate level. A concise volume devoted to classical theories of 
coagulation kinetics. Contains more details than given in this book. Accessible to advanced 
undergraduates. ) 

Murray, C. A., and Grier, D. G., Colloidal Crystals, American Scieniist, 83,238 (1995). 

Other References 
Atkins, P. W., Physical Chemistry, 5th ed., W. H. Freeman, New York, 1994. 
Derjaguin, B. V . ,  Theory of Stability of Colloids and Thin Films, Consultants Bureau, New York, 

DeSimone, J .  M., Maury, E. E., Menceloglu, Y. Z., McClain, J .  B., Romack, T. J . ,  and Combes, 

Dolan, A. K., and Edwards, S. F., Proc. Roy. Soc. London, A337, 509 (1974). 
Enustun, B. V., and Turkevich, J . ,  J .  Am.  Chem. Soc., 85, 3317 ( I  963). 
Fuchs, N. A., 2. Phys., 89, 736 (1934). 
Gregory, J., CKC Critical Reviews in Environmental Control, 19, 185 (1989). 
Hidy, G. M., and Brock, J. R., The Dynamics of Aerocolloidal Systems, Pergamon Press, Oxford, 

Matijevic, E., d .  Colloid Interface Sci., 43, 217 (1973). 
O’Melia, C. R., Kinetics of Colloidal Chemical Processes in Aquatic Systems. In Aquatic Chemical 

Kinetics: Reaction Rates of Processes in Natural Water (W. Stumm, Ed.), Wiley-Interscience, 
New York, 1990 

Probstein, R. F:. , Physicochemical Hydrodynamics: A n  Introduction, 2d ed., Wiley-Interscience, 
New York, 1994. 

Reerink, H., and Overbeek, J .  Th. G., Discuss. Faraday Soc., 18, ‘74 (1954). 
Smoluchowski, M., 2. Phys. Chem., 92, 129 (1917). 
Tien, C., Granular Filtration of Aerosols and Hydrosols, Butterworth, Stoneham, MA, 1989. 

1989. 

J .  R., Science, 265, 356 (1994). 

England, 1 970. 

PROBLEMS 
1. Analogous to the planar case considered in Section 13.3, using the Derjaguin approximation, 

the interaction energy between two spherical particles of radius R,  can be written as 

Show that the location d, of the maximum in the potential in this case is given by 
cP(d) = nR,{ - ( A A 2 n ) d - l  + 64 k,Tn, K - ~  ~ exp ( - - . K  d ) }  
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2. 

3 .  

4. 

5 .  

6. 
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d, = K - ~  if @ (d, ) is also zero. 
Substitute this in Equation (2) or (3) and solve for the critical coagulation concentration 
(CCC): 

ccc - 1 o5 [(k,] T)' (&, E. )3 Y-; 1 1 [(zt . )6~2 1 
Draw a sketch of the integral for the stability ratio Win Example 13.3 and verify that the 
assumptions made there to evaluate the integral are correct when the maximum in the interac- 
tion energy is large. 

Morrison* uses the following simple Coulombic form of repulsion and the Hamaker expres- 
sion for attraction for spherical particles of radius R, for interaction between the particles in 
nonaqueous dispersions: 

A R 4n&, &o R Y 2 ~ o 2  
12 d r 

+ ( r )  = --'+ 
where A is the Hamaker constant for interaction between two particles through the fluid, d is 
the shortest surface-to-surface distance between the particles, r is the center-to-center separa- 
tion, and Go is the surface potential. The location of the maximum in the interaction energy 
may be assumed to be approximately 2R, 

a. Show that the stability ratio in this case may be approximated by 

b. For A = 10-20 J and T = 295 K, show that the criterion for stability can be written as 

(with R, in pm and $o in mV) if we assume that the dispersion is stable for W > 105. 

> 103 

Obtain the result for the stability ratio 

given in Example 13.3 for the step function energy barrier given by 

+ ( r )  = -CO fo r r  < 2R, 

= 'P, 
= o  

for 2 ~ ,  < r < 2 ~ ,  + K - ~  

fo r r  > 2R, + K - '  

where K - '  represents the range of the potential. 

It has been observed? that AgI sols at pH 3.5 are coagulated by 4.5 x 10-5 M A1 (NO,), in 
the absence of a second salt and by 1.7 x 10-4 M Al(NO,), in the presence of 0.009 M K,S04.  
Calculate the value of K for each of these solutions. Is the threshold of instability consistent 
with your expectations in terms of the value of K for these two systems? The authors of this 
research suggest that K = 370 for the equilibrium AP' + SO:- Also:. Calculate the 
concentration of AI3+ in the system containing K2S04. Does the behavior of the AgI appear to 
be correlated with the concentration of "free" A13+? Is the specific adsorption of A13+ expected 
on AgI in the presence of 4 x 10-4 M excess KI?  Discuss in terms of IL0 and +. 
Verify that combining Eqs. (5) and (6) with the definition of K [Eq. (11.35)] leads to the 
following expression (purely numerical factors may be omitted): 

By the series expansion of To verify that Ti oc ( ~ e $ , / k , T ) ~  if IL0 is low. Use these two results to 
predict the dependence of the CCC on the ionic valence if $o is small. Compare this result with 
the same quantity in the limit of large go. 

*Morrison, I. D., Langmuir, 7 ,  1920 (1991); Morrison, I .  D., The Influence of Electric Charges in 
Nonaqueous Dispersions, in Dispersion and Aggregation: Fundamentals and Applications (B. M. 
Moudgil and P. Somasundaran, Eds.) Engineering Foundation, New York, NY 1994. 
TStryker, L. J . ,  and MatijeviC, E., J. Phys. Chern., 73, 1484 (1969). 
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7. 

8. 

9. 

10. 

Arachidic acid sols were studied with different concentrations of La3+ added. The stability 
ratio Wand the direction of particle migration in an electric field (i.e., particle charge) were 
observed* and the following results obtained: 

W 7.9 4.5 - 1  1.6 15.8 

Taking l O P 4  M as the CCC value for La3+, CCC values of 7.29 x 10-2 M and 1 . 1  x 10-3 M 
would be predicted for monovalent and divalent cations, respectively, according to Equation 
(10). In view of the observed behavior of La3+, would you expect these calculated CCC values 
to be correct or too low or too high? Explain briefly. 

Kitahara and Ushiyama-f flocculated a polystyrene latex of radius 665 A with KCl. The 
stability ratio W was found to vary with the KCl concentration as follows: 

c (mole La:' + liter - ') 1 0 - ~  3 x 1 0 - ~  1 0 - ~  3 x 1 0 - ~  10-3 

Particle charge - - -0 + + 

log c (c  in mole liter-') 0 -0.13 -0.33 -0.44 -0.60 
log w 0 0 0.30, 0.46 0.73 1.20 

From a plot of log W versus log c determine the CCC value and To [by means of Eq. (53)]. 
Use the approximation for To given in Problem 6 to estimate 1c/,3 for this colloid. Use the values 
of the CCC and To determined in Eqs. (5) and (6) to estimate the effective Hamaker constant 
A,,, for polystyrene dispersed in water. Describe how A might be estimated using a more 
realistic model than that used in the derivation of Eqs. (5) and (6). 

Muller$ studied by dark-field microscopy the flocculation of colloidal gold upon !he addition 
of NaCl to the aqueous sol. For a sample in which the gold particles have a 36.9-A radius, the 
following particle counts were observed at different times after the colloid was made about 
0.2 M with NaCl: 

t ( s )  120 195 270 3 90 450 570 
N x 10-* (cmP3) 11.2 7 . 3  5.4 4.5 3.7 2.7 

Determine the second-order rate constant kexp which describes this flocculation process. How 
does kexp compare with k, as given by Eq. (32)? 

Polystyrene latex particles were coagulated by the addition of Ba(N03)2. The number of 
dispersed particles deposited onto a planar polystyrene surface was determined 15 min after 
the addition of salt by optical microscopy. The light microscope does not permit the aggrega- 
tion of the deposited particles to be determined; subsequent examination by the electron 
microscope gives this information. Clint et al.$ obtained the following results: 

Ba Total deposition Percent deposit 
concentration x 103 cm-2 x io-' 

(mole liter-') (after 15 min) Single Double Triple 

9.1 
15.4 
22.7 
57 .O 

8.04 94.7 3 . 3  0.3 
14.25 95 .O 4.3 0.4 
14.43 82.9 11.3 3 .5  
11.25 75 .O 15.8 5.6 

Discuss these data in terms of the following points: 

(a) For all salt concentrations the order of particle abundance in the deposit is single > 
double > triple. 

(b) The decrease in total deposition with increasing concentration is not offset by the higher 
aggregation state of the deposit, but arises from the sl.ower diffusion of more highly 
aggregated kinetic units. 

*Ottewill, R. H., and Wilkins, D. J . ,  T r a m  Faraday Soc., 58, 608 (1962). 
tKitahara, A.,  and Ushiyama, H., J.  Colloid Interface Sci., 43, 73 (1973). 
$Muller, H., Kolloid Z., 38, 1 (1926). 
SClint, G. E., Cllint, J. H., Corkil, J .  M., and Walker, T. ,  J. Colloid Interface Sci., 44, 121 (1973). 
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1 1 .  

12. 

13.  

14. 

15. 

16. 

If ccoagulation involves two noninteracting spheres of different radii Ri and R j ,  Equations 
(24) and (28) predict 

2 k T  
k, = - L ( R ,  + R,) 

3 1 1  

Show that this expression is identical to 
7 

Estimate the ratio R,/R,  needed to account for a k, value of 2.9 x 10-I’ cm3 s-’ as observed 
for arachidic acid sols.* Does this expression reduce to the proper limit when RI = R,? 

Verify (a) that Equation (40) is a solution to Equation (37), (b) that Equation (41) reduces to 
Equation (21) if CP = 0, and (c) that Equation (46) leads to a rate constant larger than k, if CP 
= 0 for r > A and CP = - 00 for r < A ,  where A > 2R,. Show that the experimental k, value 
cited in Problem 1 1  is consistent with a value of A equaling 5.4 R,  for an aqueous colloid at 
2OoC (11 = 0.01 P). Discuss the relevancy of this last result to the rapid flocculation of 
particles between which van der Waals attraction exists. 

Ahmed et al.? measured qred/+ for polystyrene latexes with adsorbed layers of commercial 
poly(viny1 alcohol) (PVA) samples of different molecular weights. The latex particles were 190 
nm in diameter and the limiting values of vred/+ as + + 0 had the following values for PVA 
samples of the indicated molecular weight: 

mPvA (g mole-’): None 26,400 23,000 80,000 79,100 
R, (nm) - 6.5 7.4 13.2 13.0 
[111 3 .O 5.0 5 . 5  8.2 9.1 

Use the experimental value of [q] for the bare particles and the relationship given in Example 
13.5 to estimates 6R, for these particles. How do the layer thicknesses compare with 2R,, for 
which the given radii of gyration were determined for the polymers in bulk solution? 

The parameter x is proportional to the energy of interaction per 1-2 pair. To allow for solvent 
molecules of various czes, we can write x a n:Aw, where nf is the number of segments in a 
solvent molecule, or V l / V T ,  where VT is the molar volume of a segment. The ratio (1/2 - 
x)/Vl  that appears in the expression for AGR in Equation (59) can be written (1/2Vl) - 
(const. Aw/VT). Criticize or defend the following proposition: For a specific polymer in a 
homologous series of solvent molecules of different sizes, the second term in this expression 
should remain constant while the first decreases with increasing I/, . When the2solvent” is the 
melt of the polymer under consideration, the first term is negligible because V l  becomes the 
partial molar volume of the polymer and is very large. Therefore AGR becomes negative for 
such a system, and flocculation is predicted. Since this contradicts experimental evidence, the 
Flory-Krigbaum model is seen to break down at this limit. 

MackorS used the model outlined in Example 13.6 to derive the expression AGR = Nk,T(l - 
d / L )  for the repulsion per unit area of particles carrying N rods of length L when the surfaces 
are separated by a distance d .  Assuming this repulsion equals the van der Waals attraction 
when the particle separation is 1.5 nm, calculate the effective Hamaker constant in this system 
if L = 2.5 nm. Select a reasonable value for N in this calculation and justify your choice. 

In view of the model used in Problem 15, criticize or defend the following proposition: If one 
surface carries adsorbed rods and the other is bare, the system could be stabilized against 
flocculation by dispersing the particles in a medium of intermediate y. Such a system would 
remain dispersed indefinitely since both steric considerations and a negative Hamaker constant 
oppose flocculation. 

*Ottewill, R. H., and Wilkins, D. J . ,  Trans. Faraday Soc., 58,  608 (1962). 
tAhmed, M. S., El-Aasser, M. S., and Vanderhoff, J .  W., in Polymer Adsorption and Dispersion 
Stability (E. D. Goddard and B. Vincent, Eds.), American Chemical Society, Washington, DC, 
1964. 
SMackor, E. L., J.  Colloid Sci., 6 ,  492 (1951). 



Appendix A 
Examples of Expansions 
Encountered in This Book 

1. Inverse of (1 - x):  

1/(1 - x ) =  1 + x + x 2 + x 3  + . . .  
2. Logarithm: 

ln ( l  + x) = x - (1/2)x2 + (1/3)x3 - . . . (-1 < x < +1) 

3. Binomial: 

(1 f x)" = 1 A nx + [n(n - 1)/2!]x2 f [n(n -- l)(n - 2)/3!]2 

+ . . .  (x"1) 

4. Taylor's series for f ( x )  around x = x,: 

f ( . x )  = f(x,) + (x  - x,)s'(x,) + [(x - xo)2/2!]flr(xO) + . . . 
where each prime onfindicates a differentiation with respect to x. 

5 .  Sine function: 

s inx  = x - x3/3! + xs/5! - . . . 
6. Hyperbolic sine function: 

s inhx  = x + x3/3! + x 5 / 5 !  + . . . 
7. Hyperbolic cosine function: 

coshx  = 1 + x 2 / 2 !  + x4/4! + . . . 
8. Exponential function: 

e.' = I + x + x2/2! + x3/3!  + . . . 

REFERENCE 

Gradshteyn, 1. S., and Ryzhik, I .  M., Table ofIntegrals, Series, and Products, 5th ed., Academic 
Press, New York, 1993. (There are numerous excellent reference books available on mathe- 
matical formulas. This book has a reasonably large collection, far more than what is needed 
for the present book. A CD-ROM version of this book is also available: CD-ROM Version 1, 
Alan Jeffrey, Ed.) 
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Appendix B 
U nits: CGS-SI I nterconversions 

From time to time, probably all science students find themselves entangled in a problem of 
units. For those who have advanced through physical chemistry to the level of this book, these 
problems have obviously not been insurmountable. It is likely, however, that - along with 
feelings of frustration - these students have been left with the wish that everyone used the 
same units, specifically those units with which they are most comfortable. In response to the 
recognized need for uniformity, IUPAC recommends the use of SystPme international d’unites 
(International System of Units, SI) units, which are essentially standardized mks units. 

The SI system is based on mutually consistent units assigned to the nine physical quantities 
listed in Table B. l .  In addition to the SI units for these nine quantities, the table also lists cgs 
or other commonly encountered units, as well as the conversion factors between the two. In 
this table the headings at t$e top of the table indicate how the conversion factors are to be 
used in going from SI to cgs/common units, whereas the bottom headings indicate the use of 
these factors for calculations in the reverse direction. 

From these nine basic quantities, numerous other SI units may be derived. Table B.2 lists 
a number of these derived units, particularly those relevant to colloid and surface chemistry. 
The table is arranged alphabetically according to the name of the physical quantity involved. 
Note that instructions for the use of the conversion factors - depending on the direction of the 
conversion-are given in the top and bottom headings of the columns. Table B.2  is by no 
means an exhaustive list of the various derived SI units; Hopkins (1973) reports on many 
additional conversions, as do most handbooks and numerous other references. 

One reason for the great diversity of units in existence is the fact that quantities of such 
diverse magnitudes are measured. A general rule is that the unit should be appropriate in 
magnitude to the quantity being measured. T o  obtain a dimension of convenient size in SI 
units, the SI unit is multiplied by a power of 10 and the prefixes listed in Table B.3 are affixed 
to the unit. 

REFERENCES 

Hopkins, R. A.,  The International (SI) Metric System and How It Works, Polymeric Services, 

McGlashan, M. L., Pure Appl. Chem., 21, 577 (1970). 
Page, C. H.,  and Vigoureux, P. (Eds.), The International System of Units (SI) ,  National Bureau of 

Paul, M. A., J.  Chem. Educ., 48, 569 (1971). 

Reseda, CA, 1973. 

Standards, Special Publication 330, Washington, DC, 1974. 
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TABLE B.l Basic SI Units and Their Relation to cgs or Other Common Units" 

SI unit X Conversion 
factor 

Physical quantity Name Symbol 

-b cgs/common unit 

Name Symbol 

Length 
Mass 
Time 
Electric current 
Thermodynamic temperature 
Luminous intensity 
Amount of substance 
Plane angle 
Solid angle 

Meter 
Kilogram 
Second 
Ampere 
Kelvin 
Candela 
Mole 
Radian 
Steradian 

m 
kg 

A 
K 
cd 
mole 
rad 
sr 

S 

1 o2 
Id 
1 
2.998 x 109 
1 

1 
180/n 
1 

7r 

Centimeter 
Gram 
Second 
Statampere 
Kelvin 
Lambert 
Mole 
Degree (angle) 
Steradian 

cm 
g 
S 

statamp 
K 

mole 
(cm2) 

0 

sr 

SI unit + Conversion + cgs/common unit 
factor 

"Note that different column headings are given at the top and bottom of the table to facilitate conversions from 
SI to cgs and from cgs to SI, respectively. 
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TABLE 8.2 Derived SI Units and Their Relation to cgs or Other Common Units" 

Physical quantity SI unit X Conversion factor + cgs/common unit 

Acceleration 
Acceleration, angular 
Area 

m s P 2  
rad s- '  
m2 

Capacitance (farad) 
Charge (Coulomb) 
Charge density, surface 
Charge density, volume 
Conductance (siemens) 
Conductivity 

Density 
Diffusion coefficient 
Dipole moment 
Electric field 

Electric potential (volt) 
Energy (joule) 

Entropy 
Force (newton) 
Frequency (hertz) 
Friction factor 
Heat capacity 
Molarity 
Moment, dipole 

J K- '  
N = m k g ~ - ~  
Hz = s-'  
kg s-' 
J K-'  
mole dm-3 
C m  

1 o2 
1 
1 o4 
1 O2O 

3.00 x 109 
3.00 x 105 
3.00 x 103 

8.99 x 109 
lo-2 
1 0 - ~  
1 o4 

3.34 x 1 0 - ~  
10-2 
3.34 x 1 0 - ~  
10' 

105 

103 

8.99 x 10" 

8.99 x 10" 

3.00 x 10" 

0.2390 
0.2390 

1 

0.2390 
1 
3.00 x 10" 

cm s - ~  
rad s-' 
cm2 
A2 
statfarad 
statcoulomb (esu) 
statcoul cm-2 
statcoul cmP3 
statmho (statohm-') 
statmho cm-' 
mho cm-' (ohm-' cm-I) 
g cm-3 
cm2 s-'  
statcoul cm 
statvolt cm - 
v cm-' 
statvolt 
erg 
calorie 
cal K- '  
dyne 
S - l  

g s-' 
cal K - '  
mole liter-' 
statcoul cm 
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Moment, force 
Moment, inertia 
Momentum 
Momentum, angular 
Period 
Permitivity 
Polarization, electric 
Potential (volt) 
Power (watt) 
Pressure (pascal) 

Radius of gyration 
Resistance (ohm) 
Specific heat capacity 
Stress 
Surface energy 
Surface tension 
Torque 
Velocity 
Velocity, angular 
Viscosity 
Volume 

Wave number 
Weight 

m 
ohm = m2 kg s - ~  A-2 = VA-' 
J kg-' K - '  
N m-2  
J m-2 
N m - '  
N m  
m s - '  
rad s- '  
N s m w 2  
m3 

m- '  
N 

1 o7 
1 o7 
1 o5 
1 o7 

8.99 x 109 

3.34 x 1 0 - ~  
1 o7 

1 

3.00 x 10' 

10 
9.87 x 10-6 
Id 
1.11 x 10-l2 

10 
2.39 x 1 0 - ~  

103 
103 
1 o7 
1 o2 
1 
10 
1 o6 
1 o3 
10 - 2  

10s 

dyne cm 
g cm2 
dyne s 
erg s 

statfarad cm-' 
statcoul cm ' 
statvolt 
erg s-l 

dyne cm-2 
atm 
cm 
statohm 
cal g- '  K- '  
dyne cmP2 
erg cmP2 
dyne cm-'  
dyne cm 
cm s-l 

rad s-l 

dyne s cmP2 (P) 
cm3 
dm3 (liter) 
cm-' 
dyne 

S 

SI unit t Conversion factor + cgs/common unit 

aNote that different column headings are given at the top and bottom of  the table to facilitate conversions from SI to cgs and 
from cgs to SI, respectively. The cgs units must be divided by the conversion factor to get the SI units. 
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TABLE B.3 Multiples of Units, 
Their Names, and Symbols 

Multiple Prefix Symbol 
~~ 

1 0l2 
1 o9 
1 o6 
1 o3 
1 o2 
10 
10-' 
lo-2 
1 0 - ~  
10-6 
1 0 - ~  
10-l2 
10-l~ 
10-lS 

tera 
gigs 
mega 
kilo 
hecto 
deca 
deci 
centi 
milli 
micro 
nano 
pico 
femto 
atto 

T 
G 
M 
k 
h 
da 
d 

m 
cc 
n 
P 
f 
a 

C 
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Appendix C 
Statistics of Discrete and Continuous Distributions of Data 

C.l INTRODUCTION 

Students of the physical sciences generally encounter statistics in two different places. One of 
these deals with the treatment of experimental data. From this viewpoint, all measured quanti- 
ties contain some error, which raises questions concerning the best way to report the results of 
multiple measurements. This is obviously related to our problem of describing, for example, 
the “characteristic dimension” of the particles discussed in Chapter 1 (Figure 1.10). Another 
place in which the science student encounters statistics is in the theoretical description of large 
populations or populations that change through a large number of states, as, for example, in 
the kinetic molecular theory of gases. We are concerned with this aspect of statistics also. For 
example, the randomly coiled piece of string we considered in Chapter 1 (Section 1.5a.2) 
changes size and shape continually while it is being shaken. 

These two applications of statistics, from our point of view, will differ primarily in the 
kind of information we have available about our system. Sometimes, as when measuring 
micrographs, we have individual information on a large number of particles. Our question 
under these circumstances is how to condense these data into a. few key parameters. In other 
circumstances, the experimental quantity itself wilI be an “average” quantity. Our question, 
then, is what kind of distribution is consistent with this average. In both cases, the underlying 
fact is the existence of a distribution of values for the quantity in question. We consider some 
aspects of these statistical topics here; references in statistics should be consulted if additional 
information is needed. 

C.2 DISCRETE DISTRIBUTIONS 

Suppose we have just measured the diameters of a field of polydisperse spheres in an electron 
micrograph. The data in such cases consist of sets of numbers such as the ones we saw in Table 
1.5. Our objective is to devise reasonable ways of presenting a description of the system in 
terms of the measured data. A fairly large number of observations is required for any statisti- 
cal approach to be valid; therefore merely to tabulate the measurements is inadequate. Some 
condensation of the data is clearly required. Generally, the first step along these lines is a 
device known as classification of the data. Classification consists of sorting the observed 
quantities into 10-20 categories called classes. Having fewer than 10 categories results in a loss 
of detail in the description of the distribution; having more than 20 categories does not 
improve the representation in proportion to the extra effort it requires. The frequency distribu- 
tion of such a sample is a tabulation of the number of particles in each class. Table 1.5 in 
Chapter 1, for example, represents the frequency distribution for a hypothetical array of 
spheres; all the numerical examples of this section are based on this sample of 400 particles. 
Each class is represented by the midpoint of the interval, a quantity called the class mark, 
symbolized by d, for class i. Similarly, we define the number of particles in each class as n;. 
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We discussed in Chapter 1 how discrete data - such as the ones reported in Table 1.5 - 
can be represented graphically as a histogram, that is, a bar graph in which the class marks are 
plotted as the abscissa and the height of the bar is proportional to the number of particles in 
the class (Fig. 1.18a). The corresponding cumulative curve, that is, the total number (or 
fraction) of particles nT,, having diameters less (sometimes more) than and including a particu- 
lar dl are plotted versus d;. This was illustrated in Figure 1.18b. 

In this appendix, we summarize how the discrete data sets can be represented in terms of 
averages, standard deviation, and moments in a concise way. In principle, under certain 
conditions, these quantities represent the same information represented through histograms. 

C.2a Average and Standard Deviation 

In Section 1 .5c. 1 we presented the following general definition of an average: 

Average = (Weighting factor), (Quantity being averaged), (1) 
I 

where the weighting factorx and the quantity being averaged can both mean different things 
in different contexts. The most common definition of a weighting factor is the number fraction 
of the particles in each class i. We indicate this by the additional subscript n off: 

f n , i  = n i /C  ni (2) 

Then the mean or the average of 4; denoted by 6 is given by 

C;n,4; 6 = C f n , i 4 i  = C,n, 
I 

and the standard deviation (7 

(3) 

of the distribution. The significance of the standard deviation should be noted. The quantity 
- 61 is the deviation of a particular value from the mean, and the deviations can be 

positive or negative. Comparing Equation (1) with Equation (4), we see that a2 is actually the 
number average of the square of the deviations - 61. The square root of this average, 
then, is a measure of the spread of the data in a particular sample. For this reason, (J is often 
called the root mean square (rms) deviation. From a computational point of view, the follow- 
ing formula, which is a different way of writing Equation (4), provides an easier means for 
evaluating 0: 

( 5 )  

In general, the number average (i.e., based on number fractionf,,, as the weight function) 

- 
(7 = [+2  - ( 6 ) 2 ] ” ’  

This result was used in Section 1.5c.3b to relate (gJan) to 0. 

of any property, say, $, of the particles is defined as 

I 

where $; is the value of the property in class i. If  $ is taken to be the area A of the particles, 
one then has for the average area, that is, area per particle A: 

The diameter of a sphere having this “average” area is the surface area average diameter d, 
and equals 
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The surface average diameter is always larger than the direct average of the diameters for a 
polydisperse system since the larger diameters contribute relatively more t o  the sum of the 
squares than they would if totaled directly. Example C. l  illustrates such a calculation. 

L I . .  

EXAMPLE C.l Average Surface Area Versus Surface Area Based on Average-Size Particles. 
Using the distribution of spheres in Table 1.5, calculate the area of each size sphere in the 
distribution and average these areas, using the number of spheres in each class as weighting 
factors. How is this result related to d ,  for this population? 

Solution: To calculate the area of each size sphere, we apply the formula A = d2 to each 
class in Table 1.5: 

0.05 
0.15 
0.25 
0.35 
0.45 
0.55 
0.65 
0.75 
0.85 
0.95 
1.05 
1.15 

7.85 10 - 3  5.50 . 10 - 2  

7.07 . 10-’ 1.06 
1.96 . 10 - ’  3.53 
3.85. 10-’ 1.08 * 10’ 
6.36 . 10-’ 2.04 4 10’ 
9.50 . 10-’ 6.65 1 10’ 
1.33 8.63 . 10’ 
1.77 1.04. 102 
2.27 1.02 * 102 
2.84 1.08 . 102 
3.46 6.58 . 10’ 
4.15 1.66 . 10’ 

Sum = 5.85 . 102 

Therefore the “average” area is 5.85 ’ 10‘1400 = 1.46 pm2. 
This is the value used in Section 1.5c.l. This average area divided by K gives (a,)’. W 

t . .  

The general formulas for calculating averages are given by Equations (1) and (2). Equation 
(2)  represents the weighting factor in normalized form. A weighting factor is said t o  be 
normalized if the sum of weighting factors for  the whole population equals unity, a consider- 
ation that must be introduced a t  some point in the calculation. When fractions of the whole 
are used as weighting factors, normalization is introduced through the definition of  the weight- 
ing factor. 

C.2b Higher-Order Moments of the Distribution 

In general one  can define the kth moment of the distribution about a point do as 

k thmoment  = c f,,, (d, - do)k (9) 

Note that Equation (9) implies that the  square of  the standard deviation U’ is the second 
moment of d relative to  the mean a. Higher order moments can be  used t o  represent additional 
information about the shape of a distribution. For example, the third moment is a measure of 
the “skewness” or lopsidedness of a distribution. It equals zero for symmetrical distributions 
and is positive or  negative, depending on whether a distribution contains a higher proportion 
of particles larger o r  smaller, respectively, than the mean. The fourth moment (called kurfosis) 
purportedly measures peakedness, but this quantity is of questionable value. 

In discussing the random walk and  diffusion in Chapter 2, we use continuous functions as 
the weighting factors for calculating averages (e.g.. Equation (2.63) ). In the following section 
we discuss in greater detail the use of continuous weighting functions in statistics. 
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C.3 THEORETICAL DISTRIBUTION FUNCTIONS 

We noted in Section 1 . 5 ~  that histograms of distributions of quantities such as particle size 
approach smooth distribution curves as the number of classes is increased to a very large 
number. Sometimes it is desirable to represent a distribution function by an analytical expres- 
sion that is a continuous function of the measured variable. We consider only a few examples 
of such distribution functions here. 

C.3a Normal or Gaussian Distribution Function 

The most familiar of such functions is the normal, or Gaussian, distribution function: 

-- - 
aJ27r = 

\ - -  I --- 

In this equation, f(x)dx expresses the fraction of particles having x values between x and x + 
dx; it replaces fn,;, which plays a corresponding role in discrete distributions. Some characteris- 
tics of the normal distribution are the following: 

The function f ( x )  has its maximum value at x = 5 and drops off exponentially with 
the square of the deviation of x from the mean, when such deviations are measured 
as fractions or multiples of the standard deviation. 
The preexponential factor accomplishes the normalization of the function; that is, the 
integral of the function over all possible values of x ( -  00 to 00) equals unity. In a 
broad distribution a is large, and the exponential does not drop off as rapidly as in a 
narrow distribution (recall that all deviations are measured relative to the standard 
deviation). 
Since the area under the curve is always unity, a narrow distribution will show larger 
values of f ( x )  at the maximum, whereas a broader distribution will have a smaller 
value for the function at the maximum. This is why the standard deviation appears in 
the denominator of the preexponential normalization factor. 

The normal distribution is the “curve” over which students and teachers alike agonize in 
connection with course grades. We discuss this distribution function in greater detail in Chap- 
ter 2. For the present we are concerned only with its descriptive capabilities. For this purpose 
it is sufficient to note that tables are available (e.g., Beyer 1987; also see the other references 
at the end of this Appendix) that supply the value of this function in terms of the standard 
unit, 

1. 

2. 

3.  

(1 1) 
f ( t )d t  = =exp(-g)dt 1 

J2T 

The normal distribution is commonly encountered in the cumulative form, that is, as the 
fraction of particles larger (oversized) or smaller (undersized) than a particular tj value. Since 
the total area under the normal curve equals unity, the area under one “tail” of the curve from 
tj to 00 gives the fraction of the population having t values greater than the integration limit t j:  

Likewise, the cumulative fraction of particles smaller than tj equals 

Tables are also available (e.g., see Beyer 1987) for the area under the normal curve 
between 7 (7 = 0) and one value of t j  (i.e., they apply to one tail only). This area is known as 
the errorfunction and is often symbolized as erf (t;): 
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In terms of the error function, Equation (12) becomes 

where the positive value is used if t, is negative and the negative value is used if t, is positive. 
These signs are reversed if the cumulative fraction of undersized particles is to be determined. 
Consulting the tables, we see that in a normally distributed sample 15.87% of the particles will 
have t values greater than + 1.0. This is the percentage of particles for which the deviation 
from the mean is greater than one standard deviation unit. 

Example C.2 considers a numerical application of these ideas. 
* * *  

EXAMPLE C.2 Polydispersity in Size: Gaussian Distribution. A_sample of 75 particles follows 
the normal distribution with respect to particle diameters, with d = 1.140 pm and CT = 0.311 
pm. Consult a table of the normal distribution to evaluate the fraction of particles in the popula- 
tion having diameters less than 1 .O pm. What is the probability that a particle picked at random 
from this population lies in the class for which 0.95 < d < 1.05 in the histogram of this distribu- 
tion? 

Solution: Evaluate t for d = 1 .OO: t = (d  - a)/a = (1 .OO - 1.1 4y0.311 = - 0.450. Tables of 
the normal distribution (see Beyer 1987) indicate that the area under the curve is 0.1736 at t = 
0.45. To interpret this, picture the familiar bell-shaped curve centered at t = 0 (d = d = 1.14 
pm); we are interested in an abscissa value of t = -0.45 (d  = 1 .O). The figure 0.1736 gives 
the fraction of the area under the whole curve that lies between t = -0.45 and t = 0.0. This 
means that (0.5 - 0.1736) = 0.3264 is the fraction of the area that lies beyond t = -0.45. 
This means that about 332/0 of the particles have diameters less than 1 .OO pm. 

For d = 0.95, (d - d)/a = -0.61; the-area between t = -0.61 and t = 0.0 is 0.229 ac- 
cording to the tables. For d = 1.05, (d  - d ) / a  = 0.29; the area between t = -0.29 and t = 
0.0 is 0.114. Therefore the probability of a particle falling between 0.95 and 1.05 is (0.229 - 
0.114) = 11.5%. 

* * *  

Suppose a polydisperse system is investigated experimentally by measuring the number of 
particles in a set of different classes of diameter or molecular weight. Suppose further that 
these data are believed to follow a normal distribution function. To test this hypothesis 
rigorously, the chi-squared test from statistics should be applied. A simple graphical examina- 
tion of the hypothesis can be conducted by plotting the cumulative distribution data on 
probability paper as a rapid, preliminary way to evaluate whether the data conform to the 
requirements of the normal distribution. 

Probability paper is a commercially available graph paper that has one coordinate subdi- 
vided in ordinary arithmetic units and the other coordinate subdivided into cumulative proba- 
bility units. The latter are spaced in such a way that normally distributed data will produce a 
straight line graph when the cumulative percentage of undersize (or oversize) particles is 
plotted on the probability coordinate, and the size variable (diameters, weights, etc.) is plotted 
on the arithinetic scale. Figure C. 1 shows schematically how (a) normally distributed data are 
transformed when replotted as (b) a cumulative distribution and, finally, when (c) graphed on 
probability paper. The x value corresponding to y = 50% on probability paper gives the mean 
value. The .Y value at y = 15.87% gives (37 - a), and the x value at y = 84.13% (100 - 
15.87) gives (X -a) when the percentage of undersize particles is plotted (the signs are re- 
versed when the percentage of oversize particles is plotted). From these values CT may be 
determined. Thus a linear plot on probability paper suggests conformity to the normal distri- 
bution and also permits the graphical evaluation of X and 0. 

As we see in Chapter 2, the normal distribution comes about when a large number of 
purely random factors is responsible for the distribution. It is mainly applicable to particles 
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FIG. C. l  A normal, or Gaussian, distribution: (a) represented as a frequency function; (b) 
represented as a cumulative function; and (c) represented as a cumulative function linearized by 
plotting on probability paper. 

that are produced by condensation, precipitation, or polymerization processes, which are 
purely random. 

C.3b Log-Normal Distribution Function 

Dispersions that are produced by comminution -the mechanical subdivision of larger 
chunks - are more likely to produce a linear graph on probability paper if the logarithm of the 
variable rather than the variable itself is plotted against the probability. Graph paper gradua- 
ted this way is called log-probability paper. The logarithmic scale implies a much wider range 
of values for the variable, and also an asymmetrical distribution function may be written by 
analogy with Equation (10): 

I I /Inx, - l n ~ ~ ) ’ ]  
f(1nx) = ~ -exp -- 

In agJ27r In ag 

However, an important difference also emerges from this analogy. The quantities that are 
normally distributed are logarithms of variables, not the variables themselves. This means that 
the mean and standard deviation obtained from log-probability plots are geometric averages 
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rather than arithmetic averages. This is the significance of the subscript g in Equation (16). 
This is most easily understood by writing the expression for the number average value for the 
quantity In xi: 

Taking the antilog of this quantity converts the summation into a product over all terms, 
indicated by 11: 

When the averaging is carried out in this way, the result is known as the geometric mean 
xg. The coordinate corresponding to the 15.87% undersize , y  value equals (In xg - In og). 
Because of the properties of logarithms, this is the same as the logarithm of the ratio (x,/o,). 
From this, ug may be evaluated. We shall not concern ourselves further with these geometrical 
averages except to note that 

x, < xn (19) 

for any polydisperse system. (The subscript n on the F on the right-hand side of Equation (19) 
stands for arithmetic average of the type in Equation (3).) The validity of this relationship is 
easily demonstrated by calculating the two averages for a hypothetical distribution. 

REFERENCES 

Beyer, W. H. (Ed.), CRC Handbook of Mathematical Sciences, 6th ed., CRC Press, Boca Raton, 
FL, 1987. (One of the standard references for tables of mathematical concepts and for- 
mulas.) 

Crow, E. L., Davis, F. A., and Maxfield, M. W.,  Statistics Manual, Dover, New York, 1960. 
(There are numerous excellent books on statistics available in print. This book is a handy, 
affordable manual that is sufficient for most purposes.) 

(This is a 
more detailed manual on statistics and contains very useful collections of tables, distribution 
functions, data analysis procedures, and graphical techniques.) 

Meyer, S .  L., Data Analysis for Scientists and Engineers, Wiley, New York, 1975. 



Appendix D 
List of Worked-Out Examples 

Example Topic Page 

1.1 
1.2 
1.3 

2.1 
2.2 
2.3 
2.4 
2.5 
2.6 

3.1 
3.2 
3.3 
3.4 
3.5 

4.1 
4.2 
4.3 
4.4 
4.5 
4.6 

5.1 
5.2 
5.3 
5.4 
5.5 
5.6 

6.1 
6.2 
6.3 
6.4 
6.5 

7.1 
7.2 
7.3 
7.4 

Variation of specific surface area with geometry 
Surface area of fractal aggregates 
Polydispersity of a synthetic polymer 

Most probable settling velocity from sedimentation data 
Particle-size determination from sedimentation equation 
Sedimentation in an ultracentrifuge 
Solvation and ellipticity from sedimentation data 
Diffusion and Gaussian distribution 
Temperature-dependence of diffusion coefficients 

Molecular weight from osmotic pressure measurements 
Degree of polymerization and molecular weight distribution 
Excluded volume from osmotic pressure measurements 
Theta temperature from second virial coefficient data 
Evaluation of charges on macroions from osmotic pressures 

Stress-strain relationship from a concentric-cylinder viscometer 
Capillary viscometers versus concentric-cylinder viscometers 
Inherent viscosity at low volume fractions 
Extent of hydration from intrinsic viscosity measurements 
Empirical determination of the Mark-Houwink coefficients 
Variation of viscosity with polymer configuration 

Polarizability of particles 
Molecular weights from Rayleigh ratios 
Use of Zimm plots 
Structure of aggregates probed by small-angle scattering 
Effective diameter of an enzyme from DLS 
Cumulant analysis of DLS data 

Laplace equation: A thermodynamic derivation 
Determining surface tension from the Kelvin equation 
Heat of immersion from surface tension and contact angle 
Surface tension and the height of a meniscus at a wall 
Interfacial tensions from the Girifalco-Good-Fowkes equation 

Molecular weight of a solute from 7r versus A isotherms 
Use of the van’t Hoff equation for monolayers 
Suppression of evaporation by monolayers 
Surface excess concentration from surface tension data 

9 
27 
37 

72 
74 
78 
83 
89 
92 

117 
119 
124 
134 
138 

152 
157 
167 
170 
182 
187 

20 1 
210 
22 1 
226 
239 
24 1 

259 
262 
268 
278 
289 

313 
315 
32 1 
329 

638 
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7.5 
7.6 

8.1 
8.2 
8.3 
8.4 
8.5 
8.6 
8.7 

9.1 
9.2 
9.3 
9.4 
9.5 
9.6 
9.7 
9.8 

10.1 

10.2 
10.3 
10.4 
10.5 

11.1 

11.2 
11.3 
11.4 

12.1 
12.2 
12.3 
12.4 
12.5 

13.1 
13.2 
13.3 
13.4 
13.5 

13.6 

c. 1 
c.2 

Use of Langmuir adsorption isotherms 
Interpretation of adsorption using electrocapillary curves 

Reaction equilibrium and phase equilibrium models of micellization 
Calculating the geometric parameters of the core of a micelle 
Packing parameter for a spherical micelle 
Gibbs energy and entropy changes due to micellization 
Equilibrium and rate constants in micellar catalysis 
An NMR study of solubilization in a reverse micelle 
Interpreting phase diagrams of microemulsions 

Construction of adsorption isotherms 
E,valuating isotherms from equations of state 
Analysis of adsorption data using the Langmuir isotherm 
Kinetic-theory-based description of binary adsorption 
Calculating adsorption energy from the BET isotherm 
Rate of atomic collisions as a function of pressure 
Comparing bulk and surface structures using LEED patterns 
The lattice structures of adsorbate and adsorbed layers 

Relative magnitudes of van der Waals forces and relation to heat of 
vaporization 
Ilispersion force and nonideality of gases 
Strength of van der Waals forces and the structure of materials 
Hamaker constant of liquid polystyrene 
Particle engulfment by an advancing solidification front 

Dependence of Debye-Huckel parameter on temperature and type of 
electrolytes 
Relation between surface charge density and surface potential 
Influence of electrostatic repulsion on the thickness of soap films 
Interaction between spherical particles: The Derjaguin approximation 

Debye-Huckel expression for ionic activity coefficients 
Relation between electrophoretic mobility and zeta potential 
1Jnits of electrokinetic parameters 
Electrophoretic mobility of bacteria 
Estimation of number of nucleotides in Glycine tRNA using 
electrophoresis 

Critical coagulation concentration and Go 
Variation of particle concentration due to rapid coagulation 
Expression for stability ratio in terms of +p,,, 

Change of stability ratio with ionic concentration. 
‘Thicknesses of adsorbed polymer layers from the intrinsic viscosity of 
the dispersion 
An entropic model for steric stabilization 

Average surface area and surface area based on average-size particles 
Polydispersity in size: Gaussian distribution 

639 

335 
347 

36 1 
364 
369 
373 
383 
387 
392 

41 1 
415 
423 
425 
43 1 
44 1 
447 
45 1 

476 
479 
48 1 
490 
494 

512 
519 
523 
525 

539 
543 
554 
56 1 

564 

591 
596 
599 
602 

607 
619 

63 3 
63 5 
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Index 

The notation e, f, t or v accompanying certain entries implies that the examples, figures, tables 
or vignettes, respectively, appearing on the indicated pages also contain relevant information. 

Absorption cross section, 23 1 
Absorption efficiency, 23 1 
Adhesion, 270, 271 f 

work of, 271 
Admicelle, 342 
Adsorbate, definition, 332 
Adsorbent, definition, 331 
Adsorption, 323, 405 

apparatus, 41Of 
in applied potential, 343-348 
on crystal surfaces, 439-45 1 
energetics of, 433-436 
experimental treatment, 407-412 
hysteresis, 437-439 
polymer, 606 f 
in porous solids, 436-439 
on solid surfaces, 331-338 
from solutions, 323, 331 

applications of, 338-343 
statistical thermodynamics, 420-424 
theoretical treatment, 4 12-4 19 
thermodynamics, 419-424 

411e, 412f, 417t, 416f 
Adsorption isotherms, 302, 332, 308f, 407, 

Harkin-Jura, 416, 417t 
Henry’s law limit, 4 13 
Langmuir, 420-422,423e 
relation to equations of state, 413, 415e 
and surface phases, 308f 
van der Waals, 416 

Advancing contact angle, 272, 273 f 
Aggregation 

cluster-cluster, 29 
diffusion-limited, 29, 30f 
monomer-cluster, 29, 30 
reaction-limited, 29 

Aggregation number of micelles, 358, 360t 
Aggregates, 25 

fractal dimension of, 26, 27e, 225, 226e 

[Aggregates] 
relation to growth mechanisms, 29, 30f 
surface area, 27e 

Amphipathic molecules, 301 
Analytical separations, 62 
Anodic branch of electrocapillary curve, 345 
Archibald method, 100 
Ascending (rising) branch of electrocapillary 

curve, 344 
Association colloids, 56, 355 
Athermal mixing, 128 
Atomic force microscope (AFM), 44v 
Auger electron spectroscopy (AES), 406 
Autocorrelation function, 238 
Average, 32, 35t, 63 1, 632 

area, 34, 632 
arithmetic, 637 
geometric, 637 
number, 33,632 
volume, 34 

Barometric equation, 100 
Bashforth-Adams equation, 279, 280 
Bashforth-Adams tables, 28 1 t, 28 1 f 
Beer-Lambert equation, 23 1 
Beta-emitting surfactants, 33 1 
Bilayer, 4v, 7f, 396, 397 
Bingham plastics, 175 
Binomial expansion, 625 
Biological membranes, 395-398 
Black lipid membrane (BLM), 397 
Boltzmann distribution, 98 
Boltzmann equation for entropy, 120 
Bragg equation, 40,443 
Brownian motion, 85-90 
Brunauer-Emmett-Teller (BET) adsorption 

derivation using kinetic theory, 425-428 
isotherm, 425-433, 429f 

64 1 
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[Brunauer-Emmett-Teller (BET) adsorption 
isotherm] 

parameters of, 428 
test of, 428-433 

Cabannes factor, 213 
Calorimetric heat of adsorption, 433 
Capacitor model, 504, 5 15 

diffuse model, comparison with, 515 
Capillary condensation, 437-439,438f 
Capillary constant, 254 
Capillary viscometer, 154, 156, 157f, 157e 
Capillary zone electrophoresis, 564 
Casimir-Polder interaction, 482 
Catalysis, 49v, 405, 407v 

heterogeneous, 49v, 407v 
metals, 451-455, 452t 
micellar, 380-385 
turnover number of catalysts, 454 

Cathodic branch of electrocapillary curve, 345 
Ceramics, colloidal processing of, 16v 
cgs units, 626 

Charge density, 506 
conversion to SI units, 627t 

Debye-Huckel theory, 5 15 
from electrocapillary curve, 346 
Gouy-Chapman theory, 5 18 
surface potential, relation to, 515 

Charged micelles, 358 
Charged monolayers, 308 
Charged proteins, 565 
Chemical vapor deposition, 407v 
Chemisorption, 405, 406, 408f 
Chi-squared test, 635 
Chromatography, 45, 62v 

gel filtration, 48 
gel permeation, 48 
relation to electrophoresis, 564 
size exclusion, 45, 48f, 501 

Clapeyron equation, 433 
Class, 32, 631 
Classification of data, 63 1 
Class mark, 32, 631 
Clausius-Mosotti equation, 203t 
Cloud point, 377 
Coagulants, 499 
Coagulation, 463 
Coagulation, theories of, 592-600 

Fuchs (slow coagulation), 596 
Smoluchowski (rapid coagulation), 593 

Coalescence, 15 
Coefficient 

diffusion, 80-85,92e 

[Coefficient] 
Mark-Houwink, 38, 182e, 182t 
sedimentation, 77 
spreading, 272, 300 
of surface viscosity, 319, 320 
virial, and osmotic pressure, 112, 113 
of viscosity, 69, 145, 148 

work of, 70 
Cohesion, 270, 271f 

Cohesive energy density (CED), 128 
Coil expansion factor, 186 
Coincident structures, 449 
Colligative properties, 110, 119 
Colloid crystals, 579, 580f, 583f 
Colloid-enhanced transport, 2v, 3f 
Colloids 

applications, 6t 
classification, 2 
food, 31v 
hydrophilic, 10 
hydrophobic, 10 
lyophilic, 10 
lyophobic, 13 
“model” colloids, 23 
self-similar, 27 
shapes, 20,22f, 23f 

and interparticle forces, 578-581, 580f 
and van der Waals forces, 464-467 
and potential energy diagrams, 466f 

Colloid stability, 463, 567, 575, 576 

Commercial surfactants, 332t 
Complex refractive index (absorbing mate- 

Computer simulations, 29, 30f 
Concentric-cylinder viscometer, 150, 5 1 f, 

Condensation in capillaries, 437,4439s 
Condensed states, in monolayers, 309 
Conductance, equivalent, ionic, 537 
Conductivity 

rial), 229 

152e, 157e 

bulk solutions, 554 
at critical micelle concentration, 359 
surface, 554 

Cone-and-plate viscometer, 153 f 
Consolidate, 17 
Contact angle, 248, 252 

advancing, 272,273 f 
hysteresis, 272-276, 273 f 
measurement of, 253-255,276-283 

capillary rise technique, 254-255, 253f 
tilted plate technique, 252f, 253 
Wilhelmy plate technique, 253-254, 253f, 

276 
of powders and porous solids, 283-286 



INDEX 643 

[Contact angle] 
receding, 272, 273f 
relationship to surface tension, 265 

Continuous distribution functions, 631 
Continuous phase, 10 
Conversion, units, 627t 
Coulomb’s law, 197, 505 
Critical chain length of hydrocarbon tail, 

Critical coagulation concentration (CCC), 
364e, 367f, 368 

578, 588, 589t, 591e 
and stability ratio, 600 

Critical flocculation temperature, 609 
Critical micelle concentration (CMC), 11, 

357, 359f, 360t, 374 
Crystalline structures, 17, 580f, 583 f 
Crystallization on surfaces, 408f 

Frank-van der Merwe, 408f 
Stranski-Krastanov, 408 f 
Volmer-Weber, 408 f 

Crystallograp hy, basic principles, 443-445 
Cumulative curve, 632 
Curved interfaces 

effect on phase equilibria, 261-263 
effect on nucleation, 264-265 (see also 

Young equation) 

Deborah number, 176 
de Broglie equation, 42 
Debye equation, 469, 472 
Debye-Hiickel model, 501, 508-516 
Debye-Huckel parameter, 5 10 

Degree of aggregation, 358, 360t 
Depletion 

physical significance of, 5 12, 5 12e, 5 13t 

flocculation, 605 f 
interaction, 614, 615f 
stabilization, 605 f 
volume, 615f 

Derjaguin approximation, 525e 
Derjaguin-Landau-Verwey-Overbeek (DLVO) 

Detergency, 338-339 
Dialysis, 139 
Diffuse double layer, 505, 508-520 
Diffusion, 62, 78-85, 89e 

theory, 585 

apparatus, 90, 91f 
and Brownian motion, 85-90 
and chemical potential, 80, 81 
coefficient, 80-85, 92e 

cumulative, 242 
from dynamic light scattering, 236-242 
mutual, 241 

[Diffusion] 
effect of solvation, 82 
and friction factor, 80-85 
self, 241 

equilibrium with sedimentation, 98-100 
and Fick’s laws, 79, 80 
and random walk, 85-90 
thermodynamic description, 80-82 

Diffusing wa.ve spectroscopy (DWS), 194v 
Dilatant fluids, 175 
Dispersed phase, 10 
Dispersion force, 482 
Dissymmetry ratio, 221-223 
Distribution functions 

continuous, 63 1 
discrete, 63 1 
statistics of, 63 1-637 

and biophysics, 106v 
and osmotic pressure, 136 

Donnan equilibrium, 105, 106v, 133-136, 331 

Double layer (see Electrical double layer) 
Drug delivery systems, 1 lv 
DuprC equation, 265 
Dynamic scattering, 193, 236-242, 239e, 241e 

effect of polydispersity, 240 
measuring diffusion coefficients, 238, 239e 
measuring particle size, 238, 239e 

Dzyaloshinskii- Lifshitz-Pitaevskii theory, 
486 

Einstein’s equation for viscosity of disper- 

Elastic, 146 
Electrical double layer, 499, 505 

sions, 164 

capacitor model, 504 
and surface charges, 502 

Electrical double layer interaction, 499, 520- 

Electrocapillarity, 344-345, 347e 
Electrode, SO3 

5 27 

reversible, 503 
silver iodide, 503 

Electrodeposition, 570 
Electrokine tic phenomena, 5 34 

Electroosmosis, 534, 550-553, 55lf 
applications, 567-570 

effect of surface conductivity, 552-553 
and streaming potential, 550 

Electrophoresis, 534, 538 
experimental aspects, 5 59-564 
moving-boundary, 562 
zone, 564 

Electrophoretic image display (EPID), 13v 
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Electrophoretic mobility, 537, 561e 
viscoelectric effect, influence of, 556 

Electrophotography , 5 3 5 v 
Electrostatic interaction, 499, 500v, 50lf 
Electroviscous effects, 17 1 - 180 

primary, 178 
secondary, 179 
tertiary, 179 

Electrodialysis, 139 
Ellipsoid 

oblate, 22f 
prolate, 22f 

and friction factor, 83 
from sedimentation data, 72e, 84t 
and viscosity, 17 1 

of adsorption, 336 
of micellization, 373, 374t 
of mixing, 120, 122, 126-127 
surface, 257t 

Environmental remediation, 568f 
Environmental scanning electron microscopy 

Equation 

Ellipticity 

Enthalpy 

(E-SEM), 44 

barometric, 100 
Bashforth and Adams, 279, 280 
Beer-Lambert, 23 1 
Boltzmann, for entropy, 120 
Bragg, 40,443 
Brunauer, Emmett and Teller (BET), 428 
Clapeyron, 433 
Clausius-Mosotti, 203t 
Coulomb, 505 
de Broglie, 42 
Debye for dipole interaction, 472 
Einstein, viscosity, 164 
Fick (I), 79 
Fick (11), 80 
Freundlich, 337 
Gibbs, 325 
Gibbs-Diihem, 324 
Gibbs-Helmholtz, 373 
Girifalco-Good, 287 
Girifalco-Good-Fowkes, 288 
Gouy-Chapman, 5 17 
Harkins-Jura, 41 7 
Helmholtz-Smoluchowski, 545 
Henry, 548 
Hiickel, 543 
Keesom, 472 
Kelvin, 262 
Krieger-Dougherty, 169 

[Equation] 
Langmuir 

for gases, 422 
for liquids, 333 

Laplace, 251 
Lippmann, 346 
London, 474 
Navier-Stokes, 160 
Poiseuille, 156 
Poisson, 508 
Poisson-Boltzmann, 509 

Raoult, 108 
Rayleigh, 202 
sedimentation, 69 
Simha, 171f 
Staudinger-Mark-Houwink, 181 
Stokes, 161 
Stokes-Einstein, 81 
van der Waals 

linearized, 5 10 

three-dimensional, gases, 477 
two-dimensional, gases, 416 

Van’t Hoff, 112 
Washburn, 286 
Young, 265 
Young-Dupre, 266 

Equilibrium film pressure, 267 
Error function, 92, 634 
Expansions for 

binomial function, 625 
exponential function, 625 
hyperbolic cosine, 625 
hyperbolic sine, 625 
logarithmic function, 625 
sine function, 625 

Excluded volume, 120, 124e, 287 
Experimental tools, 38 

Faraday constant, 503, 537 
Fick’s law, 63, 78 

first, 79 
second, 80 

Field Flow Fractionation (FFF), 62v 
Film pressure, 304 

experimental measurements, 304-308 
versus area isotherms, 308f, 311-316, 315e 

Floatation, 338 
Flocculation 

bridging, 605f 
depletion, 605f 

enthalpy of mixing, 127 
Flory-Huggins theory, 125- 132 
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[Flory-Huggins theory] 
entropy of mixing, 126 
interaction parameter, 129 

Flory-Krigbaum theory, 616 
Flory temperature (see also Theta tempera- 

ture), 13 1 
Fluid mosaic model of a membrane, 396 
Force measurement , 50 

direct methods, 53, 54f, 55f 
indirect methods, 5 1, 52f 

Form factor, 215-218, 223 
expressions for, 2 16 

Fowkes equation, 489 
Fractal, 225, 226e, 227f 

aggregate, 27e, 225 
definition, 27 
mass, 27 

Fractal dimension, 26, 27e, 225, 226e 
Frank-Van der Merwe growth, 408f 
Freundlich isotherm, 337 
Friction factor, 65-67 

and axial ratio, 83 
and diffusion coefficient, 80 
and solvation, 82 
and viscous force, 537 

Fuchs theory of colloid stability, 578 

Gamma functions, 87, 88t 
Gasoline and streaming potential, 555 
Gaussian distribution function, 89e, 9Of, 634, 

Genetic engineering, 11 v 
Gibbs-Donnan equilibrium (see Donnan equi- 

Gibbs equation for adsorption, 323-325 
experimental results, 327-331 

Gibbs-Helmholtz equation, 373 
Gibbs monolayer, 297 
Girifalco-Good equation, 287 
Girifalco-Good-Fowkes equation, 288 
Gold sols, 232 
Good solvent, 125 
Gouy layer, 505 
Gouy-Chapman layer, 505, 527 
Gouy-Chapman model, 501, 516-520 
Graticule, 22 
Guinier region, 225 

635e 

librium) 

Hamaker constant, 484,485t, 488t 
from bulk properties, 486-490 
combining relations for, 491-493 

[Hamaker constant] 
from corresponding state theory, 489, 490e 
negative values of, 493-494 
from surface tension, 487, 488t 

Harkin-Jura equation, 417 
Heat of adsorption, 433 

integral, 435 
isosteric, 434 

550 
Helmholtz-Smoluchowski equation, 546, 

Helmholtz plane, 527-528 
inner, 527 
outer, 527 

Henry’s equation, 546-548 
Hooke’s law and polymers, 619 
Huckel equation, 546, 550 
Heterogeneolus catalysis, 407v 

Histograms, 32, 33f, 632 
Hydrophobic effect, 357, 375 
Hyperfiltration, 140 

on metal surfaces, 451-455, 452t 

Immunoelectrophoresis, 569 
Incoherent structures, 449 
Indifferent ions, 503 
Interface, 2 
Interfacial tension, 290 

Interparticle interaction forces and energies 
London component, 290t 

due to depletion effect, 614, 615f 
due to polymers, 610-613, 613f 
effect of electrolyte concentration, 587f 
effect of Hamaker constant, 585, 586f 
effect of surface potential, 585, 586f 

Isoelectric focusing, 564 
Isoelectric point, 566 
Isoionic point, 566 
Isomorphic substitution of ions, 502 
Isotherms 

Brunauer-Emmett-Teller (BET), 428 
Freundlic h, 337 
Harkin-Jura, 417 
Langmuir , 333 

Isotopic labeling of surfactants, 331 

Keesom equation, 469,472 
Kelvin equation, 261, 262 
Kinetic molecular theory, 99 
Kirkwood-Riseman theory, 147, 186 
Krieger-Dougherty equation, 169 
Kurtosis, 633 
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Langmuir-Blodgett film, 297,298v, 299f, 342, 

Langmuir film balance, 304, 305f, 306f 
Langmuir adsorption isotherm, 333, 334f, 

343 f 

335e, 420,424 
kinetic theory, 424-425 
limitations of, 336-338 
statistical thermodynamic derivation, 420- 

423 
Langmuir layer, 297 
Laplace equation, 25 1, 259e 

and capillary rise, 260-261 
Lasagna process, 568f 
Lennard-Jones potential, 469,470f 
Life sciences, 4v 
Light scattering, 193, 360 

absorbance, 209 
experimental aspects, 207-21 3, 207f 
intensity measurements, 208 
turbidity, 209, 360 

Lipid molecules, 7, 11 v 
Liposomes, 1 lv, 12f, 398 
Lippmann equation, 345-346 
Liquid-condensed (LC) phase, 3 10 
Liquid-expanded (LE) phase, 309 
Liquidlike structures, 17, 580f, 582f 
Log-normal distribution, 636 
London equation, 469,473,474 
Low-Energy Electron Diffraction (LEED), 

406,440-451 
apparatus, 44 If 
interpretation, 445-45 1 

Macroions, 537 
Mark-Houwink coefficients, 38, 182e, 182t 
Mass action model, 357 
Mean, 632 (see also Average) 
Membrane potential, 136 
Micellar encapsulation, 356v 
Micellar-enhanced ultrafiltration, 356v 
Micelle, 355, 358 

catalysis by, 380-385, 383e 
core of, 364e 
fjord structure, 365 
reef structure, 365 
solubilization in, 375-380 
structure of, 363-370, 365f 

chemical reaction model, 357-358, 370, 372 
enthalpy change due to, 373, 374t 
entropy change due to, 373e, 374t, 375 
Gibbs energy change due to, 373e, 374t 
and packing considerations, 367-370 

Micellization, 361 

[Micellization] 
phase equilibrium model, 361e, 372-375 
thermodynamics of, 370-375 

Microelectrophoresis, 538, 559, 560f 
Microemulsions, 389-395 

applications of, 392-395 
as “swollen micelles”, 390f, 391 
phase diagrams of, 391f, 392e, 393f 

optical, 39 
Microscopy, 39, 42f 

contrast, 39 
dark-field, 41 
resolving power, 39 
magnification, 39 

electron, 42,42f 
scanning-probe, 43,44v, 46f 

Microstructured materials, 18v 
Mie theory, 232-235 
Miller indices, 443 
Mimetic chemistry, 356 
Mobility, 536-538 
Molecular sieve, 49v, 50 
Molecular weight, 36, 117, 118 

distribution, 118, 119e 

from light scattering, 210e 
number average, 36, 37e, 38t 
viscosity average, 38t, 183 
weight average, 36, 37e, 38t 

Moments of a distribution, 633 
Monolayers, 298 

and degree of polymerization, 119e 

gas phase, 308f, 31 1 
intermediate phase, 308f, 3 17 
insoluble, 300 
liquid-condensed (LC) phase, 308f, 3 10, 

317 
liquid-expanded (LE) phase, 308f, 309, 316 
solid phase, 308f, 317 
spread, 300 
structure of, 309-318 
van der Waals equation, 314 

Moving-boundary electrophoresis, 562 
Multiple scattering, 194v, 196f 

Navier-Stokes equation, 147, 158-161 
Nerve cells and Donnan equilibrium, 106v 
Newton’s law of viscosity, 147, 148 
Non-Newtonian behavior, 149f, 17 
Normal distribution function, 89e, 90f, 634, 

635e 
Normalization, 633 
“Not-quite-indifferent” electrolytes, 527 
Numerical aperture, 40 
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Optimal head group area, 367f, 368 
Orthokinetic coagulation, 592 
Osmometry, 110, 114 

applications, 114 
and measurement of molecular weight, 116, 

and polydispersity, 118 
117e 

Osmosis, reverse, 140 
Osmotic equilibrium, 106, 110, 132 

and charged systems, 132-139 
Osmotic phenomena, applications of, 139 
Osmotic pressure, 105, 106v, 108, 11 1, 129, 

137t 
apparatus, 1 lOf, 116f 
charged particles, 136-1 39 
and charges of macroions, 138e 
at critical micelle concentration, 359f 
definition, 11 1 
equilibrium time, 114, 117f 
experimental, 114 
ideal solutions, 114 
molecular weight measurements using, 1 17e 
nonideal solutions, 112 
reduced, 114 
thermodynamic foundations, 108-1 14 
two-dimensional, on liquids, 3 14 

Packing parameter, 369e, 37 1 t 
Palisade layer, 365 
Particle size distribution, 3 1 

histogram, 32, 33f, 632 
Partition functions, 121, 419-423 

and adsorption isotherms, 422 
Peclet number, 176 
Perikinetic coagulation, 592, 603 
Phase equilibrium model, 357, 361e 
Phospholipid, 4v 
Physisorption, 405,406 
Pigment particles, 13 
Poiseuille equation, 154, 156 
Poisson-Boltzrnann equation, 509 

Poisson equation, meaning of, 508 
Polarizability of particles, 201e 
Polydispersity, 3 1 
Polymer 

linearized, 5 10 

adsorption of, 604, 606f 
coils, 94-98 

end-to-end distance, 94-96 
radius of gyration, 96-98 

forces induced by, 608f, 610-614,61 If, 

radius of gyration of, 96-98 
613f, 61 5f 

[Polymer] 
and random walk statistics, 94-96 
solutions, Flory-Huggins theory of, 125- 

surfaces, organic, low energy, 267 
132 

Polymer/colloid mixtures, 604 
Polymer-induced forces, 608f, 610-614, 61 If, 

613f, 615f 
attractive forces, 613f 
repulsive forces, 612 

Poor solvent, 125 
Porosimetry, 285 
Potential determining ions, 503 
Potential distribution 

around cylindrical surfaces, 5 1 1 
around spherical surfaces, 5 11 
near planar surfaces, 509-5 1 1 

Primary minimum, 467 

Radiation scattering, 193 
Radius of gyration, 3 9 ,  219, 222t 
Random walk, 85 

and average displacement, 93-94 
and diffusion, 88-93 

diffusion coefficients from, 88, 90-93 
and random coil, 94-98 

Raoult's law, 108 
Rapid coagulation, 592-596 
Rayleigh equation, 202, 203t 
Rayleigh ratio, 206 
Rayleigh scattering, 195, 214t 
Repulsive interactions 

Random walk statistics, 85, 93 

between planar double layers, 520-524 
between spherical double layers, 525-526 

Reverse micelles, 386-389 
solubilization in, 387e 
uses of, 387-389 

Reverse osmosis, 140 
Rheology, 145, 146v 

of chocolate, 146v 
Rheopectic, 1.75 
Root-mean-square (RMS) value, 632 

Scanning electron microscopy (SEM), 42, 43 
Scanning probe microscopy (SPM), 44v 
Scanning tunneling microscopy (STM), 44v, 

Scattering 
45, 46"f 

dynamic, 193,236 
Debye theory, 214,215-223, 214t 
by gases, 202 
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[Scattering] 
Guinier region, 225 
intraparticle interference, 21 3-227 
by large absorbing particles, 229-232 
light, 193, 195, 229t 
Mie theory, 232-235 
multiple, 194 
neutron, 202, 229t 
Porod region, 225 
Rayleigh equation, 202, 203t 
by single molecules, 202 
static, 193 
X-ray, 228,229t 

Scattering vector, 217 
physical significance, 223 

Schulze-Hardy rule, 588 
Secondary minimum, 467 
Second virial coefficient, 107, 123, 129, 132e 

Flory-Huggins, 130 
light scattering, 212 
osmotic pressure, 113, 124, 130 

Sedimentation, 17, 62, 64-78 
analysis of data, 72e, 73f 
centrifugal, 74-78 
coefficient, 77 
effect of nonsphericity, 70 
effect of solvation, 70 
and ellipticity , 7 If 
equation, 69 

and particle-size distribution, 73f, 74e 
equilibrium with diffusion, 98f, 99, 100 
field flow fractionation (FFF), 62v 
gravitational, 67-74 
measurements, 71-74 
and polydispersity, 7 1 
sensitivity to density differences, 67 
sewage treatment, 568 
and solvation, 67 

Sedimentation potential, 534 
Self-assembled monolayers, 249v, 250f 
Sel f-assem bly , 3 5 5 
Semipermeable membrane, 110 
Shear, 148, 151t 
Shear thinning, 146 
SI units, 626, 627t 
Siegert relation, 237 
Slow coagulation, 592, 593, 596-598 
Smoluchowski theory of colloid stability, 578 
Solution thermodynamics, statistical founda- 

Solvation 
tions, 120-125 

from sedimentation data, 83e, 84t 
and surface excess, 327 
and viscosity, 170 

Solvent 
adsorption of, 338 
“goodness” of, 96, 125, 130-132 
goodness and aggregation, 609 
induced absorption band, 366 
and theta temperature, 130-132 

variation with geometry, 9e 
Specific surface area, 8 

Spectroscopic methods, 406 
Spreading, 270, 271f, 272 
Spreading coefficient, 272, 300 
Spread monolayers, 300 

applications of, 320-323 
properties of, 301 

kinetic, 15, 16f 
of dispersions, 14 
thermodynamic, 17 
of thin films, 463v 

and critical coagulation concentration, 

equations for, 598, 599e 
and ionic concentration, 602e 

depletion, 605f 
electrostatic, 604t 
steric, 11, 604t, 605f 

Stability, 14-19, 16v, 19v, 465-467, 575 

Stability ratio, 578, 592-604 

600 

Stabilization 

Standard deviation, 32, 37, 632 
Static scattering, 193 
Stationery settling velocity, 66 
Statistical entropy, 120 

and entropy of mixing, 122 
Staudinger-Mark-Houwink equation, 181, 

Stealth effect, 1 1 
Stealth liposomes, 11 
Steric stabilization, 576v, 578, 614-619 

model for initial encounter, 6 14-6 19 
Sterling’s approximation, 87, 421 
Stern adsorption, 527-530 
Stern surface, 527 
Stern layer, 528f 
Stokes 

182e 

approximation, 161 
equation, 16 1 
law, 63, 69, 83, 537 

Stokes-Einstein equation, 81, 196, 239, 242, 

Stranski-Krastanov growth, 408f 
Streaming current, 554 
Streaming potential, 534, 551f, 553- 

594 

5 5 5  
relation to zeta potential, 553 
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Structure factor 
dynamic, 228 
interparticle, 227-228 
in trapar ticle, 223 -227 
uses of, 228 

Sulfur sols, 235 
Supernet, 449 
Surface area 

importance of, 5, 7t, 8t 
specific, 8 

Surface charge density, 5 15 
surface potential, relation to, 516, 519e 

Surface charges, 502 
from electrokinetic measurements, 565-567 
origin, 502t 
zeta potential, relation to, 565 

Surface energy, 5 
Surface excess charge, 499 
Surface excess concentration, 327 

ion dissociation, effect of, 330 
measurement of, 33 1 
surface tension, related to, 327, 329e 

Surface excess properties, 325f, 325-327, 

Surface force apparatus (SFA), 53, 54f, 55f 
Surface of shear, 528f, 555-558 
Surface pressure, 301 

3 29e 

and surface tension, 301 
versus area isotherms, 302 

Surface reconstruction, 449 
Surfaces, thermodynamics of, 255-257 
Surface tension, 248, 251, 276-283,289t, 301, 

and cohesion, adhesion and spreading, 270- 
272 

as force, 251 
Girifalco-Good equation, 287 
Girifalco-Good-Fowkes equation, 288 
and Hamaker constant, 487-489 
implications to curved surfaces, 257-265 
implications to capillarity, 257-265 
measurement of, 253-255, 278e 

327, 329e, 487-489 

capillary rise technique, 254-255, 2531 
drop-weight method, 255 
maximum bubble-pressure method, 255 
ring method, 255 
sessile-drop technique, 279 
tilted plate technique, 252f, 253 
Wilhelmy plate technique, 253-254, 253f, 

276, 302 
molecular interpretation, 286-291 
relationship to contact angle, 265 
as surface free energy, 255 

Surface viscosity, 3 18 

Surfactants, 297, 302t 

celles, 367-370 
Swamping electrolyte, 137 
Swollen micelles, 391 

molecular architecture and shapes of mi- 

Taylor series, 625 
Ternary phase diagrams, 378, 379f, 391, 393 
Theta (€I) temperature, 130- 13 1, 132e, 186, 

Thin-film growth, 407v 
Thixotropy, 175, 181 
Tortuosity, 284 
Transmission electron microscopy (TEM), 42f 
Tunneling current, 44v 
Turbidity, 210, 21 lf, 360 
Tyndall spectra, 235-236 

613 

Ultracentrifuge, 74, 75f, 78e, 100 
optics of, 7Sf 

Ultrafiltration, 140 
Units conversion, 627t 

van der Waals equation of state 
three-dimensional (bulk gases), 477 
two-dimensional (surface phases), 416 

van der Waals forces, 482 
calculation of, 483-485 
Debye interaction, 469, 47 1-472, 477t 
direct measurement of, 490,491f 
Dzyaloshinskii-Lifshitz-Pitaevskii (DLP) 

expressions for, 483-485, 486t 
and heat of vaporization, 476e 
Keesom interaction, 469, 472,477t 
for large particles, 479-482 
London interaction, 469, 473-475,477t 
macroscopic implications, 477-479 
molecular origins, 47 1-475 
and nonideality of gases, 479e 
over large distances, 479-483 
retarded, 47 I, 482-483 
from surface tension, 487,488t 
and structure of materials, 481e 

theory, 486 

Van’t Hoff equation, 3 . 2 ~  
Vesicles, 398 
Vignettes, 4 

adsorption, 407 
bilayers, 4 
biology, 4 
biophysics, 4,, 106 
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[Vignettes] 
catalysis, 49 
ceramic processing, 16 
chemical vapor deposition, 407 
chemisorption, 407 
chocolate, 146 
colloid-enhanced transport, 2 
composites, polymer, 18 
contact angle, 249 
copolymers, 18 
cosmetics, 1 1 
crystal growth, 407 
diffusing wave spectroscopy, 194 
Donnan equilibrium, 106 
drug delivery systems, 1 1  
electrophoretic image display (EPID), 13 
electrophotography, 535 
electrostatic interactions, 500 
epitaxial films, 407 
field flow fractionation, 62 
food colloids, 3 1 
Langmuir-Blodgett films, 298 
liposomes, 1 1  
micellar encapsulation, 356 
micellar enhanced ultrafiltration (MEUF), 

molecular recognition, 500 
nerve cells, 106 
osmotic pressure, 106 
physiology, 106 
physisorption, 407 
polymer adsorption, 576 
polymer composites, 18 
rheology, 146 
scanning probe microscopy, 44 
scanning tunneling microscopy, 44 
sedimentation field flow fractionation, 62 
separation processes, 49, 356 
size exclusion, 49 
spreading, 463 
stability of thin films, 463 
steric stability, 576 
wettability, 249, 463 
zeolites, 49 

Virial coefficients, 108 
and osmotic pressure, 112, 113 
and van der Waals constants, 113 

356 

Viral expansion, 112 
Viscoelastic, 146, 176 
Viscoelectric effect, 17 1, 174, 555 
Viscometers 

capillary, 154, 156, 157f, 157e 
concentric cylinder, 150, 15 If, 152e, 157e 
cone-and-plate, 153f 

Viscosity, 145, 148, 150t 
Newton’s law, 147, 148 
and polymer configuration, 187e 
of polymer solutions, 18 1 - 187 

Staudinger-Mark-Houwink equation, 

Kirkwood-Riseman theory, 186 

effect of solvation and shapes, 169 
electroviscous effects, 171-174 
Einstein’s equation, 164 
Einstein’s theory, 147, 161, 164f 
Krieger-Dougherty equation, 169 
viscoelastic effects, 171, 174 

181-183, 182e 

Viscosity of dispersions 

Volmer-Weber growth, 408f 
Volume of hydrocarbon chain, 367f, 368 

Washburn equation, 286 
Wettability, 249v, 250f 
Wood notation, 450 

Xerography, 535 
X-ray scattering, 228, 229t 

Yield stress (or, value), 149f, 175f, 180 
Young equation, 265f, 265 

effect of solid surface, 266 
effect of surface heterogeneities, 266 
and equilibrium film pressure, 267 
and heat of immersion, 268e, 269f 

Young-Duprk, 266 (see also Young 
equation) 

Zeolite, 49v, 50f, 285 
Zero liquid flow in electrophoresis, 561 
Zero point of charge, 503, 566 
Zeta potential, 530, 534, 536 

effect of double layer relaxation, 548-550 
general theory, 546-550 
Helmholtz-Smoluchowski limit, 546, 550 
Henry’s equation, 546-548 
Huckel limit, 546, 550 
retardation effect, 549 
streaming potential, relation to, 553 
thick electrical double layers, 538-544 
thin electrical double layers, 544-546 
viscoelectric effect, influence of, 556 

Zimm plot, 218-221, 221e 
Zone electrophoresis, 564 
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